xref: /llvm-project/llvm/lib/IR/Function.cpp (revision eb54909c8c7381fefdb9a0ebd457fee0ebd3088c)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 using namespace llvm;
30 
31 // Explicit instantiations of SymbolTableListTraits since some of the methods
32 // are not in the public header file...
33 template class llvm::SymbolTableListTraits<Argument>;
34 template class llvm::SymbolTableListTraits<BasicBlock>;
35 
36 //===----------------------------------------------------------------------===//
37 // Argument Implementation
38 //===----------------------------------------------------------------------===//
39 
40 void Argument::anchor() { }
41 
42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
43   : Value(Ty, Value::ArgumentVal), ArgNo(ArgNo) {
44   Parent = nullptr;
45 
46   if (Par)
47     Par->getArgumentList().push_back(this);
48   setName(Name);
49 }
50 
51 void Argument::setParent(Function *parent) {
52   Parent = parent;
53 }
54 
55 bool Argument::hasNonNullAttr() const {
56   if (!getType()->isPointerTy()) return false;
57   if (getParent()->getAttributes().
58         hasAttribute(getArgNo()+1, Attribute::NonNull))
59     return true;
60   else if (getDereferenceableBytes() > 0 &&
61            getType()->getPointerAddressSpace() == 0)
62     return true;
63   return false;
64 }
65 
66 bool Argument::hasByValAttr() const {
67   if (!getType()->isPointerTy()) return false;
68   return hasAttribute(Attribute::ByVal);
69 }
70 
71 bool Argument::hasSwiftSelfAttr() const {
72   return getParent()->getAttributes().
73     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
74 }
75 
76 bool Argument::hasSwiftErrorAttr() const {
77   return getParent()->getAttributes().
78     hasAttribute(getArgNo()+1, Attribute::SwiftError);
79 }
80 
81 bool Argument::hasInAllocaAttr() const {
82   if (!getType()->isPointerTy()) return false;
83   return hasAttribute(Attribute::InAlloca);
84 }
85 
86 bool Argument::hasByValOrInAllocaAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   AttributeSet Attrs = getParent()->getAttributes();
89   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
90          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
91 }
92 
93 unsigned Argument::getParamAlignment() const {
94   assert(getType()->isPointerTy() && "Only pointers have alignments");
95   return getParent()->getParamAlignment(getArgNo()+1);
96 
97 }
98 
99 uint64_t Argument::getDereferenceableBytes() const {
100   assert(getType()->isPointerTy() &&
101          "Only pointers have dereferenceable bytes");
102   return getParent()->getDereferenceableBytes(getArgNo()+1);
103 }
104 
105 uint64_t Argument::getDereferenceableOrNullBytes() const {
106   assert(getType()->isPointerTy() &&
107          "Only pointers have dereferenceable bytes");
108   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
109 }
110 
111 bool Argument::hasNestAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   return hasAttribute(Attribute::Nest);
114 }
115 
116 bool Argument::hasNoAliasAttr() const {
117   if (!getType()->isPointerTy()) return false;
118   return hasAttribute(Attribute::NoAlias);
119 }
120 
121 bool Argument::hasNoCaptureAttr() const {
122   if (!getType()->isPointerTy()) return false;
123   return hasAttribute(Attribute::NoCapture);
124 }
125 
126 bool Argument::hasStructRetAttr() const {
127   if (!getType()->isPointerTy()) return false;
128   return hasAttribute(Attribute::StructRet);
129 }
130 
131 bool Argument::hasReturnedAttr() const {
132   return hasAttribute(Attribute::Returned);
133 }
134 
135 bool Argument::hasZExtAttr() const {
136   return hasAttribute(Attribute::ZExt);
137 }
138 
139 bool Argument::hasSExtAttr() const {
140   return hasAttribute(Attribute::SExt);
141 }
142 
143 bool Argument::onlyReadsMemory() const {
144   return getParent()->getAttributes().
145       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
146       getParent()->getAttributes().
147       hasAttribute(getArgNo()+1, Attribute::ReadNone);
148 }
149 
150 void Argument::addAttr(AttributeSet AS) {
151   assert(AS.getNumSlots() <= 1 &&
152          "Trying to add more than one attribute set to an argument!");
153   AttrBuilder B(AS, AS.getSlotIndex(0));
154   getParent()->addAttributes(getArgNo() + 1,
155                              AttributeSet::get(Parent->getContext(),
156                                                getArgNo() + 1, B));
157 }
158 
159 void Argument::removeAttr(AttributeSet AS) {
160   assert(AS.getNumSlots() <= 1 &&
161          "Trying to remove more than one attribute set from an argument!");
162   AttrBuilder B(AS, AS.getSlotIndex(0));
163   getParent()->removeAttributes(getArgNo() + 1,
164                                 AttributeSet::get(Parent->getContext(),
165                                                   getArgNo() + 1, B));
166 }
167 
168 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
169   return getParent()->hasAttribute(getArgNo() + 1, Kind);
170 }
171 
172 //===----------------------------------------------------------------------===//
173 // Helper Methods in Function
174 //===----------------------------------------------------------------------===//
175 
176 LLVMContext &Function::getContext() const {
177   return getType()->getContext();
178 }
179 
180 void Function::removeFromParent() {
181   getParent()->getFunctionList().remove(getIterator());
182 }
183 
184 void Function::eraseFromParent() {
185   getParent()->getFunctionList().erase(getIterator());
186 }
187 
188 //===----------------------------------------------------------------------===//
189 // Function Implementation
190 //===----------------------------------------------------------------------===//
191 
192 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
193                    Module *ParentModule)
194     : GlobalObject(Ty, Value::FunctionVal,
195                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
196   assert(FunctionType::isValidReturnType(getReturnType()) &&
197          "invalid return type");
198   setGlobalObjectSubClassData(0);
199 
200   // We only need a symbol table for a function if the context keeps value names
201   if (!getContext().shouldDiscardValueNames())
202     SymTab = make_unique<ValueSymbolTable>();
203 
204   // If the function has arguments, mark them as lazily built.
