xref: /llvm-project/llvm/lib/IR/Function.cpp (revision dfeb3991fb489a703f631ab0c34b58f80568038d)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<int> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 extern cl::opt<bool> UseNewDbgInfoFormat;
87 
88 void Function::convertToNewDbgValues() {
89   IsNewDbgInfoFormat = true;
90   for (auto &BB : *this) {
91     BB.convertToNewDbgValues();
92   }
93 }
94 
95 void Function::convertFromNewDbgValues() {
96   IsNewDbgInfoFormat = false;
97   for (auto &BB : *this) {
98     BB.convertFromNewDbgValues();
99   }
100 }
101 
102 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
103   if (NewFlag && !IsNewDbgInfoFormat)
104     convertToNewDbgValues();
105   else if (!NewFlag && IsNewDbgInfoFormat)
106     convertFromNewDbgValues();
107 }
108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
109   for (auto &BB : *this) {
110     BB.setNewDbgInfoFormatFlag(NewFlag);
111   }
112   IsNewDbgInfoFormat = NewFlag;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Argument Implementation
117 //===----------------------------------------------------------------------===//
118 
119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
120     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
121   setName(Name);
122 }
123 
124 void Argument::setParent(Function *parent) {
125   Parent = parent;
126 }
127 
128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
129   if (!getType()->isPointerTy()) return false;
130   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
131       (AllowUndefOrPoison ||
132        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
133     return true;
134   else if (getDereferenceableBytes() > 0 &&
135            !NullPointerIsDefined(getParent(),
136                                  getType()->getPointerAddressSpace()))
137     return true;
138   return false;
139 }
140 
141 bool Argument::hasByValAttr() const {
142   if (!getType()->isPointerTy()) return false;
143   return hasAttribute(Attribute::ByVal);
144 }
145 
146 bool Argument::hasByRefAttr() const {
147   if (!getType()->isPointerTy())
148     return false;
149   return hasAttribute(Attribute::ByRef);
150 }
151 
152 bool Argument::hasSwiftSelfAttr() const {
153   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
154 }
155 
156 bool Argument::hasSwiftErrorAttr() const {
157   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
158 }
159 
160 bool Argument::hasInAllocaAttr() const {
161   if (!getType()->isPointerTy()) return false;
162   return hasAttribute(Attribute::InAlloca);
163 }
164 
165 bool Argument::hasPreallocatedAttr() const {
166   if (!getType()->isPointerTy())
167     return false;
168   return hasAttribute(Attribute::Preallocated);
169 }
170 
171 bool Argument::hasPassPointeeByValueCopyAttr() const {
172   if (!getType()->isPointerTy()) return false;
173   AttributeList Attrs = getParent()->getAttributes();
174   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
175          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
176          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
177 }
178 
179 bool Argument::hasPointeeInMemoryValueAttr() const {
180   if (!getType()->isPointerTy())
181     return false;
182   AttributeList Attrs = getParent()->getAttributes();
183   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
186          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
187          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
188 }
189 
190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
191 /// parameter type.
192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
193   // FIXME: All the type carrying attributes are mutually exclusive, so there
194   // should be a single query to get the stored type that handles any of them.
195   if (Type *ByValTy = ParamAttrs.getByValType())
196     return ByValTy;
197   if (Type *ByRefTy = ParamAttrs.getByRefType())
198     return ByRefTy;
199   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
200     return PreAllocTy;
201   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
202     return InAllocaTy;
203   if (Type *SRetTy = ParamAttrs.getStructRetType())
204     return SRetTy;
205 
206   return nullptr;
207 }
208 
209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
210   AttributeSet ParamAttrs =
211       getParent()->getAttributes().getParamAttrs(getArgNo());
212   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
213     return DL.getTypeAllocSize(MemTy);
214   return 0;
215 }
216 
217 Type *Argument::getPointeeInMemoryValueType() const {
218   AttributeSet ParamAttrs =
219       getParent()->getAttributes().getParamAttrs(getArgNo());
220   return getMemoryParamAllocType(ParamAttrs);
221 }
222 
223 MaybeAlign Argument::getParamAlign() const {
224   assert(getType()->isPointerTy() && "Only pointers have alignments");
225   return getParent()->getParamAlign(getArgNo());
226 }
227 
228 MaybeAlign Argument::getParamStackAlign() const {
229   return getParent()->getParamStackAlign(getArgNo());
230 }
231 
232 Type *Argument::getParamByValType() const {
233   assert(getType()->isPointerTy() && "Only pointers have byval types");
234   return getParent()->getParamByValType(getArgNo());
235 }
236 
237 Type *Argument::getParamStructRetType() const {
238   assert(getType()->isPointerTy() && "Only pointers have sret types");
239   return getParent()->getParamStructRetType(getArgNo());
240 }
241 
242 Type *Argument::getParamByRefType() const {
243   assert(getType()->isPointerTy() && "Only pointers have byref types");
244   return getParent()->getParamByRefType(getArgNo());
245 }
246 
247 Type *Argument::getParamInAllocaType() const {
248   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
249   return getParent()->getParamInAllocaType(getArgNo());
250 }
251 
252 uint64_t Argument::getDereferenceableBytes() const {
253   assert(getType()->isPointerTy() &&
254          "Only pointers have dereferenceable bytes");
255   return getParent()->getParamDereferenceableBytes(getArgNo());
256 }
257 
258 uint64_t Argument::getDereferenceableOrNullBytes() const {
259   assert(getType()->isPointerTy() &&
260          "Only pointers have dereferenceable bytes");
261   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
262 }
263 
264 FPClassTest Argument::getNoFPClass() const {
265   return getParent()->getParamNoFPClass(getArgNo());
266 }
267 
268 std::optional<ConstantRange> Argument::getRange() const {
269   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
270   if (RangeAttr.isValid())
271     return RangeAttr.getRange();
272   return std::nullopt;
273 }
274 
275 bool Argument::hasNestAttr() const {
276   if (!getType()->isPointerTy()) return false;
277   return hasAttribute(Attribute::Nest);
278 }
279 
280 bool Argument::hasNoAliasAttr() const {
281   if (!getType()->isPointerTy()) return false;
282   return hasAttribute(Attribute::NoAlias);
283 }
284 
285 bool Argument::hasNoCaptureAttr() const {
286   if (!getType()->isPointerTy()) return false;
287   return hasAttribute(Attribute::NoCapture);
288 }
289 
290 bool Argument::hasNoFreeAttr() const {
291   if (!getType()->isPointerTy()) return false;
292   return hasAttribute(Attribute::NoFree);
293 }
294 
295 bool Argument::hasStructRetAttr() const {
296   if (!getType()->isPointerTy()) return false;
297   return hasAttribute(Attribute::StructRet);
298 }
299 
300 bool Argument::hasInRegAttr() const {
301   return hasAttribute(Attribute::InReg);
302 }
303 
304 bool Argument::hasReturnedAttr() const {
305   return hasAttribute(Attribute::Returned);
306 }
307 
308 bool Argument::hasZExtAttr() const {
309   return hasAttribute(Attribute::ZExt);
310 }
311 
312 bool Argument::hasSExtAttr() const {
313   return hasAttribute(Attribute::SExt);
314 }
315 
316 bool Argument::onlyReadsMemory() const {
317   AttributeList Attrs = getParent()->getAttributes();
318   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
319          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
320 }
321 
322 void Argument::addAttrs(AttrBuilder &B) {
323   AttributeList AL = getParent()->getAttributes();
324   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
325   getParent()->setAttributes(AL);
326 }
327 
328 void Argument::addAttr(Attribute::AttrKind Kind) {
329   getParent()->addParamAttr(getArgNo(), Kind);
330 }
331 
332 void Argument::addAttr(Attribute Attr) {
333   getParent()->addParamAttr(getArgNo(), Attr);
334 }
335 
336 void Argument::removeAttr(Attribute::AttrKind Kind) {
337   getParent()->removeParamAttr(getArgNo(), Kind);
338 }
339 
340 void Argument::removeAttrs(const AttributeMask &AM) {
341   AttributeList AL = getParent()->getAttributes();
342   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
343   getParent()->setAttributes(AL);
344 }
345 
346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
347   return getParent()->hasParamAttribute(getArgNo(), Kind);
348 }
349 
350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
351   return getParent()->getParamAttribute(getArgNo(), Kind);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Helper Methods in Function
356 //===----------------------------------------------------------------------===//
357 
358 LLVMContext &Function::getContext() const {
359   return getType()->getContext();
360 }
361 
362 const DataLayout &Function::getDataLayout() const {
363   return getParent()->getDataLayout();
364 }
365 
366 unsigned Function::getInstructionCount() const {
367   unsigned NumInstrs = 0;
368   for (const BasicBlock &BB : BasicBlocks)
369     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
370                                BB.instructionsWithoutDebug().end());
371   return NumInstrs;
372 }
373 
374 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
375                            const Twine &N, Module &M) {
376   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
377 }
378 
379 Function *Function::createWithDefaultAttr(FunctionType *Ty,
380                                           LinkageTypes Linkage,
381                                           unsigned AddrSpace, const Twine &N,
382                                           Module *M) {
383   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
384   AttrBuilder B(F->getContext());
385   UWTableKind UWTable = M->getUwtable();
386   if (UWTable != UWTableKind::None)
387     B.addUWTableAttr(UWTable);
388   switch (M->getFramePointer()) {
389   case FramePointerKind::None:
390     // 0 ("none") is the default.
