xref: /llvm-project/llvm/lib/IR/Function.cpp (revision dea6f71af0fdd7c54cacd43f5fb15e293924fa20)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addRetAttr(Attribute Attr) {
557   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
558 }
559 
560 void Function::addRetAttrs(const AttrBuilder &Attrs) {
561   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
562 }
563 
564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
565   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
566 }
567 
568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
569   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
570 }
571 
572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
573   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
574 }
575 
576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
578 }
579 
580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
581   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
582 }
583 
584 void Function::removeFnAttr(Attribute::AttrKind Kind) {
585   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
586 }
587 
588 void Function::removeFnAttr(StringRef Kind) {
589   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeFnAttrs(const AttrBuilder &Attrs) {
593   AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs);
594 }
595 
596 void Function::removeRetAttr(Attribute::AttrKind Kind) {
597   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
598 }
599 
600 void Function::removeRetAttr(StringRef Kind) {
601   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
602 }
603 
604 void Function::removeRetAttrs(const AttrBuilder &Attrs) {
605   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
606 }
607 
608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
609   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
610 }
611 
612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
613   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
614 }
615 
616 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
617   AttributeSets =
618       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
619 }
620 
621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
622   AttributeSets =
623       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
624 }
625 
626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasFnAttr(Kind);
628 }
629 
630 bool Function::hasFnAttribute(StringRef Kind) const {
631   return AttributeSets.hasFnAttr(Kind);
632 }
633 
634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
635   return AttributeSets.hasRetAttr(Kind);
636 }
637 
638 bool Function::hasParamAttribute(unsigned ArgNo,
639                                  Attribute::AttrKind Kind) const {
640   return AttributeSets.hasParamAttr(ArgNo, Kind);
641 }
642 
643 Attribute Function::getAttributeAtIndex(unsigned i,
644                                         Attribute::AttrKind Kind) const {
645   return AttributeSets.getAttributeAtIndex(i, Kind);
646 }
647 
648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
649   return AttributeSets.getAttributeAtIndex(i, Kind);
650 }
651 
652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.getFnAttr(Kind);
654 }
655 
656 Attribute Function::getFnAttribute(StringRef Kind) const {
657   return AttributeSets.getFnAttr(Kind);
658 }
659 
660 /// gets the specified attribute from the list of attributes.
661 Attribute Function::getParamAttribute(unsigned ArgNo,
662                                       Attribute::AttrKind Kind) const {
663   return AttributeSets.getParamAttr(ArgNo, Kind);
664 }
665 
666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
667                                                  uint64_t Bytes) {
668   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
669                                                                   ArgNo, Bytes);
670 }
671 
672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
673   if (&FPType == &APFloat::IEEEsingle()) {
674     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
675     StringRef Val = Attr.getValueAsString();
676     if (!Val.empty())
677       return parseDenormalFPAttribute(Val);
678 
679     // If the f32 variant of the attribute isn't specified, try to use the
680     // generic one.
681   }
682 
683   Attribute Attr = getFnAttribute("denormal-fp-math");
684   return parseDenormalFPAttribute(Attr.getValueAsString());
685 }
686 
687 const std::string &Function::getGC() const {
688   assert(hasGC() && "Function has no collector");
689   return getContext().getGC(*this);
690 }
691 
692 void Function::setGC(std::string Str) {
693   setValueSubclassDataBit(14, !Str.empty());
694   getContext().setGC(*this, std::move(Str));
695 }
696 
697 void Function::clearGC() {
698   if (!hasGC())
699     return;
700   getContext().deleteGC(*this);
701   setValueSubclassDataBit(14, false);
702 }
703 
704 bool Function::hasStackProtectorFnAttr() const {
705   return hasFnAttribute(Attribute::StackProtect) ||
706          hasFnAttribute(Attribute::StackProtectStrong) ||
707          hasFnAttribute(Attribute::StackProtectReq);
708 }
709 
710 /// Copy all additional attributes (those not needed to create a Function) from
711 /// the Function Src to this one.
712 void Function::copyAttributesFrom(const Function *Src) {
713   GlobalObject::copyAttributesFrom(Src);
714   setCallingConv(Src->getCallingConv());
715   setAttributes(Src->getAttributes());
716   if (Src->hasGC())
717     setGC(Src->getGC());
718   else
719     clearGC();
720   if (Src->hasPersonalityFn())
721     setPersonalityFn(Src->getPersonalityFn());
722   if (Src->hasPrefixData())
723     setPrefixData(Src->getPrefixData());
724   if (Src->hasPrologueData())
725     setPrologueData(Src->getPrologueData());
726 }
727 
728 /// Table of string intrinsic names indexed by enum value.
729 static const char * const IntrinsicNameTable[] = {
730   "not_intrinsic",
731 #define GET_INTRINSIC_NAME_TABLE
732 #include "llvm/IR/IntrinsicImpl.inc"
733 #undef GET_INTRINSIC_NAME_TABLE
734 };
735 
736 /// Table of per-target intrinsic name tables.
737 #define GET_INTRINSIC_TARGET_DATA
738 #include "llvm/IR/IntrinsicImpl.inc"
739 #undef GET_INTRINSIC_TARGET_DATA
740 
741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
742   return IID > TargetInfos[0].Count;
743 }
744 
745 bool Function::isTargetIntrinsic() const {
746   return isTargetIntrinsic(IntID);
747 }
748 
749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
750 /// target as \c Name, or the generic table if \c Name is not target specific.
751 ///
752 /// Returns the relevant slice of \c IntrinsicNameTable
753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
754   assert(Name.startswith("llvm."));
755 
756   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
757   // Drop "llvm." and take the first dotted component. That will be the target
758   // if this is target specific.