205   if (Ty->getNumParams())
206     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
207 
208   if (ParentModule)
209     ParentModule->getFunctionList().push_back(this);
210 
211   HasLLVMReservedName = getName().startswith("llvm.");
212   // Ensure intrinsics have the right parameter attributes.
213   // Note, the IntID field will have been set in Value::setName if this function
214   // name is a valid intrinsic ID.
215   if (IntID)
216     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
217 }
218 
219 Function::~Function() {
220   dropAllReferences();    // After this it is safe to delete instructions.
221 
222   // Delete all of the method arguments and unlink from symbol table...
223   ArgumentList.clear();
224 
225   // Remove the function from the on-the-side GC table.
226   clearGC();
227 }
228 
229 void Function::BuildLazyArguments() const {
230   // Create the arguments vector, all arguments start out unnamed.
231   FunctionType *FT = getFunctionType();
232   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
233     assert(!FT->getParamType(i)->isVoidTy() &&
234            "Cannot have void typed arguments!");
235     ArgumentList.push_back(
236         new Argument(FT->getParamType(i), "", nullptr, i));
237   }
238 
239   // Clear the lazy arguments bit.
240   unsigned SDC = getSubclassDataFromValue();
241   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
242 }
243 
244 void Function::stealArgumentListFrom(Function &Src) {
245   assert(isDeclaration() && "Expected no references to current arguments");
246 
247   // Drop the current arguments, if any, and set the lazy argument bit.
248   if (!hasLazyArguments()) {
249     assert(llvm::all_of(ArgumentList,
250                         [](const Argument &A) { return A.use_empty(); }) &&
251            "Expected arguments to be unused in declaration");
252     ArgumentList.clear();
253     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
254   }
255 
256   // Nothing to steal if Src has lazy arguments.
257   if (Src.hasLazyArguments())
258     return;
259 
260   // Steal arguments from Src, and fix the lazy argument bits.
261   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
262   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
263   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
264 }
265 
266 // dropAllReferences() - This function causes all the subinstructions to "let
267 // go" of all references that they are maintaining.  This allows one to
268 // 'delete' a whole class at a time, even though there may be circular
269 // references... first all references are dropped, and all use counts go to
270 // zero.  Then everything is deleted for real.  Note that no operations are
271 // valid on an object that has "dropped all references", except operator
272 // delete.
273 //
274 void Function::dropAllReferences() {
275   setIsMaterializable(false);
276 
277   for (BasicBlock &BB : *this)
278     BB.dropAllReferences();
279 
280   // Delete all basic blocks. They are now unused, except possibly by
281   // blockaddresses, but BasicBlock's destructor takes care of those.
282   while (!BasicBlocks.empty())
283     BasicBlocks.begin()->eraseFromParent();
284 
285   // Drop uses of any optional data (real or placeholder).
286   if (getNumOperands()) {
287     User::dropAllReferences();
288     setNumHungOffUseOperands(0);
289     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
290   }
291 
292   // Metadata is stored in a side-table.
