1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 void Function::convertToNewDbgValues() { 87 IsNewDbgInfoFormat = true; 88 for (auto &BB : *this) { 89 BB.convertToNewDbgValues(); 90 } 91 } 92 93 void Function::convertFromNewDbgValues() { 94 IsNewDbgInfoFormat = false; 95 for (auto &BB : *this) { 96 BB.convertFromNewDbgValues(); 97 } 98 } 99 100 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 101 if (NewFlag && !IsNewDbgInfoFormat) 102 convertToNewDbgValues(); 103 else if (!NewFlag && IsNewDbgInfoFormat) 104 convertFromNewDbgValues(); 105 } 106 107 //===----------------------------------------------------------------------===// 108 // Argument Implementation 109 //===----------------------------------------------------------------------===// 110 111 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 112 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 113 setName(Name); 114 } 115 116 void Argument::setParent(Function *parent) { 117 Parent = parent; 118 } 119 120 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 121 if (!getType()->isPointerTy()) return false; 122 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 123 (AllowUndefOrPoison || 124 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 125 return true; 126 else if (getDereferenceableBytes() > 0 && 127 !NullPointerIsDefined(getParent(), 128 getType()->getPointerAddressSpace())) 129 return true; 130 return false; 131 } 132 133 bool Argument::hasByValAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::ByVal); 136 } 137 138 bool Argument::hasByRefAttr() const { 139 if (!getType()->isPointerTy()) 140 return false; 141 return hasAttribute(Attribute::ByRef); 142 } 143 144 bool Argument::hasSwiftSelfAttr() const { 145 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 146 } 147 148 bool Argument::hasSwiftErrorAttr() const { 149 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 150 } 151 152 bool Argument::hasInAllocaAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::InAlloca); 155 } 156 157 bool Argument::hasPreallocatedAttr() const { 158 if (!getType()->isPointerTy()) 159 return false; 160 return hasAttribute(Attribute::Preallocated); 161 } 162 163 bool Argument::hasPassPointeeByValueCopyAttr() const { 164 if (!getType()->isPointerTy()) return false; 165 AttributeList Attrs = getParent()->getAttributes(); 166 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 167 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 168 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 169 } 170 171 bool Argument::hasPointeeInMemoryValueAttr() const { 172 if (!getType()->isPointerTy()) 173 return false; 174 AttributeList Attrs = getParent()->getAttributes(); 175 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 177 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 178 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 179 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 180 } 181 182 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 183 /// parameter type. 184 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 185 // FIXME: All the type carrying attributes are mutually exclusive, so there 186 // should be a single query to get the stored type that handles any of them. 187 if (Type *ByValTy = ParamAttrs.getByValType()) 188 return ByValTy; 189 if (Type *ByRefTy = ParamAttrs.getByRefType()) 190 return ByRefTy; 191 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 192 return PreAllocTy; 193 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 194 return InAllocaTy; 195 if (Type *SRetTy = ParamAttrs.getStructRetType()) 196 return SRetTy; 197 198 return nullptr; 199 } 200 201 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 202 AttributeSet ParamAttrs = 203 getParent()->getAttributes().getParamAttrs(getArgNo()); 204 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 205 return DL.getTypeAllocSize(MemTy); 206 return 0; 207 } 208 209 Type *Argument::getPointeeInMemoryValueType() const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 return getMemoryParamAllocType(ParamAttrs); 213 } 214 215 MaybeAlign Argument::getParamAlign() const { 216 assert(getType()->isPointerTy() && "Only pointers have alignments"); 217 return getParent()->getParamAlign(getArgNo()); 218 } 219 220 MaybeAlign Argument::getParamStackAlign() const { 221 return getParent()->getParamStackAlign(getArgNo()); 222 } 223 224 Type *Argument::getParamByValType() const { 225 assert(getType()->isPointerTy() && "Only pointers have byval types"); 226 return getParent()->getParamByValType(getArgNo()); 227 } 228 229 Type *Argument::getParamStructRetType() const { 230 assert(getType()->isPointerTy() && "Only pointers have sret types"); 231 return getParent()->getParamStructRetType(getArgNo()); 232 } 233 234 Type *Argument::getParamByRefType() const { 235 assert(getType()->isPointerTy() && "Only pointers have byref types"); 236 return getParent()->getParamByRefType(getArgNo()); 237 } 238 239 Type *Argument::getParamInAllocaType() const { 240 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 241 return getParent()->getParamInAllocaType(getArgNo()); 242 } 243 244 uint64_t Argument::getDereferenceableBytes() const { 245 assert(getType()->isPointerTy() && 246 "Only pointers have dereferenceable bytes"); 247 return getParent()->getParamDereferenceableBytes(getArgNo()); 248 } 249 250 uint64_t Argument::getDereferenceableOrNullBytes() const { 251 assert(getType()->isPointerTy() && 252 "Only pointers have dereferenceable bytes"); 253 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 254 } 255 256 FPClassTest Argument::getNoFPClass() const { 257 return getParent()->getParamNoFPClass(getArgNo()); 258 } 259 260 std::optional<ConstantRange> Argument::getRange() const { 261 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 262 if (RangeAttr.isValid()) 263 return RangeAttr.getRange(); 264 return std::nullopt; 265 } 266 267 bool Argument::hasNestAttr() const { 268 if (!getType()->isPointerTy()) return false; 269 return hasAttribute(Attribute::Nest); 270 } 271 272 bool Argument::hasNoAliasAttr() const { 273 if (!getType()->isPointerTy()) return false; 274 return hasAttribute(Attribute::NoAlias); 275 } 276 277 bool Argument::hasNoCaptureAttr() const { 278 if (!getType()->isPointerTy()) return false; 279 return hasAttribute(Attribute::NoCapture); 280 } 281 282 bool Argument::hasNoFreeAttr() const { 283 if (!getType()->isPointerTy()) return false; 284 return hasAttribute(Attribute::NoFree); 285 } 286 287 bool Argument::hasStructRetAttr() const { 288 if (!getType()->isPointerTy()) return false; 289 return hasAttribute(Attribute::StructRet); 290 } 291 292 bool Argument::hasInRegAttr() const { 293 return hasAttribute(Attribute::InReg); 294 } 295 296 bool Argument::hasReturnedAttr() const { 297 return hasAttribute(Attribute::Returned); 298 } 299 300 bool Argument::hasZExtAttr() const { 301 return hasAttribute(Attribute::ZExt); 302 } 303 304 bool Argument::hasSExtAttr() const { 305 return hasAttribute(Attribute::SExt); 306 } 307 308 bool Argument::onlyReadsMemory() const { 309 AttributeList Attrs = getParent()->getAttributes(); 310 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 311 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 312 } 313 314 void Argument::addAttrs(AttrBuilder &B) { 315 AttributeList AL = getParent()->getAttributes(); 316 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 317 getParent()->setAttributes(AL); 318 } 319 320 void Argument::addAttr(Attribute::AttrKind Kind) { 321 getParent()->addParamAttr(getArgNo(), Kind); 322 } 323 324 void Argument::addAttr(Attribute Attr) { 325 getParent()->addParamAttr(getArgNo(), Attr); 326 } 327 328 void Argument::removeAttr(Attribute::AttrKind Kind) { 329 getParent()->removeParamAttr(getArgNo(), Kind); 330 } 331 332 void Argument::removeAttrs(const AttributeMask &AM) { 333 AttributeList AL = getParent()->getAttributes(); 334 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 335 getParent()->setAttributes(AL); 336 } 337 338 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 339 return getParent()->hasParamAttribute(getArgNo(), Kind); 340 } 341 342 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 343 return getParent()->getParamAttribute(getArgNo(), Kind); 344 } 345 346 //===----------------------------------------------------------------------===// 347 // Helper Methods in Function 348 //===----------------------------------------------------------------------===// 349 350 LLVMContext &Function::getContext() const { 351 return getType()->getContext(); 352 } 353 354 unsigned Function::getInstructionCount() const { 355 unsigned NumInstrs = 0; 356 for (const BasicBlock &BB : BasicBlocks) 357 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 358 BB.instructionsWithoutDebug().end()); 359 return NumInstrs; 360 } 361 362 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 363 const Twine &N, Module &M) { 364 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 365 } 366 367 Function *Function::createWithDefaultAttr(FunctionType *Ty, 368 LinkageTypes Linkage, 369 unsigned AddrSpace, const Twine &N, 370 Module *M) { 371 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 372 AttrBuilder B(F->getContext()); 373 UWTableKind UWTable = M->getUwtable(); 374 if (UWTable != UWTableKind::None) 375 B.addUWTableAttr(UWTable); 376 switch (M->getFramePointer()) { 377 case FramePointerKind::None: 378 // 0 ("none") is the default. 