xref: /llvm-project/llvm/lib/IR/Function.cpp (revision dcf0160bd61d150e7b94067fcd991b466a361b08)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsDirectX.h"
41 #include "llvm/IR/IntrinsicsHexagon.h"
42 #include "llvm/IR/IntrinsicsLoongArch.h"
43 #include "llvm/IR/IntrinsicsMips.h"
44 #include "llvm/IR/IntrinsicsNVPTX.h"
45 #include "llvm/IR/IntrinsicsPowerPC.h"
46 #include "llvm/IR/IntrinsicsR600.h"
47 #include "llvm/IR/IntrinsicsRISCV.h"
48 #include "llvm/IR/IntrinsicsS390.h"
49 #include "llvm/IR/IntrinsicsSPIRV.h"
50 #include "llvm/IR/IntrinsicsVE.h"
51 #include "llvm/IR/IntrinsicsWebAssembly.h"
52 #include "llvm/IR/IntrinsicsX86.h"
53 #include "llvm/IR/IntrinsicsXCore.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/SymbolTableListTraits.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/ValueSymbolTable.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ModRef.h"
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <cstring>
74 #include <string>
75 
76 using namespace llvm;
77 using ProfileCount = Function::ProfileCount;
78 
79 // Explicit instantiations of SymbolTableListTraits since some of the methods
80 // are not in the public header file...
81 template class llvm::SymbolTableListTraits<BasicBlock>;
82 
83 static cl::opt<int> NonGlobalValueMaxNameSize(
84     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
85     cl::desc("Maximum size for the name of non-global values."));
86 
87 extern cl::opt<bool> UseNewDbgInfoFormat;
88 
89 void Function::renumberBlocks() {
90   validateBlockNumbers();
91 
92   NextBlockNum = 0;
93   for (auto &BB : *this)
94     BB.Number = NextBlockNum++;
95   BlockNumEpoch++;
96 }
97 
98 void Function::validateBlockNumbers() const {
99 #ifndef NDEBUG
100   BitVector Numbers(NextBlockNum);
101   for (const auto &BB : *this) {
102     unsigned Num = BB.getNumber();
103     assert(Num < NextBlockNum && "out of range block number");
104     assert(!Numbers[Num] && "duplicate block numbers");
105     Numbers.set(Num);
106   }
107 #endif
108 }
109 
110 void Function::convertToNewDbgValues() {
111   IsNewDbgInfoFormat = true;
112   for (auto &BB : *this) {
113     BB.convertToNewDbgValues();
114   }
115 }
116 
117 void Function::convertFromNewDbgValues() {
118   IsNewDbgInfoFormat = false;
119   for (auto &BB : *this) {
120     BB.convertFromNewDbgValues();
121   }
122 }
123 
124 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
125   if (NewFlag && !IsNewDbgInfoFormat)
126     convertToNewDbgValues();
127   else if (!NewFlag && IsNewDbgInfoFormat)
128     convertFromNewDbgValues();
129 }
130 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
131   for (auto &BB : *this) {
132     BB.setNewDbgInfoFormatFlag(NewFlag);
133   }
134   IsNewDbgInfoFormat = NewFlag;
135 }
136 
137 //===----------------------------------------------------------------------===//
138 // Argument Implementation
139 //===----------------------------------------------------------------------===//
140 
141 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
142     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
143   setName(Name);
144 }
145 
146 void Argument::setParent(Function *parent) {
147   Parent = parent;
148 }
149 
150 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
151   if (!getType()->isPointerTy()) return false;
152   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
153       (AllowUndefOrPoison ||
154        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
155     return true;
156   else if (getDereferenceableBytes() > 0 &&
157            !NullPointerIsDefined(getParent(),
158                                  getType()->getPointerAddressSpace()))
159     return true;
160   return false;
161 }
162 
163 bool Argument::hasByValAttr() const {
164   if (!getType()->isPointerTy()) return false;
165   return hasAttribute(Attribute::ByVal);
166 }
167 
168 bool Argument::hasByRefAttr() const {
169   if (!getType()->isPointerTy())
170     return false;
171   return hasAttribute(Attribute::ByRef);
172 }
173 
174 bool Argument::hasSwiftSelfAttr() const {
175   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
176 }
177 
178 bool Argument::hasSwiftErrorAttr() const {
179   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
180 }
181 
182 bool Argument::hasInAllocaAttr() const {
183   if (!getType()->isPointerTy()) return false;
184   return hasAttribute(Attribute::InAlloca);
185 }
186 
187 bool Argument::hasPreallocatedAttr() const {
188   if (!getType()->isPointerTy())
189     return false;
190   return hasAttribute(Attribute::Preallocated);
191 }
192 
193 bool Argument::hasPassPointeeByValueCopyAttr() const {
194   if (!getType()->isPointerTy()) return false;
195   AttributeList Attrs = getParent()->getAttributes();
196   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
197          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
198          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
199 }
200 
201 bool Argument::hasPointeeInMemoryValueAttr() const {
202   if (!getType()->isPointerTy())
203     return false;
204   AttributeList Attrs = getParent()->getAttributes();
205   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
206          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
207          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
208          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
209          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
210 }
211 
212 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
213 /// parameter type.
214 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
215   // FIXME: All the type carrying attributes are mutually exclusive, so there
216   // should be a single query to get the stored type that handles any of them.