759   StringRef Target = Name.drop_front(5).split('.').first;
760   auto It = partition_point(
761       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
762   // We've either found the target or just fall back to the generic set, which
763   // is always first.
764   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
765   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
766 }
767 
768 /// This does the actual lookup of an intrinsic ID which
769 /// matches the given function name.
770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
771   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
772   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
773   if (Idx == -1)
774     return Intrinsic::not_intrinsic;
775 
776   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
777   // an index into a sub-table.
778   int Adjust = NameTable.data() - IntrinsicNameTable;
779   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
780 
781   // If the intrinsic is not overloaded, require an exact match. If it is
782   // overloaded, require either exact or prefix match.
783   const auto MatchSize = strlen(NameTable[Idx]);
784   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
785   bool IsExactMatch = Name.size() == MatchSize;
786   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
787                                                      : Intrinsic::not_intrinsic;
788 }
789 
790 void Function::recalculateIntrinsicID() {
791   StringRef Name = getName();
792   if (!Name.startswith("llvm.")) {
793     HasLLVMReservedName = false;
794     IntID = Intrinsic::not_intrinsic;
795     return;
796   }
797   HasLLVMReservedName = true;
798   IntID = lookupIntrinsicID(Name);
799 }
800 
801 /// Returns a stable mangling for the type specified for use in the name
802 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
803 /// of named types is simply their name.  Manglings for unnamed types consist
804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
805 /// combined with the mangling of their component types.  A vararg function
806 /// type will have a suffix of 'vararg'.  Since function types can contain
807 /// other function types, we close a function type mangling with suffix 'f'
808 /// which can't be confused with it's prefix.  This ensures we don't have
809 /// collisions between two unrelated function types. Otherwise, you might
810 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
811 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
812 /// indicating that extra care must be taken to ensure a unique name.
813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
814   std::string Result;
815   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
816     Result += "p" + utostr(PTyp->getAddressSpace());
817     // Opaque pointer doesn't have pointee type information, so we just mangle
818     // address space for opaque pointer.
819     if (!PTyp->isOpaque())
820       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
821   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
822     Result += "a" + utostr(ATyp->getNumElements()) +
823               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
824   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
825     if (!STyp->isLiteral()) {
826       Result += "s_";
827       if (STyp->hasName())
828         Result += STyp->getName();
829       else
830         HasUnnamedType = true;
831     } else {
832       Result += "sl_";
833       for (auto Elem : STyp->elements())
834         Result += getMangledTypeStr(Elem, HasUnnamedType);
835     }
836     // Ensure nested structs are distinguishable.
837     Result += "s";
838   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
839     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
840     for (size_t i = 0; i < FT->getNumParams(); i++)
841       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
842     if (FT->isVarArg())
843       Result += "vararg";
844     // Ensure nested function types are distinguishable.
845     Result += "f";
846   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
847     ElementCount EC = VTy->getElementCount();
848     if (EC.isScalable())
849       Result += "nx";
850     Result += "v" + utostr(EC.getKnownMinValue()) +
851               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
852   } else if (Ty) {
853     switch (Ty->getTypeID()) {
854     default: llvm_unreachable("Unhandled type");
855     case Type::VoidTyID:      Result += "isVoid";   break;
856     case Type::MetadataTyID:  Result += "Metadata"; break;
857     case Type::HalfTyID:      Result += "f16";      break;
858     case Type::BFloatTyID:    Result += "bf16";     break;
859     case Type::FloatTyID:     Result += "f32";      break;
860     case Type::DoubleTyID:    Result += "f64";      break;
861     case Type::X86_FP80TyID:  Result += "f80";      break;
862     case Type::FP128TyID:     Result += "f128";     break;
863     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
864     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
865     case Type::X86_AMXTyID:   Result += "x86amx";   break;
866     case Type::IntegerTyID:
867       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
868       break;
869     }
870   }
871   return Result;
872 }
873 
874 StringRef Intrinsic::getBaseName(ID id) {
875   assert(id < num_intrinsics && "Invalid intrinsic ID!");
876   return IntrinsicNameTable[id];
877 }
878 
879 StringRef Intrinsic::getName(ID id) {
880   assert(id < num_intrinsics && "Invalid intrinsic ID!");
881   assert(!Intrinsic::isOverloaded(id) &&
882          "This version of getName does not support overloading");
883   return getBaseName(id);
884 }
885 
886 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
887                                         Module *M, FunctionType *FT,
888                                         bool EarlyModuleCheck) {
889 
890   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
891   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
892          "This version of getName is for overloaded intrinsics only");
893   (void)EarlyModuleCheck;
894   assert((!EarlyModuleCheck || M ||
895           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
896          "Intrinsic overloading on pointer types need to provide a Module");
897   bool HasUnnamedType = false;
898   std::string Result(Intrinsic::getBaseName(Id));
899   for (Type *Ty : Tys)
900     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
901   if (HasUnnamedType) {
902     assert(M && "unnamed types need a module");
903     if (!FT)
904       FT = Intrinsic::getType(M->getContext(), Id, Tys);
905     else
906       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
907              "Provided FunctionType must match arguments");
908     return M->getUniqueIntrinsicName(Result, Id, FT);
909   }
910   return Result;
911 }
912 
913 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
914                                FunctionType *FT) {
915   assert(M && "We need to have a Module");
916   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
917 }
918 
919 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
920   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
921 }
922 
923 /// IIT_Info - These are enumerators that describe the entries returned by the
924 /// getIntrinsicInfoTableEntries function.
925 ///
926 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
927 enum IIT_Info {
928   // Common values should be encoded with 0-15.