379 break; 380 case FramePointerKind::NonLeaf: 381 B.addAttribute("frame-pointer", "non-leaf"); 382 break; 383 case FramePointerKind::All: 384 B.addAttribute("frame-pointer", "all"); 385 break; 386 } 387 if (M->getModuleFlag("function_return_thunk_extern")) 388 B.addAttribute(Attribute::FnRetThunkExtern); 389 F->addFnAttrs(B); 390 return F; 391 } 392 393 void Function::removeFromParent() { 394 getParent()->getFunctionList().remove(getIterator()); 395 } 396 397 void Function::eraseFromParent() { 398 getParent()->getFunctionList().erase(getIterator()); 399 } 400 401 void Function::splice(Function::iterator ToIt, Function *FromF, 402 Function::iterator FromBeginIt, 403 Function::iterator FromEndIt) { 404 #ifdef EXPENSIVE_CHECKS 405 // Check that FromBeginIt is before FromEndIt. 406 auto FromFEnd = FromF->end(); 407 for (auto It = FromBeginIt; It != FromEndIt; ++It) 408 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 409 #endif // EXPENSIVE_CHECKS 410 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 411 } 412 413 Function::iterator Function::erase(Function::iterator FromIt, 414 Function::iterator ToIt) { 415 return BasicBlocks.erase(FromIt, ToIt); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // Function Implementation 420 //===----------------------------------------------------------------------===// 421 422 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 423 // If AS == -1 and we are passed a valid module pointer we place the function 424 // in the program address space. Otherwise we default to AS0. 425 if (AddrSpace == static_cast<unsigned>(-1)) 426 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 427 return AddrSpace; 428 } 429 430 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 431 const Twine &name, Module *ParentModule) 432 : GlobalObject(Ty, Value::FunctionVal, 433 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 434 computeAddrSpace(AddrSpace, ParentModule)), 435 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 436 assert(FunctionType::isValidReturnType(getReturnType()) && 437 "invalid return type"); 438 setGlobalObjectSubClassData(0); 439 440 // We only need a symbol table for a function if the context keeps value names 441 if (!getContext().shouldDiscardValueNames()) 442 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 443 444 // If the function has arguments, mark them as lazily built. 445 if (Ty->getNumParams()) 446 setValueSubclassData(1); // Set the "has lazy arguments" bit. 447 448 if (ParentModule) { 449 ParentModule->getFunctionList().push_back(this); 450 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 451 } 452 453 HasLLVMReservedName = getName().starts_with("llvm."); 454 // Ensure intrinsics have the right parameter attributes. 455 // Note, the IntID field will have been set in Value::setName if this function 456 // name is a valid intrinsic ID. 457 if (IntID) 458 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 459 } 460 461 Function::~Function() { 462 dropAllReferences(); // After this it is safe to delete instructions. 463 464 // Delete all of the method arguments and unlink from symbol table... 465 if (Arguments) 466 clearArguments(); 467 468 // Remove the function from the on-the-side GC table. 469 clearGC(); 470 } 471 472 void Function::BuildLazyArguments() const { 473 // Create the arguments vector, all arguments start out unnamed. 474 auto *FT = getFunctionType(); 475 if (NumArgs > 0) { 476 Arguments = std::allocator<Argument>().allocate(NumArgs); 477 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 478 Type *ArgTy = FT->getParamType(i); 479 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 480 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 481 } 482 } 483 484 // Clear the lazy arguments bit. 485 unsigned SDC = getSubclassDataFromValue(); 486 SDC &= ~(1 << 0); 487 const_cast<Function*>(this)->setValueSubclassData(SDC); 488 assert(!hasLazyArguments()); 489 } 490 491 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 492 return MutableArrayRef<Argument>(Args, Count); 493 } 494 495 bool Function::isConstrainedFPIntrinsic() const { 496 switch (getIntrinsicID()) { 497 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 498 case Intrinsic::INTRINSIC: 499 #include "llvm/IR/ConstrainedOps.def" 500 return true; 501 #undef INSTRUCTION 502 default: 503 return false; 504 } 505 } 506 507 void Function::clearArguments() { 508 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 509 A.setName(""); 510 A.~Argument(); 511 } 512 std::allocator<Argument>().deallocate(Arguments, NumArgs); 513 Arguments = nullptr; 514 } 515 516 void Function::stealArgumentListFrom(Function &Src) { 517 assert(isDeclaration() && "Expected no references to current arguments"); 518 519 // Drop the current arguments, if any, and set the lazy argument bit. 520 if (!hasLazyArguments()) { 521 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 522 [](const Argument &A) { return A.use_empty(); }) && 523 "Expected arguments to be unused in declaration"); 524 clearArguments(); 525 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 526 } 527 528 // Nothing to steal if Src has lazy arguments. 529 if (Src.hasLazyArguments()) 530 return; 531 532 // Steal arguments from Src, and fix the lazy argument bits. 533 assert(arg_size() == Src.arg_size()); 534 Arguments = Src.Arguments; 535 Src.Arguments = nullptr; 536 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 537 // FIXME: This does the work of transferNodesFromList inefficiently. 538 SmallString<128> Name; 539 if (A.hasName()) 540 Name = A.getName(); 541 if (!Name.empty()) 542 A.setName(""); 543 A.setParent(this); 544 if (!Name.empty()) 545 A.setName(Name); 546 } 547 548 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 549 assert(!hasLazyArguments()); 550 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 551 } 552 553 void Function::deleteBodyImpl(bool ShouldDrop) { 554 setIsMaterializable(false); 555 556 for (BasicBlock &BB : *this) 557 BB.dropAllReferences(); 558 559 // Delete all basic blocks. They are now unused, except possibly by 560 // blockaddresses, but BasicBlock's destructor takes care of those. 561 while (!BasicBlocks.empty()) 562 BasicBlocks.begin()->eraseFromParent(); 563 564 if (getNumOperands()) { 565 if (ShouldDrop) { 566 // Drop uses of any optional data (real or placeholder). 567 User::dropAllReferences(); 568 setNumHungOffUseOperands(0); 569 } else { 570 // The code needs to match Function::allocHungoffUselist(). 571 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 572 Op<0>().set(CPN); 573 Op<1>().set(CPN); 574 Op<2>().set(CPN); 575 } 576 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 577 } 578 579 // Metadata is stored in a side-table. 