293   clearMetadata();
294 }
295 
296 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
297   AttributeSet PAL = getAttributes();
298   PAL = PAL.addAttribute(getContext(), i, Kind);
299   setAttributes(PAL);
300 }
301 
302 void Function::addAttribute(unsigned i, Attribute Attr) {
303   AttributeSet PAL = getAttributes();
304   PAL = PAL.addAttribute(getContext(), i, Attr);
305   setAttributes(PAL);
306 }
307 
308 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
309   AttributeSet PAL = getAttributes();
310   PAL = PAL.addAttributes(getContext(), i, Attrs);
311   setAttributes(PAL);
312 }
313 
314 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
315   AttributeSet PAL = getAttributes();
316   PAL = PAL.removeAttribute(getContext(), i, Kind);
317   setAttributes(PAL);
318 }
319 
320 void Function::removeAttribute(unsigned i, StringRef Kind) {
321   AttributeSet PAL = getAttributes();
322   PAL = PAL.removeAttribute(getContext(), i, Kind);
323   setAttributes(PAL);
324 }
325 
326 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
327   AttributeSet PAL = getAttributes();
328   PAL = PAL.removeAttributes(getContext(), i, Attrs);
329   setAttributes(PAL);
330 }
331 
332 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
333   AttributeSet PAL = getAttributes();
334   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
335   setAttributes(PAL);
336 }
337 
338 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
339   AttributeSet PAL = getAttributes();
340   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
341   setAttributes(PAL);
342 }
343 
344 const std::string &Function::getGC() const {
345   assert(hasGC() && "Function has no collector");
346   return getContext().getGC(*this);
347 }
348 
349 void Function::setGC(std::string Str) {
350   setValueSubclassDataBit(14, !Str.empty());
351   getContext().setGC(*this, std::move(Str));
352 }
353 
354 void Function::clearGC() {
355   if (!hasGC())
356     return;
357   getContext().deleteGC(*this);
358   setValueSubclassDataBit(14, false);
359 }
360 
361 /// Copy all additional attributes (those not needed to create a Function) from
362 /// the Function Src to this one.
363 void Function::copyAttributesFrom(const GlobalValue *Src) {
364   GlobalObject::copyAttributesFrom(Src);
365   const Function *SrcF = dyn_cast<Function>(Src);
366   if (!SrcF)
367     return;
368 
369   setCallingConv(SrcF->getCallingConv());
370   setAttributes(SrcF->getAttributes());
371   if (SrcF->hasGC())
372     setGC(SrcF->getGC());
373   else
374     clearGC();
375   if (SrcF->hasPersonalityFn())
376     setPersonalityFn(SrcF->getPersonalityFn());
377   if (SrcF->hasPrefixData())
378     setPrefixData(SrcF->getPrefixData());
379   if (SrcF->hasPrologueData())
380     setPrologueData(SrcF->getPrologueData());
381 }
382 
383 /// Table of string intrinsic names indexed by enum value.
384 static const char * const IntrinsicNameTable[] = {
385   "not_intrinsic",
386 #define GET_INTRINSIC_NAME_TABLE
387 #include "llvm/IR/Intrinsics.gen"
388 #undef GET_INTRINSIC_NAME_TABLE
389 };
390 
391 /// Table of per-target intrinsic name tables.
392 #define GET_INTRINSIC_TARGET_DATA
393 #include "llvm/IR/Intrinsics.gen"
394 #undef GET_INTRINSIC_TARGET_DATA
395 
396 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
397 /// target as \c Name, or the generic table if \c Name is not target specific.
398 ///
399 /// Returns the relevant slice of \c IntrinsicNameTable
400 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
401   assert(Name.startswith("llvm."));
402 
403   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
404   // Drop "llvm." and take the first dotted component. That will be the target
405   // if this is target specific.
406   StringRef Target = Name.drop_front(5).split('.').first;
407   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
408                              [](const IntrinsicTargetInfo &TI,
409                                 StringRef Target) { return TI.Name < Target; });
410   // We've either found the target or just fall back to the generic set, which
411   // is always first.
412   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
413   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
414 }
415 
416 /// \brief This does the actual lookup of an intrinsic ID which
417 /// matches the given function name.
418 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
419   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
420   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
421   if (Idx == -1)
422     return Intrinsic::not_intrinsic;
423 
424   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
425   // an index into a sub-table.
426   int Adjust = NameTable.data() - IntrinsicNameTable;
427   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
428 
429   // If the intrinsic is not overloaded, require an exact match. If it is
430   // overloaded, require a prefix match.
431   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
432   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
433 }
434 
435 void Function::recalculateIntrinsicID() {
436   StringRef Name = getName();
437   if (!Name.startswith("llvm.")) {
438     HasLLVMReservedName = false;
439     IntID = Intrinsic::not_intrinsic;
440     return;
441   }
442   HasLLVMReservedName = true;
443   IntID = lookupIntrinsicID(Name);
444 }
445 
446 /// Returns a stable mangling for the type specified for use in the name
447 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
448 /// of named types is simply their name.  Manglings for unnamed types consist
449 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
450 /// combined with the mangling of their component types.  A vararg function
451 /// type will have a suffix of 'vararg'.  Since function types can contain
452 /// other function types, we close a function type mangling with suffix 'f'
453 /// which can't be confused with it's prefix.  This ensures we don't have
454 /// collisions between two unrelated function types. Otherwise, you might
455 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
456 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
457 /// cases) fall back to the MVT codepath, where they could be mangled to
458 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
459 /// everything.
460 static std::string getMangledTypeStr(Type* Ty) {
461   std::string Result;
462   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
463     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
464       getMangledTypeStr(PTyp->getElementType());
465   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
466     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
467       getMangledTypeStr(ATyp->getElementType());
468   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
469     if (!STyp->isLiteral()) {
470       Result += "s_";
471       Result += STyp->getName();
472     } else {
473       Result += "sl_";
474       for (auto Elem : STyp->elements())
475         Result += getMangledTypeStr(Elem);
476     }
477     // Ensure nested structs are distinguishable.
