1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/SymbolTableListTraits.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <cstring> 57 #include <string> 58 59 using namespace llvm; 60 61 // Explicit instantiations of SymbolTableListTraits since some of the methods 62 // are not in the public header file... 63 template class llvm::SymbolTableListTraits<BasicBlock>; 64 65 //===----------------------------------------------------------------------===// 66 // Argument Implementation 67 //===----------------------------------------------------------------------===// 68 69 void Argument::anchor() {} 70 71 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 72 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 73 setName(Name); 74 } 75 76 void Argument::setParent(Function *parent) { 77 Parent = parent; 78 } 79 80 bool Argument::hasNonNullAttr() const { 81 if (!getType()->isPointerTy()) return false; 82 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 83 return true; 84 else if (getDereferenceableBytes() > 0 && 85 getType()->getPointerAddressSpace() == 0) 86 return true; 87 return false; 88 } 89 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return hasAttribute(Attribute::ByVal); 93 } 94 95 bool Argument::hasSwiftSelfAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 101 } 102 103 bool Argument::hasInAllocaAttr() const { 104 if (!getType()->isPointerTy()) return false; 105 return hasAttribute(Attribute::InAlloca); 106 } 107 108 bool Argument::hasByValOrInAllocaAttr() const { 109 if (!getType()->isPointerTy()) return false; 110 AttributeList Attrs = getParent()->getAttributes(); 111 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 112 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 113 } 114 115 unsigned Argument::getParamAlignment() const { 116 assert(getType()->isPointerTy() && "Only pointers have alignments"); 117 return getParent()->getParamAlignment(getArgNo()); 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo() + 124 AttributeList::FirstArgIndex); 125 } 126 127 uint64_t Argument::getDereferenceableOrNullBytes() const { 128 assert(getType()->isPointerTy() && 129 "Only pointers have dereferenceable bytes"); 130 return getParent()->getDereferenceableOrNullBytes( 131 getArgNo() + AttributeList::FirstArgIndex); 132 } 133 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::NoAlias); 142 } 143 144 bool Argument::hasNoCaptureAttr() const { 145 if (!getType()->isPointerTy()) return false; 146 return hasAttribute(Attribute::NoCapture); 147 } 148 149 bool Argument::hasStructRetAttr() const { 150 if (!getType()->isPointerTy()) return false; 151 return hasAttribute(Attribute::StructRet); 152 } 153 154 bool Argument::hasReturnedAttr() const { 155 return hasAttribute(Attribute::Returned); 156 } 157 158 bool Argument::hasZExtAttr() const { 159 return hasAttribute(Attribute::ZExt); 160 } 161 162 bool Argument::hasSExtAttr() const { 163 return hasAttribute(Attribute::SExt); 164 } 165 166 bool Argument::onlyReadsMemory() const { 167 AttributeList Attrs = getParent()->getAttributes(); 168 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 169 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 170 } 171 172 void Argument::addAttrs(AttrBuilder &B) { 173 AttributeList AL = getParent()->getAttributes(); 174 AL = AL.addAttributes(Parent->getContext(), 175 getArgNo() + AttributeList::FirstArgIndex, B); 176 getParent()->setAttributes(AL); 177 } 178 179 void Argument::addAttr(Attribute::AttrKind Kind) { 180 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 181 } 182 183 void Argument::addAttr(Attribute Attr) { 184 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Attr); 185 } 186 187 void Argument::removeAttr(Attribute::AttrKind Kind) { 188 getParent()->removeAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 189 } 190 191 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 192 return getParent()->hasParamAttribute(getArgNo(), Kind); 193 } 194 195 //===----------------------------------------------------------------------===// 196 // Helper Methods in Function 197 //===----------------------------------------------------------------------===// 198 199 LLVMContext &Function::getContext() const { 200 return getType()->getContext(); 201 } 202 203 void Function::removeFromParent() { 204 getParent()->getFunctionList().remove(getIterator()); 205 } 206 207 void Function::eraseFromParent() { 208 getParent()->getFunctionList().erase(getIterator()); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Function Implementation 213 //===----------------------------------------------------------------------===// 214 215 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 216 Module *ParentModule) 217 : GlobalObject(Ty, Value::FunctionVal, 218 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 219 NumArgs(Ty->getNumParams()) { 220 assert(FunctionType::isValidReturnType(getReturnType()) && 221 "invalid return type"); 222 setGlobalObjectSubClassData(0); 223 224 // We only need a symbol table for a function if the context keeps value names 225 if (!getContext().shouldDiscardValueNames()) 226 SymTab = make_unique<ValueSymbolTable>(); 227 228 // If the function has arguments, mark them as lazily built. 