580 clearMetadata(); 581 } 582 583 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 584 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 585 } 586 587 void Function::addFnAttr(Attribute::AttrKind Kind) { 588 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 589 } 590 591 void Function::addFnAttr(StringRef Kind, StringRef Val) { 592 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 593 } 594 595 void Function::addFnAttr(Attribute Attr) { 596 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 597 } 598 599 void Function::addFnAttrs(const AttrBuilder &Attrs) { 600 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 601 } 602 603 void Function::addRetAttr(Attribute::AttrKind Kind) { 604 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 605 } 606 607 void Function::addRetAttr(Attribute Attr) { 608 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 609 } 610 611 void Function::addRetAttrs(const AttrBuilder &Attrs) { 612 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 613 } 614 615 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 616 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 617 } 618 619 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 620 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 621 } 622 623 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 624 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 625 } 626 627 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 628 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 629 } 630 631 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 632 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 633 } 634 635 void Function::removeFnAttr(Attribute::AttrKind Kind) { 636 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 637 } 638 639 void Function::removeFnAttr(StringRef Kind) { 640 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 641 } 642 643 void Function::removeFnAttrs(const AttributeMask &AM) { 644 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 645 } 646 647 void Function::removeRetAttr(Attribute::AttrKind Kind) { 648 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 649 } 650 651 void Function::removeRetAttr(StringRef Kind) { 652 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 653 } 654 655 void Function::removeRetAttrs(const AttributeMask &Attrs) { 656 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 657 } 658 659 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 660 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 661 } 662 663 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 664 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 665 } 666 667 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 668 AttributeSets = 669 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 670 } 671 672 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 673 AttributeSets = 674 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 675 } 676 677 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 678 return AttributeSets.hasFnAttr(Kind); 679 } 680 681 bool Function::hasFnAttribute(StringRef Kind) const { 682 return AttributeSets.hasFnAttr(Kind); 683 } 684 685 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 686 return AttributeSets.hasRetAttr(Kind); 687 } 688 689 bool Function::hasParamAttribute(unsigned ArgNo, 690 Attribute::AttrKind Kind) const { 691 return AttributeSets.hasParamAttr(ArgNo, Kind); 692 } 693 694 Attribute Function::getAttributeAtIndex(unsigned i, 695 Attribute::AttrKind Kind) const { 696 return AttributeSets.getAttributeAtIndex(i, Kind); 697 } 698 699 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 700 return AttributeSets.getAttributeAtIndex(i, Kind); 701 } 702 703 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 704 return AttributeSets.getFnAttr(Kind); 705 } 706 707 Attribute Function::getFnAttribute(StringRef Kind) const { 708 return AttributeSets.getFnAttr(Kind); 709 } 710 711 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 712 return AttributeSets.getRetAttr(Kind); 713 } 714 715 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 716 uint64_t Default) const { 717 Attribute A = getFnAttribute(Name); 718 uint64_t Result = Default; 719 if (A.isStringAttribute()) { 720 StringRef Str = A.getValueAsString(); 721 if (Str.getAsInteger(0, Result)) 722 getContext().emitError("cannot parse integer attribute " + Name); 723 } 724 725 return Result; 726 } 727 728 /// gets the specified attribute from the list of attributes. 729 Attribute Function::getParamAttribute(unsigned ArgNo, 730 Attribute::AttrKind Kind) const { 731 return AttributeSets.getParamAttr(ArgNo, Kind); 732 } 733 734 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 735 uint64_t Bytes) { 736 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 737 ArgNo, Bytes); 738 } 739 740 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 741 if (&FPType == &APFloat::IEEEsingle()) { 742 DenormalMode Mode = getDenormalModeF32Raw(); 743 // If the f32 variant of the attribute isn't specified, try to use the 744 // generic one. 745 if (Mode.isValid()) 746 return Mode; 747 } 748 749 return getDenormalModeRaw(); 750 } 751 752 DenormalMode Function::getDenormalModeRaw() const { 753 Attribute Attr = getFnAttribute("denormal-fp-math"); 754 StringRef Val = Attr.getValueAsString(); 755 return parseDenormalFPAttribute(Val); 756 } 757 758 DenormalMode Function::getDenormalModeF32Raw() const { 759 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 760 if (Attr.isValid()) { 761 StringRef Val = Attr.getValueAsString(); 762 return parseDenormalFPAttribute(Val); 763 } 764 765 return DenormalMode::getInvalid(); 766 } 767 768 const std::string &Function::getGC() const { 769 assert(hasGC() && "Function has no collector"); 770 return getContext().getGC(*this); 771 } 772 773 void Function::setGC(std::string Str) { 774 setValueSubclassDataBit(14, !Str.empty()); 775 getContext().setGC(*this, std::move(Str)); 776 } 777 778 void Function::clearGC() { 779 if (!hasGC()) 780 return; 781 getContext().deleteGC(*this); 782 setValueSubclassDataBit(14, false); 783 } 784 785 bool Function::hasStackProtectorFnAttr() const { 786 return hasFnAttribute(Attribute::StackProtect) || 787 hasFnAttribute(Attribute::StackProtectStrong) || 788 hasFnAttribute(Attribute::StackProtectReq); 789 } 790 791 /// Copy all additional attributes (those not needed to create a Function) from 792 /// the Function Src to this one. 793 void Function::copyAttributesFrom(const Function *Src) { 794 GlobalObject::copyAttributesFrom(Src); 795 setCallingConv(Src->getCallingConv()); 796 setAttributes(Src->getAttributes()); 797 if (Src->hasGC()) 798 setGC(Src->getGC()); 799 else 800 clearGC(); 801 if (Src->hasPersonalityFn()) 802 setPersonalityFn(Src->getPersonalityFn()); 803 if (Src->hasPrefixData()) 804 setPrefixData(Src->getPrefixData()); 805 if (Src->hasPrologueData()) 806 setPrologueData(Src->getPrologueData()); 807 } 808 809 MemoryEffects Function::getMemoryEffects() const { 810 return getAttributes().getMemoryEffects(); 811 } 812 void Function::setMemoryEffects(MemoryEffects ME) { 813 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 814 } 815 816 /// Determine if the function does not access memory. 817 bool Function::doesNotAccessMemory() const { 818 return getMemoryEffects().doesNotAccessMemory(); 819 } 820 void Function::setDoesNotAccessMemory() { 821 setMemoryEffects(MemoryEffects::none()); 822 } 823 824 /// Determine if the function does not access or only reads memory. 825 bool Function::onlyReadsMemory() const { 826 return getMemoryEffects().onlyReadsMemory(); 827 } 828 void Function::setOnlyReadsMemory() { 829 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 830 } 831 832 /// Determine if the function does not access or only writes memory. 833 bool Function::onlyWritesMemory() const { 834 return getMemoryEffects().onlyWritesMemory(); 835 } 836 void Function::setOnlyWritesMemory() { 837 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 838 } 839 840 /// Determine if the call can access memmory only using pointers based 841 /// on its arguments. 842 bool Function::onlyAccessesArgMemory() const { 843 return getMemoryEffects().onlyAccessesArgPointees(); 844 } 845 void Function::setOnlyAccessesArgMemory() { 846 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 847 } 848 849 /// Determine if the function may only access memory that is 850 /// inaccessible from the IR. 851 bool Function::onlyAccessesInaccessibleMemory() const { 852 return getMemoryEffects().onlyAccessesInaccessibleMem(); 853 } 854 void Function::setOnlyAccessesInaccessibleMemory() { 855 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 856 } 857 858 /// Determine if the function may only access memory that is 859 /// either inaccessible from the IR or pointed to by its arguments. 