1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/SymbolTableListTraits.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <cstring> 57 #include <string> 58 59 using namespace llvm; 60 61 // Explicit instantiations of SymbolTableListTraits since some of the methods 62 // are not in the public header file... 63 template class llvm::SymbolTableListTraits<BasicBlock>; 64 65 //===----------------------------------------------------------------------===// 66 // Argument Implementation 67 //===----------------------------------------------------------------------===// 68 69 void Argument::anchor() {} 70 71 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 72 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 73 setName(Name); 74 } 75 76 void Argument::setParent(Function *parent) { 77 Parent = parent; 78 } 79 80 bool Argument::hasNonNullAttr() const { 81 if (!getType()->isPointerTy()) return false; 82 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 83 return true; 84 else if (getDereferenceableBytes() > 0 && 85 getType()->getPointerAddressSpace() == 0) 86 return true; 87 return false; 88 } 89 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return hasAttribute(Attribute::ByVal); 93 } 94 95 bool Argument::hasSwiftSelfAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 101 } 102 103 bool Argument::hasInAllocaAttr() const { 104 if (!getType()->isPointerTy()) return false; 105 return hasAttribute(Attribute::InAlloca); 106 } 107 108 bool Argument::hasByValOrInAllocaAttr() const { 109 if (!getType()->isPointerTy()) return false; 110 AttributeList Attrs = getParent()->getAttributes(); 111 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 112 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 113 } 114 115 unsigned Argument::getParamAlignment() const { 116 assert(getType()->isPointerTy() && "Only pointers have alignments"); 117 return getParent()->getParamAlignment(getArgNo()); 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo() + 124 AttributeList::FirstArgIndex); 125 } 126 127 uint64_t Argument::getDereferenceableOrNullBytes() const { 128 assert(getType()->isPointerTy() && 129 "Only pointers have dereferenceable bytes"); 130 return getParent()->getDereferenceableOrNullBytes( 131 getArgNo() + AttributeList::FirstArgIndex); 132 } 133 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::NoAlias); 142 } 143 144 bool Argument::hasNoCaptureAttr() const { 145 if (!getType()->isPointerTy()) return false; 146 return hasAttribute(Attribute::NoCapture); 147 } 148 149 bool Argument::hasStructRetAttr() const { 150 if (!getType()->isPointerTy()) return false; 151 return hasAttribute(Attribute::StructRet); 152 } 153 154 bool Argument::hasReturnedAttr() const { 155 return hasAttribute(Attribute::Returned); 156 } 157 158 bool Argument::hasZExtAttr() const { 159 return hasAttribute(Attribute::ZExt); 160 } 161 162 bool Argument::hasSExtAttr() const { 163 return hasAttribute(Attribute::SExt); 164 } 165 166 bool Argument::onlyReadsMemory() const { 167 AttributeList Attrs = getParent()->getAttributes(); 168 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 169 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 170 } 171 172 void Argument::addAttrs(AttrBuilder &B) { 173 AttributeList AL = getParent()->getAttributes(); 174 AL = AL.addAttributes(Parent->getContext(), 175 getArgNo() + AttributeList::FirstArgIndex, B); 176 getParent()->setAttributes(AL); 177 } 178 179 void Argument::addAttr(Attribute::AttrKind Kind) { 180 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 181 } 182 183 void Argument::addAttr(Attribute Attr) { 184 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Attr); 185 } 186 187 void Argument::removeAttr(Attribute::AttrKind Kind) { 188 getParent()->removeAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 189 } 190 191 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 192 return getParent()->hasParamAttribute(getArgNo(), Kind); 193 } 194 195 //===----------------------------------------------------------------------===// 196 // Helper Methods in Function 197 //===----------------------------------------------------------------------===// 198 199 LLVMContext &Function::getContext() const { 200 return getType()->getContext(); 201 } 202 203 void Function::removeFromParent() { 204 getParent()->getFunctionList().remove(getIterator()); 205 } 206 207 void Function::eraseFromParent() { 208 getParent()->getFunctionList().erase(getIterator()); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Function Implementation 213 //===----------------------------------------------------------------------===// 214 215 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 216 Module *ParentModule) 217 : GlobalObject(Ty, Value::FunctionVal, 218 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 219 NumArgs(Ty->getNumParams()) { 220 assert(FunctionType::isValidReturnType(getReturnType()) && 221 "invalid return type"); 222 setGlobalObjectSubClassData(0); 223 224 // We only need a symbol table for a function if the context keeps value names 225 if (!getContext().shouldDiscardValueNames()) 226 SymTab = make_unique<ValueSymbolTable>(); 227 228 // If the function has arguments, mark them as lazily built. 