229 if (Ty->getNumParams()) 230 setValueSubclassData(1); // Set the "has lazy arguments" bit. 231 232 if (ParentModule) 233 ParentModule->getFunctionList().push_back(this); 234 235 HasLLVMReservedName = getName().startswith("llvm."); 236 // Ensure intrinsics have the right parameter attributes. 237 // Note, the IntID field will have been set in Value::setName if this function 238 // name is a valid intrinsic ID. 239 if (IntID) 240 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 241 } 242 243 Function::~Function() { 244 dropAllReferences(); // After this it is safe to delete instructions. 245 246 // Delete all of the method arguments and unlink from symbol table... 247 if (Arguments) 248 clearArguments(); 249 250 // Remove the function from the on-the-side GC table. 251 clearGC(); 252 } 253 254 void Function::BuildLazyArguments() const { 255 // Create the arguments vector, all arguments start out unnamed. 256 auto *FT = getFunctionType(); 257 if (NumArgs > 0) { 258 Arguments = std::allocator<Argument>().allocate(NumArgs); 259 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 260 Type *ArgTy = FT->getParamType(i); 261 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 262 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 263 } 264 } 265 266 // Clear the lazy arguments bit. 267 unsigned SDC = getSubclassDataFromValue(); 268 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 269 assert(!hasLazyArguments()); 270 } 271 272 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 273 return MutableArrayRef<Argument>(Args, Count); 274 } 275 276 void Function::clearArguments() { 277 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 278 A.setName(""); 279 A.~Argument(); 280 } 281 std::allocator<Argument>().deallocate(Arguments, NumArgs); 282 Arguments = nullptr; 283 } 284 285 void Function::stealArgumentListFrom(Function &Src) { 286 assert(isDeclaration() && "Expected no references to current arguments"); 287 288 // Drop the current arguments, if any, and set the lazy argument bit. 289 if (!hasLazyArguments()) { 290 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 291 [](const Argument &A) { return A.use_empty(); }) && 292 "Expected arguments to be unused in declaration"); 293 clearArguments(); 294 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 295 } 296 297 // Nothing to steal if Src has lazy arguments. 298 if (Src.hasLazyArguments()) 299 return; 300 301 // Steal arguments from Src, and fix the lazy argument bits. 302 assert(arg_size() == Src.arg_size()); 303 Arguments = Src.Arguments; 304 Src.Arguments = nullptr; 305 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 306 // FIXME: This does the work of transferNodesFromList inefficiently. 307 SmallString<128> Name; 308 if (A.hasName()) 309 Name = A.getName(); 310 if (!Name.empty()) 311 A.setName(""); 312 A.setParent(this); 313 if (!Name.empty()) 314 A.setName(Name); 315 } 316 317 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 318 assert(!hasLazyArguments()); 319 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 320 } 321 322 // dropAllReferences() - This function causes all the subinstructions to "let 323 // go" of all references that they are maintaining. This allows one to 324 // 'delete' a whole class at a time, even though there may be circular 325 // references... first all references are dropped, and all use counts go to 326 // zero. Then everything is deleted for real. Note that no operations are 327 // valid on an object that has "dropped all references", except operator 328 // delete. 329 // 330 void Function::dropAllReferences() { 331 setIsMaterializable(false); 332 333 for (BasicBlock &BB : *this) 334 BB.dropAllReferences(); 335 336 // Delete all basic blocks. They are now unused, except possibly by 337 // blockaddresses, but BasicBlock's destructor takes care of those. 338 while (!BasicBlocks.empty()) 339 BasicBlocks.begin()->eraseFromParent(); 340 341 // Drop uses of any optional data (real or placeholder). 342 if (getNumOperands()) { 343 User::dropAllReferences(); 344 setNumHungOffUseOperands(0); 345 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 346 } 347 348 // Metadata is stored in a side-table. 349 clearMetadata(); 350 } 351 352 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 353 AttributeList PAL = getAttributes(); 354 PAL = PAL.addAttribute(getContext(), i, Kind); 355 setAttributes(PAL); 356 } 357 358 void Function::addAttribute(unsigned i, Attribute Attr) { 359 AttributeList PAL = getAttributes(); 360 PAL = PAL.addAttribute(getContext(), i, Attr); 361 setAttributes(PAL); 362 } 363 364 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 365 AttributeList PAL = getAttributes(); 366 PAL = PAL.addAttributes(getContext(), i, Attrs); 367 setAttributes(PAL); 368 } 369 370 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 371 AttributeList PAL = getAttributes(); 372 PAL = PAL.removeAttribute(getContext(), i, Kind); 373 setAttributes(PAL); 374 } 375 376 void Function::removeAttribute(unsigned i, StringRef Kind) { 377 AttributeList PAL = getAttributes(); 378 PAL = PAL.removeAttribute(getContext(), i, Kind); 379 setAttributes(PAL); 380 } 381 382 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 383 AttributeList PAL = getAttributes(); 384 PAL = PAL.removeAttributes(getContext(), i, Attrs); 385 setAttributes(PAL); 386 } 387 388 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 