860 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 861 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 862 } 863 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 864 setMemoryEffects(getMemoryEffects() & 865 MemoryEffects::inaccessibleOrArgMemOnly()); 866 } 867 868 /// Table of string intrinsic names indexed by enum value. 869 static const char * const IntrinsicNameTable[] = { 870 "not_intrinsic", 871 #define GET_INTRINSIC_NAME_TABLE 872 #include "llvm/IR/IntrinsicImpl.inc" 873 #undef GET_INTRINSIC_NAME_TABLE 874 }; 875 876 /// Table of per-target intrinsic name tables. 877 #define GET_INTRINSIC_TARGET_DATA 878 #include "llvm/IR/IntrinsicImpl.inc" 879 #undef GET_INTRINSIC_TARGET_DATA 880 881 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 882 return IID > TargetInfos[0].Count; 883 } 884 885 bool Function::isTargetIntrinsic() const { 886 return isTargetIntrinsic(IntID); 887 } 888 889 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 890 /// target as \c Name, or the generic table if \c Name is not target specific. 891 /// 892 /// Returns the relevant slice of \c IntrinsicNameTable 893 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 894 assert(Name.starts_with("llvm.")); 895 896 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 897 // Drop "llvm." and take the first dotted component. That will be the target 898 // if this is target specific. 899 StringRef Target = Name.drop_front(5).split('.').first; 900 auto It = partition_point( 901 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 902 // We've either found the target or just fall back to the generic set, which 903 // is always first. 904 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 905 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 906 } 907 908 /// This does the actual lookup of an intrinsic ID which 909 /// matches the given function name. 910 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 911 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 912 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 913 if (Idx == -1) 914 return Intrinsic::not_intrinsic; 915 916 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 917 // an index into a sub-table. 918 int Adjust = NameTable.data() - IntrinsicNameTable; 919 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 920 921 // If the intrinsic is not overloaded, require an exact match. If it is 922 // overloaded, require either exact or prefix match. 923 const auto MatchSize = strlen(NameTable[Idx]); 924 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 925 bool IsExactMatch = Name.size() == MatchSize; 926 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 927 : Intrinsic::not_intrinsic; 928 } 929 930 void Function::updateAfterNameChange() { 931 LibFuncCache = UnknownLibFunc; 932 StringRef Name = getName(); 933 if (!Name.starts_with("llvm.")) { 934 HasLLVMReservedName = false; 935 IntID = Intrinsic::not_intrinsic; 936 return; 937 } 938 HasLLVMReservedName = true; 939 IntID = lookupIntrinsicID(Name); 940 } 941 942 /// Returns a stable mangling for the type specified for use in the name 943 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 944 /// of named types is simply their name. Manglings for unnamed types consist 945 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 946 /// combined with the mangling of their component types. A vararg function 947 /// type will have a suffix of 'vararg'. Since function types can contain 948 /// other function types, we close a function type mangling with suffix 'f' 949 /// which can't be confused with it's prefix. This ensures we don't have 950 /// collisions between two unrelated function types. Otherwise, you might 951 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 952 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 953 /// indicating that extra care must be taken to ensure a unique name. 954 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 955 std::string Result; 956 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 957 Result += "p" + utostr(PTyp->getAddressSpace()); 958 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 959 Result += "a" + utostr(ATyp->getNumElements()) + 960 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 961 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 962 if (!STyp->isLiteral()) { 963 Result += "s_"; 964 if (STyp->hasName()) 965 Result += STyp->getName(); 966 else 967 HasUnnamedType = true; 968 } else { 969 Result += "sl_"; 970 for (auto *Elem : STyp->elements()) 971 Result += getMangledTypeStr(Elem, HasUnnamedType); 972 } 973 // Ensure nested structs are distinguishable. 974 Result += "s"; 975 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 976 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 977 for (size_t i = 0; i < FT->getNumParams(); i++) 978 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 979 if (FT->isVarArg()) 980 Result += "vararg"; 981 // Ensure nested function types are distinguishable. 982 Result += "f"; 983 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 984 ElementCount EC = VTy->getElementCount(); 985 if (EC.isScalable()) 986 Result += "nx"; 987 Result += "v" + utostr(EC.getKnownMinValue()) + 988 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 989 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 990 Result += "t"; 991 Result += TETy->getName(); 992 for (Type *ParamTy : TETy->type_params()) 993 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 994 for (unsigned IntParam : TETy->int_params()) 995 Result += "_" + utostr(IntParam); 996 // Ensure nested target extension types are distinguishable. 997 Result += "t"; 998 } else if (Ty) { 999 switch (Ty->getTypeID()) { 1000 default: llvm_unreachable("Unhandled type"); 1001 case Type::VoidTyID: Result += "isVoid"; break; 1002 case Type::MetadataTyID: Result += "Metadata"; break; 1003 case Type::HalfTyID: Result += "f16"; break; 1004 case Type::BFloatTyID: Result += "bf16"; break; 1005 case Type::FloatTyID: Result += "f32"; break; 1006 case Type::DoubleTyID: Result += "f64"; break; 1007 case Type::X86_FP80TyID: Result += "f80"; break; 1008 case Type::FP128TyID: Result += "f128"; break; 1009 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1010 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1011 case Type::X86_AMXTyID: Result += "x86amx"; break; 1012 case Type::IntegerTyID: 1013 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1014 break; 1015 } 1016 } 1017 return Result; 1018 } 1019 1020 StringRef Intrinsic::getBaseName(ID id) { 1021 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1022 return IntrinsicNameTable[id]; 1023 } 1024 1025 StringRef Intrinsic::getName(ID id) { 1026 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1027 assert(!Intrinsic::isOverloaded(id) && 1028 "This version of getName does not support overloading"); 1029 return getBaseName(id); 1030 } 1031 1032 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1033 Module *M, FunctionType *FT, 1034 bool EarlyModuleCheck) { 1035 1036 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1037 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1038 "This version of getName is for overloaded intrinsics only"); 1039 (void)EarlyModuleCheck; 1040 assert((!EarlyModuleCheck || M || 1041 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1042 "Intrinsic overloading on pointer types need to provide a Module"); 1043 bool HasUnnamedType = false; 1044 std::string Result(Intrinsic::getBaseName(Id)); 1045 for (Type *Ty : Tys) 1046 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1047 if (HasUnnamedType) { 1048 assert(M && "unnamed types need a module"); 1049 if (!FT) 1050 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1051 else 1052 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1053 "Provided FunctionType must match arguments"); 1054 return M->getUniqueIntrinsicName(Result, Id, FT); 1055 } 1056 return Result; 1057 } 1058 1059 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1060 FunctionType *FT) { 1061 assert(M && "We need to have a Module"); 1062 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1063 } 1064 1065 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1066 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1067 } 1068 1069 /// IIT_Info - These are enumerators that describe the entries returned by the 1070 /// getIntrinsicInfoTableEntries function. 