391     break;
392   case FramePointerKind::Reserved:
393     B.addAttribute("frame-pointer", "reserved");
394     break;
395   case FramePointerKind::NonLeaf:
396     B.addAttribute("frame-pointer", "non-leaf");
397     break;
398   case FramePointerKind::All:
399     B.addAttribute("frame-pointer", "all");
400     break;
401   }
402   if (M->getModuleFlag("function_return_thunk_extern"))
403     B.addAttribute(Attribute::FnRetThunkExtern);
404   StringRef DefaultCPU = F->getContext().getDefaultTargetCPU();
405   if (!DefaultCPU.empty())
406     B.addAttribute("target-cpu", DefaultCPU);
407   StringRef DefaultFeatures = F->getContext().getDefaultTargetFeatures();
408   if (!DefaultFeatures.empty())
409     B.addAttribute("target-features", DefaultFeatures);
410 
411   // Check if the module attribute is present and not zero.
412   auto isModuleAttributeSet = [&](const StringRef &ModAttr) -> bool {
413     const auto *Attr =
414         mdconst::extract_or_null<ConstantInt>(M->getModuleFlag(ModAttr));
415     return Attr && !Attr->isZero();
416   };
417 
418   auto AddAttributeIfSet = [&](const StringRef &ModAttr) {
419     if (isModuleAttributeSet(ModAttr))
420       B.addAttribute(ModAttr);
421   };
422 
423   StringRef SignType = "none";
424   if (isModuleAttributeSet("sign-return-address"))
425     SignType = "non-leaf";
426   if (isModuleAttributeSet("sign-return-address-all"))
427     SignType = "all";
428   if (SignType != "none") {
429     B.addAttribute("sign-return-address", SignType);
430     B.addAttribute("sign-return-address-key",
431                    isModuleAttributeSet("sign-return-address-with-bkey")
432                        ? "b_key"
433                        : "a_key");
434   }
435   AddAttributeIfSet("branch-target-enforcement");
436   AddAttributeIfSet("branch-protection-pauth-lr");
437   AddAttributeIfSet("guarded-control-stack");
438 
439   F->addFnAttrs(B);
440   return F;
441 }
442 
443 void Function::removeFromParent() {
444   getParent()->getFunctionList().remove(getIterator());
445 }
446 
447 void Function::eraseFromParent() {
448   getParent()->getFunctionList().erase(getIterator());
449 }
450 
451 void Function::splice(Function::iterator ToIt, Function *FromF,
452                       Function::iterator FromBeginIt,
453                       Function::iterator FromEndIt) {
454 #ifdef EXPENSIVE_CHECKS
455   // Check that FromBeginIt is before FromEndIt.
456   auto FromFEnd = FromF->end();
457   for (auto It = FromBeginIt; It != FromEndIt; ++It)
458     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
459 #endif // EXPENSIVE_CHECKS
460   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
461 }
462 
463 Function::iterator Function::erase(Function::iterator FromIt,
464                                    Function::iterator ToIt) {
465   return BasicBlocks.erase(FromIt, ToIt);
466 }
467 
468 //===----------------------------------------------------------------------===//
469 // Function Implementation
470 //===----------------------------------------------------------------------===//
471 
472 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
473   // If AS == -1 and we are passed a valid module pointer we place the function
474   // in the program address space. Otherwise we default to AS0.
475   if (AddrSpace == static_cast<unsigned>(-1))
476     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
477   return AddrSpace;
478 }
479 
480 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
481                    const Twine &name, Module *ParentModule)
482     : GlobalObject(Ty, Value::FunctionVal,
483                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
484                    computeAddrSpace(AddrSpace, ParentModule)),
485       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) {
486   assert(FunctionType::isValidReturnType(getReturnType()) &&
487          "invalid return type");
488   setGlobalObjectSubClassData(0);
489 
490   // We only need a symbol table for a function if the context keeps value names
491   if (!getContext().shouldDiscardValueNames())
492     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
493 
494   // If the function has arguments, mark them as lazily built.
495   if (Ty->getNumParams())
496     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
497 
498   if (ParentModule) {
499     ParentModule->getFunctionList().push_back(this);
500     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
501   }
502 
503   HasLLVMReservedName = getName().starts_with("llvm.");
504   // Ensure intrinsics have the right parameter attributes.
505   // Note, the IntID field will have been set in Value::setName if this function
506   // name is a valid intrinsic ID.
507   if (IntID)
508     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
509 }
510 
511 Function::~Function() {
512   dropAllReferences();    // After this it is safe to delete instructions.
513 
514   // Delete all of the method arguments and unlink from symbol table...
515   if (Arguments)
516     clearArguments();
517 
518   // Remove the function from the on-the-side GC table.
519   clearGC();
520 }
521 
522 void Function::BuildLazyArguments() const {
523   // Create the arguments vector, all arguments start out unnamed.
524   auto *FT = getFunctionType();
525   if (NumArgs > 0) {
526     Arguments = std::allocator<Argument>().allocate(NumArgs);
527     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
528       Type *ArgTy = FT->getParamType(i);
529       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
530       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
531     }
532   }
533 
534   // Clear the lazy arguments bit.
535   unsigned SDC = getSubclassDataFromValue();
536   SDC &= ~(1 << 0);
537   const_cast<Function*>(this)->setValueSubclassData(SDC);
538   assert(!hasLazyArguments());
539 }
540 
541 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
542   return MutableArrayRef<Argument>(Args, Count);
543 }
544 
545 bool Function::isConstrainedFPIntrinsic() const {
546   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
547 }
548 
549 void Function::clearArguments() {
550   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
551     A.setName("");
552     A.~Argument();
553   }
554   std::allocator<Argument>().deallocate(Arguments, NumArgs);
555   Arguments = nullptr;
556 }
557 
558 void Function::stealArgumentListFrom(Function &Src) {
559   assert(isDeclaration() && "Expected no references to current arguments");
560 
561   // Drop the current arguments, if any, and set the lazy argument bit.
562   if (!hasLazyArguments()) {
563     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
564                         [](const Argument &A) { return A.use_empty(); }) &&
565            "Expected arguments to be unused in declaration");
566     clearArguments();
567     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
568   }
569 
570   // Nothing to steal if Src has lazy arguments.