478     Result += "s";
479   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
480     Result += "f_" + getMangledTypeStr(FT->getReturnType());
481     for (size_t i = 0; i < FT->getNumParams(); i++)
482       Result += getMangledTypeStr(FT->getParamType(i));
483     if (FT->isVarArg())
484       Result += "vararg";
485     // Ensure nested function types are distinguishable.
486     Result += "f";
487   } else if (isa<VectorType>(Ty))
488     Result += "v" + utostr(Ty->getVectorNumElements()) +
489       getMangledTypeStr(Ty->getVectorElementType());
490   else if (Ty)
491     Result += EVT::getEVT(Ty).getEVTString();
492   return Result;
493 }
494 
495 StringRef Intrinsic::getName(ID id) {
496   assert(id < num_intrinsics && "Invalid intrinsic ID!");
497   assert(!isOverloaded(id) &&
498          "This version of getName does not support overloading");
499   return IntrinsicNameTable[id];
500 }
501 
502 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
503   assert(id < num_intrinsics && "Invalid intrinsic ID!");
504   std::string Result(IntrinsicNameTable[id]);
505   for (Type *Ty : Tys) {
506     Result += "." + getMangledTypeStr(Ty);
507   }
508   return Result;
509 }
510 
511 
512 /// IIT_Info - These are enumerators that describe the entries returned by the
513 /// getIntrinsicInfoTableEntries function.
514 ///
515 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
516 enum IIT_Info {
517   // Common values should be encoded with 0-15.
518   IIT_Done = 0,
519   IIT_I1   = 1,
520   IIT_I8   = 2,
521   IIT_I16  = 3,
522   IIT_I32  = 4,
523   IIT_I64  = 5,
524   IIT_F16  = 6,
525   IIT_F32  = 7,
526   IIT_F64  = 8,
527   IIT_V2   = 9,
528   IIT_V4   = 10,
529   IIT_V8   = 11,
530   IIT_V16  = 12,
531   IIT_V32  = 13,
532   IIT_PTR  = 14,
533   IIT_ARG  = 15,
534 
535   // Values from 16+ are only encodable with the inefficient encoding.
536   IIT_V64  = 16,
537   IIT_MMX  = 17,
538   IIT_TOKEN = 18,
539   IIT_METADATA = 19,
540   IIT_EMPTYSTRUCT = 20,
541   IIT_STRUCT2 = 21,
542   IIT_STRUCT3 = 22,
543   IIT_STRUCT4 = 23,
544   IIT_STRUCT5 = 24,
545   IIT_EXTEND_ARG = 25,
546   IIT_TRUNC_ARG = 26,
547   IIT_ANYPTR = 27,
548   IIT_V1   = 28,
549   IIT_VARARG = 29,
550   IIT_HALF_VEC_ARG = 30,
551   IIT_SAME_VEC_WIDTH_ARG = 31,
552   IIT_PTR_TO_ARG = 32,
553   IIT_PTR_TO_ELT = 33,
554   IIT_VEC_OF_PTRS_TO_ELT = 34,
555   IIT_I128 = 35,
556   IIT_V512 = 36,
557   IIT_V1024 = 37
558 };
559 
560 
561 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
562                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
563   IIT_Info Info = IIT_Info(Infos[NextElt++]);
564   unsigned StructElts = 2;
565   using namespace Intrinsic;
566 
567   switch (Info) {
568   case IIT_Done:
569     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
570     return;
571   case IIT_VARARG:
572     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
573     return;
574   case IIT_MMX:
575     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
576     return;
577   case IIT_TOKEN:
578     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
579     return;
580   case IIT_METADATA:
581     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
582     return;
583   case IIT_F16:
584     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
585     return;
586   case IIT_F32:
587     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
588     return;
589   case IIT_F64:
590     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
591     return;
592   case IIT_I1:
593     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
594     return;
595   case IIT_I8:
596     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
597     return;
598   case IIT_I16:
599     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
600     return;
601   case IIT_I32:
602     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
603     return;
604   case IIT_I64:
605     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
606     return;
607   case IIT_I128:
608     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
609     return;
610   case IIT_V1:
611     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
612     DecodeIITType(NextElt, Infos, OutputTable);
613     return;
614   case IIT_V2:
615     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
616     DecodeIITType(NextElt, Infos, OutputTable);
617     return;
618   case IIT_V4:
619     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
620     DecodeIITType(NextElt, Infos, OutputTable);
621     return;
622   case IIT_V8:
623     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
624     DecodeIITType(NextElt, Infos, OutputTable);
625     return;
626   case IIT_V16:
627     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
628     DecodeIITType(NextElt, Infos, OutputTable);
629     return;
630   case IIT_V32:
631     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
632     DecodeIITType(NextElt, Infos, OutputTable);
633     return;
634   case IIT_V64:
635     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
636     DecodeIITType(NextElt, Infos, OutputTable);
637     return;
638   case IIT_V512:
639     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
640     DecodeIITType(NextElt, Infos, OutputTable);
641     return;
642   case IIT_V1024:
643     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
644     DecodeIITType(NextElt, Infos, OutputTable);
645     return;
646   case IIT_PTR:
647     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
648     DecodeIITType(NextElt, Infos, OutputTable);
649     return;
650   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
651     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
652                                              Infos[NextElt++]));