389 AttributeList PAL = getAttributes(); 390 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 391 setAttributes(PAL); 392 } 393 394 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 395 AttributeList PAL = getAttributes(); 396 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 397 setAttributes(PAL); 398 } 399 400 const std::string &Function::getGC() const { 401 assert(hasGC() && "Function has no collector"); 402 return getContext().getGC(*this); 403 } 404 405 void Function::setGC(std::string Str) { 406 setValueSubclassDataBit(14, !Str.empty()); 407 getContext().setGC(*this, std::move(Str)); 408 } 409 410 void Function::clearGC() { 411 if (!hasGC()) 412 return; 413 getContext().deleteGC(*this); 414 setValueSubclassDataBit(14, false); 415 } 416 417 /// Copy all additional attributes (those not needed to create a Function) from 418 /// the Function Src to this one. 419 void Function::copyAttributesFrom(const GlobalValue *Src) { 420 GlobalObject::copyAttributesFrom(Src); 421 const Function *SrcF = dyn_cast<Function>(Src); 422 if (!SrcF) 423 return; 424 425 setCallingConv(SrcF->getCallingConv()); 426 setAttributes(SrcF->getAttributes()); 427 if (SrcF->hasGC()) 428 setGC(SrcF->getGC()); 429 else 430 clearGC(); 431 if (SrcF->hasPersonalityFn()) 432 setPersonalityFn(SrcF->getPersonalityFn()); 433 if (SrcF->hasPrefixData()) 434 setPrefixData(SrcF->getPrefixData()); 435 if (SrcF->hasPrologueData()) 436 setPrologueData(SrcF->getPrologueData()); 437 } 438 439 /// Table of string intrinsic names indexed by enum value. 440 static const char * const IntrinsicNameTable[] = { 441 "not_intrinsic", 442 #define GET_INTRINSIC_NAME_TABLE 443 #include "llvm/IR/Intrinsics.gen" 444 #undef GET_INTRINSIC_NAME_TABLE 445 }; 446 447 /// Table of per-target intrinsic name tables. 448 #define GET_INTRINSIC_TARGET_DATA 449 #include "llvm/IR/Intrinsics.gen" 450 #undef GET_INTRINSIC_TARGET_DATA 451 452 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 453 /// target as \c Name, or the generic table if \c Name is not target specific. 454 /// 455 /// Returns the relevant slice of \c IntrinsicNameTable 456 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 457 assert(Name.startswith("llvm.")); 458 459 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 460 // Drop "llvm." and take the first dotted component. That will be the target 461 // if this is target specific. 462 StringRef Target = Name.drop_front(5).split('.').first; 463 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 464 [](const IntrinsicTargetInfo &TI, 465 StringRef Target) { return TI.Name < Target; }); 466 // We've either found the target or just fall back to the generic set, which 467 // is always first. 468 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 469 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 470 } 471 472 /// \brief This does the actual lookup of an intrinsic ID which 473 /// matches the given function name. 474 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 475 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 476 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 477 if (Idx == -1) 478 return Intrinsic::not_intrinsic; 479 480 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 481 // an index into a sub-table. 482 int Adjust = NameTable.data() - IntrinsicNameTable; 483 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 484 485 // If the intrinsic is not overloaded, require an exact match. If it is 486 // overloaded, require a prefix match. 487 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 488 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 489 } 490 491 void Function::recalculateIntrinsicID() { 492 StringRef Name = getName(); 493 if (!Name.startswith("llvm.")) { 494 HasLLVMReservedName = false; 495 IntID = Intrinsic::not_intrinsic; 496 return; 497 } 498 HasLLVMReservedName = true; 499 IntID = lookupIntrinsicID(Name); 500 } 501 502 /// Returns a stable mangling for the type specified for use in the name 503 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 504 /// of named types is simply their name. Manglings for unnamed types consist 505 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 506 /// combined with the mangling of their component types. A vararg function 507 /// type will have a suffix of 'vararg'. Since function types can contain 508 /// other function types, we close a function type mangling with suffix 'f' 509 /// which can't be confused with it's prefix. This ensures we don't have 510 /// collisions between two unrelated function types. Otherwise, you might 511 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 512 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 513 /// cases) fall back to the MVT codepath, where they could be mangled to 514 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 515 /// everything. 516 static std::string getMangledTypeStr(Type* Ty) { 517 std::string Result; 518 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 519 Result += "p" + utostr(PTyp->getAddressSpace()) + 520 getMangledTypeStr(PTyp->getElementType()); 521 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 522 Result += "a" + utostr(ATyp->getNumElements()) + 523 getMangledTypeStr(ATyp->getElementType()); 524 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 525 if (!STyp->isLiteral()) { 526 Result += "s_"; 527 Result += STyp->getName(); 528 } else { 529 Result += "sl_"; 530 for (auto Elem : STyp->elements()) 531 Result += getMangledTypeStr(Elem); 532 } 533 // Ensure nested structs are distinguishable. 