929   IIT_Done = 0,
930   IIT_I1   = 1,
931   IIT_I8   = 2,
932   IIT_I16  = 3,
933   IIT_I32  = 4,
934   IIT_I64  = 5,
935   IIT_F16  = 6,
936   IIT_F32  = 7,
937   IIT_F64  = 8,
938   IIT_V2   = 9,
939   IIT_V4   = 10,
940   IIT_V8   = 11,
941   IIT_V16  = 12,
942   IIT_V32  = 13,
943   IIT_PTR  = 14,
944   IIT_ARG  = 15,
945 
946   // Values from 16+ are only encodable with the inefficient encoding.
947   IIT_V64  = 16,
948   IIT_MMX  = 17,
949   IIT_TOKEN = 18,
950   IIT_METADATA = 19,
951   IIT_EMPTYSTRUCT = 20,
952   IIT_STRUCT2 = 21,
953   IIT_STRUCT3 = 22,
954   IIT_STRUCT4 = 23,
955   IIT_STRUCT5 = 24,
956   IIT_EXTEND_ARG = 25,
957   IIT_TRUNC_ARG = 26,
958   IIT_ANYPTR = 27,
959   IIT_V1   = 28,
960   IIT_VARARG = 29,
961   IIT_HALF_VEC_ARG = 30,
962   IIT_SAME_VEC_WIDTH_ARG = 31,
963   IIT_PTR_TO_ARG = 32,
964   IIT_PTR_TO_ELT = 33,
965   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
966   IIT_I128 = 35,
967   IIT_V512 = 36,
968   IIT_V1024 = 37,
969   IIT_STRUCT6 = 38,
970   IIT_STRUCT7 = 39,
971   IIT_STRUCT8 = 40,
972   IIT_F128 = 41,
973   IIT_VEC_ELEMENT = 42,
974   IIT_SCALABLE_VEC = 43,
975   IIT_SUBDIVIDE2_ARG = 44,
976   IIT_SUBDIVIDE4_ARG = 45,
977   IIT_VEC_OF_BITCASTS_TO_INT = 46,
978   IIT_V128 = 47,
979   IIT_BF16 = 48,
980   IIT_STRUCT9 = 49,
981   IIT_V256 = 50,
982   IIT_AMX  = 51
983 };
984 
985 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
986                       IIT_Info LastInfo,
987                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
988   using namespace Intrinsic;
989 
990   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
991 
992   IIT_Info Info = IIT_Info(Infos[NextElt++]);
993   unsigned StructElts = 2;
994 
995   switch (Info) {
996   case IIT_Done:
997     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
998     return;
999   case IIT_VARARG:
1000     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1001     return;
1002   case IIT_MMX:
1003     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1004     return;
1005   case IIT_AMX:
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1007     return;
1008   case IIT_TOKEN:
1009     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1010     return;
1011   case IIT_METADATA:
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1013     return;
1014   case IIT_F16:
1015     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1016     return;
1017   case IIT_BF16:
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1019     return;
1020   case IIT_F32:
1021     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1022     return;
1023   case IIT_F64:
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1025     return;
1026   case IIT_F128:
1027     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1028     return;
1029   case IIT_I1:
1030     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1031     return;
1032   case IIT_I8:
1033     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1034     return;
1035   case IIT_I16:
1036     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1037     return;
1038   case IIT_I32:
1039     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1040     return;
1041   case IIT_I64:
1042     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1043     return;
1044   case IIT_I128:
1045     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1046     return;
1047   case IIT_V1:
1048     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1049     DecodeIITType(NextElt, Infos, Info, OutputTable);
1050     return;
1051   case IIT_V2:
1052     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1053     DecodeIITType(NextElt, Infos, Info, OutputTable);
1054     return;
1055   case IIT_V4:
1056     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1057     DecodeIITType(NextElt, Infos, Info, OutputTable);
1058     return;
1059   case IIT_V8:
1060     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1061     DecodeIITType(NextElt, Infos, Info, OutputTable);
1062     return;
1063   case IIT_V16:
1064     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1065     DecodeIITType(NextElt, Infos, Info, OutputTable);
1066     return;
1067   case IIT_V32:
1068     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1069     DecodeIITType(NextElt, Infos, Info, OutputTable);
1070     return;
1071   case IIT_V64:
1072     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1073     DecodeIITType(NextElt, Infos, Info, OutputTable);
1074     return;
1075   case IIT_V128:
1076     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1077     DecodeIITType(NextElt, Infos, Info, OutputTable);
1078     return;
1079   case IIT_V256:
1080     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1081     DecodeIITType(NextElt, Infos, Info, OutputTable);
1082     return;
1083   case IIT_V512:
1084     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1085     DecodeIITType(NextElt, Infos, Info, OutputTable);
1086     return;
1087   case IIT_V1024:
1088     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1089     DecodeIITType(NextElt, Infos, Info, OutputTable);
1090     return;
1091   case IIT_PTR:
1092     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1093     DecodeIITType(NextElt, Infos, Info, OutputTable);
1094     return;
1095   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1096     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1097                                              Infos[NextElt++]));
1098     DecodeIITType(NextElt, Infos, Info, OutputTable);
1099     return;
1100   }
1101   case IIT_ARG: {
1102     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1104     return;
1105   }
1106   case IIT_EXTEND_ARG: {
1107     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1109                                              ArgInfo));
1110     return;
1111   }
1112   case IIT_TRUNC_ARG: {
1113     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1115                                              ArgInfo));
1116     return;
1117   }
1118   case IIT_HALF_VEC_ARG: {
1119     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1120     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1121                                              ArgInfo));
1122     return;
1123   }
1124   case IIT_SAME_VEC_WIDTH_ARG: {
1125     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1126     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1127                                              ArgInfo));
1128     return;
1129   }
1130   case IIT_PTR_TO_ARG: {
1131     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1133                                              ArgInfo));