653     DecodeIITType(NextElt, Infos, OutputTable);
654     return;
655   }
656   case IIT_ARG: {
657     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
658     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
659     return;
660   }
661   case IIT_EXTEND_ARG: {
662     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
663     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
664                                              ArgInfo));
665     return;
666   }
667   case IIT_TRUNC_ARG: {
668     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
669     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
670                                              ArgInfo));
671     return;
672   }
673   case IIT_HALF_VEC_ARG: {
674     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
675     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
676                                              ArgInfo));
677     return;
678   }
679   case IIT_SAME_VEC_WIDTH_ARG: {
680     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
681     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
682                                              ArgInfo));
683     return;
684   }
685   case IIT_PTR_TO_ARG: {
686     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
688                                              ArgInfo));
689     return;
690   }
691   case IIT_PTR_TO_ELT: {
692     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
693     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
694     return;
695   }
696   case IIT_VEC_OF_PTRS_TO_ELT: {
697     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
699                                              ArgInfo));
700     return;
701   }
702   case IIT_EMPTYSTRUCT:
703     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
704     return;
705   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
706   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
707   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
708   case IIT_STRUCT2: {
709     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
710 
711     for (unsigned i = 0; i != StructElts; ++i)
712       DecodeIITType(NextElt, Infos, OutputTable);
713     return;
714   }
715   }
716   llvm_unreachable("unhandled");
717 }
718 
719 
720 #define GET_INTRINSIC_GENERATOR_GLOBAL
721 #include "llvm/IR/Intrinsics.gen"
722 #undef GET_INTRINSIC_GENERATOR_GLOBAL
723 
724 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
725                                              SmallVectorImpl<IITDescriptor> &T){
726   // Check to see if the intrinsic's type was expressible by the table.
727   unsigned TableVal = IIT_Table[id-1];
728 
729   // Decode the TableVal into an array of IITValues.
730   SmallVector<unsigned char, 8> IITValues;
731   ArrayRef<unsigned char> IITEntries;
732   unsigned NextElt = 0;
733   if ((TableVal >> 31) != 0) {
734     // This is an offset into the IIT_LongEncodingTable.
735     IITEntries = IIT_LongEncodingTable;
736 
737     // Strip sentinel bit.
738     NextElt = (TableVal << 1) >> 1;
739   } else {
740     // Decode the TableVal into an array of IITValues.  If the entry was encoded
741     // into a single word in the table itself, decode it now.
742     do {
743       IITValues.push_back(TableVal & 0xF);
744       TableVal >>= 4;
745     } while (TableVal);
746 
747     IITEntries = IITValues;
748     NextElt = 0;
749   }
750 
751   // Okay, decode the table into the output vector of IITDescriptors.
752   DecodeIITType(NextElt, IITEntries, T);
753   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
754     DecodeIITType(NextElt, IITEntries, T);
755 }
756 
757 
758 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
759                              ArrayRef<Type*> Tys, LLVMContext &Context) {
760   using namespace Intrinsic;
761   IITDescriptor D = Infos.front();
762   Infos = Infos.slice(1);
763 
764   switch (D.Kind) {
765   case IITDescriptor::Void: return Type::getVoidTy(Context);
766   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
767   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
768   case IITDescriptor::Token: return Type::getTokenTy(Context);
769   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
770   case IITDescriptor::Half: return Type::getHalfTy(Context);
771   case IITDescriptor::Float: return Type::getFloatTy(Context);
772   case IITDescriptor::Double: return Type::getDoubleTy(Context);
773 
774   case IITDescriptor::Integer:
775     return IntegerType::get(Context, D.Integer_Width);
776   case IITDescriptor::Vector:
777     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
778   case IITDescriptor::Pointer:
779     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
780                             D.Pointer_AddressSpace);
781   case IITDescriptor::Struct: {
782     Type *Elts[5];
783     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
784     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
785       Elts[i] = DecodeFixedType(Infos, Tys, Context);
786     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
787   }
788 
789   case IITDescriptor::Argument:
790     return Tys[D.getArgumentNumber()];
791   case IITDescriptor::ExtendArgument: {
792     Type *Ty = Tys[D.getArgumentNumber()];
793     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
794       return VectorType::getExtendedElementVectorType(VTy);
795 
796     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
797   }
798   case IITDescriptor::TruncArgument: {
799     Type *Ty = Tys[D.getArgumentNumber()];
800     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
801       return VectorType::getTruncatedElementVectorType(VTy);
802 
803     IntegerType *ITy = cast<IntegerType>(Ty);
804     assert(ITy->getBitWidth() % 2 == 0);