534 Result += "s"; 535 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 536 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 537 for (size_t i = 0; i < FT->getNumParams(); i++) 538 Result += getMangledTypeStr(FT->getParamType(i)); 539 if (FT->isVarArg()) 540 Result += "vararg"; 541 // Ensure nested function types are distinguishable. 542 Result += "f"; 543 } else if (isa<VectorType>(Ty)) 544 Result += "v" + utostr(Ty->getVectorNumElements()) + 545 getMangledTypeStr(Ty->getVectorElementType()); 546 else if (Ty) 547 Result += EVT::getEVT(Ty).getEVTString(); 548 return Result; 549 } 550 551 StringRef Intrinsic::getName(ID id) { 552 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 553 assert(!isOverloaded(id) && 554 "This version of getName does not support overloading"); 555 return IntrinsicNameTable[id]; 556 } 557 558 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 559 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 560 std::string Result(IntrinsicNameTable[id]); 561 for (Type *Ty : Tys) { 562 Result += "." + getMangledTypeStr(Ty); 563 } 564 return Result; 565 } 566 567 /// IIT_Info - These are enumerators that describe the entries returned by the 568 /// getIntrinsicInfoTableEntries function. 569 /// 570 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 571 enum IIT_Info { 572 // Common values should be encoded with 0-15. 573 IIT_Done = 0, 574 IIT_I1 = 1, 575 IIT_I8 = 2, 576 IIT_I16 = 3, 577 IIT_I32 = 4, 578 IIT_I64 = 5, 579 IIT_F16 = 6, 580 IIT_F32 = 7, 581 IIT_F64 = 8, 582 IIT_V2 = 9, 583 IIT_V4 = 10, 584 IIT_V8 = 11, 585 IIT_V16 = 12, 586 IIT_V32 = 13, 587 IIT_PTR = 14, 588 IIT_ARG = 15, 589 590 // Values from 16+ are only encodable with the inefficient encoding. 591 IIT_V64 = 16, 592 IIT_MMX = 17, 593 IIT_TOKEN = 18, 594 IIT_METADATA = 19, 595 IIT_EMPTYSTRUCT = 20, 596 IIT_STRUCT2 = 21, 597 IIT_STRUCT3 = 22, 598 IIT_STRUCT4 = 23, 599 IIT_STRUCT5 = 24, 600 IIT_EXTEND_ARG = 25, 601 IIT_TRUNC_ARG = 26, 602 IIT_ANYPTR = 27, 603 IIT_V1 = 28, 604 IIT_VARARG = 29, 605 IIT_HALF_VEC_ARG = 30, 606 IIT_SAME_VEC_WIDTH_ARG = 31, 607 IIT_PTR_TO_ARG = 32, 608 IIT_PTR_TO_ELT = 33, 609 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 610 IIT_I128 = 35, 611 IIT_V512 = 36, 612 IIT_V1024 = 37 613 }; 614 615 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 616 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 617 using namespace Intrinsic; 618 619 IIT_Info Info = IIT_Info(Infos[NextElt++]); 620 unsigned StructElts = 2; 621 622 switch (Info) { 623 case IIT_Done: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 625 return; 626 case IIT_VARARG: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 628 return; 629 case IIT_MMX: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 631 return; 632 case IIT_TOKEN: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 634 return; 635 case IIT_METADATA: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 637 return; 638 case IIT_F16: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 640 return; 641 case IIT_F32: 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 643 return; 644 case IIT_F64: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 646 return; 647 case IIT_I1: 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 649 return; 650 case IIT_I8: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 652 return; 653 case IIT_I16: 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 655 return; 656 case IIT_I32: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 658 return; 659 case IIT_I64: 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 661 return; 662 case IIT_I128: 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 664 return; 665 case IIT_V1: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 667 DecodeIITType(NextElt, Infos, OutputTable); 668 return; 669 case IIT_V2: 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 671 DecodeIITType(NextElt, Infos, OutputTable); 672 return; 673 case IIT_V4: 674 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 675 DecodeIITType(NextElt, Infos, OutputTable); 676 return; 677 case IIT_V8: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 679 DecodeIITType(NextElt, Infos, OutputTable); 680 return; 681 case IIT_V16: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 683 DecodeIITType(NextElt, Infos, OutputTable); 684 return; 685 case IIT_V32: 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 687 DecodeIITType(NextElt, Infos, OutputTable); 688 return; 689 case IIT_V64: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 691 DecodeIITType(NextElt, Infos, OutputTable); 692 return; 693 case IIT_V512: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 695 DecodeIITType(NextElt, Infos, OutputTable); 696 return; 697 case IIT_V1024: 698 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 699 DecodeIITType(NextElt, Infos, OutputTable); 700 return; 701 case IIT_PTR: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 703 DecodeIITType(NextElt, Infos, OutputTable); 704 return; 705 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 