571   if (Src.hasLazyArguments())
572     return;
573 
574   // Steal arguments from Src, and fix the lazy argument bits.
575   assert(arg_size() == Src.arg_size());
576   Arguments = Src.Arguments;
577   Src.Arguments = nullptr;
578   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
579     // FIXME: This does the work of transferNodesFromList inefficiently.
580     SmallString<128> Name;
581     if (A.hasName())
582       Name = A.getName();
583     if (!Name.empty())
584       A.setName("");
585     A.setParent(this);
586     if (!Name.empty())
587       A.setName(Name);
588   }
589 
590   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
591   assert(!hasLazyArguments());
592   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
593 }
594 
595 void Function::deleteBodyImpl(bool ShouldDrop) {
596   setIsMaterializable(false);
597 
598   for (BasicBlock &BB : *this)
599     BB.dropAllReferences();
600 
601   // Delete all basic blocks. They are now unused, except possibly by
602   // blockaddresses, but BasicBlock's destructor takes care of those.
603   while (!BasicBlocks.empty())
604     BasicBlocks.begin()->eraseFromParent();
605 
606   if (getNumOperands()) {
607     if (ShouldDrop) {
608       // Drop uses of any optional data (real or placeholder).
609       User::dropAllReferences();
610       setNumHungOffUseOperands(0);
611     } else {
612       // The code needs to match Function::allocHungoffUselist().
613       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
614       Op<0>().set(CPN);
615       Op<1>().set(CPN);
616       Op<2>().set(CPN);
617     }
618     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
619   }
620 
621   // Metadata is stored in a side-table.
622   clearMetadata();
623 }
624 
625 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
626   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
627 }
628 
629 void Function::addFnAttr(Attribute::AttrKind Kind) {
630   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
631 }
632 
633 void Function::addFnAttr(StringRef Kind, StringRef Val) {
634   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
635 }
636 
637 void Function::addFnAttr(Attribute Attr) {
638   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
639 }
640 
641 void Function::addFnAttrs(const AttrBuilder &Attrs) {
642   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
643 }
644 
645 void Function::addRetAttr(Attribute::AttrKind Kind) {
646   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
647 }
648 
649 void Function::addRetAttr(Attribute Attr) {
650   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
651 }
652 
653 void Function::addRetAttrs(const AttrBuilder &Attrs) {
654   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
655 }
656 
657 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
658   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
659 }
660 
661 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
662   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
663 }
664 
665 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
666   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
667 }
668 
669 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
670   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
671 }
672 
673 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
674   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
675 }
676 
677 void Function::removeFnAttr(Attribute::AttrKind Kind) {
678   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
679 }
680 
681 void Function::removeFnAttr(StringRef Kind) {
682   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
683 }
684 
685 void Function::removeFnAttrs(const AttributeMask &AM) {
686   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
687 }
688 
689 void Function::removeRetAttr(Attribute::AttrKind Kind) {
690   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
691 }
692 
693 void Function::removeRetAttr(StringRef Kind) {
694   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
695 }
696 
697 void Function::removeRetAttrs(const AttributeMask &Attrs) {
698   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
699 }
700 
701 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
702   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
703 }
704 
705 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
706   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
707 }
708 
709 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
710   AttributeSets =
711       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
712 }
713 
714 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
715   AttributeSets =
716       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
717 }
718 
719 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
720   return AttributeSets.hasFnAttr(Kind);
721 }
722 
723 bool Function::hasFnAttribute(StringRef Kind) const {
724   return AttributeSets.hasFnAttr(Kind);
725 }
726 
727 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
728   return AttributeSets.hasRetAttr(Kind);
729 }
730 
731 bool Function::hasParamAttribute(unsigned ArgNo,
732                                  Attribute::AttrKind Kind) const {
733   return AttributeSets.hasParamAttr(ArgNo, Kind);
734 }
735 
736 Attribute Function::getAttributeAtIndex(unsigned i,
737                                         Attribute::AttrKind Kind) const {
738   return AttributeSets.getAttributeAtIndex(i, Kind);
739 }
740 
741 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
742   return AttributeSets.getAttributeAtIndex(i, Kind);
743 }
744 
745 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
746   return AttributeSets.getFnAttr(Kind);
747 }
748 
749 Attribute Function::getFnAttribute(StringRef Kind) const {
750   return AttributeSets.getFnAttr(Kind);
751 }
752 
753 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
754   return AttributeSets.getRetAttr(Kind);
755 }
756 
757 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
758                                                  uint64_t Default) const {
759   Attribute A = getFnAttribute(Name);
760   uint64_t Result = Default;
761   if (A.isStringAttribute()) {
762     StringRef Str = A.getValueAsString();
763     if (Str.getAsInteger(0, Result))
764       getContext().emitError("cannot parse integer attribute " + Name);
765   }
766 
767   return Result;
768 }
769 
770 /// gets the specified attribute from the list of attributes.
771 Attribute Function::getParamAttribute(unsigned ArgNo,
772                                       Attribute::AttrKind Kind) const {
773   return AttributeSets.getParamAttr(ArgNo, Kind);
774 }
775 
776 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
777                                                  uint64_t Bytes) {
778   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
779                                                                   ArgNo, Bytes);
780 }
781 
782 void Function::addRangeRetAttr(const ConstantRange &CR) {
783   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
784 }
785 
786 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
787   if (&FPType == &APFloat::IEEEsingle()) {
788     DenormalMode Mode = getDenormalModeF32Raw();
789     // If the f32 variant of the attribute isn't specified, try to use the
790     // generic one.
791     if (Mode.isValid())
792       return Mode;
793   }
794 
795   return getDenormalModeRaw();
796 }
797 
798 DenormalMode Function::getDenormalModeRaw() const {
799   Attribute Attr = getFnAttribute("denormal-fp-math");
800   StringRef Val = Attr.getValueAsString();
801   return parseDenormalFPAttribute(Val);
802 }
803 
804 DenormalMode Function::getDenormalModeF32Raw() const {
805   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
806   if (Attr.isValid()) {
807     StringRef Val = Attr.getValueAsString();
808     return parseDenormalFPAttribute(Val);
809   }
810 
811   return DenormalMode::getInvalid();
812 }
813 
814 const std::string &Function::getGC() const {
815   assert(hasGC() && "Function has no collector");
816   return getContext().getGC(*this);
817 }
818 
819 void Function::setGC(std::string Str) {
820   setValueSubclassDataBit(14, !Str.empty());
821   getContext().setGC(*this, std::move(Str));
822 }
823 
824 void Function::clearGC() {
825   if (!hasGC())
826     return;
827   getContext().deleteGC(*this);
828   setValueSubclassDataBit(14, false);
829 }
830 
831 bool Function::hasStackProtectorFnAttr() const {
832   return hasFnAttribute(Attribute::StackProtect) ||
833          hasFnAttribute(Attribute::StackProtectStrong) ||
834          hasFnAttribute(Attribute::StackProtectReq);
835 }
836 
837 /// Copy all additional attributes (those not needed to create a Function) from
838 /// the Function Src to this one.
839 void Function::copyAttributesFrom(const Function *Src) {
840   GlobalObject::copyAttributesFrom(Src);
841   setCallingConv(Src->getCallingConv());
842   setAttributes(Src->getAttributes());
843   if (Src->hasGC())
844     setGC(Src->getGC());
845   else
846     clearGC();
847   if (Src->hasPersonalityFn())
848     setPersonalityFn(Src->getPersonalityFn());
849   if (Src->hasPrefixData())
850     setPrefixData(Src->getPrefixData());
851   if (Src->hasPrologueData())
852     setPrologueData(Src->getPrologueData());
853 }
854 
855 MemoryEffects Function::getMemoryEffects() const {
856   return getAttributes().getMemoryEffects();
857 }
858 void Function::setMemoryEffects(MemoryEffects ME) {
859   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
860 }
861 
862 /// Determine if the function does not access memory.