1134     return;
1135   }
1136   case IIT_PTR_TO_ELT: {
1137     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1139     return;
1140   }
1141   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1142     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1143     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1144     OutputTable.push_back(
1145         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1146     return;
1147   }
1148   case IIT_EMPTYSTRUCT:
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1150     return;
1151   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1152   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1153   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1154   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1155   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1156   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1157   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1158   case IIT_STRUCT2: {
1159     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1160 
1161     for (unsigned i = 0; i != StructElts; ++i)
1162       DecodeIITType(NextElt, Infos, Info, OutputTable);
1163     return;
1164   }
1165   case IIT_SUBDIVIDE2_ARG: {
1166     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1167     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1168                                              ArgInfo));
1169     return;
1170   }
1171   case IIT_SUBDIVIDE4_ARG: {
1172     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1173     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1174                                              ArgInfo));
1175     return;
1176   }
1177   case IIT_VEC_ELEMENT: {
1178     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1179     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1180                                              ArgInfo));
1181     return;
1182   }
1183   case IIT_SCALABLE_VEC: {
1184     DecodeIITType(NextElt, Infos, Info, OutputTable);
1185     return;
1186   }
1187   case IIT_VEC_OF_BITCASTS_TO_INT: {
1188     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1189     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1190                                              ArgInfo));
1191     return;
1192   }
1193   }
1194   llvm_unreachable("unhandled");
1195 }
1196 
1197 #define GET_INTRINSIC_GENERATOR_GLOBAL
1198 #include "llvm/IR/IntrinsicImpl.inc"
1199 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1200 
1201 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1202                                              SmallVectorImpl<IITDescriptor> &T){
1203   // Check to see if the intrinsic's type was expressible by the table.
1204   unsigned TableVal = IIT_Table[id-1];
1205 
1206   // Decode the TableVal into an array of IITValues.
1207   SmallVector<unsigned char, 8> IITValues;
1208   ArrayRef<unsigned char> IITEntries;
1209   unsigned NextElt = 0;
1210   if ((TableVal >> 31) != 0) {
1211     // This is an offset into the IIT_LongEncodingTable.
1212     IITEntries = IIT_LongEncodingTable;
1213 
1214     // Strip sentinel bit.
1215     NextElt = (TableVal << 1) >> 1;
1216   } else {
1217     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1218     // into a single word in the table itself, decode it now.
1219     do {
1220       IITValues.push_back(TableVal & 0xF);
1221       TableVal >>= 4;
1222     } while (TableVal);
1223 
1224     IITEntries = IITValues;
1225     NextElt = 0;
1226   }
1227 
1228   // Okay, decode the table into the output vector of IITDescriptors.
1229   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1230   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1231     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1232 }
1233 
1234 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1235                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1236   using namespace Intrinsic;
1237 
1238   IITDescriptor D = Infos.front();
1239   Infos = Infos.slice(1);
1240 
1241   switch (D.Kind) {
1242   case IITDescriptor::Void: return Type::getVoidTy(Context);
1243   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1244   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1245   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1246   case IITDescriptor::Token: return Type::getTokenTy(Context);
1247   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1248   case IITDescriptor::Half: return Type::getHalfTy(Context);
1249   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1250   case IITDescriptor::Float: return Type::getFloatTy(Context);
1251   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1252   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1253 
1254   case IITDescriptor::Integer:
1255     return IntegerType::get(Context, D.Integer_Width);
1256   case IITDescriptor::Vector:
1257     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1258                            D.Vector_Width);
1259   case IITDescriptor::Pointer:
1260     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1261                             D.Pointer_AddressSpace);
1262   case IITDescriptor::Struct: {
1263     SmallVector<Type *, 8> Elts;
1264     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1265       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1266     return StructType::get(Context, Elts);
1267   }
1268   case IITDescriptor::Argument:
1269     return Tys[D.getArgumentNumber()];
1270   case IITDescriptor::ExtendArgument: {
1271     Type *Ty = Tys[D.getArgumentNumber()];
1272     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1273       return VectorType::getExtendedElementVectorType(VTy);
1274 
1275     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1276   }
1277   case IITDescriptor::TruncArgument: {
1278     Type *Ty = Tys[D.getArgumentNumber()];
1279     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1280       return VectorType::getTruncatedElementVectorType(VTy);
1281 
1282     IntegerType *ITy = cast<IntegerType>(Ty);
1283     assert(ITy->getBitWidth() % 2 == 0);
1284     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1285   }
1286   case IITDescriptor::Subdivide2Argument:
1287   case IITDescriptor::Subdivide4Argument: {
1288     Type *Ty = Tys[D.getArgumentNumber()];
1289     VectorType *VTy = dyn_cast<VectorType>(Ty);
1290     assert(VTy && "Expected an argument of Vector Type");
1291     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1292     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1293   }
1294   case IITDescriptor::HalfVecArgument:
1295     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1296                                                   Tys[D.getArgumentNumber()]));