1071 /// 1072 /// Defined in Intrinsics.td. 1073 enum IIT_Info { 1074 #define GET_INTRINSIC_IITINFO 1075 #include "llvm/IR/IntrinsicImpl.inc" 1076 #undef GET_INTRINSIC_IITINFO 1077 }; 1078 1079 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1080 IIT_Info LastInfo, 1081 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1082 using namespace Intrinsic; 1083 1084 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1085 1086 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1087 unsigned StructElts = 2; 1088 1089 switch (Info) { 1090 case IIT_Done: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1092 return; 1093 case IIT_VARARG: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1095 return; 1096 case IIT_MMX: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1098 return; 1099 case IIT_AMX: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1101 return; 1102 case IIT_TOKEN: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1104 return; 1105 case IIT_METADATA: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1107 return; 1108 case IIT_F16: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1110 return; 1111 case IIT_BF16: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1113 return; 1114 case IIT_F32: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1116 return; 1117 case IIT_F64: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1119 return; 1120 case IIT_F128: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1122 return; 1123 case IIT_PPCF128: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1125 return; 1126 case IIT_I1: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1128 return; 1129 case IIT_I2: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1131 return; 1132 case IIT_I4: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1134 return; 1135 case IIT_AARCH64_SVCOUNT: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1137 return; 1138 case IIT_I8: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1140 return; 1141 case IIT_I16: 1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1143 return; 1144 case IIT_I32: 1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1146 return; 1147 case IIT_I64: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1149 return; 1150 case IIT_I128: 1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1152 return; 1153 case IIT_V1: 1154 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1155 DecodeIITType(NextElt, Infos, Info, OutputTable); 1156 return; 1157 case IIT_V2: 1158 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1159 DecodeIITType(NextElt, Infos, Info, OutputTable); 1160 return; 1161 case IIT_V3: 1162 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1163 DecodeIITType(NextElt, Infos, Info, OutputTable); 1164 return; 1165 case IIT_V4: 1166 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1167 DecodeIITType(NextElt, Infos, Info, OutputTable); 1168 return; 1169 case IIT_V8: 1170 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1171 DecodeIITType(NextElt, Infos, Info, OutputTable); 1172 return; 1173 case IIT_V16: 1174 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1175 DecodeIITType(NextElt, Infos, Info, OutputTable); 1176 return; 1177 case IIT_V32: 1178 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1179 DecodeIITType(NextElt, Infos, Info, OutputTable); 1180 return; 1181 case IIT_V64: 1182 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1183 DecodeIITType(NextElt, Infos, Info, OutputTable); 1184 return; 1185 case IIT_V128: 1186 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1187 DecodeIITType(NextElt, Infos, Info, OutputTable); 1188 return; 1189 case IIT_V256: 1190 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1191 DecodeIITType(NextElt, Infos, Info, OutputTable); 1192 return; 1193 case IIT_V512: 1194 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1195 DecodeIITType(NextElt, Infos, Info, OutputTable); 1196 return; 1197 case IIT_V1024: 1198 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1199 DecodeIITType(NextElt, Infos, Info, OutputTable); 1200 return; 1201 case IIT_EXTERNREF: 1202 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1203 return; 1204 case IIT_FUNCREF: 1205 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1206 return; 1207 case IIT_PTR: 1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1209 return; 1210 case IIT_ANYPTR: // [ANYPTR addrspace] 1211 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1212 Infos[NextElt++])); 1213 return; 1214 case IIT_ARG: { 1215 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1216 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1217 return; 1218 } 1219 case IIT_EXTEND_ARG: { 1220 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1221 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1222 ArgInfo)); 1223 return; 1224 } 1225 case IIT_TRUNC_ARG: { 1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1228 ArgInfo)); 1229 return; 1230 } 1231 case IIT_HALF_VEC_ARG: { 1232 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1233 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1234 ArgInfo)); 1235 return; 1236 } 1237 case IIT_SAME_VEC_WIDTH_ARG: { 1238 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1239 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1240 ArgInfo)); 1241 return; 1242 } 1243 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1244 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1245 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1246 OutputTable.push_back( 1247 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1248 return; 1249 } 1250 case IIT_EMPTYSTRUCT: 1251 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1252 return; 1253 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1254 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1255 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1256 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1257 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1258 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1259 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1260 case IIT_STRUCT2: { 1261 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1262 1263 for (unsigned i = 0; i != StructElts; ++i) 1264 DecodeIITType(NextElt, Infos, Info, OutputTable); 1265 return; 1266 } 1267 case IIT_SUBDIVIDE2_ARG: { 1268 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1269 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1270 ArgInfo)); 1271 return; 1272 } 1273 case IIT_SUBDIVIDE4_ARG: { 1274 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1275 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1276 ArgInfo)); 1277 return; 1278 } 1279 case IIT_VEC_ELEMENT: { 1280 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1281 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1282 ArgInfo)); 1283 return; 1284 } 1285 case IIT_SCALABLE_VEC: { 1286 DecodeIITType(NextElt, Infos, Info, OutputTable); 1287 return; 1288 } 1289 case IIT_VEC_OF_BITCASTS_TO_INT: { 1290 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1291 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1292 ArgInfo)); 1293 return; 1294 } 1295 } 1296 llvm_unreachable("unhandled"); 1297 } 1298 1299 #define GET_INTRINSIC_GENERATOR_GLOBAL 1300 #include "llvm/IR/IntrinsicImpl.inc" 1301 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1302 1303 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1304 SmallVectorImpl<IITDescriptor> &T){ 1305 // Check to see if the intrinsic's type was expressible by the table. 1306 unsigned TableVal = IIT_Table[id-1]; 1307 1308 // Decode the TableVal into an array of IITValues. 1309 SmallVector<unsigned char, 8> IITValues; 1310 ArrayRef<unsigned char> IITEntries; 1311 unsigned NextElt = 0; 1312 if ((TableVal >> 31) != 0) { 1313 // This is an offset into the IIT_LongEncodingTable. 1314 IITEntries = IIT_LongEncodingTable; 1315 1316 // Strip sentinel bit. 1317 NextElt = (TableVal << 1) >> 1; 1318 } else { 1319 // Decode the TableVal into an array of IITValues. If the entry was encoded 1320 // into a single word in the table itself, decode it now. 1321 do { 1322 IITValues.push_back(TableVal & 0xF); 1323 TableVal >>= 4; 1324 } while (TableVal); 1325 1326 IITEntries = IITValues; 1327 NextElt = 0; 1328 } 1329 1330 // Okay, decode the table into the output vector of IITDescriptors. 