707 Infos[NextElt++])); 708 DecodeIITType(NextElt, Infos, OutputTable); 709 return; 710 } 711 case IIT_ARG: { 712 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 713 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 714 return; 715 } 716 case IIT_EXTEND_ARG: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 719 ArgInfo)); 720 return; 721 } 722 case IIT_TRUNC_ARG: { 723 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 725 ArgInfo)); 726 return; 727 } 728 case IIT_HALF_VEC_ARG: { 729 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 731 ArgInfo)); 732 return; 733 } 734 case IIT_SAME_VEC_WIDTH_ARG: { 735 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 737 ArgInfo)); 738 return; 739 } 740 case IIT_PTR_TO_ARG: { 741 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 743 ArgInfo)); 744 return; 745 } 746 case IIT_PTR_TO_ELT: { 747 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 749 return; 750 } 751 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 752 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 753 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 754 OutputTable.push_back( 755 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 756 return; 757 } 758 case IIT_EMPTYSTRUCT: 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 760 return; 761 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 762 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 763 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 764 case IIT_STRUCT2: { 765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 766 767 for (unsigned i = 0; i != StructElts; ++i) 768 DecodeIITType(NextElt, Infos, OutputTable); 769 return; 770 } 771 } 772 llvm_unreachable("unhandled"); 773 } 774 775 #define GET_INTRINSIC_GENERATOR_GLOBAL 776 #include "llvm/IR/Intrinsics.gen" 777 #undef GET_INTRINSIC_GENERATOR_GLOBAL 778 779 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 780 SmallVectorImpl<IITDescriptor> &T){ 781 // Check to see if the intrinsic's type was expressible by the table. 782 unsigned TableVal = IIT_Table[id-1]; 783 784 // Decode the TableVal into an array of IITValues. 785 SmallVector<unsigned char, 8> IITValues; 786 ArrayRef<unsigned char> IITEntries; 787 unsigned NextElt = 0; 788 if ((TableVal >> 31) != 0) { 789 // This is an offset into the IIT_LongEncodingTable. 790 IITEntries = IIT_LongEncodingTable; 791 792 // Strip sentinel bit. 793 NextElt = (TableVal << 1) >> 1; 794 } else { 795 // Decode the TableVal into an array of IITValues. If the entry was encoded 796 // into a single word in the table itself, decode it now. 797 do { 798 IITValues.push_back(TableVal & 0xF); 799 TableVal >>= 4; 800 } while (TableVal); 801 802 IITEntries = IITValues; 803 NextElt = 0; 804 } 805 806 // Okay, decode the table into the output vector of IITDescriptors. 807 DecodeIITType(NextElt, IITEntries, T); 808 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 809 DecodeIITType(NextElt, IITEntries, T); 810 } 811 812 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 813 ArrayRef<Type*> Tys, LLVMContext &Context) { 814 using namespace Intrinsic; 815 816 IITDescriptor D = Infos.front(); 817 Infos = Infos.slice(1); 818 819 switch (D.Kind) { 820 case IITDescriptor::Void: return Type::getVoidTy(Context); 821 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 822 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 823 case IITDescriptor::Token: return Type::getTokenTy(Context); 824 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 825 case IITDescriptor::Half: return Type::getHalfTy(Context); 826 case IITDescriptor::Float: return Type::getFloatTy(Context); 827 case IITDescriptor::Double: return Type::getDoubleTy(Context); 828 829 case IITDescriptor::Integer: 830 return IntegerType::get(Context, D.Integer_Width); 831 case IITDescriptor::Vector: 832 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 833 case IITDescriptor::Pointer: 834 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 835 D.Pointer_AddressSpace); 836 case IITDescriptor::Struct: { 837 Type *Elts[5]; 838 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 839 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 840 Elts[i] = DecodeFixedType(Infos, Tys, Context); 841 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 842 } 843 case IITDescriptor::Argument: 844 return Tys[D.getArgumentNumber()]; 845 case IITDescriptor::ExtendArgument: { 846 Type *Ty = Tys[D.getArgumentNumber()]; 847 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 848 return VectorType::getExtendedElementVectorType(VTy); 849 850 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 851 } 852 case IITDescriptor::TruncArgument: { 853 Type *Ty = Tys[D.getArgumentNumber()]; 854 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 855 return VectorType::getTruncatedElementVectorType(VTy); 856 857 IntegerType *ITy = cast<IntegerType>(Ty); 858 assert(ITy->getBitWidth() % 2 == 0); 859 return IntegerType::get(Context, ITy->getBitWidth() / 2); 860 } 861 case IITDescriptor::HalfVecArgument: 862 return VectorType::getHalfElementsVectorType(cast<VectorType>( 863 Tys[D.getArgumentNumber()])); 864 case IITDescriptor::SameVecWidthArgument: { 865 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 866 Type *Ty = Tys[D.getArgumentNumber()]; 867 