863 bool Function::doesNotAccessMemory() const {
864   return getMemoryEffects().doesNotAccessMemory();
865 }
866 void Function::setDoesNotAccessMemory() {
867   setMemoryEffects(MemoryEffects::none());
868 }
869 
870 /// Determine if the function does not access or only reads memory.
871 bool Function::onlyReadsMemory() const {
872   return getMemoryEffects().onlyReadsMemory();
873 }
874 void Function::setOnlyReadsMemory() {
875   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
876 }
877 
878 /// Determine if the function does not access or only writes memory.
879 bool Function::onlyWritesMemory() const {
880   return getMemoryEffects().onlyWritesMemory();
881 }
882 void Function::setOnlyWritesMemory() {
883   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
884 }
885 
886 /// Determine if the call can access memmory only using pointers based
887 /// on its arguments.
888 bool Function::onlyAccessesArgMemory() const {
889   return getMemoryEffects().onlyAccessesArgPointees();
890 }
891 void Function::setOnlyAccessesArgMemory() {
892   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
893 }
894 
895 /// Determine if the function may only access memory that is
896 ///  inaccessible from the IR.
897 bool Function::onlyAccessesInaccessibleMemory() const {
898   return getMemoryEffects().onlyAccessesInaccessibleMem();
899 }
900 void Function::setOnlyAccessesInaccessibleMemory() {
901   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
902 }
903 
904 /// Determine if the function may only access memory that is
905 ///  either inaccessible from the IR or pointed to by its arguments.
906 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
907   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
908 }
909 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
910   setMemoryEffects(getMemoryEffects() &
911                    MemoryEffects::inaccessibleOrArgMemOnly());
912 }
913 
914 /// Table of string intrinsic names indexed by enum value.
915 static const char * const IntrinsicNameTable[] = {
916   "not_intrinsic",
917 #define GET_INTRINSIC_NAME_TABLE
918 #include "llvm/IR/IntrinsicImpl.inc"
919 #undef GET_INTRINSIC_NAME_TABLE
920 };
921 
922 /// Table of per-target intrinsic name tables.
923 #define GET_INTRINSIC_TARGET_DATA
924 #include "llvm/IR/IntrinsicImpl.inc"
925 #undef GET_INTRINSIC_TARGET_DATA
926 
927 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
928   return IID > TargetInfos[0].Count;
929 }
930 
931 bool Function::isTargetIntrinsic() const {
932   return isTargetIntrinsic(IntID);
933 }
934 
935 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
936 /// target as \c Name, or the generic table if \c Name is not target specific.
937 ///
938 /// Returns the relevant slice of \c IntrinsicNameTable
939 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
940   assert(Name.starts_with("llvm."));
941 
942   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
943   // Drop "llvm." and take the first dotted component. That will be the target
944   // if this is target specific.
945   StringRef Target = Name.drop_front(5).split('.').first;
946   auto It = partition_point(
947       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
948   // We've either found the target or just fall back to the generic set, which
949   // is always first.
950   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
951   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
952 }
953 
954 /// This does the actual lookup of an intrinsic ID which
955 /// matches the given function name.
956 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
957   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
958   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
959   if (Idx == -1)
960     return Intrinsic::not_intrinsic;
961 
962   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
963   // an index into a sub-table.
964   int Adjust = NameTable.data() - IntrinsicNameTable;
965   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
966 
967   // If the intrinsic is not overloaded, require an exact match. If it is
968   // overloaded, require either exact or prefix match.
969   const auto MatchSize = strlen(NameTable[Idx]);
970   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
971   bool IsExactMatch = Name.size() == MatchSize;
972   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
973                                                      : Intrinsic::not_intrinsic;
974 }
975 
976 void Function::updateAfterNameChange() {
977   LibFuncCache = UnknownLibFunc;
978   StringRef Name = getName();
979   if (!Name.starts_with("llvm.")) {
980     HasLLVMReservedName = false;
981     IntID = Intrinsic::not_intrinsic;
982     return;
983   }
984   HasLLVMReservedName = true;
985   IntID = lookupIntrinsicID(Name);
986 }
987 
988 /// Returns a stable mangling for the type specified for use in the name
989 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
990 /// of named types is simply their name.  Manglings for unnamed types consist
991 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
992 /// combined with the mangling of their component types.  A vararg function
993 /// type will have a suffix of 'vararg'.  Since function types can contain
994 /// other function types, we close a function type mangling with suffix 'f'
995 /// which can't be confused with it's prefix.  This ensures we don't have
996 /// collisions between two unrelated function types. Otherwise, you might
997 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
998 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
999 /// indicating that extra care must be taken to ensure a unique name.
1000 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
1001   std::string Result;
1002   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
1003     Result += "p" + utostr(PTyp->getAddressSpace());
1004   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
1005     Result += "a" + utostr(ATyp->getNumElements()) +
1006               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
1007   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
1008     if (!STyp->isLiteral()) {
1009       Result += "s_";
1010       if (STyp->hasName())
1011         Result += STyp->getName();
1012       else
1013         HasUnnamedType = true;
1014     } else {
1015       Result += "sl_";
1016       for (auto *Elem : STyp->elements())
1017         Result += getMangledTypeStr(Elem, HasUnnamedType);
1018     }
1019     // Ensure nested structs are distinguishable.
1020     Result += "s";
1021   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
1022     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
1023     for (size_t i = 0; i < FT->getNumParams(); i++)
1024       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
1025     if (FT->isVarArg())
1026       Result += "vararg";
1027     // Ensure nested function types are distinguishable.
1028     Result += "f";
1029   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1030     ElementCount EC = VTy->getElementCount();
1031     if (EC.isScalable())
1032       Result += "nx";
1033     Result += "v" + utostr(EC.getKnownMinValue()) +
1034               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
1035   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
1036     Result += "t";
1037     Result += TETy->getName();
1038     for (Type *ParamTy : TETy->type_params())
1039       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
1040     for (unsigned IntParam : TETy->int_params())
1041       Result += "_" + utostr(IntParam);
1042     // Ensure nested target extension types are distinguishable.
1043     Result += "t";
1044   } else if (Ty) {
1045     switch (Ty->getTypeID()) {
1046     default: llvm_unreachable("Unhandled type");
1047     case Type::VoidTyID:      Result += "isVoid";   break;
1048     case Type::MetadataTyID:  Result += "Metadata"; break;
1049     case Type::HalfTyID:      Result += "f16";      break;
1050     case Type::BFloatTyID:    Result += "bf16";     break;
1051     case Type::FloatTyID:     Result += "f32";      break;
1052     case Type::DoubleTyID:    Result += "f64";      break;
1053     case Type::X86_FP80TyID:  Result += "f80";      break;
1054     case Type::FP128TyID:     Result += "f128";     break;
1055     case Type::PPC_FP128TyID:
1056       Result += "ppcf128";
1057       break;
1058     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1059     case Type::IntegerTyID:
1060       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1061       break;
1062     }
1063   }
1064   return Result;
1065 }
1066 
1067 StringRef Intrinsic::getBaseName(ID id) {
1068   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1069   return IntrinsicNameTable[id];
1070 }
1071 
1072 StringRef Intrinsic::getName(ID id) {
1073   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1074   assert(!Intrinsic::isOverloaded(id) &&
1075          "This version of getName does not support overloading");
1076   return getBaseName(id);
1077 }
1078 
1079 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1080                                         Module *M, FunctionType *FT,
1081                                         bool EarlyModuleCheck) {
1082 
1083   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1084   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1085          "This version of getName is for overloaded intrinsics only");
1086   (void)EarlyModuleCheck;
1087   assert((!EarlyModuleCheck || M ||
1088           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1089          "Intrinsic overloading on pointer types need to provide a Module");
1090   bool HasUnnamedType = false;
1091   std::string Result(Intrinsic::getBaseName(Id));
1092   for (Type *Ty : Tys)
1093     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1094   if (HasUnnamedType) {
1095     assert(M && "unnamed types need a module");
1096     if (!FT)
1097       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1098     else
1099       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1100              "Provided FunctionType must match arguments");
1101     return M->getUniqueIntrinsicName(Result, Id, FT);
1102   }
1103   return Result;
1104 }
1105 
1106 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1107                                FunctionType *FT) {
1108   assert(M && "We need to have a Module");
1109   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1110 }
1111 
1112 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1113   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1114 }
1115 
1116 /// IIT_Info - These are enumerators that describe the entries returned by the
1117 /// getIntrinsicInfoTableEntries function.