229 if (Ty->getNumParams()) 230 setValueSubclassData(1); // Set the "has lazy arguments" bit. 231 232 if (ParentModule) 233 ParentModule->getFunctionList().push_back(this); 234 235 HasLLVMReservedName = getName().startswith("llvm."); 236 // Ensure intrinsics have the right parameter attributes. 237 // Note, the IntID field will have been set in Value::setName if this function 238 // name is a valid intrinsic ID. 239 if (IntID) 240 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 241 } 242 243 Function::~Function() { 244 dropAllReferences(); // After this it is safe to delete instructions. 245 246 // Delete all of the method arguments and unlink from symbol table... 247 if (Arguments) 248 clearArguments(); 249 250 // Remove the function from the on-the-side GC table. 251 clearGC(); 252 } 253 254 void Function::BuildLazyArguments() const { 255 // Create the arguments vector, all arguments start out unnamed. 256 auto *FT = getFunctionType(); 257 if (NumArgs > 0) { 258 Arguments = std::allocator<Argument>().allocate(NumArgs); 259 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 260 Type *ArgTy = FT->getParamType(i); 261 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 262 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 263 } 264 } 265 266 // Clear the lazy arguments bit. 267 unsigned SDC = getSubclassDataFromValue(); 268 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 269 assert(!hasLazyArguments()); 270 } 271 272 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 273 return MutableArrayRef<Argument>(Args, Count); 274 } 275 276 void Function::clearArguments() { 277 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 278 A.setName(""); 279 A.~Argument(); 280 } 281 std::allocator<Argument>().deallocate(Arguments, NumArgs); 282 Arguments = nullptr; 283 } 284 285 void Function::stealArgumentListFrom(Function &Src) { 286 assert(isDeclaration() && "Expected no references to current arguments"); 287 288 // Drop the current arguments, if any, and set the lazy argument bit. 289 if (!hasLazyArguments()) { 290 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 291 [](const Argument &A) { return A.use_empty(); }) && 292 "Expected arguments to be unused in declaration"); 293 clearArguments(); 294 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 295 } 296 297 // Nothing to steal if Src has lazy arguments. 298 if (Src.hasLazyArguments()) 299 return; 300 301 // Steal arguments from Src, and fix the lazy argument bits. 302 assert(arg_size() == Src.arg_size()); 303 Arguments = Src.Arguments; 304 Src.Arguments = nullptr; 305 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 306 // FIXME: This does the work of transferNodesFromList inefficiently. 307 SmallString<128> Name; 308 if (A.hasName()) 309 Name = A.getName(); 310 if (!Name.empty()) 311 A.setName(""); 312 A.setParent(this); 313 if (!Name.empty()) 314 A.setName(Name); 315 } 316 317 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 318 assert(!hasLazyArguments()); 319 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 320 } 321 322 // dropAllReferences() - This function causes all the subinstructions to "let 323 // go" of all references that they are maintaining. This allows one to 324 // 'delete' a whole class at a time, even though there may be circular 325 // references... first all references are dropped, and all use counts go to 326 // zero. Then everything is deleted for real. Note that no operations are 327 // valid on an object that has "dropped all references", except operator 328 // delete. 329 // 330 void Function::dropAllReferences() { 331 setIsMaterializable(false); 332 333 for (BasicBlock &BB : *this) 334 BB.dropAllReferences(); 335 336 // Delete all basic blocks. They are now unused, except possibly by 337 // blockaddresses, but BasicBlock's destructor takes care of those. 338 while (!BasicBlocks.empty()) 339 BasicBlocks.begin()->eraseFromParent(); 340 341 // Drop uses of any optional data (real or placeholder). 342 if (getNumOperands()) { 343 User::dropAllReferences(); 344 setNumHungOffUseOperands(0); 345 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 346 } 347 348 // Metadata is stored in a side-table. 349 clearMetadata(); 350 } 351 352 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 353 AttributeList PAL = getAttributes(); 354 PAL = PAL.addAttribute(getContext(), i, Kind); 355 setAttributes(PAL); 356 } 357 358 void Function::addAttribute(unsigned i, Attribute Attr) { 359 AttributeList PAL = getAttributes(); 360 PAL = PAL.addAttribute(getContext(), i, Attr); 361 setAttributes(PAL); 362 } 363 364 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 365 AttributeList PAL = getAttributes(); 366 PAL = PAL.addAttributes(getContext(), i, Attrs); 367 setAttributes(PAL); 368 } 369 370 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 371 AttributeList PAL = getAttributes(); 372 PAL = PAL.removeAttribute(getContext(), i, Kind); 373 setAttributes(PAL); 374 } 375 376 void Function::removeAttribute(unsigned i, StringRef Kind) { 377 AttributeList PAL = getAttributes(); 378 PAL = PAL.removeAttribute(getContext(), i, Kind); 379 setAttributes(PAL); 380 } 381 382 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 383 AttributeList PAL = getAttributes(); 384 PAL = PAL.removeAttributes(getContext(), i, Attrs); 385 setAttributes(PAL); 386 } 387 388 