217   if (Type *ByValTy = ParamAttrs.getByValType())
218     return ByValTy;
219   if (Type *ByRefTy = ParamAttrs.getByRefType())
220     return ByRefTy;
221   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
222     return PreAllocTy;
223   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
224     return InAllocaTy;
225   if (Type *SRetTy = ParamAttrs.getStructRetType())
226     return SRetTy;
227 
228   return nullptr;
229 }
230 
231 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
232   AttributeSet ParamAttrs =
233       getParent()->getAttributes().getParamAttrs(getArgNo());
234   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
235     return DL.getTypeAllocSize(MemTy);
236   return 0;
237 }
238 
239 Type *Argument::getPointeeInMemoryValueType() const {
240   AttributeSet ParamAttrs =
241       getParent()->getAttributes().getParamAttrs(getArgNo());
242   return getMemoryParamAllocType(ParamAttrs);
243 }
244 
245 MaybeAlign Argument::getParamAlign() const {
246   assert(getType()->isPointerTy() && "Only pointers have alignments");
247   return getParent()->getParamAlign(getArgNo());
248 }
249 
250 MaybeAlign Argument::getParamStackAlign() const {
251   return getParent()->getParamStackAlign(getArgNo());
252 }
253 
254 Type *Argument::getParamByValType() const {
255   assert(getType()->isPointerTy() && "Only pointers have byval types");
256   return getParent()->getParamByValType(getArgNo());
257 }
258 
259 Type *Argument::getParamStructRetType() const {
260   assert(getType()->isPointerTy() && "Only pointers have sret types");
261   return getParent()->getParamStructRetType(getArgNo());
262 }
263 
264 Type *Argument::getParamByRefType() const {
265   assert(getType()->isPointerTy() && "Only pointers have byref types");
266   return getParent()->getParamByRefType(getArgNo());
267 }
268 
269 Type *Argument::getParamInAllocaType() const {
270   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
271   return getParent()->getParamInAllocaType(getArgNo());
272 }
273 
274 uint64_t Argument::getDereferenceableBytes() const {
275   assert(getType()->isPointerTy() &&
276          "Only pointers have dereferenceable bytes");
277   return getParent()->getParamDereferenceableBytes(getArgNo());
278 }
279 
280 uint64_t Argument::getDereferenceableOrNullBytes() const {
281   assert(getType()->isPointerTy() &&
282          "Only pointers have dereferenceable bytes");
283   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
284 }
285 
286 FPClassTest Argument::getNoFPClass() const {
287   return getParent()->getParamNoFPClass(getArgNo());
288 }
289 
290 std::optional<ConstantRange> Argument::getRange() const {
291   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
292   if (RangeAttr.isValid())
293     return RangeAttr.getRange();
294   return std::nullopt;
295 }
296 
297 bool Argument::hasNestAttr() const {
298   if (!getType()->isPointerTy()) return false;
299   return hasAttribute(Attribute::Nest);
300 }
301 
302 bool Argument::hasNoAliasAttr() const {
303   if (!getType()->isPointerTy()) return false;
304   return hasAttribute(Attribute::NoAlias);
305 }
306 
307 bool Argument::hasNoCaptureAttr() const {
308   if (!getType()->isPointerTy()) return false;
309   return hasAttribute(Attribute::NoCapture);
310 }
311 
312 bool Argument::hasNoFreeAttr() const {
313   if (!getType()->isPointerTy()) return false;
314   return hasAttribute(Attribute::NoFree);
315 }
316 
317 bool Argument::hasStructRetAttr() const {
318   if (!getType()->isPointerTy()) return false;
319   return hasAttribute(Attribute::StructRet);
320 }
321 
322 bool Argument::hasInRegAttr() const {
323   return hasAttribute(Attribute::InReg);
324 }
325 
326 bool Argument::hasReturnedAttr() const {
327   return hasAttribute(Attribute::Returned);
328 }
329 
330 bool Argument::hasZExtAttr() const {
331   return hasAttribute(Attribute::ZExt);
332 }
333 
334 bool Argument::hasSExtAttr() const {
335   return hasAttribute(Attribute::SExt);
336 }
337 
338 bool Argument::onlyReadsMemory() const {
339   AttributeList Attrs = getParent()->getAttributes();
340   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
341          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
342 }
343 
344 void Argument::addAttrs(AttrBuilder &B) {
345   AttributeList AL = getParent()->getAttributes();
346   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
347   getParent()->setAttributes(AL);
348 }
349 
350 void Argument::addAttr(Attribute::AttrKind Kind) {
351   getParent()->addParamAttr(getArgNo(), Kind);
352 }
353 
354 void Argument::addAttr(Attribute Attr) {
355   getParent()->addParamAttr(getArgNo(), Attr);
356 }
357 
358 void Argument::removeAttr(Attribute::AttrKind Kind) {
359   getParent()->removeParamAttr(getArgNo(), Kind);
360 }
361 
362 void Argument::removeAttrs(const AttributeMask &AM) {
363   AttributeList AL = getParent()->getAttributes();
364   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
365   getParent()->setAttributes(AL);
366 }
367 
368 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
369   return getParent()->hasParamAttribute(getArgNo(), Kind);
370 }
371 
372 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
373   return getParent()->getParamAttribute(getArgNo(), Kind);
374 }
375 
376 //===----------------------------------------------------------------------===//
377 // Helper Methods in Function
378 //===----------------------------------------------------------------------===//
379 
380 LLVMContext &Function::getContext() const {
381   return getType()->getContext();
382 }
383 
384 const DataLayout &Function::getDataLayout() const {
385   return getParent()->getDataLayout();
386 }
387 
388 unsigned Function::getInstructionCount() const {
389   unsigned NumInstrs = 0;
390   for (const BasicBlock &BB : BasicBlocks)
391     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
392                                BB.instructionsWithoutDebug().end());
393   return NumInstrs;
394 }
395 
396 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
397                            const Twine &N, Module &M) {
398   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
399 }
400 
401 Function *Function::createWithDefaultAttr(FunctionType *Ty,
402                                           LinkageTypes Linkage,
403                                           unsigned AddrSpace, const Twine &N,
404                                           Module *M) {
405   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
406   AttrBuilder B(F->getContext());
407   UWTableKind UWTable = M->getUwtable();
408   if (UWTable != UWTableKind::None)
409     B.addUWTableAttr(UWTable);
410   switch (M->getFramePointer()) {
411   case FramePointerKind::None:
412     // 0 ("none") is the default.