1118 ///
1119 /// Defined in Intrinsics.td.
1120 enum IIT_Info {
1121 #define GET_INTRINSIC_IITINFO
1122 #include "llvm/IR/IntrinsicImpl.inc"
1123 #undef GET_INTRINSIC_IITINFO
1124 };
1125 
1126 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1127                       IIT_Info LastInfo,
1128                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1129   using namespace Intrinsic;
1130 
1131   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1132 
1133   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1134   unsigned StructElts = 2;
1135 
1136   switch (Info) {
1137   case IIT_Done:
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1139     return;
1140   case IIT_VARARG:
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1142     return;
1143   case IIT_MMX:
1144     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1145     return;
1146   case IIT_AMX:
1147     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1148     return;
1149   case IIT_TOKEN:
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1151     return;
1152   case IIT_METADATA:
1153     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1154     return;
1155   case IIT_F16:
1156     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1157     return;
1158   case IIT_BF16:
1159     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1160     return;
1161   case IIT_F32:
1162     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1163     return;
1164   case IIT_F64:
1165     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1166     return;
1167   case IIT_F128:
1168     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1169     return;
1170   case IIT_PPCF128:
1171     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1172     return;
1173   case IIT_I1:
1174     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1175     return;
1176   case IIT_I2:
1177     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1178     return;
1179   case IIT_I4:
1180     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1181     return;
1182   case IIT_AARCH64_SVCOUNT:
1183     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1184     return;
1185   case IIT_I8:
1186     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1187     return;
1188   case IIT_I16:
1189     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1190     return;
1191   case IIT_I32:
1192     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1193     return;
1194   case IIT_I64:
1195     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1196     return;
1197   case IIT_I128:
1198     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1199     return;
1200   case IIT_V1:
1201     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1202     DecodeIITType(NextElt, Infos, Info, OutputTable);
1203     return;
1204   case IIT_V2:
1205     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1206     DecodeIITType(NextElt, Infos, Info, OutputTable);
1207     return;
1208   case IIT_V3:
1209     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1210     DecodeIITType(NextElt, Infos, Info, OutputTable);
1211     return;
1212   case IIT_V4:
1213     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1214     DecodeIITType(NextElt, Infos, Info, OutputTable);
1215     return;
1216   case IIT_V6:
1217     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1218     DecodeIITType(NextElt, Infos, Info, OutputTable);
1219     return;
1220   case IIT_V8:
1221     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1222     DecodeIITType(NextElt, Infos, Info, OutputTable);
1223     return;
1224   case IIT_V10:
1225     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1226     DecodeIITType(NextElt, Infos, Info, OutputTable);
1227     return;
1228   case IIT_V16:
1229     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1230     DecodeIITType(NextElt, Infos, Info, OutputTable);
1231     return;
1232   case IIT_V32:
1233     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1234     DecodeIITType(NextElt, Infos, Info, OutputTable);
1235     return;
1236   case IIT_V64:
1237     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1238     DecodeIITType(NextElt, Infos, Info, OutputTable);
1239     return;
1240   case IIT_V128:
1241     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1242     DecodeIITType(NextElt, Infos, Info, OutputTable);
1243     return;
1244   case IIT_V256:
1245     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1246     DecodeIITType(NextElt, Infos, Info, OutputTable);
1247     return;
1248   case IIT_V512:
1249     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1250     DecodeIITType(NextElt, Infos, Info, OutputTable);
1251     return;
1252   case IIT_V1024:
1253     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1254     DecodeIITType(NextElt, Infos, Info, OutputTable);
1255     return;
1256   case IIT_EXTERNREF:
1257     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1258     return;
1259   case IIT_FUNCREF:
1260     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1261     return;
1262   case IIT_PTR:
1263     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1264     return;
1265   case IIT_ANYPTR: // [ANYPTR addrspace]
1266     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1267                                              Infos[NextElt++]));
1268     return;
1269   case IIT_ARG: {
1270     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1271     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1272     return;
1273   }
1274   case IIT_EXTEND_ARG: {
1275     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1276     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1277                                              ArgInfo));
1278     return;
1279   }
1280   case IIT_TRUNC_ARG: {
1281     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1282     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1283                                              ArgInfo));
1284     return;
1285   }
1286   case IIT_HALF_VEC_ARG: {
1287     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1288     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1289                                              ArgInfo));
1290     return;
1291   }
1292   case IIT_SAME_VEC_WIDTH_ARG: {
1293     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1294     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1295                                              ArgInfo));
1296     return;
1297   }
1298   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1299     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1300     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1301     OutputTable.push_back(
1302         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1303     return;
1304   }
1305   case IIT_EMPTYSTRUCT:
1306     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1307     return;
1308   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1309   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1310   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1311   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1312   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1313   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1314   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1315   case IIT_STRUCT2: {
1316     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1317 
1318     for (unsigned i = 0; i != StructElts; ++i)
1319       DecodeIITType(NextElt, Infos, Info, OutputTable);
1320     return;
1321   }
1322   case IIT_SUBDIVIDE2_ARG: {
1323     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1324     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1325                                              ArgInfo));
1326     return;
1327   }
1328   case IIT_SUBDIVIDE4_ARG: {
1329     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1330     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1331                                              ArgInfo));
1332     return;
1333   }
1334   case IIT_VEC_ELEMENT: {
1335     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1336     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1337                                              ArgInfo));
1338     return;
1339   }
1340   case IIT_SCALABLE_VEC: {
1341     DecodeIITType(NextElt, Infos, Info, OutputTable);
1342     return;
1343   }
1344   case IIT_VEC_OF_BITCASTS_TO_INT: {
1345     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1346     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1347                                              ArgInfo));
1348     return;
1349   }
1350   }
1351   llvm_unreachable("unhandled");
1352 }
1353 
1354 #define GET_INTRINSIC_GENERATOR_GLOBAL
1355 #include "llvm/IR/IntrinsicImpl.inc"
1356 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1357 
1358 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1359                                              SmallVectorImpl<IITDescriptor> &T){
1360   // Check to see if the intrinsic's type was expressible by the table.
1361   unsigned TableVal = IIT_Table[id-1];
1362 
1363   // Decode the TableVal into an array of IITValues.
1364   SmallVector<unsigned char, 8> IITValues;
1365   ArrayRef<unsigned char> IITEntries;
1366   unsigned NextElt = 0;
1367   if ((TableVal >> 31) != 0) {
1368     // This is an offset into the IIT_LongEncodingTable.
1369     IITEntries = IIT_LongEncodingTable;
1370 
1371     // Strip sentinel bit.
1372     NextElt = (TableVal << 1) >> 1;
1373   } else {
1374     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1375     // into a single word in the table itself, decode it now.
1376     do {
1377       IITValues.push_back(TableVal & 0xF);
1378       TableVal >>= 4;
1379     } while (TableVal);
1380 
1381     IITEntries = IITValues;
1382     NextElt = 0;
1383   }
1384 
1385   // Okay, decode the table into the output vector of IITDescriptors.