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 389 AttributeList PAL = getAttributes(); 390 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 391 setAttributes(PAL); 392 } 393 394 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 395 AttributeList PAL = getAttributes(); 396 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 397 setAttributes(PAL); 398 } 399 400 const std::string &Function::getGC() const { 401 assert(hasGC() && "Function has no collector"); 402 return getContext().getGC(*this); 403 } 404 405 void Function::setGC(std::string Str) { 406 setValueSubclassDataBit(14, !Str.empty()); 407 getContext().setGC(*this, std::move(Str)); 408 } 409 410 void Function::clearGC() { 411 if (!hasGC()) 412 return; 413 getContext().deleteGC(*this); 414 setValueSubclassDataBit(14, false); 415 } 416 417 /// Copy all additional attributes (those not needed to create a Function) from 418 /// the Function Src to this one. 419 void Function::copyAttributesFrom(const Function *Src) { 420 GlobalObject::copyAttributesFrom(Src); 421 setCallingConv(Src->getCallingConv()); 422 setAttributes(Src->getAttributes()); 423 if (Src->hasGC()) 424 setGC(Src->getGC()); 425 else 426 clearGC(); 427 if (Src->hasPersonalityFn()) 428 setPersonalityFn(Src->getPersonalityFn()); 429 if (Src->hasPrefixData()) 430 setPrefixData(Src->getPrefixData()); 431 if (Src->hasPrologueData()) 432 setPrologueData(Src->getPrologueData()); 433 } 434 435 /// Table of string intrinsic names indexed by enum value. 436 static const char * const IntrinsicNameTable[] = { 437 "not_intrinsic", 438 #define GET_INTRINSIC_NAME_TABLE 439 #include "llvm/IR/Intrinsics.gen" 440 #undef GET_INTRINSIC_NAME_TABLE 441 }; 442 443 /// Table of per-target intrinsic name tables. 444 #define GET_INTRINSIC_TARGET_DATA 445 #include "llvm/IR/Intrinsics.gen" 446 #undef GET_INTRINSIC_TARGET_DATA 447 448 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 449 /// target as \c Name, or the generic table if \c Name is not target specific. 450 /// 451 /// Returns the relevant slice of \c IntrinsicNameTable 452 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 453 assert(Name.startswith("llvm.")); 454 455 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 456 // Drop "llvm." and take the first dotted component. That will be the target 457 // if this is target specific. 458 StringRef Target = Name.drop_front(5).split('.').first; 459 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 460 [](const IntrinsicTargetInfo &TI, 461 StringRef Target) { return TI.Name < Target; }); 462 // We've either found the target or just fall back to the generic set, which 463 // is always first. 464 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 465 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 466 } 467 468 /// \brief This does the actual lookup of an intrinsic ID which 469 /// matches the given function name. 470 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 471 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 472 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 473 if (Idx == -1) 474 return Intrinsic::not_intrinsic; 475 476 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 477 // an index into a sub-table. 478 int Adjust = NameTable.data() - IntrinsicNameTable; 479 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 480 481 // If the intrinsic is not overloaded, require an exact match. If it is 482 // overloaded, require a prefix match. 483 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 484 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 485 } 486 487 void Function::recalculateIntrinsicID() { 488 StringRef Name = getName(); 489 if (!Name.startswith("llvm.")) { 490 HasLLVMReservedName = false; 491 IntID = Intrinsic::not_intrinsic; 492 return; 493 } 494 HasLLVMReservedName = true; 495 IntID = lookupIntrinsicID(Name); 496 } 497 498 /// Returns a stable mangling for the type specified for use in the name 499 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 500 /// of named types is simply their name. Manglings for unnamed types consist 501 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 502 /// combined with the mangling of their component types. A vararg function 503 /// type will have a suffix of 'vararg'. Since function types can contain 504 /// other function types, we close a function type mangling with suffix 'f' 505 /// which can't be confused with it's prefix. This ensures we don't have 506 /// collisions between two unrelated function types. Otherwise, you might 507 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 508 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 509 /// cases) fall back to the MVT codepath, where they could be mangled to 510 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 511 /// everything. 512 static std::string getMangledTypeStr(Type* Ty) { 513 std::string Result; 514 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 515 Result += "p" + utostr(PTyp->getAddressSpace()) + 516 getMangledTypeStr(PTyp->getElementType()); 517 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 518 Result += "a" + utostr(ATyp->getNumElements()) + 519 getMangledTypeStr(ATyp->getElementType()); 520 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 521 if (!STyp->isLiteral()) { 522 Result += "s_"; 523 Result += STyp->getName(); 524 } else { 525 Result += "sl_"; 526 for (auto Elem : STyp->elements()) 527 Result += getMangledTypeStr(Elem); 528 } 529 // Ensure nested structs are distinguishable. 