413     break;
414   case FramePointerKind::Reserved:
415     B.addAttribute("frame-pointer", "reserved");
416     break;
417   case FramePointerKind::NonLeaf:
418     B.addAttribute("frame-pointer", "non-leaf");
419     break;
420   case FramePointerKind::All:
421     B.addAttribute("frame-pointer", "all");
422     break;
423   }
424   if (M->getModuleFlag("function_return_thunk_extern"))
425     B.addAttribute(Attribute::FnRetThunkExtern);
426   StringRef DefaultCPU = F->getContext().getDefaultTargetCPU();
427   if (!DefaultCPU.empty())
428     B.addAttribute("target-cpu", DefaultCPU);
429   StringRef DefaultFeatures = F->getContext().getDefaultTargetFeatures();
430   if (!DefaultFeatures.empty())
431     B.addAttribute("target-features", DefaultFeatures);
432 
433   // Check if the module attribute is present and not zero.
434   auto isModuleAttributeSet = [&](const StringRef &ModAttr) -> bool {
435     const auto *Attr =
436         mdconst::extract_or_null<ConstantInt>(M->getModuleFlag(ModAttr));
437     return Attr && !Attr->isZero();
438   };
439 
440   auto AddAttributeIfSet = [&](const StringRef &ModAttr) {
441     if (isModuleAttributeSet(ModAttr))
442       B.addAttribute(ModAttr);
443   };
444 
445   StringRef SignType = "none";
446   if (isModuleAttributeSet("sign-return-address"))
447     SignType = "non-leaf";
448   if (isModuleAttributeSet("sign-return-address-all"))
449     SignType = "all";
450   if (SignType != "none") {
451     B.addAttribute("sign-return-address", SignType);
452     B.addAttribute("sign-return-address-key",
453                    isModuleAttributeSet("sign-return-address-with-bkey")
454                        ? "b_key"
455                        : "a_key");
456   }
457   AddAttributeIfSet("branch-target-enforcement");
458   AddAttributeIfSet("branch-protection-pauth-lr");
459   AddAttributeIfSet("guarded-control-stack");
460 
461   F->addFnAttrs(B);
462   return F;
463 }
464 
465 void Function::removeFromParent() {
466   getParent()->getFunctionList().remove(getIterator());
467 }
468 
469 void Function::eraseFromParent() {
470   getParent()->getFunctionList().erase(getIterator());
471 }
472 
473 void Function::splice(Function::iterator ToIt, Function *FromF,
474                       Function::iterator FromBeginIt,
475                       Function::iterator FromEndIt) {
476 #ifdef EXPENSIVE_CHECKS
477   // Check that FromBeginIt is before FromEndIt.
478   auto FromFEnd = FromF->end();
479   for (auto It = FromBeginIt; It != FromEndIt; ++It)
480     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
481 #endif // EXPENSIVE_CHECKS
482   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
483 }
484 
485 Function::iterator Function::erase(Function::iterator FromIt,
486                                    Function::iterator ToIt) {
487   return BasicBlocks.erase(FromIt, ToIt);
488 }
489 
490 //===----------------------------------------------------------------------===//
491 // Function Implementation
492 //===----------------------------------------------------------------------===//
493 
494 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
495   // If AS == -1 and we are passed a valid module pointer we place the function
496   // in the program address space. Otherwise we default to AS0.
497   if (AddrSpace == static_cast<unsigned>(-1))
498     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
499   return AddrSpace;
500 }
501 
502 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
503                    const Twine &name, Module *ParentModule)
504     : GlobalObject(Ty, Value::FunctionVal,
505                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
506                    computeAddrSpace(AddrSpace, ParentModule)),
507       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) {
508   assert(FunctionType::isValidReturnType(getReturnType()) &&
509          "invalid return type");
510   setGlobalObjectSubClassData(0);
511 
512   // We only need a symbol table for a function if the context keeps value names
513   if (!getContext().shouldDiscardValueNames())
514     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
515 
516   // If the function has arguments, mark them as lazily built.
517   if (Ty->getNumParams())
518     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
519 
520   if (ParentModule) {
521     ParentModule->getFunctionList().push_back(this);
522     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
523   }
524 
525   HasLLVMReservedName = getName().starts_with("llvm.");
526   // Ensure intrinsics have the right parameter attributes.
527   // Note, the IntID field will have been set in Value::setName if this function
528   // name is a valid intrinsic ID.
529   if (IntID)
530     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
531 }
532 
533 Function::~Function() {
534   validateBlockNumbers();
535 
536   dropAllReferences();    // After this it is safe to delete instructions.
537 
538   // Delete all of the method arguments and unlink from symbol table...