1386   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1387   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1388     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1389 }
1390 
1391 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1392                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1393   using namespace Intrinsic;
1394 
1395   IITDescriptor D = Infos.front();
1396   Infos = Infos.slice(1);
1397 
1398   switch (D.Kind) {
1399   case IITDescriptor::Void: return Type::getVoidTy(Context);
1400   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1401   case IITDescriptor::MMX:
1402     return llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
1403   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1404   case IITDescriptor::Token: return Type::getTokenTy(Context);
1405   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1406   case IITDescriptor::Half: return Type::getHalfTy(Context);
1407   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1408   case IITDescriptor::Float: return Type::getFloatTy(Context);
1409   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1410   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1411   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1412   case IITDescriptor::AArch64Svcount:
1413     return TargetExtType::get(Context, "aarch64.svcount");
1414 
1415   case IITDescriptor::Integer:
1416     return IntegerType::get(Context, D.Integer_Width);
1417   case IITDescriptor::Vector:
1418     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1419                            D.Vector_Width);
1420   case IITDescriptor::Pointer:
1421     return PointerType::get(Context, D.Pointer_AddressSpace);
1422   case IITDescriptor::Struct: {
1423     SmallVector<Type *, 8> Elts;
1424     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1425       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1426     return StructType::get(Context, Elts);
1427   }
1428   case IITDescriptor::Argument:
1429     return Tys[D.getArgumentNumber()];
1430   case IITDescriptor::ExtendArgument: {
1431     Type *Ty = Tys[D.getArgumentNumber()];
1432     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1433       return VectorType::getExtendedElementVectorType(VTy);
1434 
1435     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1436   }
1437   case IITDescriptor::TruncArgument: {
1438     Type *Ty = Tys[D.getArgumentNumber()];
1439     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1440       return VectorType::getTruncatedElementVectorType(VTy);
1441 
1442     IntegerType *ITy = cast<IntegerType>(Ty);
1443     assert(ITy->getBitWidth() % 2 == 0);
1444     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1445   }
1446   case IITDescriptor::Subdivide2Argument:
1447   case IITDescriptor::Subdivide4Argument: {
1448     Type *Ty = Tys[D.getArgumentNumber()];
1449     VectorType *VTy = dyn_cast<VectorType>(Ty);
1450     assert(VTy && "Expected an argument of Vector Type");
1451     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1452     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1453   }
1454   case IITDescriptor::HalfVecArgument:
1455     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1456                                                   Tys[D.getArgumentNumber()]));
1457   case IITDescriptor::SameVecWidthArgument: {
1458     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1459     Type *Ty = Tys[D.getArgumentNumber()];
1460     if (auto *VTy = dyn_cast<VectorType>(Ty))
1461       return VectorType::get(EltTy, VTy->getElementCount());
1462     return EltTy;
1463   }
1464   case IITDescriptor::VecElementArgument: {
1465     Type *Ty = Tys[D.getArgumentNumber()];
1466     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1467       return VTy->getElementType();
1468     llvm_unreachable("Expected an argument of Vector Type");
1469   }
1470   case IITDescriptor::VecOfBitcastsToInt: {
1471     Type *Ty = Tys[D.getArgumentNumber()];
1472     VectorType *VTy = dyn_cast<VectorType>(Ty);
1473     assert(VTy && "Expected an argument of Vector Type");
1474     return VectorType::getInteger(VTy);
1475   }
1476   case IITDescriptor::VecOfAnyPtrsToElt:
1477     // Return the overloaded type (which determines the pointers address space)
1478     return Tys[D.getOverloadArgNumber()];
1479   }
1480   llvm_unreachable("unhandled");
1481 }
1482 
1483 FunctionType *Intrinsic::getType(LLVMContext &Context,
1484                                  ID id, ArrayRef<Type*> Tys) {
1485   SmallVector<IITDescriptor, 8> Table;
1486   getIntrinsicInfoTableEntries(id, Table);
1487 
1488   ArrayRef<IITDescriptor> TableRef = Table;
1489   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1490 
1491   SmallVector<Type*, 8> ArgTys;
1492   while (!TableRef.empty())
1493     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1494 
1495   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1496   // If we see void type as the type of the last argument, it is vararg intrinsic
1497   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1498     ArgTys.pop_back();
1499     return FunctionType::get(ResultTy, ArgTys, true);
1500   }
1501   return FunctionType::get(ResultTy, ArgTys, false);
1502 }
1503 
1504 bool Intrinsic::isOverloaded(ID id) {
1505 #define GET_INTRINSIC_OVERLOAD_TABLE
1506 #include "llvm/IR/IntrinsicImpl.inc"
1507 #undef GET_INTRINSIC_OVERLOAD_TABLE
1508 }
1509 
1510 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1511 #define GET_INTRINSIC_ATTRIBUTES
1512 #include "llvm/IR/IntrinsicImpl.inc"
1513 #undef GET_INTRINSIC_ATTRIBUTES
1514 
1515 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1516   // There can never be multiple globals with the same name of different types,
1517   // because intrinsics must be a specific type.
1518   auto *FT = getType(M->getContext(), id, Tys);
1519   return cast<Function>(
1520       M->getOrInsertFunction(
1521            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1522           .getCallee());
1523 }
1524 
1525 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1526 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1527 #include "llvm/IR/IntrinsicImpl.inc"
1528 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1529 
1530 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1531 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1532 #include "llvm/IR/IntrinsicImpl.inc"
1533 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1534 
1535 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1536   switch (QID) {
1537 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1538   case Intrinsic::INTRINSIC:
1539 #include "llvm/IR/ConstrainedOps.def"
1540 #undef INSTRUCTION
1541     return true;
1542   default:
1543     return false;
1544   }
1545 }
1546 
1547 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
1548   switch (QID) {
1549 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1550   case Intrinsic::INTRINSIC:                                                   \
1551     return ROUND_MODE == 1;
1552 #include "llvm/IR/ConstrainedOps.def"
1553 #undef INSTRUCTION
1554   default:
1555     return false;
1556   }
1557 }
1558 
1559 using DeferredIntrinsicMatchPair =
1560     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1561 
1562 static bool matchIntrinsicType(
1563     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1564     SmallVectorImpl<Type *> &ArgTys,
1565     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1566     bool IsDeferredCheck) {
1567   using namespace Intrinsic;
1568 
1569   // If we ran out of descriptors, there are too many arguments.
1570   if (Infos.empty()) return true;
1571 
1572   // Do this before slicing off the 'front' part
1573   auto InfosRef = Infos;
1574   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1575     DeferredChecks.emplace_back(T, InfosRef);
1576     return false;
1577   };
1578 
1579   IITDescriptor D = Infos.front();
1580   Infos = Infos.slice(1);
1581 
1582   switch (D.Kind) {
1583     case IITDescriptor::Void: return !Ty->isVoidTy();
1584     case IITDescriptor::VarArg: return true;
1585     case IITDescriptor::MMX: {
1586       FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
1587       return !VT || VT->getNumElements() != 1 ||
1588              !VT->getElementType()->isIntegerTy(64);
1589     }
1590     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1591     case IITDescriptor::Token: return !Ty->isTokenTy();
1592     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1593     case IITDescriptor::Half: return !Ty->isHalfTy();
1594     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1595     case IITDescriptor::Float: return !Ty->isFloatTy();
1596     case IITDescriptor::Double: return !Ty->isDoubleTy();
1597     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1598     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1599     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1600     case IITDescriptor::AArch64Svcount:
1601       return !isa<TargetExtType>(Ty) ||
1602              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1603     case IITDescriptor::Vector: {
1604       VectorType *VT = dyn_cast<VectorType>(Ty);
1605       return !VT || VT->getElementCount() != D.Vector_Width ||
1606              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1607                                 DeferredChecks, IsDeferredCheck);
1608     }
1609     case IITDescriptor::Pointer: {
1610       PointerType *PT = dyn_cast<PointerType>(Ty);
1611       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1612     }
1613 
1614     case IITDescriptor::Struct: {
1615       StructType *ST = dyn_cast<StructType>(Ty);
1616       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1617           ST->getNumElements() != D.Struct_NumElements)
1618         return true;
1619 
1620       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1621         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1622                                DeferredChecks, IsDeferredCheck))
1623           return true;
1624       return false;
1625     }
1626 
1627     case IITDescriptor::Argument:
1628       // If this is the second occurrence of an argument,
1629       // verify that the later instance matches the previous instance.