805     return IntegerType::get(Context, ITy->getBitWidth() / 2);
806   }
807   case IITDescriptor::HalfVecArgument:
808     return VectorType::getHalfElementsVectorType(cast<VectorType>(
809                                                   Tys[D.getArgumentNumber()]));
810   case IITDescriptor::SameVecWidthArgument: {
811     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
812     Type *Ty = Tys[D.getArgumentNumber()];
813     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
814       return VectorType::get(EltTy, VTy->getNumElements());
815     }
816     llvm_unreachable("unhandled");
817   }
818   case IITDescriptor::PtrToArgument: {
819     Type *Ty = Tys[D.getArgumentNumber()];
820     return PointerType::getUnqual(Ty);
821   }
822   case IITDescriptor::PtrToElt: {
823     Type *Ty = Tys[D.getArgumentNumber()];
824     VectorType *VTy = dyn_cast<VectorType>(Ty);
825     if (!VTy)
826       llvm_unreachable("Expected an argument of Vector Type");
827     Type *EltTy = VTy->getVectorElementType();
828     return PointerType::getUnqual(EltTy);
829   }
830   case IITDescriptor::VecOfPtrsToElt: {
831     Type *Ty = Tys[D.getArgumentNumber()];
832     VectorType *VTy = dyn_cast<VectorType>(Ty);
833     if (!VTy)
834       llvm_unreachable("Expected an argument of Vector Type");
835     Type *EltTy = VTy->getVectorElementType();
836     return VectorType::get(PointerType::getUnqual(EltTy),
837                            VTy->getNumElements());
838   }
839  }
840   llvm_unreachable("unhandled");
841 }
842 
843 
844 
845 FunctionType *Intrinsic::getType(LLVMContext &Context,
846                                  ID id, ArrayRef<Type*> Tys) {
847   SmallVector<IITDescriptor, 8> Table;
848   getIntrinsicInfoTableEntries(id, Table);
849 
850   ArrayRef<IITDescriptor> TableRef = Table;
851   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
852 
853   SmallVector<Type*, 8> ArgTys;
854   while (!TableRef.empty())
855     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
856 
857   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
858   // If we see void type as the type of the last argument, it is vararg intrinsic
859   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
860     ArgTys.pop_back();
861     return FunctionType::get(ResultTy, ArgTys, true);
862   }
863   return FunctionType::get(ResultTy, ArgTys, false);
864 }
865 
866 bool Intrinsic::isOverloaded(ID id) {
867 #define GET_INTRINSIC_OVERLOAD_TABLE
868 #include "llvm/IR/Intrinsics.gen"
869 #undef GET_INTRINSIC_OVERLOAD_TABLE
870 }
871 
872 bool Intrinsic::isLeaf(ID id) {
873   switch (id) {
874   default:
875     return true;
876 
877   case Intrinsic::experimental_gc_statepoint:
878   case Intrinsic::experimental_patchpoint_void:
879   case Intrinsic::experimental_patchpoint_i64:
880     return false;
881   }
882 }
883 
884 /// This defines the "Intrinsic::getAttributes(ID id)" method.
885 #define GET_INTRINSIC_ATTRIBUTES
886 #include "llvm/IR/Intrinsics.gen"
887 #undef GET_INTRINSIC_ATTRIBUTES
888 
889 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
890   // There can never be multiple globals with the same name of different types,
891   // because intrinsics must be a specific type.
892   return
893     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
894                                           getType(M->getContext(), id, Tys)));
895 }
896 
897 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
898 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
899 #include "llvm/IR/Intrinsics.gen"
900 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
901 
902 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
903 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
904 #include "llvm/IR/Intrinsics.gen"
905 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
906 
907 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
908                                    SmallVectorImpl<Type*> &ArgTys) {
909   using namespace Intrinsic;
910 
911   // If we ran out of descriptors, there are too many arguments.
912   if (Infos.empty()) return true;
913   IITDescriptor D = Infos.front();
914   Infos = Infos.slice(1);
915 
916   switch (D.Kind) {
917     case IITDescriptor::Void: return !Ty->isVoidTy();
918     case IITDescriptor::VarArg: return true;
919     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
920     case IITDescriptor::Token: return !Ty->isTokenTy();
921     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
922     case IITDescriptor::Half: return !Ty->isHalfTy();
923     case IITDescriptor::Float: return !Ty->isFloatTy();
924     case IITDescriptor::Double: return !Ty->isDoubleTy();
925     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
926     case IITDescriptor::Vector: {
927       VectorType *VT = dyn_cast<VectorType>(Ty);
928       return !VT || VT->getNumElements() != D.Vector_Width ||
929              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
930     }
931     case IITDescriptor::Pointer: {
932       PointerType *PT = dyn_cast<PointerType>(Ty);
933       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
934              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
935     }
936 
937     case IITDescriptor::Struct: {
938       StructType *ST = dyn_cast<StructType>(Ty);
939       if (!ST || ST->getNumElements() != D.Struct_NumElements)
940         return true;
941 
942       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
943         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
944           return true;
945       return false;
946     }
947 
948     case IITDescriptor::Argument:
949       // Two cases here - If this is the second occurrence of an argument, verify
950       // that the later instance matches the previous instance.