1297   case IITDescriptor::SameVecWidthArgument: {
1298     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1299     Type *Ty = Tys[D.getArgumentNumber()];
1300     if (auto *VTy = dyn_cast<VectorType>(Ty))
1301       return VectorType::get(EltTy, VTy->getElementCount());
1302     return EltTy;
1303   }
1304   case IITDescriptor::PtrToArgument: {
1305     Type *Ty = Tys[D.getArgumentNumber()];
1306     return PointerType::getUnqual(Ty);
1307   }
1308   case IITDescriptor::PtrToElt: {
1309     Type *Ty = Tys[D.getArgumentNumber()];
1310     VectorType *VTy = dyn_cast<VectorType>(Ty);
1311     if (!VTy)
1312       llvm_unreachable("Expected an argument of Vector Type");
1313     Type *EltTy = VTy->getElementType();
1314     return PointerType::getUnqual(EltTy);
1315   }
1316   case IITDescriptor::VecElementArgument: {
1317     Type *Ty = Tys[D.getArgumentNumber()];
1318     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1319       return VTy->getElementType();
1320     llvm_unreachable("Expected an argument of Vector Type");
1321   }
1322   case IITDescriptor::VecOfBitcastsToInt: {
1323     Type *Ty = Tys[D.getArgumentNumber()];
1324     VectorType *VTy = dyn_cast<VectorType>(Ty);
1325     assert(VTy && "Expected an argument of Vector Type");
1326     return VectorType::getInteger(VTy);
1327   }
1328   case IITDescriptor::VecOfAnyPtrsToElt:
1329     // Return the overloaded type (which determines the pointers address space)
1330     return Tys[D.getOverloadArgNumber()];
1331   }
1332   llvm_unreachable("unhandled");
1333 }
1334 
1335 FunctionType *Intrinsic::getType(LLVMContext &Context,
1336                                  ID id, ArrayRef<Type*> Tys) {
1337   SmallVector<IITDescriptor, 8> Table;
1338   getIntrinsicInfoTableEntries(id, Table);
1339 
1340   ArrayRef<IITDescriptor> TableRef = Table;
1341   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1342 
1343   SmallVector<Type*, 8> ArgTys;
1344   while (!TableRef.empty())
1345     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1346 
1347   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1348   // If we see void type as the type of the last argument, it is vararg intrinsic
1349   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1350     ArgTys.pop_back();
1351     return FunctionType::get(ResultTy, ArgTys, true);
1352   }
1353   return FunctionType::get(ResultTy, ArgTys, false);
1354 }
1355 
1356 bool Intrinsic::isOverloaded(ID id) {
1357 #define GET_INTRINSIC_OVERLOAD_TABLE
1358 #include "llvm/IR/IntrinsicImpl.inc"
1359 #undef GET_INTRINSIC_OVERLOAD_TABLE
1360 }
1361 
1362 bool Intrinsic::isLeaf(ID id) {
1363   switch (id) {
1364   default:
1365     return true;
1366 
1367   case Intrinsic::experimental_gc_statepoint:
1368   case Intrinsic::experimental_patchpoint_void:
1369   case Intrinsic::experimental_patchpoint_i64:
1370     return false;
1371   }
1372 }
1373 
1374 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1375 #define GET_INTRINSIC_ATTRIBUTES
1376 #include "llvm/IR/IntrinsicImpl.inc"
1377 #undef GET_INTRINSIC_ATTRIBUTES
1378 
1379 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1380   // There can never be multiple globals with the same name of different types,
1381   // because intrinsics must be a specific type.
1382   auto *FT = getType(M->getContext(), id, Tys);
1383   return cast<Function>(
1384       M->getOrInsertFunction(Tys.empty() ? getName(id)
1385                                          : getName(id, Tys, M, FT),
1386                              getType(M->getContext(), id, Tys))
1387           .getCallee());
1388 }
1389 
1390 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1391 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1392 #include "llvm/IR/IntrinsicImpl.inc"
1393 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1394 
1395 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1396 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1397 #include "llvm/IR/IntrinsicImpl.inc"
1398 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1399 
1400 using DeferredIntrinsicMatchPair =
1401     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1402 
1403 static bool matchIntrinsicType(
1404     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1405     SmallVectorImpl<Type *> &ArgTys,
1406     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1407     bool IsDeferredCheck) {
1408   using namespace Intrinsic;
1409 
1410   // If we ran out of descriptors, there are too many arguments.
1411   if (Infos.empty()) return true;
1412 
1413   // Do this before slicing off the 'front' part
1414   auto InfosRef = Infos;
1415   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1416     DeferredChecks.emplace_back(T, InfosRef);
1417     return false;
1418   };
1419 
1420   IITDescriptor D = Infos.front();
1421   Infos = Infos.slice(1);
1422 
1423   switch (D.Kind) {
1424     case IITDescriptor::Void: return !Ty->isVoidTy();
1425     case IITDescriptor::VarArg: return true;
1426     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1427     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1428     case IITDescriptor::Token: return !Ty->isTokenTy();
1429     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1430     case IITDescriptor::Half: return !Ty->isHalfTy();
1431     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1432     case IITDescriptor::Float: return !Ty->isFloatTy();
1433     case IITDescriptor::Double: return !Ty->isDoubleTy();
1434     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1435     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1436     case IITDescriptor::Vector: {
1437       VectorType *VT = dyn_cast<VectorType>(Ty);
1438       return !VT || VT->getElementCount() != D.Vector_Width ||
1439              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1440                                 DeferredChecks, IsDeferredCheck);
1441     }
1442     case IITDescriptor::Pointer: {
1443       PointerType *PT = dyn_cast<PointerType>(Ty);
1444       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1445         return true;
1446       if (!PT->isOpaque())
1447         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1448                                   DeferredChecks, IsDeferredCheck);
1449       // If typed pointers are supported, do not allow using opaque pointer in
1450       // place of fixed pointer type. This would make the intrinsic signature
1451       // non-unique.
1452       if (Ty->getContext().supportsTypedPointers())
1453         return true;
1454       // Consume IIT descriptors relating to the pointer element type.