1630       if (D.getArgumentNumber() < ArgTys.size())
1631         return Ty != ArgTys[D.getArgumentNumber()];
1632 
1633       if (D.getArgumentNumber() > ArgTys.size() ||
1634           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1635         return IsDeferredCheck || DeferCheck(Ty);
1636 
1637       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1638              "Table consistency error");
1639       ArgTys.push_back(Ty);
1640 
1641       switch (D.getArgumentKind()) {
1642         case IITDescriptor::AK_Any:        return false; // Success
1643         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1644         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1645         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1646         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1647         default:                           break;
1648       }
1649       llvm_unreachable("all argument kinds not covered");
1650 
1651     case IITDescriptor::ExtendArgument: {
1652       // If this is a forward reference, defer the check for later.
1653       if (D.getArgumentNumber() >= ArgTys.size())
1654         return IsDeferredCheck || DeferCheck(Ty);
1655 
1656       Type *NewTy = ArgTys[D.getArgumentNumber()];
1657       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1658         NewTy = VectorType::getExtendedElementVectorType(VTy);
1659       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1660         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1661       else
1662         return true;
1663 
1664       return Ty != NewTy;
1665     }
1666     case IITDescriptor::TruncArgument: {
1667       // If this is a forward reference, defer the check for later.
1668       if (D.getArgumentNumber() >= ArgTys.size())
1669         return IsDeferredCheck || DeferCheck(Ty);
1670 
1671       Type *NewTy = ArgTys[D.getArgumentNumber()];
1672       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1673         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1674       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1675         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1676       else
1677         return true;
1678 
1679       return Ty != NewTy;
1680     }
1681     case IITDescriptor::HalfVecArgument:
1682       // If this is a forward reference, defer the check for later.
1683       if (D.getArgumentNumber() >= ArgTys.size())
1684         return IsDeferredCheck || DeferCheck(Ty);
1685       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1686              VectorType::getHalfElementsVectorType(
1687                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1688     case IITDescriptor::SameVecWidthArgument: {
1689       if (D.getArgumentNumber() >= ArgTys.size()) {
1690         // Defer check and subsequent check for the vector element type.
1691         Infos = Infos.slice(1);
1692         return IsDeferredCheck || DeferCheck(Ty);
1693       }
1694       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1695       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1696       // Both must be vectors of the same number of elements or neither.
1697       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1698         return true;
1699       Type *EltTy = Ty;
1700       if (ThisArgType) {
1701         if (ReferenceType->getElementCount() !=
1702             ThisArgType->getElementCount())
1703           return true;
1704         EltTy = ThisArgType->getElementType();
1705       }
1706       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1707                                 IsDeferredCheck);
1708     }
1709     case IITDescriptor::VecOfAnyPtrsToElt: {
1710       unsigned RefArgNumber = D.getRefArgNumber();
1711       if (RefArgNumber >= ArgTys.size()) {
1712         if (IsDeferredCheck)
1713           return true;
1714         // If forward referencing, already add the pointer-vector type and
1715         // defer the checks for later.
1716         ArgTys.push_back(Ty);
1717         return DeferCheck(Ty);
1718       }
1719 
1720       if (!IsDeferredCheck){
1721         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1722                "Table consistency error");
1723         ArgTys.push_back(Ty);
1724       }
1725 
1726       // Verify the overloaded type "matches" the Ref type.
1727       // i.e. Ty is a vector with the same width as Ref.
1728       // Composed of pointers to the same element type as Ref.
1729       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1730       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1731       if (!ThisArgVecTy || !ReferenceType ||
1732           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1733         return true;
1734       return !ThisArgVecTy->getElementType()->isPointerTy();
1735     }
1736     case IITDescriptor::VecElementArgument: {
1737       if (D.getArgumentNumber() >= ArgTys.size())
1738         return IsDeferredCheck ? true : DeferCheck(Ty);
1739       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1740       return !ReferenceType || Ty != ReferenceType->getElementType();
1741     }
1742     case IITDescriptor::Subdivide2Argument:
1743     case IITDescriptor::Subdivide4Argument: {
1744       // If this is a forward reference, defer the check for later.
1745       if (D.getArgumentNumber() >= ArgTys.size())
1746         return IsDeferredCheck || DeferCheck(Ty);
1747 
1748       Type *NewTy = ArgTys[D.getArgumentNumber()];
1749       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1750         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1751         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1752         return Ty != NewTy;
1753       }
1754       return true;
1755     }
1756     case IITDescriptor::VecOfBitcastsToInt: {
1757       if (D.getArgumentNumber() >= ArgTys.size())
1758         return IsDeferredCheck || DeferCheck(Ty);
1759       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1760       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1761       if (!ThisArgVecTy || !ReferenceType)
1762         return true;
1763       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1764     }
1765   }
1766   llvm_unreachable("unhandled");
1767 }
1768 
1769 Intrinsic::MatchIntrinsicTypesResult
1770 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1771                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1772                                    SmallVectorImpl<Type *> &ArgTys) {
1773   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1774   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1775                          false))
1776     return MatchIntrinsicTypes_NoMatchRet;
1777 
1778   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1779 
1780   for (auto *Ty : FTy->params())
1781     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1782       return MatchIntrinsicTypes_NoMatchArg;
1783 
1784   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1785     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1786     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1787                            true))
1788       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1789                                          : MatchIntrinsicTypes_NoMatchArg;
1790   }
1791 
1792   return MatchIntrinsicTypes_Match;
1793 }
1794 
1795 bool
1796 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1797                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1798   // If there are no descriptors left, then it can't be a vararg.
1799   if (Infos.empty())
1800     return isVarArg;
1801 
1802   // There should be only one descriptor remaining at this point.
1803   if (Infos.size() != 1)
1804     return true;
1805 
1806   // Check and verify the descriptor.
1807   IITDescriptor D = Infos.front();
1808   Infos = Infos.slice(1);
1809   if (D.Kind == IITDescriptor::VarArg)
1810     return !isVarArg;
1811 
1812   return true;
1813 }
1814 
1815 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1816                                       SmallVectorImpl<Type *> &ArgTys) {
1817   if (!ID)
1818     return false;
1819 
1820   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1821   getIntrinsicInfoTableEntries(ID, Table);
1822   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1823 
1824   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1825       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1826     return false;
1827   }
1828   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1829     return false;
1830   return true;
1831 }
1832 
1833 bool Intrinsic::getIntrinsicSignature(Function *F,
1834                                       SmallVectorImpl<Type *> &ArgTys) {
1835   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1836                                ArgTys);
1837 }
1838 
1839 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1840   SmallVector<Type *, 4> ArgTys;
1841   if (!getIntrinsicSignature(F, ArgTys))
1842     return std::nullopt;
1843 
1844   Intrinsic::ID ID = F->getIntrinsicID();
1845   StringRef Name = F->getName();
1846   std::string WantedName =
1847       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1848   if (Name == WantedName)
1849     return std::nullopt;
1850 
1851   Function *NewDecl = [&] {
1852     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1853       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1854         if (ExistingF->getFunctionType() == F->getFunctionType())
1855           return ExistingF;
1856 
1857       // The name already exists, but is not a function or has the wrong
1858       // prototype. Make place for the new one by renaming the old version.
1859       // Either this old version will be removed later on or the module is
1860       // invalid and we'll get an error.
1861       ExistingGV->setName(WantedName + ".renamed");
1862     }
1863     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1864   }();
1865 
1866   NewDecl->setCallingConv(F->getCallingConv());
1867   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1868          "Shouldn't change the signature");
1869   return NewDecl;
1870 }
1871 
1872 /// hasAddressTaken - returns true if there are any uses of this function
1873 /// other than direct calls or invokes to it. Optionally ignores callback
1874 /// uses, assume like pointer annotation calls, and references in llvm.used
1875 /// and llvm.compiler.used variables.