1331 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1332 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1333 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1334 } 1335 1336 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1337 ArrayRef<Type*> Tys, LLVMContext &Context) { 1338 using namespace Intrinsic; 1339 1340 IITDescriptor D = Infos.front(); 1341 Infos = Infos.slice(1); 1342 1343 switch (D.Kind) { 1344 case IITDescriptor::Void: return Type::getVoidTy(Context); 1345 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1346 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1347 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1348 case IITDescriptor::Token: return Type::getTokenTy(Context); 1349 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1350 case IITDescriptor::Half: return Type::getHalfTy(Context); 1351 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1352 case IITDescriptor::Float: return Type::getFloatTy(Context); 1353 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1354 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1355 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1356 case IITDescriptor::AArch64Svcount: 1357 return TargetExtType::get(Context, "aarch64.svcount"); 1358 1359 case IITDescriptor::Integer: 1360 return IntegerType::get(Context, D.Integer_Width); 1361 case IITDescriptor::Vector: 1362 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1363 D.Vector_Width); 1364 case IITDescriptor::Pointer: 1365 return PointerType::get(Context, D.Pointer_AddressSpace); 1366 case IITDescriptor::Struct: { 1367 SmallVector<Type *, 8> Elts; 1368 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1369 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1370 return StructType::get(Context, Elts); 1371 } 1372 case IITDescriptor::Argument: 1373 return Tys[D.getArgumentNumber()]; 1374 case IITDescriptor::ExtendArgument: { 1375 Type *Ty = Tys[D.getArgumentNumber()]; 1376 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1377 return VectorType::getExtendedElementVectorType(VTy); 1378 1379 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1380 } 1381 case IITDescriptor::TruncArgument: { 1382 Type *Ty = Tys[D.getArgumentNumber()]; 1383 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1384 return VectorType::getTruncatedElementVectorType(VTy); 1385 1386 IntegerType *ITy = cast<IntegerType>(Ty); 1387 assert(ITy->getBitWidth() % 2 == 0); 1388 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1389 } 1390 case IITDescriptor::Subdivide2Argument: 1391 case IITDescriptor::Subdivide4Argument: { 1392 Type *Ty = Tys[D.getArgumentNumber()]; 1393 VectorType *VTy = dyn_cast<VectorType>(Ty); 1394 assert(VTy && "Expected an argument of Vector Type"); 1395 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1396 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1397 } 1398 case IITDescriptor::HalfVecArgument: 1399 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1400 Tys[D.getArgumentNumber()])); 1401 case IITDescriptor::SameVecWidthArgument: { 1402 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1403 Type *Ty = Tys[D.getArgumentNumber()]; 1404 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1405 return VectorType::get(EltTy, VTy->getElementCount()); 1406 return EltTy; 1407 } 1408 case IITDescriptor::VecElementArgument: { 1409 Type *Ty = Tys[D.getArgumentNumber()]; 1410 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1411 return VTy->getElementType(); 1412 llvm_unreachable("Expected an argument of Vector Type"); 1413 } 1414 case IITDescriptor::VecOfBitcastsToInt: { 1415 Type *Ty = Tys[D.getArgumentNumber()]; 1416 VectorType *VTy = dyn_cast<VectorType>(Ty); 1417 assert(VTy && "Expected an argument of Vector Type"); 1418 return VectorType::getInteger(VTy); 1419 } 1420 case IITDescriptor::VecOfAnyPtrsToElt: 1421 // Return the overloaded type (which determines the pointers address space) 1422 return Tys[D.getOverloadArgNumber()]; 1423 } 1424 llvm_unreachable("unhandled"); 1425 } 1426 1427 FunctionType *Intrinsic::getType(LLVMContext &Context, 1428 ID id, ArrayRef<Type*> Tys) { 1429 SmallVector<IITDescriptor, 8> Table; 1430 getIntrinsicInfoTableEntries(id, Table); 1431 1432 ArrayRef<IITDescriptor> TableRef = Table; 1433 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1434 1435 SmallVector<Type*, 8> ArgTys; 1436 while (!TableRef.empty()) 1437 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1438 1439 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1440 // If we see void type as the type of the last argument, it is vararg intrinsic 1441 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1442 ArgTys.pop_back(); 1443 return FunctionType::get(ResultTy, ArgTys, true); 1444 } 1445 return FunctionType::get(ResultTy, ArgTys, false); 1446 } 1447 1448 bool Intrinsic::isOverloaded(ID id) { 1449 #define GET_INTRINSIC_OVERLOAD_TABLE 1450 #include "llvm/IR/IntrinsicImpl.inc" 1451 #undef GET_INTRINSIC_OVERLOAD_TABLE 1452 } 1453 1454 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1455 #define GET_INTRINSIC_ATTRIBUTES 1456 #include "llvm/IR/IntrinsicImpl.inc" 1457 #undef GET_INTRINSIC_ATTRIBUTES 1458 1459 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1460 // There can never be multiple globals with the same name of different types, 1461 // because intrinsics must be a specific type. 1462 auto *FT = getType(M->getContext(), id, Tys); 1463 return cast<Function>( 1464 M->getOrInsertFunction( 1465 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1466 .getCallee()); 1467 } 1468 1469 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1470 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1471 #include "llvm/IR/IntrinsicImpl.inc" 1472 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1473 1474 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1475 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1476 #include "llvm/IR/IntrinsicImpl.inc" 1477 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1478 1479 using DeferredIntrinsicMatchPair = 1480 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1481 1482 static bool matchIntrinsicType( 1483 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1484 SmallVectorImpl<Type *> &ArgTys, 1485 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1486 bool IsDeferredCheck) { 1487 using namespace Intrinsic; 1488 1489 // If we ran out of descriptors, there are too many arguments. 1490 if (Infos.empty()) return true; 1491 1492 // Do this before slicing off the 'front' part 1493 auto InfosRef = Infos; 1494 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1495 DeferredChecks.emplace_back(T, InfosRef); 1496 return false; 1497 }; 1498 1499 IITDescriptor D = Infos.front(); 1500 Infos = Infos.slice(1); 1501 1502 switch (D.Kind) { 1503 case IITDescriptor::Void: return !Ty->isVoidTy(); 1504 case IITDescriptor::VarArg: return true; 1505 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1506 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1507 case IITDescriptor::Token: return !Ty->isTokenTy(); 1508 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1509 case IITDescriptor::Half: return !Ty->isHalfTy(); 1510 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1511 case IITDescriptor::Float: return !Ty->isFloatTy(); 1512 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1513 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1514 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1515 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1516 case IITDescriptor::AArch64Svcount: 1517 return !isa<TargetExtType>(Ty) || 1518 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1519 case IITDescriptor::Vector: { 1520 VectorType *VT = dyn_cast<VectorType>(Ty); 1521 return !VT || VT->getElementCount() != D.Vector_Width || 1522 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1523 DeferredChecks, IsDeferredCheck); 1524 } 1525 case IITDescriptor::Pointer: { 1526 PointerType *PT = dyn_cast<PointerType>(Ty); 1527 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1528 } 1529 1530 case IITDescriptor::Struct: { 1531 StructType *ST = dyn_cast<StructType>(Ty); 1532 if (!ST || !ST->isLiteral() || ST->isPacked() || 1533 ST->getNumElements() != D.Struct_NumElements) 1534 return true; 1535 1536 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1537 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1538 DeferredChecks, IsDeferredCheck)) 1539 return true; 1540 return false; 1541 } 1542 1543 case IITDescriptor::Argument: 1544 // If this is the second occurrence of an argument, 1545 // verify that the later instance matches the previous instance. 