1455       while (Infos.front().Kind == IITDescriptor::Pointer)
1456         Infos = Infos.slice(1);
1457       Infos = Infos.slice(1);
1458       return false;
1459     }
1460 
1461     case IITDescriptor::Struct: {
1462       StructType *ST = dyn_cast<StructType>(Ty);
1463       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1464         return true;
1465 
1466       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1467         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1468                                DeferredChecks, IsDeferredCheck))
1469           return true;
1470       return false;
1471     }
1472 
1473     case IITDescriptor::Argument:
1474       // If this is the second occurrence of an argument,
1475       // verify that the later instance matches the previous instance.
1476       if (D.getArgumentNumber() < ArgTys.size())
1477         return Ty != ArgTys[D.getArgumentNumber()];
1478 
1479       if (D.getArgumentNumber() > ArgTys.size() ||
1480           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1481         return IsDeferredCheck || DeferCheck(Ty);
1482 
1483       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1484              "Table consistency error");
1485       ArgTys.push_back(Ty);
1486 
1487       switch (D.getArgumentKind()) {
1488         case IITDescriptor::AK_Any:        return false; // Success
1489         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1490         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1491         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1492         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1493         default:                           break;
1494       }
1495       llvm_unreachable("all argument kinds not covered");
1496 
1497     case IITDescriptor::ExtendArgument: {
1498       // If this is a forward reference, defer the check for later.
1499       if (D.getArgumentNumber() >= ArgTys.size())
1500         return IsDeferredCheck || DeferCheck(Ty);
1501 
1502       Type *NewTy = ArgTys[D.getArgumentNumber()];
1503       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1504         NewTy = VectorType::getExtendedElementVectorType(VTy);
1505       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1506         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1507       else
1508         return true;
1509 
1510       return Ty != NewTy;
1511     }
1512     case IITDescriptor::TruncArgument: {
1513       // If this is a forward reference, defer the check for later.
1514       if (D.getArgumentNumber() >= ArgTys.size())
1515         return IsDeferredCheck || DeferCheck(Ty);
1516 
1517       Type *NewTy = ArgTys[D.getArgumentNumber()];
1518       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1519         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1520       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1521         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1522       else
1523         return true;
1524 
1525       return Ty != NewTy;
1526     }
1527     case IITDescriptor::HalfVecArgument:
1528       // If this is a forward reference, defer the check for later.
1529       if (D.getArgumentNumber() >= ArgTys.size())
1530         return IsDeferredCheck || DeferCheck(Ty);
1531       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1532              VectorType::getHalfElementsVectorType(
1533                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1534     case IITDescriptor::SameVecWidthArgument: {
1535       if (D.getArgumentNumber() >= ArgTys.size()) {
1536         // Defer check and subsequent check for the vector element type.
1537         Infos = Infos.slice(1);
1538         return IsDeferredCheck || DeferCheck(Ty);
1539       }
1540       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1541       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1542       // Both must be vectors of the same number of elements or neither.
1543       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1544         return true;
1545       Type *EltTy = Ty;
1546       if (ThisArgType) {
1547         if (ReferenceType->getElementCount() !=
1548             ThisArgType->getElementCount())
1549           return true;
1550         EltTy = ThisArgType->getElementType();
1551       }
1552       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1553                                 IsDeferredCheck);
1554     }
1555     case IITDescriptor::PtrToArgument: {
1556       if (D.getArgumentNumber() >= ArgTys.size())
1557         return IsDeferredCheck || DeferCheck(Ty);
1558       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1559       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1560       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1561     }
1562     case IITDescriptor::PtrToElt: {
1563       if (D.getArgumentNumber() >= ArgTys.size())
1564         return IsDeferredCheck || DeferCheck(Ty);
1565       VectorType * ReferenceType =
1566         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1567       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1568 
1569       if (!ThisArgType || !ReferenceType)
1570         return true;
1571       if (!ThisArgType->isOpaque())
1572         return ThisArgType->getElementType() != ReferenceType->getElementType();
1573       // If typed pointers are supported, do not allow opaque pointer to ensure
1574       // uniqueness.
1575       return Ty->getContext().supportsTypedPointers();
1576     }
1577     case IITDescriptor::VecOfAnyPtrsToElt: {
1578       unsigned RefArgNumber = D.getRefArgNumber();
1579       if (RefArgNumber >= ArgTys.size()) {
1580         if (IsDeferredCheck)
1581           return true;
1582         // If forward referencing, already add the pointer-vector type and
1583         // defer the checks for later.
1584         ArgTys.push_back(Ty);
1585         return DeferCheck(Ty);
1586       }
1587 
1588       if (!IsDeferredCheck){
1589         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1590                "Table consistency error");
1591         ArgTys.push_back(Ty);
1592       }
1593 
1594       // Verify the overloaded type "matches" the Ref type.
1595       // i.e. Ty is a vector with the same width as Ref.
1596       // Composed of pointers to the same element type as Ref.
1597       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1598       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1599       if (!ThisArgVecTy || !ReferenceType ||
1600           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1601         return true;
1602       PointerType *ThisArgEltTy =
1603           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1604       if (!ThisArgEltTy)
1605         return true;
1606       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1607           ReferenceType->getElementType());
1608     }
1609     case IITDescriptor::VecElementArgument: {
1610       if (D.getArgumentNumber() >= ArgTys.size())
1611         return IsDeferredCheck ? true : DeferCheck(Ty);
1612       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1613       return !ReferenceType || Ty != ReferenceType->getElementType();
1614     }
1615     case IITDescriptor::Subdivide2Argument:
1616     case IITDescriptor::Subdivide4Argument: {
1617       // If this is a forward reference, defer the check for later.