539   if (Arguments)
540     clearArguments();
541 
542   // Remove the function from the on-the-side GC table.
543   clearGC();
544 }
545 
546 void Function::BuildLazyArguments() const {
547   // Create the arguments vector, all arguments start out unnamed.
548   auto *FT = getFunctionType();
549   if (NumArgs > 0) {
550     Arguments = std::allocator<Argument>().allocate(NumArgs);
551     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
552       Type *ArgTy = FT->getParamType(i);
553       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
554       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
555     }
556   }
557 
558   // Clear the lazy arguments bit.
559   unsigned SDC = getSubclassDataFromValue();
560   SDC &= ~(1 << 0);
561   const_cast<Function*>(this)->setValueSubclassData(SDC);
562   assert(!hasLazyArguments());
563 }
564 
565 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
566   return MutableArrayRef<Argument>(Args, Count);
567 }
568 
569 bool Function::isConstrainedFPIntrinsic() const {
570   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
571 }
572 
573 void Function::clearArguments() {
574   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
575     A.setName("");
576     A.~Argument();
577   }
578   std::allocator<Argument>().deallocate(Arguments, NumArgs);
579   Arguments = nullptr;
580 }
581 
582 void Function::stealArgumentListFrom(Function &Src) {
583   assert(isDeclaration() && "Expected no references to current arguments");
584 
585   // Drop the current arguments, if any, and set the lazy argument bit.
586   if (!hasLazyArguments()) {
587     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
588                         [](const Argument &A) { return A.use_empty(); }) &&
589            "Expected arguments to be unused in declaration");
590     clearArguments();
591     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
592   }
593 
594   // Nothing to steal if Src has lazy arguments.
595   if (Src.hasLazyArguments())
596     return;
597 
598   // Steal arguments from Src, and fix the lazy argument bits.
599   assert(arg_size() == Src.arg_size());
600   Arguments = Src.Arguments;
601   Src.Arguments = nullptr;
602   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
603     // FIXME: This does the work of transferNodesFromList inefficiently.
604     SmallString<128> Name;
605     if (A.hasName())
606       Name = A.getName();
607     if (!Name.empty())
608       A.setName("");
609     A.setParent(this);
610     if (!Name.empty())
611       A.setName(Name);
612   }
613 
614   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
615   assert(!hasLazyArguments());
616   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
617 }
618 
619 void Function::deleteBodyImpl(bool ShouldDrop) {
620   setIsMaterializable(false);
621 
622   for (BasicBlock &BB : *this)
623     BB.dropAllReferences();
624 
625   // Delete all basic blocks. They are now unused, except possibly by
626   // blockaddresses, but BasicBlock's destructor takes care of those.
627   while (!BasicBlocks.empty())
628     BasicBlocks.begin()->eraseFromParent();
629 
630   if (getNumOperands()) {
631     if (ShouldDrop) {
632       // Drop uses of any optional data (real or placeholder).
633       User::dropAllReferences();
634       setNumHungOffUseOperands(0);
635     } else {
636       // The code needs to match Function::allocHungoffUselist().
637       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
638       Op<0>().set(CPN);
639       Op<1>().set(CPN);
640       Op<2>().set(CPN);
641     }
642     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
643   }
644 
645   // Metadata is stored in a side-table.
646   clearMetadata();
647 }
648 
649 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
650   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
651 }
652 
653 void Function::addFnAttr(Attribute::AttrKind Kind) {
654   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
655 }
656 
657 void Function::addFnAttr(StringRef Kind, StringRef Val) {
658   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
659 }
660 
661 void Function::addFnAttr(Attribute Attr) {
662   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
663 }
664 
665 void Function::addFnAttrs(const AttrBuilder &Attrs) {
666   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
667 }
668 
669 void Function::addRetAttr(Attribute::AttrKind Kind) {
670   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
671 }
672 
673 void Function::addRetAttr(Attribute Attr) {
674   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
675 }
676 
677 void Function::addRetAttrs(const AttrBuilder &Attrs) {
678   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
679 }
680 
681 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
682   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
683 }
684 
685 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
686   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
687 }
688 
689 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
690   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
691 }
692 
693 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
694   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
695 }
696 
697 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
698   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
699 }
700 
701 void Function::removeFnAttr(Attribute::AttrKind Kind) {
702   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
703 }
704 
705 void Function::removeFnAttr(StringRef Kind) {
706   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
707 }
708 
709 void Function::removeFnAttrs(const AttributeMask &AM) {
710   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
711 }
712 
713 void Function::removeRetAttr(Attribute::AttrKind Kind) {
714   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
715 }
716 
717 void Function::removeRetAttr(StringRef Kind) {
718   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
719 }
720 
721 void Function::removeRetAttrs(const AttributeMask &Attrs) {
722   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
723 }
724 
725 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
726   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
727 }
728 
729 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
730   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
731 }
732 
733 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
734   AttributeSets =
735       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
736 }
737 
738 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
739   AttributeSets =
740       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
741 }
742 
743 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
744   return AttributeSets.hasFnAttr(Kind);
745 }
746 
747 bool Function::hasFnAttribute(StringRef Kind) const {
748   return AttributeSets.hasFnAttr(Kind);
749 }
750 
751 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
752   return AttributeSets.hasRetAttr(Kind);
753 }
754 
755 bool Function::hasParamAttribute(unsigned ArgNo,
756                                  Attribute::AttrKind Kind) const {
757   return AttributeSets.hasParamAttr(ArgNo, Kind);
758 }
759 
760 Attribute Function::getAttributeAtIndex(unsigned i,
761                                         Attribute::AttrKind Kind) const {
762   return AttributeSets.getAttributeAtIndex(i, Kind);
763 }
764 
765 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
766   return AttributeSets.getAttributeAtIndex(i, Kind);
767 }
768 
769 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
770   return AttributeSets.getFnAttr(Kind);
771 }
772 
773 Attribute Function::getFnAttribute(StringRef Kind) const {
774   return AttributeSets.getFnAttr(Kind);
775 }
776 
777 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
778   return AttributeSets.getRetAttr(Kind);
779 }
780 
781 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
782                                                  uint64_t Default) const {
783   Attribute A = getFnAttribute(Name);
784   uint64_t Result = Default;
785   if (A.isStringAttribute()) {
786     StringRef Str = A.getValueAsString();
787     if (Str.getAsInteger(0, Result))
788       getContext().emitError("cannot parse integer attribute " + Name);
789   }
790 
791   return Result;
792 }
793 
794 /// gets the specified attribute from the list of attributes.