1876 bool Function::hasAddressTaken(const User **PutOffender,
1877                                bool IgnoreCallbackUses,
1878                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1879                                bool IgnoreARCAttachedCall,
1880                                bool IgnoreCastedDirectCall) const {
1881   for (const Use &U : uses()) {
1882     const User *FU = U.getUser();
1883     if (isa<BlockAddress>(FU))
1884       continue;
1885 
1886     if (IgnoreCallbackUses) {
1887       AbstractCallSite ACS(&U);
1888       if (ACS && ACS.isCallbackCall())
1889         continue;
1890     }
1891 
1892     const auto *Call = dyn_cast<CallBase>(FU);
1893     if (!Call) {
1894       if (IgnoreAssumeLikeCalls &&
1895           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1896           all_of(FU->users(), [](const User *U) {
1897             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1898               return I->isAssumeLikeIntrinsic();
1899             return false;
1900           })) {
1901         continue;
1902       }
1903 
1904       if (IgnoreLLVMUsed && !FU->user_empty()) {
1905         const User *FUU = FU;
1906         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1907             FU->hasOneUse() && !FU->user_begin()->user_empty())
1908           FUU = *FU->user_begin();
1909         if (llvm::all_of(FUU->users(), [](const User *U) {
1910               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1911                 return GV->hasName() &&
1912                        (GV->getName() == "llvm.compiler.used" ||
1913                         GV->getName() == "llvm.used");
1914               return false;
1915             }))
1916           continue;
1917       }
1918       if (PutOffender)
1919         *PutOffender = FU;
1920       return true;
1921     }
1922 
1923     if (IgnoreAssumeLikeCalls) {
1924       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1925         if (I->isAssumeLikeIntrinsic())
1926           continue;
1927     }
1928 
1929     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1930                                 Call->getFunctionType() != getFunctionType())) {
1931       if (IgnoreARCAttachedCall &&
1932           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1933                                       U.getOperandNo()))
1934         continue;
1935 
1936       if (PutOffender)
1937         *PutOffender = FU;
1938       return true;
1939     }
1940   }
1941   return false;
1942 }
1943 
1944 bool Function::isDefTriviallyDead() const {
1945   // Check the linkage
1946   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1947       !hasAvailableExternallyLinkage())
1948     return false;
1949 
1950   // Check if the function is used by anything other than a blockaddress.
1951   for (const User *U : users())
1952     if (!isa<BlockAddress>(U))
1953       return false;
1954 
1955   return true;
1956 }
1957 
1958 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1959 /// setjmp or other function that gcc recognizes as "returning twice".
1960 bool Function::callsFunctionThatReturnsTwice() const {
1961   for (const Instruction &I : instructions(this))
1962     if (const auto *Call = dyn_cast<CallBase>(&I))
1963       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1964         return true;
1965 
1966   return false;
1967 }
1968 
1969 Constant *Function::getPersonalityFn() const {
1970   assert(hasPersonalityFn() && getNumOperands());
1971   return cast<Constant>(Op<0>());
1972 }
1973 
1974 void Function::setPersonalityFn(Constant *Fn) {
1975   setHungoffOperand<0>(Fn);
1976   setValueSubclassDataBit(3, Fn != nullptr);
1977 }
1978 
1979 Constant *Function::getPrefixData() const {
1980   assert(hasPrefixData() && getNumOperands());
1981   return cast<Constant>(Op<1>());
1982 }
1983 
1984 void Function::setPrefixData(Constant *PrefixData) {
1985   setHungoffOperand<1>(PrefixData);
1986   setValueSubclassDataBit(1, PrefixData != nullptr);
1987 }
1988 
1989 Constant *Function::getPrologueData() const {
1990   assert(hasPrologueData() && getNumOperands());
1991   return cast<Constant>(Op<2>());
1992 }
1993 
1994 void Function::setPrologueData(Constant *PrologueData) {
1995   setHungoffOperand<2>(PrologueData);
1996   setValueSubclassDataBit(2, PrologueData != nullptr);
1997 }
1998 
1999 void Function::allocHungoffUselist() {
2000   // If we've already allocated a uselist, stop here.
2001   if (getNumOperands())
2002     return;
2003 
2004   allocHungoffUses(3, /*IsPhi=*/ false);
2005   setNumHungOffUseOperands(3);
2006 
2007   // Initialize the uselist with placeholder operands to allow traversal.
2008   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
2009   Op<0>().set(CPN);
2010   Op<1>().set(CPN);
2011   Op<2>().set(CPN);
2012 }
2013 
2014 template <int Idx>
2015 void Function::setHungoffOperand(Constant *C) {
2016   if (C) {
2017     allocHungoffUselist();
2018     Op<Idx>().set(C);
2019   } else if (getNumOperands()) {
2020     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
2021   }
2022 }
2023 
2024 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2025   assert(Bit < 16 && "SubclassData contains only 16 bits");
2026   if (On)
2027     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2028   else
2029     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2030 }
2031 
2032 void Function::setEntryCount(ProfileCount Count,
2033                              const DenseSet<GlobalValue::GUID> *S) {
2034 #if !defined(NDEBUG)
2035   auto PrevCount = getEntryCount();
2036   assert(!PrevCount || PrevCount->getType() == Count.getType());
2037 #endif
2038 
2039   auto ImportGUIDs = getImportGUIDs();
2040   if (S == nullptr && ImportGUIDs.size())
2041     S = &ImportGUIDs;
2042 
2043   MDBuilder MDB(getContext());
2044   setMetadata(
2045       LLVMContext::MD_prof,
2046       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2047 }
2048 
2049 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2050                              const DenseSet<GlobalValue::GUID> *Imports) {
2051   setEntryCount(ProfileCount(Count, Type), Imports);
2052 }
2053 
2054 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2055   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2056   if (MD && MD->getOperand(0))
2057     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2058       if (MDS->getString() == "function_entry_count") {
2059         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2060         uint64_t Count = CI->getValue().getZExtValue();
2061         // A value of -1 is used for SamplePGO when there were no samples.
2062         // Treat this the same as unknown.
2063         if (Count == (uint64_t)-1)
2064           return std::nullopt;
2065         return ProfileCount(Count, PCT_Real);
2066       } else if (AllowSynthetic &&
2067                  MDS->getString() == "synthetic_function_entry_count") {
2068         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2069         uint64_t Count = CI->getValue().getZExtValue();
2070         return ProfileCount(Count, PCT_Synthetic);
2071       }
2072     }
2073   return std::nullopt;
2074 }
2075 
2076 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2077   DenseSet<GlobalValue::GUID> R;
2078   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2079     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2080       if (MDS->getString() == "function_entry_count")
2081         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2082           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2083                        ->getValue()
2084                        .getZExtValue());
2085   return R;
2086 }
2087 
2088 void Function::setSectionPrefix(StringRef Prefix) {
2089   MDBuilder MDB(getContext());
2090   setMetadata(LLVMContext::MD_section_prefix,
2091               MDB.createFunctionSectionPrefix(Prefix));
2092 }
2093 
2094 std::optional<StringRef> Function::getSectionPrefix() const {
2095   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2096     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2097                "function_section_prefix" &&
2098            "Metadata not match");
2099     return cast<MDString>(MD->getOperand(1))->getString();
2100   }
2101   return std::nullopt;
2102 }
2103 
2104 bool Function::nullPointerIsDefined() const {
2105   return hasFnAttribute(Attribute::NullPointerIsValid);
2106 }
2107 
2108 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2109   if (F && F->nullPointerIsDefined())
2110     return true;
2111 
2112   if (AS != 0)
2113     return true;
2114 
2115   return false;
2116 }
2117