530 Result += "s"; 531 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 532 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 533 for (size_t i = 0; i < FT->getNumParams(); i++) 534 Result += getMangledTypeStr(FT->getParamType(i)); 535 if (FT->isVarArg()) 536 Result += "vararg"; 537 // Ensure nested function types are distinguishable. 538 Result += "f"; 539 } else if (isa<VectorType>(Ty)) 540 Result += "v" + utostr(Ty->getVectorNumElements()) + 541 getMangledTypeStr(Ty->getVectorElementType()); 542 else if (Ty) 543 Result += EVT::getEVT(Ty).getEVTString(); 544 return Result; 545 } 546 547 StringRef Intrinsic::getName(ID id) { 548 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 549 assert(!isOverloaded(id) && 550 "This version of getName does not support overloading"); 551 return IntrinsicNameTable[id]; 552 } 553 554 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 555 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 556 std::string Result(IntrinsicNameTable[id]); 557 for (Type *Ty : Tys) { 558 Result += "." + getMangledTypeStr(Ty); 559 } 560 return Result; 561 } 562 563 /// IIT_Info - These are enumerators that describe the entries returned by the 564 /// getIntrinsicInfoTableEntries function. 565 /// 566 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 567 enum IIT_Info { 568 // Common values should be encoded with 0-15. 569 IIT_Done = 0, 570 IIT_I1 = 1, 571 IIT_I8 = 2, 572 IIT_I16 = 3, 573 IIT_I32 = 4, 574 IIT_I64 = 5, 575 IIT_F16 = 6, 576 IIT_F32 = 7, 577 IIT_F64 = 8, 578 IIT_V2 = 9, 579 IIT_V4 = 10, 580 IIT_V8 = 11, 581 IIT_V16 = 12, 582 IIT_V32 = 13, 583 IIT_PTR = 14, 584 IIT_ARG = 15, 585 586 // Values from 16+ are only encodable with the inefficient encoding. 587 IIT_V64 = 16, 588 IIT_MMX = 17, 589 IIT_TOKEN = 18, 590 IIT_METADATA = 19, 591 IIT_EMPTYSTRUCT = 20, 592 IIT_STRUCT2 = 21, 593 IIT_STRUCT3 = 22, 594 IIT_STRUCT4 = 23, 595 IIT_STRUCT5 = 24, 596 IIT_EXTEND_ARG = 25, 597 IIT_TRUNC_ARG = 26, 598 IIT_ANYPTR = 27, 599 IIT_V1 = 28, 600 IIT_VARARG = 29, 601 IIT_HALF_VEC_ARG = 30, 602 IIT_SAME_VEC_WIDTH_ARG = 31, 603 IIT_PTR_TO_ARG = 32, 604 IIT_PTR_TO_ELT = 33, 605 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 606 IIT_I128 = 35, 607 IIT_V512 = 36, 608 IIT_V1024 = 37 609 }; 610 611 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 612 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 613 using namespace Intrinsic; 614 615 IIT_Info Info = IIT_Info(Infos[NextElt++]); 616 unsigned StructElts = 2; 617 618 switch (Info) { 619 case IIT_Done: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 621 return; 622 case IIT_VARARG: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 624 return; 625 case IIT_MMX: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 627 return; 628 case IIT_TOKEN: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 630 return; 631 case IIT_METADATA: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 633 return; 634 case IIT_F16: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 636 return; 637 case IIT_F32: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 639 return; 640 case IIT_F64: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 642 return; 643 case IIT_I1: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 645 return; 646 case IIT_I8: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 648 return; 649 case IIT_I16: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 651 return; 652 case IIT_I32: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 654 return; 655 case IIT_I64: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 657 return; 658 case IIT_I128: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 660 return; 661 case IIT_V1: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 663 DecodeIITType(NextElt, Infos, OutputTable); 664 return; 665 case IIT_V2: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 667 DecodeIITType(NextElt, Infos, OutputTable); 668 return; 669 case IIT_V4: 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 671 DecodeIITType(NextElt, Infos, OutputTable); 672 return; 673 case IIT_V8: 674 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 675 DecodeIITType(NextElt, Infos, OutputTable); 676 return; 677 case IIT_V16: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 679 DecodeIITType(NextElt, Infos, OutputTable); 680 return; 681 case IIT_V32: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 683 DecodeIITType(NextElt, Infos, OutputTable); 684 return; 685 case IIT_V64: 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 687 DecodeIITType(NextElt, Infos, OutputTable); 688 return; 689 case IIT_V512: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 691 DecodeIITType(NextElt, Infos, OutputTable); 692 return; 693 case IIT_V1024: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 695 DecodeIITType(NextElt, Infos, OutputTable); 696 return; 697 case IIT_PTR: 698 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 699 DecodeIITType(NextElt, Infos, OutputTable); 700 return; 701 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 703 