951       if (D.getArgumentNumber() < ArgTys.size())
952         return Ty != ArgTys[D.getArgumentNumber()];
953 
954           // Otherwise, if this is the first instance of an argument, record it and
955           // verify the "Any" kind.
956           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
957           ArgTys.push_back(Ty);
958 
959           switch (D.getArgumentKind()) {
960             case IITDescriptor::AK_Any:        return false; // Success
961             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
962             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
963             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
964             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
965           }
966           llvm_unreachable("all argument kinds not covered");
967 
968     case IITDescriptor::ExtendArgument: {
969       // This may only be used when referring to a previous vector argument.
970       if (D.getArgumentNumber() >= ArgTys.size())
971         return true;
972 
973       Type *NewTy = ArgTys[D.getArgumentNumber()];
974       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
975         NewTy = VectorType::getExtendedElementVectorType(VTy);
976       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
977         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
978       else
979         return true;
980 
981       return Ty != NewTy;
982     }
983     case IITDescriptor::TruncArgument: {
984       // This may only be used when referring to a previous vector argument.
985       if (D.getArgumentNumber() >= ArgTys.size())
986         return true;
987 
988       Type *NewTy = ArgTys[D.getArgumentNumber()];
989       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
990         NewTy = VectorType::getTruncatedElementVectorType(VTy);
991       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
992         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
993       else
994         return true;
995 
996       return Ty != NewTy;
997     }
998     case IITDescriptor::HalfVecArgument:
999       // This may only be used when referring to a previous vector argument.
1000       return D.getArgumentNumber() >= ArgTys.size() ||
1001              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1002              VectorType::getHalfElementsVectorType(
1003                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1004     case IITDescriptor::SameVecWidthArgument: {
1005       if (D.getArgumentNumber() >= ArgTys.size())
1006         return true;
1007       VectorType * ReferenceType =
1008         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1009       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1010       if (!ThisArgType || !ReferenceType ||
1011           (ReferenceType->getVectorNumElements() !=
1012            ThisArgType->getVectorNumElements()))
1013         return true;
1014       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1015                                 Infos, ArgTys);
1016     }
1017     case IITDescriptor::PtrToArgument: {
1018       if (D.getArgumentNumber() >= ArgTys.size())
1019         return true;
1020       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1021       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1022       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1023     }
1024     case IITDescriptor::PtrToElt: {
1025       if (D.getArgumentNumber() >= ArgTys.size())
1026         return true;
1027       VectorType * ReferenceType =
1028         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1029       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1030 
1031       return (!ThisArgType || !ReferenceType ||
1032               ThisArgType->getElementType() != ReferenceType->getElementType());
1033     }
1034     case IITDescriptor::VecOfPtrsToElt: {
1035       if (D.getArgumentNumber() >= ArgTys.size())
1036         return true;
1037       VectorType * ReferenceType =
1038               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1039       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1040       if (!ThisArgVecTy || !ReferenceType ||
1041           (ReferenceType->getVectorNumElements() !=
1042            ThisArgVecTy->getVectorNumElements()))
1043         return true;
1044       PointerType *ThisArgEltTy =
1045               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1046       if (!ThisArgEltTy)
1047         return true;
1048       return ThisArgEltTy->getElementType() !=
1049              ReferenceType->getVectorElementType();
1050     }
1051   }
1052   llvm_unreachable("unhandled");
1053 }
1054 
1055 bool
1056 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1057                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1058   // If there are no descriptors left, then it can't be a vararg.
1059   if (Infos.empty())
1060     return isVarArg;
1061 
1062   // There should be only one descriptor remaining at this point.
1063   if (Infos.size() != 1)
1064     return true;
1065 
1066   // Check and verify the descriptor.
1067   IITDescriptor D = Infos.front();
1068   Infos = Infos.slice(1);
1069   if (D.Kind == IITDescriptor::VarArg)
1070     return !isVarArg;
1071 
1072   return true;
1073 }
1074 
1075 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1076   Intrinsic::ID ID = F->getIntrinsicID();
1077   if (!ID)
1078     return None;
1079 
1080   FunctionType *FTy = F->getFunctionType();
1081   // Accumulate an array of overloaded types for the given intrinsic
1082   SmallVector<Type *, 4> ArgTys;
1083   {
1084     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1085     getIntrinsicInfoTableEntries(ID, Table);
1086     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1087 
1088     // If we encounter any problems matching the signature with the descriptor
1089     // just give up remangling. It's up to verifier to report the discrepancy.
1090     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1091       return None;
1092     for (auto Ty : FTy->params())
1093       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1094         return None;
1095     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1096       return None;
1097   }
1098 
1099   StringRef Name = F->getName();
1100   if (Name == Intrinsic::getName(ID, ArgTys))
1101     return None;
1102 
1103   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1104   NewDecl->setCallingConv(F->getCallingConv());
1105   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1106   return NewDecl;
1107 }
1108 
1109 /// hasAddressTaken - returns true if there are any uses of this function
1110 /// other than direct calls or invokes to it.