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 868 return VectorType::get(EltTy, VTy->getNumElements()); 869 } 870 llvm_unreachable("unhandled"); 871 } 872 case IITDescriptor::PtrToArgument: { 873 Type *Ty = Tys[D.getArgumentNumber()]; 874 return PointerType::getUnqual(Ty); 875 } 876 case IITDescriptor::PtrToElt: { 877 Type *Ty = Tys[D.getArgumentNumber()]; 878 VectorType *VTy = dyn_cast<VectorType>(Ty); 879 if (!VTy) 880 llvm_unreachable("Expected an argument of Vector Type"); 881 Type *EltTy = VTy->getVectorElementType(); 882 return PointerType::getUnqual(EltTy); 883 } 884 case IITDescriptor::VecOfAnyPtrsToElt: 885 // Return the overloaded type (which determines the pointers address space) 886 return Tys[D.getOverloadArgNumber()]; 887 } 888 llvm_unreachable("unhandled"); 889 } 890 891 FunctionType *Intrinsic::getType(LLVMContext &Context, 892 ID id, ArrayRef<Type*> Tys) { 893 SmallVector<IITDescriptor, 8> Table; 894 getIntrinsicInfoTableEntries(id, Table); 895 896 ArrayRef<IITDescriptor> TableRef = Table; 897 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 898 899 SmallVector<Type*, 8> ArgTys; 900 while (!TableRef.empty()) 901 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 902 903 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 904 // If we see void type as the type of the last argument, it is vararg intrinsic 905 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 906 ArgTys.pop_back(); 907 return FunctionType::get(ResultTy, ArgTys, true); 908 } 909 return FunctionType::get(ResultTy, ArgTys, false); 910 } 911 912 bool Intrinsic::isOverloaded(ID id) { 913 #define GET_INTRINSIC_OVERLOAD_TABLE 914 #include "llvm/IR/Intrinsics.gen" 915 #undef GET_INTRINSIC_OVERLOAD_TABLE 916 } 917 918 bool Intrinsic::isLeaf(ID id) { 919 switch (id) { 920 default: 921 return true; 922 923 case Intrinsic::experimental_gc_statepoint: 924 case Intrinsic::experimental_patchpoint_void: 925 case Intrinsic::experimental_patchpoint_i64: 926 return false; 927 } 928 } 929 930 /// This defines the "Intrinsic::getAttributes(ID id)" method. 931 #define GET_INTRINSIC_ATTRIBUTES 932 #include "llvm/IR/Intrinsics.gen" 933 #undef GET_INTRINSIC_ATTRIBUTES 934 935 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 936 // There can never be multiple globals with the same name of different types, 937 // because intrinsics must be a specific type. 938 return 939 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 940 getType(M->getContext(), id, Tys))); 941 } 942 943 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 944 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 945 #include "llvm/IR/Intrinsics.gen" 946 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 947 948 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 949 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 950 #include "llvm/IR/Intrinsics.gen" 951 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 952 953 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 954 SmallVectorImpl<Type*> &ArgTys) { 955 using namespace Intrinsic; 956 957 // If we ran out of descriptors, there are too many arguments. 958 if (Infos.empty()) return true; 959 IITDescriptor D = Infos.front(); 960 Infos = Infos.slice(1); 961 962 switch (D.Kind) { 963 case IITDescriptor::Void: return !Ty->isVoidTy(); 964 case IITDescriptor::VarArg: return true; 965 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 966 case IITDescriptor::Token: return !Ty->isTokenTy(); 967 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 968 case IITDescriptor::Half: return !Ty->isHalfTy(); 969 case IITDescriptor::Float: return !Ty->isFloatTy(); 970 case IITDescriptor::Double: return !Ty->isDoubleTy(); 971 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 972 case IITDescriptor::Vector: { 973 VectorType *VT = dyn_cast<VectorType>(Ty); 974 return !VT || VT->getNumElements() != D.Vector_Width || 975 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 976 } 977 case IITDescriptor::Pointer: { 978 PointerType *PT = dyn_cast<PointerType>(Ty); 979 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 980 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 981 } 982 983 case IITDescriptor::Struct: { 984 StructType *ST = dyn_cast<StructType>(Ty); 985 if (!ST || ST->getNumElements() != D.Struct_NumElements) 986 return true; 987 988 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 989 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 990 return true; 991 return false; 992 } 993 994 case IITDescriptor::Argument: 995 // Two cases here - If this is the second occurrence of an argument, verify 996 // that the later instance matches the previous instance. 997 if (D.getArgumentNumber() < ArgTys.size()) 998 return Ty != ArgTys[D.getArgumentNumber()]; 999 1000 // Otherwise, if this is the first instance of an argument, record it and 1001 // verify the "Any" kind. 1002 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1003 ArgTys.push_back(Ty); 1004 1005 switch (D.getArgumentKind()) { 1006 case IITDescriptor::AK_Any: return false; // Success 1007 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1008 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1009 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1010 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1011 } 1012 llvm_unreachable("all argument kinds not covered"); 1013 1014 case IITDescriptor::ExtendArgument: { 1015 // This may only be used when referring to a previous vector argument. 