Infos[NextElt++])); 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 } 707 case IIT_ARG: { 708 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 710 return; 711 } 712 case IIT_EXTEND_ARG: { 713 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 715 ArgInfo)); 716 return; 717 } 718 case IIT_TRUNC_ARG: { 719 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 721 ArgInfo)); 722 return; 723 } 724 case IIT_HALF_VEC_ARG: { 725 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 727 ArgInfo)); 728 return; 729 } 730 case IIT_SAME_VEC_WIDTH_ARG: { 731 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 733 ArgInfo)); 734 return; 735 } 736 case IIT_PTR_TO_ARG: { 737 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 739 ArgInfo)); 740 return; 741 } 742 case IIT_PTR_TO_ELT: { 743 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 745 return; 746 } 747 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 748 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 749 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 750 OutputTable.push_back( 751 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 752 return; 753 } 754 case IIT_EMPTYSTRUCT: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 756 return; 757 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 758 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 759 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 760 case IIT_STRUCT2: { 761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 762 763 for (unsigned i = 0; i != StructElts; ++i) 764 DecodeIITType(NextElt, Infos, OutputTable); 765 return; 766 } 767 } 768 llvm_unreachable("unhandled"); 769 } 770 771 #define GET_INTRINSIC_GENERATOR_GLOBAL 772 #include "llvm/IR/Intrinsics.gen" 773 #undef GET_INTRINSIC_GENERATOR_GLOBAL 774 775 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 776 SmallVectorImpl<IITDescriptor> &T){ 777 // Check to see if the intrinsic's type was expressible by the table. 778 unsigned TableVal = IIT_Table[id-1]; 779 780 // Decode the TableVal into an array of IITValues. 781 SmallVector<unsigned char, 8> IITValues; 782 ArrayRef<unsigned char> IITEntries; 783 unsigned NextElt = 0; 784 if ((TableVal >> 31) != 0) { 785 // This is an offset into the IIT_LongEncodingTable. 786 IITEntries = IIT_LongEncodingTable; 787 788 // Strip sentinel bit. 789 NextElt = (TableVal << 1) >> 1; 790 } else { 791 // Decode the TableVal into an array of IITValues. If the entry was encoded 792 // into a single word in the table itself, decode it now. 793 do { 794 IITValues.push_back(TableVal & 0xF); 795 TableVal >>= 4; 796 } while (TableVal); 797 798 IITEntries = IITValues; 799 NextElt = 0; 800 } 801 802 // Okay, decode the table into the output vector of IITDescriptors. 803 DecodeIITType(NextElt, IITEntries, T); 804 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 805 DecodeIITType(NextElt, IITEntries, T); 806 } 807 808 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 809 ArrayRef<Type*> Tys, LLVMContext &Context) { 810 using namespace Intrinsic; 811 812 IITDescriptor D = Infos.front(); 813 Infos = Infos.slice(1); 814 815 switch (D.Kind) { 816 case IITDescriptor::Void: return Type::getVoidTy(Context); 817 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 818 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 819 case IITDescriptor::Token: return Type::getTokenTy(Context); 820 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 821 case IITDescriptor::Half: return Type::getHalfTy(Context); 822 case IITDescriptor::Float: return Type::getFloatTy(Context); 823 case IITDescriptor::Double: return Type::getDoubleTy(Context); 824 825 case IITDescriptor::Integer: 826 return IntegerType::get(Context, D.Integer_Width); 827 case IITDescriptor::Vector: 828 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 829 case IITDescriptor::Pointer: 830 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 831 D.Pointer_AddressSpace); 832 case IITDescriptor::Struct: { 833 Type *Elts[5]; 834 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 835 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 836 Elts[i] = DecodeFixedType(Infos, Tys, Context); 837 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 838 } 839 case IITDescriptor::Argument: 840 return Tys[D.getArgumentNumber()]; 841 case IITDescriptor::ExtendArgument: { 842 Type *Ty = Tys[D.getArgumentNumber()]; 843 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 844 return VectorType::getExtendedElementVectorType(VTy); 845 846 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 847 } 848 case IITDescriptor::TruncArgument: { 849 Type *Ty = Tys[D.getArgumentNumber()]; 850 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 851 return VectorType::getTruncatedElementVectorType(VTy); 852 853 IntegerType *ITy = cast<IntegerType>(Ty); 854 assert(ITy->getBitWidth() % 2 == 0); 855 return IntegerType::get(Context, ITy->getBitWidth() / 2); 856 } 857 case IITDescriptor::HalfVecArgument: 858 return VectorType::getHalfElementsVectorType(cast<VectorType>( 859 Tys[D.getArgumentNumber()])); 860 case IITDescriptor::SameVecWidthArgument: { 861 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 862 Type *Ty = Tys[D.getArgumentNumber()]; 863 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 864 return