1111 bool Function::hasAddressTaken(const User* *PutOffender) const {
1112   for (const Use &U : uses()) {
1113     const User *FU = U.getUser();
1114     if (isa<BlockAddress>(FU))
1115       continue;
1116     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1117       if (PutOffender)
1118         *PutOffender = FU;
1119       return true;
1120     }
1121     ImmutableCallSite CS(cast<Instruction>(FU));
1122     if (!CS.isCallee(&U)) {
1123       if (PutOffender)
1124         *PutOffender = FU;
1125       return true;
1126     }
1127   }
1128   return false;
1129 }
1130 
1131 bool Function::isDefTriviallyDead() const {
1132   // Check the linkage
1133   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1134       !hasAvailableExternallyLinkage())
1135     return false;
1136 
1137   // Check if the function is used by anything other than a blockaddress.
1138   for (const User *U : users())
1139     if (!isa<BlockAddress>(U))
1140       return false;
1141 
1142   return true;
1143 }
1144 
1145 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1146 /// setjmp or other function that gcc recognizes as "returning twice".
1147 bool Function::callsFunctionThatReturnsTwice() const {
1148   for (const_inst_iterator
1149          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1150     ImmutableCallSite CS(&*I);
1151     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1152       return true;
1153   }
1154 
1155   return false;
1156 }
1157 
1158 Constant *Function::getPersonalityFn() const {
1159   assert(hasPersonalityFn() && getNumOperands());
1160   return cast<Constant>(Op<0>());
1161 }
1162 
1163 void Function::setPersonalityFn(Constant *Fn) {
1164   setHungoffOperand<0>(Fn);
1165   setValueSubclassDataBit(3, Fn != nullptr);
1166 }
1167 
1168 Constant *Function::getPrefixData() const {
1169   assert(hasPrefixData() && getNumOperands());
1170   return cast<Constant>(Op<1>());
1171 }
1172 
1173 void Function::setPrefixData(Constant *PrefixData) {
1174   setHungoffOperand<1>(PrefixData);
1175   setValueSubclassDataBit(1, PrefixData != nullptr);
1176 }
1177 
1178 Constant *Function::getPrologueData() const {
1179   assert(hasPrologueData() && getNumOperands());
1180   return cast<Constant>(Op<2>());
1181 }
1182 
1183 void Function::setPrologueData(Constant *PrologueData) {
1184   setHungoffOperand<2>(PrologueData);
1185   setValueSubclassDataBit(2, PrologueData != nullptr);
1186 }
1187 
1188 void Function::allocHungoffUselist() {
1189   // If we've already allocated a uselist, stop here.
1190   if (getNumOperands())
1191     return;
1192 
1193   allocHungoffUses(3, /*IsPhi=*/ false);
1194   setNumHungOffUseOperands(3);
1195 
1196   // Initialize the uselist with placeholder operands to allow traversal.
1197   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1198   Op<0>().set(CPN);
1199   Op<1>().set(CPN);
1200   Op<2>().set(CPN);
1201 }
1202 
1203 template <int Idx>
1204 void Function::setHungoffOperand(Constant *C) {
1205   if (C) {
1206     allocHungoffUselist();
1207     Op<Idx>().set(C);
1208   } else if (getNumOperands()) {
1209     Op<Idx>().set(
1210         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1211   }
1212 }
1213 
1214 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1215   assert(Bit < 16 && "SubclassData contains only 16 bits");
1216   if (On)
1217     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1218   else
1219     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1220 }
1221 
1222 void Function::setEntryCount(uint64_t Count,
1223                              const DenseSet<GlobalValue::GUID> *S) {
1224   MDBuilder MDB(getContext());
1225   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S));
1226 }
1227 
1228 Optional<uint64_t> Function::getEntryCount() const {
1229   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1230   if (MD && MD->getOperand(0))
1231     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1232       if (MDS->getString().equals("function_entry_count")) {
1233         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1234         uint64_t Count = CI->getValue().getZExtValue();
1235         if (Count == 0)
1236           return None;
1237         return Count;
1238       }
1239   return None;
1240 }
1241 
1242 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1243   DenseSet<GlobalValue::GUID> R;
1244   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1245     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1246       if (MDS->getString().equals("function_entry_count"))
1247         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1248           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1249                        ->getValue()
1250                        .getZExtValue());
1251   return R;
1252 }
1253 
1254 void Function::setSectionPrefix(StringRef Prefix) {
1255   MDBuilder MDB(getContext());
1256   setMetadata(LLVMContext::MD_section_prefix,
1257               MDB.createFunctionSectionPrefix(Prefix));
1258 }
1259 
1260 Optional<StringRef> Function::getSectionPrefix() const {
1261   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1262     assert(dyn_cast<MDString>(MD->getOperand(0))
1263                ->getString()
1264                .equals("function_section_prefix") &&
1265            "Metadata not match");
1266     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1267   }
1268   return None;
1269 }
1270