795 Attribute Function::getParamAttribute(unsigned ArgNo,
796                                       Attribute::AttrKind Kind) const {
797   return AttributeSets.getParamAttr(ArgNo, Kind);
798 }
799 
800 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
801                                                  uint64_t Bytes) {
802   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
803                                                                   ArgNo, Bytes);
804 }
805 
806 void Function::addRangeRetAttr(const ConstantRange &CR) {
807   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
808 }
809 
810 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
811   if (&FPType == &APFloat::IEEEsingle()) {
812     DenormalMode Mode = getDenormalModeF32Raw();
813     // If the f32 variant of the attribute isn't specified, try to use the
814     // generic one.
815     if (Mode.isValid())
816       return Mode;
817   }
818 
819   return getDenormalModeRaw();
820 }
821 
822 DenormalMode Function::getDenormalModeRaw() const {
823   Attribute Attr = getFnAttribute("denormal-fp-math");
824   StringRef Val = Attr.getValueAsString();
825   return parseDenormalFPAttribute(Val);
826 }
827 
828 DenormalMode Function::getDenormalModeF32Raw() const {
829   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
830   if (Attr.isValid()) {
831     StringRef Val = Attr.getValueAsString();
832     return parseDenormalFPAttribute(Val);
833   }
834 
835   return DenormalMode::getInvalid();
836 }
837 
838 const std::string &Function::getGC() const {
839   assert(hasGC() && "Function has no collector");
840   return getContext().getGC(*this);
841 }
842 
843 void Function::setGC(std::string Str) {
844   setValueSubclassDataBit(14, !Str.empty());
845   getContext().setGC(*this, std::move(Str));
846 }
847 
848 void Function::clearGC() {
849   if (!hasGC())
850     return;
851   getContext().deleteGC(*this);
852   setValueSubclassDataBit(14, false);
853 }
854 
855 bool Function::hasStackProtectorFnAttr() const {
856   return hasFnAttribute(Attribute::StackProtect) ||
857          hasFnAttribute(Attribute::StackProtectStrong) ||
858          hasFnAttribute(Attribute::StackProtectReq);
859 }
860 
861 /// Copy all additional attributes (those not needed to create a Function) from
862 /// the Function Src to this one.
863 void Function::copyAttributesFrom(const Function *Src) {
864   GlobalObject::copyAttributesFrom(Src);
865   setCallingConv(Src->getCallingConv());
866   setAttributes(Src->getAttributes());
867   if (Src->hasGC())
868     setGC(Src->getGC());
869   else
870     clearGC();
871   if (Src->hasPersonalityFn())
872     setPersonalityFn(Src->getPersonalityFn());
873   if (Src->hasPrefixData())
874     setPrefixData(Src->getPrefixData());
875   if (Src->hasPrologueData())
876     setPrologueData(Src->getPrologueData());
877 }
878 
879 MemoryEffects Function::getMemoryEffects() const {
880   return getAttributes().getMemoryEffects();
881 }
882 void Function::setMemoryEffects(MemoryEffects ME) {
883   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
884 }
885 
886 /// Determine if the function does not access memory.
887 bool Function::doesNotAccessMemory() const {
888   return getMemoryEffects().doesNotAccessMemory();
889 }
890 void Function::setDoesNotAccessMemory() {
891   setMemoryEffects(MemoryEffects::none());
892 }
893 
894 /// Determine if the function does not access or only reads memory.
895 bool Function::onlyReadsMemory() const {
896   return getMemoryEffects().onlyReadsMemory();
897 }
898 void Function::setOnlyReadsMemory() {
899   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
900 }
901 
902 /// Determine if the function does not access or only writes memory.
903 bool Function::onlyWritesMemory() const {
904   return getMemoryEffects().onlyWritesMemory();
905 }
906 void Function::setOnlyWritesMemory() {
907   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
908 }
909 
910 /// Determine if the call can access memmory only using pointers based
911 /// on its arguments.
912 bool Function::onlyAccessesArgMemory() const {
913   return getMemoryEffects().onlyAccessesArgPointees();
914 }
915 void Function::setOnlyAccessesArgMemory() {
916   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
917 }
918 
919 /// Determine if the function may only access memory that is
920 ///  inaccessible from the IR.
921 bool Function::onlyAccessesInaccessibleMemory() const {
922   return getMemoryEffects().onlyAccessesInaccessibleMem();
923 }
924 void Function::setOnlyAccessesInaccessibleMemory() {
925   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
926 }
927 
928 /// Determine if the function may only access memory that is
929 ///  either inaccessible from the IR or pointed to by its arguments.