VectorType::get(EltTy, VTy->getNumElements()); 865 } 866 llvm_unreachable("unhandled"); 867 } 868 case IITDescriptor::PtrToArgument: { 869 Type *Ty = Tys[D.getArgumentNumber()]; 870 return PointerType::getUnqual(Ty); 871 } 872 case IITDescriptor::PtrToElt: { 873 Type *Ty = Tys[D.getArgumentNumber()]; 874 VectorType *VTy = dyn_cast<VectorType>(Ty); 875 if (!VTy) 876 llvm_unreachable("Expected an argument of Vector Type"); 877 Type *EltTy = VTy->getVectorElementType(); 878 return PointerType::getUnqual(EltTy); 879 } 880 case IITDescriptor::VecOfAnyPtrsToElt: 881 // Return the overloaded type (which determines the pointers address space) 882 return Tys[D.getOverloadArgNumber()]; 883 } 884 llvm_unreachable("unhandled"); 885 } 886 887 FunctionType *Intrinsic::getType(LLVMContext &Context, 888 ID id, ArrayRef<Type*> Tys) { 889 SmallVector<IITDescriptor, 8> Table; 890 getIntrinsicInfoTableEntries(id, Table); 891 892 ArrayRef<IITDescriptor> TableRef = Table; 893 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 894 895 SmallVector<Type*, 8> ArgTys; 896 while (!TableRef.empty()) 897 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 898 899 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 900 // If we see void type as the type of the last argument, it is vararg intrinsic 901 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 902 ArgTys.pop_back(); 903 return FunctionType::get(ResultTy, ArgTys, true); 904 } 905 return FunctionType::get(ResultTy, ArgTys, false); 906 } 907 908 bool Intrinsic::isOverloaded(ID id) { 909 #define GET_INTRINSIC_OVERLOAD_TABLE 910 #include "llvm/IR/Intrinsics.gen" 911 #undef GET_INTRINSIC_OVERLOAD_TABLE 912 } 913 914 bool Intrinsic::isLeaf(ID id) { 915 switch (id) { 916 default: 917 return true; 918 919 case Intrinsic::experimental_gc_statepoint: 920 case Intrinsic::experimental_patchpoint_void: 921 case Intrinsic::experimental_patchpoint_i64: 922 return false; 923 } 924 } 925 926 /// This defines the "Intrinsic::getAttributes(ID id)" method. 927 #define GET_INTRINSIC_ATTRIBUTES 928 #include "llvm/IR/Intrinsics.gen" 929 #undef GET_INTRINSIC_ATTRIBUTES 930 931 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 932 // There can never be multiple globals with the same name of different types, 933 // because intrinsics must be a specific type. 934 return 935 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 936 getType(M->getContext(), id, Tys))); 937 } 938 939 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 940 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 941 #include "llvm/IR/Intrinsics.gen" 942 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 943 944 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 945 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 946 #include "llvm/IR/Intrinsics.gen" 947 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 948 949 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 950 SmallVectorImpl<Type*> &ArgTys) { 951 using namespace Intrinsic; 952 953 // If we ran out of descriptors, there are too many arguments. 954 if (Infos.empty()) return true; 955 IITDescriptor D = Infos.front(); 956 Infos = Infos.slice(1); 957 958 switch (D.Kind) { 959 case IITDescriptor::Void: return !Ty->isVoidTy(); 960 case IITDescriptor::VarArg: return true; 961 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 962 case IITDescriptor::Token: return !Ty->isTokenTy(); 963 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 964 case IITDescriptor::Half: return !Ty->isHalfTy(); 965 case IITDescriptor::Float: return !Ty->isFloatTy(); 966 case IITDescriptor::Double: return !Ty->isDoubleTy(); 967 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 968 case IITDescriptor::Vector: { 969 VectorType *VT = dyn_cast<VectorType>(Ty); 970 return !VT || VT->getNumElements() != D.Vector_Width || 971 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 972 } 973 case IITDescriptor::Pointer: { 974 PointerType *PT = dyn_cast<PointerType>(Ty); 975 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 976 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 977 } 978 979 case IITDescriptor::Struct: { 980 StructType *ST = dyn_cast<StructType>(Ty); 981 if (!ST || ST->getNumElements() != D.Struct_NumElements) 982 return true; 983 984 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 985 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 986 return true; 987 return false; 988 } 989 990 case IITDescriptor::Argument: 991 // Two cases here - If this is the second occurrence of an argument, verify 992 // that the later instance matches the previous instance. 993 if (D.getArgumentNumber() < ArgTys.size()) 994 return Ty != ArgTys[D.getArgumentNumber()]; 995 996 // Otherwise, if this is the first instance of an argument, record it and 997 // verify the "Any" kind. 998 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 999 ArgTys.push_back(Ty); 1000 1001 switch (D.getArgumentKind()) { 1002 case IITDescriptor::AK_Any: return false; // Success 1003 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1004 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1005 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1006 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1007 } 1008 llvm_unreachable("all argument kinds not covered"); 1009 1010 case IITDescriptor::ExtendArgument: { 1011 // This may only be used when referring to a previous vector argument. 