1016 if (D.getArgumentNumber() >= ArgTys.size()) 1017 return true; 1018 1019 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1020 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1021 NewTy = VectorType::getExtendedElementVectorType(VTy); 1022 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1023 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1024 else 1025 return true; 1026 1027 return Ty != NewTy; 1028 } 1029 case IITDescriptor::TruncArgument: { 1030 // This may only be used when referring to a previous vector argument. 1031 if (D.getArgumentNumber() >= ArgTys.size()) 1032 return true; 1033 1034 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1035 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1036 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1037 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1038 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1039 else 1040 return true; 1041 1042 return Ty != NewTy; 1043 } 1044 case IITDescriptor::HalfVecArgument: 1045 // This may only be used when referring to a previous vector argument. 1046 return D.getArgumentNumber() >= ArgTys.size() || 1047 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1048 VectorType::getHalfElementsVectorType( 1049 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1050 case IITDescriptor::SameVecWidthArgument: { 1051 if (D.getArgumentNumber() >= ArgTys.size()) 1052 return true; 1053 VectorType * ReferenceType = 1054 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1055 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1056 if (!ThisArgType || !ReferenceType || 1057 (ReferenceType->getVectorNumElements() != 1058 ThisArgType->getVectorNumElements())) 1059 return true; 1060 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1061 Infos, ArgTys); 1062 } 1063 case IITDescriptor::PtrToArgument: { 1064 if (D.getArgumentNumber() >= ArgTys.size()) 1065 return true; 1066 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1067 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1068 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1069 } 1070 case IITDescriptor::PtrToElt: { 1071 if (D.getArgumentNumber() >= ArgTys.size()) 1072 return true; 1073 VectorType * ReferenceType = 1074 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1075 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1076 1077 return (!ThisArgType || !ReferenceType || 1078 ThisArgType->getElementType() != ReferenceType->getElementType()); 1079 } 1080 case IITDescriptor::VecOfAnyPtrsToElt: { 1081 unsigned RefArgNumber = D.getRefArgNumber(); 1082 1083 // This may only be used when referring to a previous argument. 1084 if (RefArgNumber >= ArgTys.size()) 1085 return true; 1086 1087 // Record the overloaded type 1088 assert(D.getOverloadArgNumber() == ArgTys.size() && 1089 "Table consistency error"); 1090 ArgTys.push_back(Ty); 1091 1092 // Verify the overloaded type "matches" the Ref type. 1093 // i.e. Ty is a vector with the same width as Ref. 1094 // Composed of pointers to the same element type as Ref. 1095 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1096 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1097 if (!ThisArgVecTy || !ReferenceType || 1098 (ReferenceType->getVectorNumElements() != 1099 ThisArgVecTy->getVectorNumElements())) 1100 return true; 1101 PointerType *ThisArgEltTy = 1102 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1103 if (!ThisArgEltTy) 1104 return true; 1105 return ThisArgEltTy->getElementType() != 1106 ReferenceType->getVectorElementType(); 1107 } 1108 } 1109 llvm_unreachable("unhandled"); 1110 } 1111 1112 bool 1113 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1114 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1115 // If there are no descriptors left, then it can't be a vararg. 1116 if (Infos.empty()) 1117 return isVarArg; 1118 1119 // There should be only one descriptor remaining at this point. 1120 if (Infos.size() != 1) 1121 return true; 1122 1123 // Check and verify the descriptor. 1124 IITDescriptor D = Infos.front(); 1125 Infos = Infos.slice(1); 1126 if (D.Kind == IITDescriptor::VarArg) 1127 return !isVarArg; 1128 1129 return true; 1130 } 1131 1132 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1133 Intrinsic::ID ID = F->getIntrinsicID(); 1134 if (!ID) 1135 return None; 1136 1137 FunctionType *FTy = F->getFunctionType(); 1138 // Accumulate an array of overloaded types for the given intrinsic 1139 SmallVector<Type *, 4> ArgTys; 1140 { 1141 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1142 getIntrinsicInfoTableEntries(ID, Table); 1143 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1144 1145 // If we encounter any problems matching the signature with the descriptor 1146 // just give up remangling. It's up to verifier to report the discrepancy. 