930 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
931   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
932 }
933 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
934   setMemoryEffects(getMemoryEffects() &
935                    MemoryEffects::inaccessibleOrArgMemOnly());
936 }
937 
938 /// Table of string intrinsic names indexed by enum value.
939 static const char * const IntrinsicNameTable[] = {
940   "not_intrinsic",
941 #define GET_INTRINSIC_NAME_TABLE
942 #include "llvm/IR/IntrinsicImpl.inc"
943 #undef GET_INTRINSIC_NAME_TABLE
944 };
945 
946 /// Table of per-target intrinsic name tables.
947 #define GET_INTRINSIC_TARGET_DATA
948 #include "llvm/IR/IntrinsicImpl.inc"
949 #undef GET_INTRINSIC_TARGET_DATA
950 
951 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
952   return IID > TargetInfos[0].Count;
953 }
954 
955 bool Function::isTargetIntrinsic() const {
956   return isTargetIntrinsic(IntID);
957 }
958 
959 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
960 /// target as \c Name, or the generic table if \c Name is not target specific.
961 ///
962 /// Returns the relevant slice of \c IntrinsicNameTable
963 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
964   assert(Name.starts_with("llvm."));
965 
966   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
967   // Drop "llvm." and take the first dotted component. That will be the target
968   // if this is target specific.
969   StringRef Target = Name.drop_front(5).split('.').first;
970   auto It = partition_point(
971       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
972   // We've either found the target or just fall back to the generic set, which
973   // is always first.
974   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
975   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
976 }
977 
978 /// This does the actual lookup of an intrinsic ID which
979 /// matches the given function name.
980 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
981   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
982   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
983   if (Idx == -1)
984     return Intrinsic::not_intrinsic;
985 
986   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
987   // an index into a sub-table.
988   int Adjust = NameTable.data() - IntrinsicNameTable;
989   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
990 
991   // If the intrinsic is not overloaded, require an exact match. If it is
992   // overloaded, require either exact or prefix match.
993   const auto MatchSize = strlen(NameTable[Idx]);
994   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
995   bool IsExactMatch = Name.size() == MatchSize;
996   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
997                                                      : Intrinsic::not_intrinsic;
998 }
999 
1000 void Function::updateAfterNameChange() {
1001   LibFuncCache = UnknownLibFunc;
1002   StringRef Name = getName();
1003   if (!Name.starts_with("llvm.")) {
1004     HasLLVMReservedName = false;
1005     IntID = Intrinsic::not_intrinsic;
1006     return;
1007   }
1008   HasLLVMReservedName = true;
1009   IntID = lookupIntrinsicID(Name);
1010 }
1011 
1012 /// Returns a stable mangling for the type specified for use in the name
1013 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
1014 /// of named types is simply their name.  Manglings for unnamed types consist
1015 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
1016 /// combined with the mangling of their component types.  A vararg function
1017 /// type will have a suffix of 'vararg'.  Since function types can contain
1018 /// other function types, we close a function type mangling with suffix 'f'
1019 /// which can't be confused with it's prefix.  This ensures we don't have
1020 /// collisions between two unrelated function types. Otherwise, you might
1021 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
1022 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
1023 /// indicating that extra care must be taken to ensure a unique name.
1024 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
1025   std::string Result;
1026   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
1027     Result += "p" + utostr(PTyp->getAddressSpace());
1028   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
1029     Result += "a" + utostr(ATyp->getNumElements()) +
1030               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
1031   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
1032     if (!STyp->isLiteral()) {
1033       Result += "s_";
1034       if (STyp->hasName())
1035         Result += STyp->getName();
1036       else
1037         HasUnnamedType = true;
1038     } else {
1039       Result += "sl_";
1040       for (auto *Elem : STyp->elements())
1041         Result += getMangledTypeStr(Elem, HasUnnamedType);
1042     }
1043     // Ensure nested structs are distinguishable.
1044     Result += "s";
1045   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
1046     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
1047     for (size_t i = 0; i < FT->getNumParams(); i++)
1048       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
1049     if (FT->isVarArg())
1050       Result += "vararg";
1051     // Ensure nested function types are distinguishable.
1052     Result += "f";
1053   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1054     ElementCount EC = VTy->getElementCount();
1055     if (EC.isScalable())
1056       Result += "nx";
1057     Result += "v" + utostr(EC.getKnownMinValue()) +
1058               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
1059   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
1060     Result += "t";
1061     Result += TETy->getName();
1062     for (Type *ParamTy : TETy->type_params())
1063       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
1064     for (unsigned IntParam : TETy->int_params())
1065       Result += "_" + utostr(IntParam);
1066     // Ensure nested target extension types are distinguishable.