1546 if (D.getArgumentNumber() < ArgTys.size()) 1547 return Ty != ArgTys[D.getArgumentNumber()]; 1548 1549 if (D.getArgumentNumber() > ArgTys.size() || 1550 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1551 return IsDeferredCheck || DeferCheck(Ty); 1552 1553 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1554 "Table consistency error"); 1555 ArgTys.push_back(Ty); 1556 1557 switch (D.getArgumentKind()) { 1558 case IITDescriptor::AK_Any: return false; // Success 1559 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1560 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1561 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1562 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1563 default: break; 1564 } 1565 llvm_unreachable("all argument kinds not covered"); 1566 1567 case IITDescriptor::ExtendArgument: { 1568 // If this is a forward reference, defer the check for later. 1569 if (D.getArgumentNumber() >= ArgTys.size()) 1570 return IsDeferredCheck || DeferCheck(Ty); 1571 1572 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1573 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1574 NewTy = VectorType::getExtendedElementVectorType(VTy); 1575 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1576 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1577 else 1578 return true; 1579 1580 return Ty != NewTy; 1581 } 1582 case IITDescriptor::TruncArgument: { 1583 // If this is a forward reference, defer the check for later. 1584 if (D.getArgumentNumber() >= ArgTys.size()) 1585 return IsDeferredCheck || DeferCheck(Ty); 1586 1587 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1588 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1589 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1590 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1591 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1592 else 1593 return true; 1594 1595 return Ty != NewTy; 1596 } 1597 case IITDescriptor::HalfVecArgument: 1598 // If this is a forward reference, defer the check for later. 1599 if (D.getArgumentNumber() >= ArgTys.size()) 1600 return IsDeferredCheck || DeferCheck(Ty); 1601 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1602 VectorType::getHalfElementsVectorType( 1603 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1604 case IITDescriptor::SameVecWidthArgument: { 1605 if (D.getArgumentNumber() >= ArgTys.size()) { 1606 // Defer check and subsequent check for the vector element type. 1607 Infos = Infos.slice(1); 1608 return IsDeferredCheck || DeferCheck(Ty); 1609 } 1610 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1611 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1612 // Both must be vectors of the same number of elements or neither. 1613 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1614 return true; 1615 Type *EltTy = Ty; 1616 if (ThisArgType) { 1617 if (ReferenceType->getElementCount() != 1618 ThisArgType->getElementCount()) 1619 return true; 1620 EltTy = ThisArgType->getElementType(); 1621 } 1622 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1623 IsDeferredCheck); 1624 } 1625 case IITDescriptor::VecOfAnyPtrsToElt: { 1626 unsigned RefArgNumber = D.getRefArgNumber(); 1627 if (RefArgNumber >= ArgTys.size()) { 1628 if (IsDeferredCheck) 1629 return true; 1630 // If forward referencing, already add the pointer-vector type and 1631 // defer the checks for later. 1632 ArgTys.push_back(Ty); 1633 return DeferCheck(Ty); 1634 } 1635 1636 if (!IsDeferredCheck){ 1637 assert(D.getOverloadArgNumber() == ArgTys.size() && 1638 "Table consistency error"); 1639 ArgTys.push_back(Ty); 1640 } 1641 1642 // Verify the overloaded type "matches" the Ref type. 1643 // i.e. Ty is a vector with the same width as Ref. 1644 // Composed of pointers to the same element type as Ref. 1645 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1646 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1647 if (!ThisArgVecTy || !ReferenceType || 1648 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1649 return true; 1650 return !ThisArgVecTy->getElementType()->isPointerTy(); 1651 } 1652 case IITDescriptor::VecElementArgument: { 1653 if (D.getArgumentNumber() >= ArgTys.size()) 1654 return IsDeferredCheck ? true : DeferCheck(Ty); 1655 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1656 return !ReferenceType || Ty != ReferenceType->getElementType(); 1657 } 1658 case IITDescriptor::Subdivide2Argument: 1659 case IITDescriptor::Subdivide4Argument: { 1660 // If this is a forward reference, defer the check for later. 1661 if (D.getArgumentNumber() >= ArgTys.size()) 1662 return IsDeferredCheck || DeferCheck(Ty); 1663 1664 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1665 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1666 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1667 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1668 return Ty != NewTy; 1669 } 1670 return true; 1671 } 1672 case IITDescriptor::VecOfBitcastsToInt: { 1673 if (D.getArgumentNumber() >= ArgTys.size()) 1674 return IsDeferredCheck || DeferCheck(Ty); 1675 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1676 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1677 if (!ThisArgVecTy || !ReferenceType) 1678 return true; 1679 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1680 } 1681 } 1682 llvm_unreachable("unhandled"); 1683 } 1684 1685 Intrinsic::MatchIntrinsicTypesResult 1686 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1687 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1688 SmallVectorImpl<Type *> &ArgTys) { 1689 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1690 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1691 false)) 1692 return MatchIntrinsicTypes_NoMatchRet; 1693 1694 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1695 1696 for (auto *Ty : FTy->params()) 1697 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1698 return MatchIntrinsicTypes_NoMatchArg; 1699 1700 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1701 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1702 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1703 true)) 1704 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1705 : MatchIntrinsicTypes_NoMatchArg; 1706 } 1707 1708 return MatchIntrinsicTypes_Match; 1709 } 1710 1711 bool 1712 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1713 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1714 // If there are no descriptors left, then it can't be a vararg. 1715 if (Infos.empty()) 1716 return isVarArg; 1717 1718 // There should be only one descriptor remaining at this point. 1719 if (Infos.size() != 1) 1720 return true; 1721 1722 // Check and verify the descriptor. 1723 IITDescriptor D = Infos.front(); 1724 Infos = Infos.slice(1); 1725 if (D.Kind == IITDescriptor::VarArg) 1726 return !isVarArg; 1727 1728 return true; 1729 } 1730 1731 bool Intrinsic::getIntrinsicSignature(Function *F, 1732 SmallVectorImpl<Type *> &ArgTys) { 1733 Intrinsic::ID ID = F->getIntrinsicID(); 1734 if (!ID) 1735 return false; 1736 1737 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1738 getIntrinsicInfoTableEntries(ID, Table); 1739 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1740 1741 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1742 ArgTys) != 1743 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1744 return false; 1745 } 1746 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1747 TableRef)) 1748 return false; 1749 return true; 1750 } 1751 1752 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1753 SmallVector<Type *, 4> ArgTys; 1754 if (!getIntrinsicSignature(F, ArgTys)) 1755 return std::nullopt; 1756 1757 Intrinsic::ID ID = F->getIntrinsicID(); 1758 StringRef Name = F->getName(); 1759 std::string WantedName = 1760 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1761 if (Name == WantedName) 1762 return std::nullopt; 1763 1764 Function *NewDecl = [&] { 1765 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1766 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1767 if (ExistingF->getFunctionType() == F->getFunctionType()) 1768 return ExistingF; 1769 1770 // The name already exists, but is not a function or has the wrong 1771 // prototype. Make place for the new one by renaming the old version. 