1147 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1148 return None; 1149 for (auto Ty : FTy->params()) 1150 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1151 return None; 1152 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1153 return None; 1154 } 1155 1156 StringRef Name = F->getName(); 1157 if (Name == Intrinsic::getName(ID, ArgTys)) 1158 return None; 1159 1160 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1161 NewDecl->setCallingConv(F->getCallingConv()); 1162 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1163 return NewDecl; 1164 } 1165 1166 /// hasAddressTaken - returns true if there are any uses of this function 1167 /// other than direct calls or invokes to it. 1168 bool Function::hasAddressTaken(const User* *PutOffender) const { 1169 for (const Use &U : uses()) { 1170 const User *FU = U.getUser(); 1171 if (isa<BlockAddress>(FU)) 1172 continue; 1173 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1174 if (PutOffender) 1175 *PutOffender = FU; 1176 return true; 1177 } 1178 ImmutableCallSite CS(cast<Instruction>(FU)); 1179 if (!CS.isCallee(&U)) { 1180 if (PutOffender) 1181 *PutOffender = FU; 1182 return true; 1183 } 1184 } 1185 return false; 1186 } 1187 1188 bool Function::isDefTriviallyDead() const { 1189 // Check the linkage 1190 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1191 !hasAvailableExternallyLinkage()) 1192 return false; 1193 1194 // Check if the function is used by anything other than a blockaddress. 1195 for (const User *U : users()) 1196 if (!isa<BlockAddress>(U)) 1197 return false; 1198 1199 return true; 1200 } 1201 1202 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1203 /// setjmp or other function that gcc recognizes as "returning twice". 1204 bool Function::callsFunctionThatReturnsTwice() const { 1205 for (const_inst_iterator 1206 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1207 ImmutableCallSite CS(&*I); 1208 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1209 return true; 1210 } 1211 1212 return false; 1213 } 1214 1215 Constant *Function::getPersonalityFn() const { 1216 assert(hasPersonalityFn() && getNumOperands()); 1217 return cast<Constant>(Op<0>()); 1218 } 1219 1220 void Function::setPersonalityFn(Constant *Fn) { 1221 setHungoffOperand<0>(Fn); 1222 setValueSubclassDataBit(3, Fn != nullptr); 1223 } 1224 1225 Constant *Function::getPrefixData() const { 1226 assert(hasPrefixData() && getNumOperands()); 1227 return cast<Constant>(Op<1>()); 1228 } 1229 1230 void Function::setPrefixData(Constant *PrefixData) { 1231 setHungoffOperand<1>(PrefixData); 1232 setValueSubclassDataBit(1, PrefixData != nullptr); 1233 } 1234 1235 Constant *Function::getPrologueData() const { 1236 assert(hasPrologueData() && getNumOperands()); 1237 return cast<Constant>(Op<2>()); 1238 } 1239 1240 void Function::setPrologueData(Constant *PrologueData) { 1241 setHungoffOperand<2>(PrologueData); 1242 setValueSubclassDataBit(2, PrologueData != nullptr); 1243 } 1244 1245 void Function::allocHungoffUselist() { 1246 // If we've already allocated a uselist, stop here. 1247 if (getNumOperands()) 1248 return; 1249 1250 allocHungoffUses(3, /*IsPhi=*/ false); 1251 setNumHungOffUseOperands(3); 1252 1253 // Initialize the uselist with placeholder operands to allow traversal. 1254 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1255 Op<0>().set(CPN); 1256 Op<1>().set(CPN); 1257 Op<2>().set(CPN); 1258 } 1259 1260 template <int Idx> 1261 void Function::setHungoffOperand(Constant *C) { 1262 if (C) { 1263 allocHungoffUselist(); 1264 Op<Idx>().set(C); 1265 } else if (getNumOperands()) { 1266 Op<Idx>().set( 1267 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1268 } 1269 } 1270 1271 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1272 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1273 if (On) 1274 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1275 else 1276 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1277 } 1278 1279 void Function::setEntryCount(uint64_t Count, 1280 const DenseSet<GlobalValue::GUID> *S) { 1281 MDBuilder MDB(getContext()); 1282 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1283 } 1284 1285 Optional<uint64_t> Function::getEntryCount() const { 1286 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1287 if (MD && MD->getOperand(0)) 1288 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1289 if (MDS->getString().equals("function_entry_count")) { 1290 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1291 uint64_t Count = CI->getValue().getZExtValue(); 1292 if (Count == 0) 1293 return None; 1294 return Count; 1295 } 1296 return None; 1297 } 1298 1299 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1300 DenseSet<GlobalValue::GUID> R; 1301 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1302 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1303 if (MDS->getString().equals("function_entry_count")) 1304 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1305 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1306 ->getValue() 1307 .getZExtValue()); 1308 return R; 1309 } 1310 1311 void Function::setSectionPrefix(StringRef Prefix) { 1312 MDBuilder MDB(getContext()); 1313 setMetadata(LLVMContext::MD_section_prefix, 1314 MDB.createFunctionSectionPrefix(Prefix)); 1315 } 1316 1317 Optional<StringRef> Function::getSectionPrefix() const { 1318 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1319 assert(dyn_cast<MDString>(MD->getOperand(0)) 1320 ->getString() 1321 .equals("function_section_prefix") && 1322 "Metadata not match"); 1323 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1324 } 1325 return None; 1326 } 1327