1012 if (D.getArgumentNumber() >= ArgTys.size()) 1013 return true; 1014 1015 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1016 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1017 NewTy = VectorType::getExtendedElementVectorType(VTy); 1018 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1019 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1020 else 1021 return true; 1022 1023 return Ty != NewTy; 1024 } 1025 case IITDescriptor::TruncArgument: { 1026 // This may only be used when referring to a previous vector argument. 1027 if (D.getArgumentNumber() >= ArgTys.size()) 1028 return true; 1029 1030 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1031 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1032 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1033 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1034 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1035 else 1036 return true; 1037 1038 return Ty != NewTy; 1039 } 1040 case IITDescriptor::HalfVecArgument: 1041 // This may only be used when referring to a previous vector argument. 1042 return D.getArgumentNumber() >= ArgTys.size() || 1043 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1044 VectorType::getHalfElementsVectorType( 1045 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1046 case IITDescriptor::SameVecWidthArgument: { 1047 if (D.getArgumentNumber() >= ArgTys.size()) 1048 return true; 1049 VectorType * ReferenceType = 1050 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1051 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1052 if (!ThisArgType || !ReferenceType || 1053 (ReferenceType->getVectorNumElements() != 1054 ThisArgType->getVectorNumElements())) 1055 return true; 1056 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1057 Infos, ArgTys); 1058 } 1059 case IITDescriptor::PtrToArgument: { 1060 if (D.getArgumentNumber() >= ArgTys.size()) 1061 return true; 1062 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1063 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1064 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1065 } 1066 case IITDescriptor::PtrToElt: { 1067 if (D.getArgumentNumber() >= ArgTys.size()) 1068 return true; 1069 VectorType * ReferenceType = 1070 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1071 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1072 1073 return (!ThisArgType || !ReferenceType || 1074 ThisArgType->getElementType() != ReferenceType->getElementType()); 1075 } 1076 case IITDescriptor::VecOfAnyPtrsToElt: { 1077 unsigned RefArgNumber = D.getRefArgNumber(); 1078 1079 // This may only be used when referring to a previous argument. 1080 if (RefArgNumber >= ArgTys.size()) 1081 return true; 1082 1083 // Record the overloaded type 1084 assert(D.getOverloadArgNumber() == ArgTys.size() && 1085 "Table consistency error"); 1086 ArgTys.push_back(Ty); 1087 1088 // Verify the overloaded type "matches" the Ref type. 1089 // i.e. Ty is a vector with the same width as Ref. 1090 // Composed of pointers to the same element type as Ref. 1091 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1092 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1093 if (!ThisArgVecTy || !ReferenceType || 1094 (ReferenceType->getVectorNumElements() != 1095 ThisArgVecTy->getVectorNumElements())) 1096 return true; 1097 PointerType *ThisArgEltTy = 1098 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1099 if (!ThisArgEltTy) 1100 return true; 1101 return ThisArgEltTy->getElementType() != 1102 ReferenceType->getVectorElementType(); 1103 } 1104 } 1105 llvm_unreachable("unhandled"); 1106 } 1107 1108 bool 1109 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1110 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1111 // If there are no descriptors left, then it can't be a vararg. 1112 if (Infos.empty()) 1113 return isVarArg; 1114 1115 // There should be only one descriptor remaining at this point. 1116 if (Infos.size() != 1) 1117 return true; 1118 1119 // Check and verify the descriptor. 1120 IITDescriptor D = Infos.front(); 1121 Infos = Infos.slice(1); 1122 if (D.Kind == IITDescriptor::VarArg) 1123 return !isVarArg; 1124 1125 return true; 1126 } 1127 1128 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1129 Intrinsic::ID ID = F->getIntrinsicID(); 1130 if (!ID) 1131 return None; 1132 1133 FunctionType *FTy = F->getFunctionType(); 1134 // Accumulate an array of overloaded types for the given intrinsic 1135 SmallVector<Type *, 4> ArgTys; 1136 { 1137 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1138 getIntrinsicInfoTableEntries(ID, Table); 1139 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1140 1141 // If we encounter any problems matching the signature with the descriptor 1142 // just give up remangling. It's up to verifier to report the discrepancy. 