1618       if (D.getArgumentNumber() >= ArgTys.size())
1619         return IsDeferredCheck || DeferCheck(Ty);
1620 
1621       Type *NewTy = ArgTys[D.getArgumentNumber()];
1622       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1623         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1624         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1625         return Ty != NewTy;
1626       }
1627       return true;
1628     }
1629     case IITDescriptor::VecOfBitcastsToInt: {
1630       if (D.getArgumentNumber() >= ArgTys.size())
1631         return IsDeferredCheck || DeferCheck(Ty);
1632       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1633       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1634       if (!ThisArgVecTy || !ReferenceType)
1635         return true;
1636       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1637     }
1638   }
1639   llvm_unreachable("unhandled");
1640 }
1641 
1642 Intrinsic::MatchIntrinsicTypesResult
1643 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1644                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1645                                    SmallVectorImpl<Type *> &ArgTys) {
1646   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1647   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1648                          false))
1649     return MatchIntrinsicTypes_NoMatchRet;
1650 
1651   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1652 
1653   for (auto Ty : FTy->params())
1654     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1655       return MatchIntrinsicTypes_NoMatchArg;
1656 
1657   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1658     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1659     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1660                            true))
1661       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1662                                          : MatchIntrinsicTypes_NoMatchArg;
1663   }
1664 
1665   return MatchIntrinsicTypes_Match;
1666 }
1667 
1668 bool
1669 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1670                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1671   // If there are no descriptors left, then it can't be a vararg.
1672   if (Infos.empty())
1673     return isVarArg;
1674 
1675   // There should be only one descriptor remaining at this point.
1676   if (Infos.size() != 1)
1677     return true;
1678 
1679   // Check and verify the descriptor.
1680   IITDescriptor D = Infos.front();
1681   Infos = Infos.slice(1);
1682   if (D.Kind == IITDescriptor::VarArg)
1683     return !isVarArg;
1684 
1685   return true;
1686 }
1687 
1688 bool Intrinsic::getIntrinsicSignature(Function *F,
1689                                       SmallVectorImpl<Type *> &ArgTys) {
1690   Intrinsic::ID ID = F->getIntrinsicID();
1691   if (!ID)
1692     return false;
1693 
1694   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1695   getIntrinsicInfoTableEntries(ID, Table);
1696   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1697 
1698   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1699                                          ArgTys) !=
1700       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1701     return false;
1702   }
1703   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1704                                       TableRef))
1705     return false;
1706   return true;
1707 }
1708 
1709 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1710   SmallVector<Type *, 4> ArgTys;
1711   if (!getIntrinsicSignature(F, ArgTys))
1712     return None;
1713 
1714   Intrinsic::ID ID = F->getIntrinsicID();
1715   StringRef Name = F->getName();
1716   std::string WantedName =
1717       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1718   if (Name == WantedName)
1719     return None;
1720 
1721   Function *NewDecl = [&] {
1722     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1723       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1724         if (ExistingF->getFunctionType() == F->getFunctionType())
1725           return ExistingF;
1726 
1727       // The name already exists, but is not a function or has the wrong
1728       // prototype. Make place for the new one by renaming the old version.
1729       // Either this old version will be removed later on or the module is
1730       // invalid and we'll get an error.
1731       ExistingGV->setName(WantedName + ".renamed");
1732     }
1733     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1734   }();
1735 
1736   NewDecl->setCallingConv(F->getCallingConv());
1737   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1738          "Shouldn't change the signature");
1739   return NewDecl;
1740 }
1741 
1742 /// hasAddressTaken - returns true if there are any uses of this function
1743 /// other than direct calls or invokes to it. Optionally ignores callback
1744 /// uses, assume like pointer annotation calls, and references in llvm.used
1745 /// and llvm.compiler.used variables.
1746 bool Function::hasAddressTaken(const User **PutOffender,
1747                                bool IgnoreCallbackUses,
1748                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1749                                bool IgnoreARCAttachedCall) const {
1750   for (const Use &U : uses()) {
1751     const User *FU = U.getUser();
1752     if (isa<BlockAddress>(FU))
1753       continue;
1754 
1755     if (IgnoreCallbackUses) {
1756       AbstractCallSite ACS(&U);
1757       if (ACS && ACS.isCallbackCall())
1758         continue;
1759     }
1760 
1761     const auto *Call = dyn_cast<CallBase>(FU);
1762     if (!Call) {
1763       if (IgnoreAssumeLikeCalls) {
1764         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1765           if (FI->isCast() && !FI->user_empty() &&
1766               llvm::all_of(FU->users(), [](const User *U) {
1767                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1768                   return I->isAssumeLikeIntrinsic();
1769                 return false;
1770               }))
1771             continue;
1772         }
1773       }
1774       if (IgnoreLLVMUsed && !FU->user_empty()) {
1775         const User *FUU = FU;
1776         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1777             !FU->user_begin()->user_empty())
1778           FUU = *FU->user_begin();
1779         if (llvm::all_of(FUU->users(), [](const User *U) {
1780               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1781                 return GV->hasName() &&
1782                        (GV->getName().equals("llvm.compiler.used") ||
1783                         GV->getName().equals("llvm.used"));
1784               return false;
1785             }))
1786           continue;
1787       }
1788       if (PutOffender)
1789         *PutOffender = FU;
1790       return true;
1791     }
1792     if (!Call->isCallee(&U)) {
1793       if (IgnoreARCAttachedCall &&
1794           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1795                                       U.getOperandNo()))
1796         continue;
1797 
1798       if (PutOffender)
1799         *PutOffender = FU;
1800       return true;
1801     }
1802   }
1803   return false;
1804 }
1805 
1806 bool Function::isDefTriviallyDead() const {
1807   // Check the linkage
1808   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1809       !hasAvailableExternallyLinkage())
1810     return false;
1811 
1812   // Check if the function is used by anything other than a blockaddress.