1067     Result += "t";
1068   } else if (Ty) {
1069     switch (Ty->getTypeID()) {
1070     default: llvm_unreachable("Unhandled type");
1071     case Type::VoidTyID:      Result += "isVoid";   break;
1072     case Type::MetadataTyID:  Result += "Metadata"; break;
1073     case Type::HalfTyID:      Result += "f16";      break;
1074     case Type::BFloatTyID:    Result += "bf16";     break;
1075     case Type::FloatTyID:     Result += "f32";      break;
1076     case Type::DoubleTyID:    Result += "f64";      break;
1077     case Type::X86_FP80TyID:  Result += "f80";      break;
1078     case Type::FP128TyID:     Result += "f128";     break;
1079     case Type::PPC_FP128TyID:
1080       Result += "ppcf128";
1081       break;
1082     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1083     case Type::IntegerTyID:
1084       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1085       break;
1086     }
1087   }
1088   return Result;
1089 }
1090 
1091 StringRef Intrinsic::getBaseName(ID id) {
1092   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1093   return IntrinsicNameTable[id];
1094 }
1095 
1096 StringRef Intrinsic::getName(ID id) {
1097   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1098   assert(!Intrinsic::isOverloaded(id) &&
1099          "This version of getName does not support overloading");
1100   return getBaseName(id);
1101 }
1102 
1103 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1104                                         Module *M, FunctionType *FT,
1105                                         bool EarlyModuleCheck) {
1106 
1107   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1108   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1109          "This version of getName is for overloaded intrinsics only");
1110   (void)EarlyModuleCheck;
1111   assert((!EarlyModuleCheck || M ||
1112           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1113          "Intrinsic overloading on pointer types need to provide a Module");
1114   bool HasUnnamedType = false;
1115   std::string Result(Intrinsic::getBaseName(Id));
1116   for (Type *Ty : Tys)
1117     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1118   if (HasUnnamedType) {
1119     assert(M && "unnamed types need a module");
1120     if (!FT)
1121       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1122     else
1123       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1124              "Provided FunctionType must match arguments");
1125     return M->getUniqueIntrinsicName(Result, Id, FT);
1126   }
1127   return Result;
1128 }
1129 
1130 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1131                                FunctionType *FT) {
1132   assert(M && "We need to have a Module");
1133   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1134 }
1135 
1136 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1137   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1138 }
1139 
1140 /// IIT_Info - These are enumerators that describe the entries returned by the
1141 /// getIntrinsicInfoTableEntries function.
1142 ///
1143 /// Defined in Intrinsics.td.
1144 enum IIT_Info {
1145 #define GET_INTRINSIC_IITINFO
1146 #include "llvm/IR/IntrinsicImpl.inc"
1147 #undef GET_INTRINSIC_IITINFO
1148 };
1149 
1150 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1151                       IIT_Info LastInfo,
1152                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1153   using namespace Intrinsic;
1154 
1155   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1156 
1157   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1158   unsigned StructElts = 2;
1159 
1160   switch (Info) {
1161   case IIT_Done:
1162     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1163     return;
1164   case IIT_VARARG:
1165     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1166     return;
1167   case IIT_MMX:
1168     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1169     return;
1170   case IIT_AMX:
1171     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1172     return;
1173   case IIT_TOKEN:
1174     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1175     return;
1176   case IIT_METADATA:
1177     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1178     return;
1179   case IIT_F16:
1180     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1181     return;
1182   case IIT_BF16:
1183     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1184     return;
1185   case IIT_F32:
1186     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1187     return;
1188   case IIT_F64:
1189     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1190     return;
1191   case IIT_F128:
1192     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1193     return;
1194   case IIT_PPCF128:
1195     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1196     return;
1197   case IIT_I1:
1198     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1199     return;
1200   case IIT_I2:
1201     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1202     return;
1203   case IIT_I4:
1204     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1205     return;
1206   case IIT_AARCH64_SVCOUNT:
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1208     return;
1209   case IIT_I8:
1210     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1211     return;
1212   case IIT_I16:
1213     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1214     return;
1215   case IIT_I32:
1216     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1217     return;
1218   case IIT_I64:
1219     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1220     return;
1221   case IIT_I128:
1222     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1223     return;
1224   case IIT_V1:
1225     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1226     DecodeIITType(NextElt, Infos, Info, OutputTable);
1227     return;
1228   case IIT_V2:
1229     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1230     DecodeIITType(NextElt, Infos, Info, OutputTable);
1231     return;
1232   case IIT_V3:
1233     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1234     DecodeIITType(NextElt, Infos, Info, OutputTable);
1235     return;
1236   case IIT_V4:
1237     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1238     DecodeIITType(NextElt, Infos, Info, OutputTable);
1239     return;
1240   case IIT_V6:
1241     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1242     DecodeIITType(NextElt, Infos, Info, OutputTable);
1243     return;
1244   case IIT_V8:
1245     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1246     DecodeIITType(NextElt, Infos, Info, OutputTable);
1247     return;
1248   case IIT_V10:
1249     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1250     DecodeIITType(NextElt, Infos, Info, OutputTable);
1251     return;
1252   case IIT_V16:
1253     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1254     DecodeIITType(NextElt, Infos, Info, OutputTable);
1255     return;
1256   case IIT_V32:
1257     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1258     DecodeIITType(NextElt, Infos, Info, OutputTable);
1259     return;
1260   case IIT_V64:
1261     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1262     DecodeIITType(NextElt, Infos, Info, OutputTable);
1263     return;
1264   case IIT_V128:
1265     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1266     DecodeIITType(NextElt, Infos, Info, OutputTable);
1267     return;
1268   case IIT_V256:
1269     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1270     DecodeIITType(NextElt, Infos, Info, OutputTable);
1271     return;
1272   case IIT_V512:
1273     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1274     DecodeIITType(NextElt, Infos, Info, OutputTable);
1275     return;
1276   case IIT_V1024:
1277     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1278     DecodeIITType(NextElt, Infos, Info, OutputTable);
1279     return;