1143 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1144 return None; 1145 for (auto Ty : FTy->params()) 1146 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1147 return None; 1148 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1149 return None; 1150 } 1151 1152 StringRef Name = F->getName(); 1153 if (Name == Intrinsic::getName(ID, ArgTys)) 1154 return None; 1155 1156 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1157 NewDecl->setCallingConv(F->getCallingConv()); 1158 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1159 return NewDecl; 1160 } 1161 1162 /// hasAddressTaken - returns true if there are any uses of this function 1163 /// other than direct calls or invokes to it. 1164 bool Function::hasAddressTaken(const User* *PutOffender) const { 1165 for (const Use &U : uses()) { 1166 const User *FU = U.getUser(); 1167 if (isa<BlockAddress>(FU)) 1168 continue; 1169 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1170 if (PutOffender) 1171 *PutOffender = FU; 1172 return true; 1173 } 1174 ImmutableCallSite CS(cast<Instruction>(FU)); 1175 if (!CS.isCallee(&U)) { 1176 if (PutOffender) 1177 *PutOffender = FU; 1178 return true; 1179 } 1180 } 1181 return false; 1182 } 1183 1184 bool Function::isDefTriviallyDead() const { 1185 // Check the linkage 1186 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1187 !hasAvailableExternallyLinkage()) 1188 return false; 1189 1190 // Check if the function is used by anything other than a blockaddress. 1191 for (const User *U : users()) 1192 if (!isa<BlockAddress>(U)) 1193 return false; 1194 1195 return true; 1196 } 1197 1198 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1199 /// setjmp or other function that gcc recognizes as "returning twice". 1200 bool Function::callsFunctionThatReturnsTwice() const { 1201 for (const_inst_iterator 1202 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1203 ImmutableCallSite CS(&*I); 1204 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1205 return true; 1206 } 1207 1208 return false; 1209 } 1210 1211 Constant *Function::getPersonalityFn() const { 1212 assert(hasPersonalityFn() && getNumOperands()); 1213 return cast<Constant>(Op<0>()); 1214 } 1215 1216 void Function::setPersonalityFn(Constant *Fn) { 1217 setHungoffOperand<0>(Fn); 1218 setValueSubclassDataBit(3, Fn != nullptr); 1219 } 1220 1221 Constant *Function::getPrefixData() const { 1222 assert(hasPrefixData() && getNumOperands()); 1223 return cast<Constant>(Op<1>()); 1224 } 1225 1226 void Function::setPrefixData(Constant *PrefixData) { 1227 setHungoffOperand<1>(PrefixData); 1228 setValueSubclassDataBit(1, PrefixData != nullptr); 1229 } 1230 1231 Constant *Function::getPrologueData() const { 1232 assert(hasPrologueData() && getNumOperands()); 1233 return cast<Constant>(Op<2>()); 1234 } 1235 1236 void Function::setPrologueData(Constant *PrologueData) { 1237 setHungoffOperand<2>(PrologueData); 1238 setValueSubclassDataBit(2, PrologueData != nullptr); 1239 } 1240 1241 void Function::allocHungoffUselist() { 1242 // If we've already allocated a uselist, stop here. 1243 if (getNumOperands()) 1244 return; 1245 1246 allocHungoffUses(3, /*IsPhi=*/ false); 1247 setNumHungOffUseOperands(3); 1248 1249 // Initialize the uselist with placeholder operands to allow traversal. 1250 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1251 Op<0>().set(CPN); 1252 Op<1>().set(CPN); 1253 Op<2>().set(CPN); 1254 } 1255 1256 template <int Idx> 1257 void Function::setHungoffOperand(Constant *C) { 1258 if (C) { 1259 allocHungoffUselist(); 1260 Op<Idx>().set(C); 1261 } else if (getNumOperands()) { 1262 Op<Idx>().set( 1263 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1264 } 1265 } 1266 1267 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1268 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1269 if (On) 1270 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1271 else 1272 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1273 } 1274 1275 void Function::setEntryCount(uint64_t Count, 1276 const DenseSet<GlobalValue::GUID> *S) { 1277 MDBuilder MDB(getContext()); 1278 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1279 } 1280 1281 Optional<uint64_t> Function::getEntryCount() const { 1282 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1283 if (MD && MD->getOperand(0)) 1284 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1285 if (MDS->getString().equals("function_entry_count")) { 1286 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1287 uint64_t Count = CI->getValue().getZExtValue(); 1288 if (Count == 0) 1289 return None; 1290 return Count; 1291 } 1292 return None; 1293 } 1294 1295 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1296 DenseSet<GlobalValue::GUID> R; 1297 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1298 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1299 if (MDS->getString().equals("function_entry_count")) 1300 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1301 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1302 ->getValue() 1303 .getZExtValue()); 1304 return R; 1305 } 1306 1307 void Function::setSectionPrefix(StringRef Prefix) { 1308 MDBuilder MDB(getContext()); 1309 setMetadata(LLVMContext::MD_section_prefix, 1310 MDB.createFunctionSectionPrefix(Prefix)); 1311 } 1312 1313 Optional<StringRef> Function::getSectionPrefix() const { 1314 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1315 assert(dyn_cast<MDString>(MD->getOperand(0)) 1316 ->getString() 1317 .equals("function_section_prefix") && 1318 "Metadata not match"); 1319 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1320 } 1321 return None; 1322 } 1323