1813   for (const User *U : users())
1814     if (!isa<BlockAddress>(U))
1815       return false;
1816 
1817   return true;
1818 }
1819 
1820 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1821 /// setjmp or other function that gcc recognizes as "returning twice".
1822 bool Function::callsFunctionThatReturnsTwice() const {
1823   for (const Instruction &I : instructions(this))
1824     if (const auto *Call = dyn_cast<CallBase>(&I))
1825       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1826         return true;
1827 
1828   return false;
1829 }
1830 
1831 Constant *Function::getPersonalityFn() const {
1832   assert(hasPersonalityFn() && getNumOperands());
1833   return cast<Constant>(Op<0>());
1834 }
1835 
1836 void Function::setPersonalityFn(Constant *Fn) {
1837   setHungoffOperand<0>(Fn);
1838   setValueSubclassDataBit(3, Fn != nullptr);
1839 }
1840 
1841 Constant *Function::getPrefixData() const {
1842   assert(hasPrefixData() && getNumOperands());
1843   return cast<Constant>(Op<1>());
1844 }
1845 
1846 void Function::setPrefixData(Constant *PrefixData) {
1847   setHungoffOperand<1>(PrefixData);
1848   setValueSubclassDataBit(1, PrefixData != nullptr);
1849 }
1850 
1851 Constant *Function::getPrologueData() const {
1852   assert(hasPrologueData() && getNumOperands());
1853   return cast<Constant>(Op<2>());
1854 }
1855 
1856 void Function::setPrologueData(Constant *PrologueData) {
1857   setHungoffOperand<2>(PrologueData);
1858   setValueSubclassDataBit(2, PrologueData != nullptr);
1859 }
1860 
1861 void Function::allocHungoffUselist() {
1862   // If we've already allocated a uselist, stop here.
1863   if (getNumOperands())
1864     return;
1865 
1866   allocHungoffUses(3, /*IsPhi=*/ false);
1867   setNumHungOffUseOperands(3);
1868 
1869   // Initialize the uselist with placeholder operands to allow traversal.
1870   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1871   Op<0>().set(CPN);
1872   Op<1>().set(CPN);
1873   Op<2>().set(CPN);
1874 }
1875 
1876 template <int Idx>
1877 void Function::setHungoffOperand(Constant *C) {
1878   if (C) {
1879     allocHungoffUselist();
1880     Op<Idx>().set(C);
1881   } else if (getNumOperands()) {
1882     Op<Idx>().set(
1883         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1884   }
1885 }
1886 
1887 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1888   assert(Bit < 16 && "SubclassData contains only 16 bits");
1889   if (On)
1890     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1891   else
1892     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1893 }
1894 
1895 void Function::setEntryCount(ProfileCount Count,
1896                              const DenseSet<GlobalValue::GUID> *S) {
1897   assert(Count.hasValue());
1898 #if !defined(NDEBUG)
1899   auto PrevCount = getEntryCount();
1900   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1901 #endif
1902 
1903   auto ImportGUIDs = getImportGUIDs();
1904   if (S == nullptr && ImportGUIDs.size())
1905     S = &ImportGUIDs;
1906 
1907   MDBuilder MDB(getContext());
1908   setMetadata(
1909       LLVMContext::MD_prof,
1910       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1911 }
1912 
1913 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1914                              const DenseSet<GlobalValue::GUID> *Imports) {
1915   setEntryCount(ProfileCount(Count, Type), Imports);
1916 }
1917 
1918 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1919   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1920   if (MD && MD->getOperand(0))
1921     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1922       if (MDS->getString().equals("function_entry_count")) {
1923         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1924         uint64_t Count = CI->getValue().getZExtValue();
1925         // A value of -1 is used for SamplePGO when there were no samples.
1926         // Treat this the same as unknown.
1927         if (Count == (uint64_t)-1)
1928           return ProfileCount::getInvalid();
1929         return ProfileCount(Count, PCT_Real);
1930       } else if (AllowSynthetic &&
1931                  MDS->getString().equals("synthetic_function_entry_count")) {
1932         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1933         uint64_t Count = CI->getValue().getZExtValue();
1934         return ProfileCount(Count, PCT_Synthetic);
1935       }
1936     }
1937   return ProfileCount::getInvalid();
1938 }
1939 
1940 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1941   DenseSet<GlobalValue::GUID> R;
1942   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1943     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1944       if (MDS->getString().equals("function_entry_count"))
1945         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1946           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1947                        ->getValue()
1948                        .getZExtValue());
1949   return R;
1950 }
1951 
1952 void Function::setSectionPrefix(StringRef Prefix) {
1953   MDBuilder MDB(getContext());
1954   setMetadata(LLVMContext::MD_section_prefix,
1955               MDB.createFunctionSectionPrefix(Prefix));
1956 }
1957 
1958 Optional<StringRef> Function::getSectionPrefix() const {
1959   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1960     assert(cast<MDString>(MD->getOperand(0))
1961                ->getString()
1962                .equals("function_section_prefix") &&
1963            "Metadata not match");
1964     return cast<MDString>(MD->getOperand(1))->getString();
1965   }
1966   return None;
1967 }
1968 
1969 bool Function::nullPointerIsDefined() const {
1970   return hasFnAttribute(Attribute::NullPointerIsValid);
1971 }
1972 
1973 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1974   if (F && F->nullPointerIsDefined())
1975     return true;
1976 
1977   if (AS != 0)
1978     return true;
1979 
1980   return false;
1981 }
1982