1772 // Either this old version will be removed later on or the module is 1773 // invalid and we'll get an error. 1774 ExistingGV->setName(WantedName + ".renamed"); 1775 } 1776 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1777 }(); 1778 1779 NewDecl->setCallingConv(F->getCallingConv()); 1780 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1781 "Shouldn't change the signature"); 1782 return NewDecl; 1783 } 1784 1785 /// hasAddressTaken - returns true if there are any uses of this function 1786 /// other than direct calls or invokes to it. Optionally ignores callback 1787 /// uses, assume like pointer annotation calls, and references in llvm.used 1788 /// and llvm.compiler.used variables. 1789 bool Function::hasAddressTaken(const User **PutOffender, 1790 bool IgnoreCallbackUses, 1791 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1792 bool IgnoreARCAttachedCall, 1793 bool IgnoreCastedDirectCall) const { 1794 for (const Use &U : uses()) { 1795 const User *FU = U.getUser(); 1796 if (isa<BlockAddress>(FU)) 1797 continue; 1798 1799 if (IgnoreCallbackUses) { 1800 AbstractCallSite ACS(&U); 1801 if (ACS && ACS.isCallbackCall()) 1802 continue; 1803 } 1804 1805 const auto *Call = dyn_cast<CallBase>(FU); 1806 if (!Call) { 1807 if (IgnoreAssumeLikeCalls && 1808 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1809 all_of(FU->users(), [](const User *U) { 1810 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1811 return I->isAssumeLikeIntrinsic(); 1812 return false; 1813 })) { 1814 continue; 1815 } 1816 1817 if (IgnoreLLVMUsed && !FU->user_empty()) { 1818 const User *FUU = FU; 1819 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1820 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1821 FUU = *FU->user_begin(); 1822 if (llvm::all_of(FUU->users(), [](const User *U) { 1823 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1824 return GV->hasName() && 1825 (GV->getName().equals("llvm.compiler.used") || 1826 GV->getName().equals("llvm.used")); 1827 return false; 1828 })) 1829 continue; 1830 } 1831 if (PutOffender) 1832 *PutOffender = FU; 1833 return true; 1834 } 1835 1836 if (IgnoreAssumeLikeCalls) { 1837 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1838 if (I->isAssumeLikeIntrinsic()) 1839 continue; 1840 } 1841 1842 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1843 Call->getFunctionType() != getFunctionType())) { 1844 if (IgnoreARCAttachedCall && 1845 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1846 U.getOperandNo())) 1847 continue; 1848 1849 if (PutOffender) 1850 *PutOffender = FU; 1851 return true; 1852 } 1853 } 1854 return false; 1855 } 1856 1857 bool Function::isDefTriviallyDead() const { 1858 // Check the linkage 1859 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1860 !hasAvailableExternallyLinkage()) 1861 return false; 1862 1863 // Check if the function is used by anything other than a blockaddress. 1864 for (const User *U : users()) 1865 if (!isa<BlockAddress>(U)) 1866 return false; 1867 1868 return true; 1869 } 1870 1871 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1872 /// setjmp or other function that gcc recognizes as "returning twice". 1873 bool Function::callsFunctionThatReturnsTwice() const { 1874 for (const Instruction &I : instructions(this)) 1875 if (const auto *Call = dyn_cast<CallBase>(&I)) 1876 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1877 return true; 1878 1879 return false; 1880 } 1881 1882 Constant *Function::getPersonalityFn() const { 1883 assert(hasPersonalityFn() && getNumOperands()); 1884 return cast<Constant>(Op<0>()); 1885 } 1886 1887 void Function::setPersonalityFn(Constant *Fn) { 1888 setHungoffOperand<0>(Fn); 1889 setValueSubclassDataBit(3, Fn != nullptr); 1890 } 1891 1892 Constant *Function::getPrefixData() const { 1893 assert(hasPrefixData() && getNumOperands()); 1894 return cast<Constant>(Op<1>()); 1895 } 1896 1897 void Function::setPrefixData(Constant *PrefixData) { 1898 setHungoffOperand<1>(PrefixData); 1899 setValueSubclassDataBit(1, PrefixData != nullptr); 1900 } 1901 1902 Constant *Function::getPrologueData() const { 1903 assert(hasPrologueData() && getNumOperands()); 1904 return cast<Constant>(Op<2>()); 1905 } 1906 1907 void Function::setPrologueData(Constant *PrologueData) { 1908 setHungoffOperand<2>(PrologueData); 1909 setValueSubclassDataBit(2, PrologueData != nullptr); 1910 } 1911 1912 void Function::allocHungoffUselist() { 1913 // If we've already allocated a uselist, stop here. 1914 if (getNumOperands()) 1915 return; 1916 1917 allocHungoffUses(3, /*IsPhi=*/ false); 1918 setNumHungOffUseOperands(3); 1919 1920 // Initialize the uselist with placeholder operands to allow traversal. 1921 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1922 Op<0>().set(CPN); 1923 Op<1>().set(CPN); 1924 Op<2>().set(CPN); 1925 } 1926 1927 template <int Idx> 1928 void Function::setHungoffOperand(Constant *C) { 1929 if (C) { 1930 allocHungoffUselist(); 1931 Op<Idx>().set(C); 1932 } else if (getNumOperands()) { 1933 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1934 } 1935 } 1936 1937 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1938 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1939 if (On) 1940 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1941 else 1942 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1943 } 1944 1945 void Function::setEntryCount(ProfileCount Count, 1946 const DenseSet<GlobalValue::GUID> *S) { 1947 #if !defined(NDEBUG) 1948 auto PrevCount = getEntryCount(); 1949 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1950 #endif 1951 1952 auto ImportGUIDs = getImportGUIDs(); 1953 if (S == nullptr && ImportGUIDs.size()) 1954 S = &ImportGUIDs; 1955 1956 MDBuilder MDB(getContext()); 1957 setMetadata( 1958 LLVMContext::MD_prof, 1959 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1960 } 1961 1962 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1963 const DenseSet<GlobalValue::GUID> *Imports) { 1964 setEntryCount(ProfileCount(Count, Type), Imports); 1965 } 1966 1967 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1968 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1969 if (MD && MD->getOperand(0)) 1970 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1971 if (MDS->getString().equals("function_entry_count")) { 1972 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1973 uint64_t Count = CI->getValue().getZExtValue(); 1974 // A value of -1 is used for SamplePGO when there were no samples. 1975 // Treat this the same as unknown. 1976 if (Count == (uint64_t)-1) 1977 return std::nullopt; 1978 return ProfileCount(Count, PCT_Real); 1979 } else if (AllowSynthetic && 1980 MDS->getString().equals("synthetic_function_entry_count")) { 1981 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1982 uint64_t Count = CI->getValue().getZExtValue(); 1983 return ProfileCount(Count, PCT_Synthetic); 1984 } 1985 } 1986 return std::nullopt; 1987 } 1988 1989 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1990 DenseSet<GlobalValue::GUID> R; 1991 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1992 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1993 if (MDS->getString().equals("function_entry_count")) 1994 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1995 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1996 ->getValue() 1997 .getZExtValue()); 1998 return R; 1999 } 2000 2001 void Function::setSectionPrefix(StringRef Prefix) { 2002 MDBuilder MDB(getContext()); 2003 setMetadata(LLVMContext::MD_section_prefix, 2004 MDB.createFunctionSectionPrefix(Prefix)); 2005 } 2006 2007 std::optional<StringRef> Function::getSectionPrefix() const { 2008 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2009 assert(cast<MDString>(MD->getOperand(0)) 2010 ->getString() 2011 .equals("function_section_prefix") && 2012 "Metadata not match"); 2013 return cast<MDString>(MD->getOperand(1))->getString(); 2014 } 2015 return std::nullopt; 2016 } 2017 2018 bool Function::nullPointerIsDefined() const { 2019 return hasFnAttribute(Attribute::NullPointerIsValid); 2020 } 2021 2022 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2023 if (F && F->nullPointerIsDefined()) 2024 return true; 2025 2026 if (AS != 0) 2027 return true; 2028 2029 return false; 2030 } 2031