1280   case IIT_EXTERNREF:
1281     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1282     return;
1283   case IIT_FUNCREF:
1284     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1285     return;
1286   case IIT_PTR:
1287     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1288     return;
1289   case IIT_ANYPTR: // [ANYPTR addrspace]
1290     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1291                                              Infos[NextElt++]));
1292     return;
1293   case IIT_ARG: {
1294     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1295     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1296     return;
1297   }
1298   case IIT_EXTEND_ARG: {
1299     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1300     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1301                                              ArgInfo));
1302     return;
1303   }
1304   case IIT_TRUNC_ARG: {
1305     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1306     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1307                                              ArgInfo));
1308     return;
1309   }
1310   case IIT_HALF_VEC_ARG: {
1311     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1312     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1313                                              ArgInfo));
1314     return;
1315   }
1316   case IIT_SAME_VEC_WIDTH_ARG: {
1317     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1318     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1319                                              ArgInfo));
1320     return;
1321   }
1322   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1323     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1324     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1325     OutputTable.push_back(
1326         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1327     return;
1328   }
1329   case IIT_EMPTYSTRUCT:
1330     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1331     return;
1332   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1333   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1334   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1335   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1336   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1337   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1338   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1339   case IIT_STRUCT2: {
1340     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1341 
1342     for (unsigned i = 0; i != StructElts; ++i)
1343       DecodeIITType(NextElt, Infos, Info, OutputTable);
1344     return;
1345   }
1346   case IIT_SUBDIVIDE2_ARG: {
1347     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1348     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1349                                              ArgInfo));
1350     return;
1351   }
1352   case IIT_SUBDIVIDE4_ARG: {
1353     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1354     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1355                                              ArgInfo));
1356     return;
1357   }
1358   case IIT_VEC_ELEMENT: {
1359     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1360     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1361                                              ArgInfo));
1362     return;
1363   }
1364   case IIT_SCALABLE_VEC: {
1365     DecodeIITType(NextElt, Infos, Info, OutputTable);
1366     return;
1367   }
1368   case IIT_VEC_OF_BITCASTS_TO_INT: {
1369     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1370     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1371                                              ArgInfo));
1372     return;
1373   }
1374   }
1375   llvm_unreachable("unhandled");
1376 }
1377 
1378 #define GET_INTRINSIC_GENERATOR_GLOBAL
1379 #include "llvm/IR/IntrinsicImpl.inc"
1380 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1381 
1382 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1383                                              SmallVectorImpl<IITDescriptor> &T){
1384   static_assert(sizeof(IIT_Table[0]) == 2,
1385                 "Expect 16-bit entries in IIT_Table");
1386   // Check to see if the intrinsic's type was expressible by the table.
1387   uint16_t TableVal = IIT_Table[id - 1];
1388 
1389   // Decode the TableVal into an array of IITValues.
1390   SmallVector<unsigned char> IITValues;
1391   ArrayRef<unsigned char> IITEntries;
1392   unsigned NextElt = 0;
1393   if (TableVal >> 15) {
1394     // This is an offset into the IIT_LongEncodingTable.
1395     IITEntries = IIT_LongEncodingTable;
1396 
1397     // Strip sentinel bit.
1398     NextElt = TableVal & 0x7fff;
1399   } else {
1400     // If the entry was encoded into a single word in the table itself, decode
1401     // it from an array of nibbles to an array of bytes.
1402     do {
1403       IITValues.push_back(TableVal & 0xF);
1404       TableVal >>= 4;
1405     } while (TableVal);
1406 
1407     IITEntries = IITValues;
1408     NextElt = 0;
1409   }
1410 
1411   // Okay, decode the table into the output vector of IITDescriptors.
1412   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1413   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1414     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1415 }
1416 
1417 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1418                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1419   using namespace Intrinsic;
1420 
1421   IITDescriptor D = Infos.front();
1422   Infos = Infos.slice(1);
1423 
1424   switch (D.Kind) {
1425   case IITDescriptor::Void: return Type::getVoidTy(Context);
1426   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1427   case IITDescriptor::MMX:
1428     return llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
1429   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1430   case IITDescriptor::Token: return Type::getTokenTy(Context);
1431   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1432   case IITDescriptor::Half: return Type::getHalfTy(Context);
1433   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1434   case IITDescriptor::Float: return Type::getFloatTy(Context);
1435   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1436   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1437   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1438   case IITDescriptor::AArch64Svcount:
1439     return TargetExtType::get(Context, "aarch64.svcount");
1440 
1441   case IITDescriptor::Integer:
1442     return IntegerType::get(Context, D.Integer_Width);
1443   case IITDescriptor::Vector:
1444     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1445                            D.Vector_Width);
1446   case IITDescriptor::Pointer:
1447     return PointerType::get(Context, D.Pointer_AddressSpace);
1448   case IITDescriptor::Struct: {
1449     SmallVector<Type *, 8> Elts;
1450     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1451       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1452     return StructType::get(Context, Elts);
1453   }
1454   case IITDescriptor::Argument:
1455     return Tys[D.getArgumentNumber()];
1456   case IITDescriptor::ExtendArgument: {
1457     Type *Ty = Tys[D.getArgumentNumber()];
1458     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1459       return VectorType::getExtendedElementVectorType(VTy);
1460 
1461     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1462   }
1463   case IITDescriptor::TruncArgument: {
1464     Type *Ty = Tys[D.getArgumentNumber()];
1465     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1466       return VectorType::getTruncatedElementVectorType(VTy);
1467 
1468     IntegerType *ITy = cast<IntegerType>(Ty);
1469     assert(ITy->getBitWidth() % 2 == 0);
1470     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1471   }
1472   case IITDescriptor::Subdivide2Argument:
1473   case IITDescriptor::Subdivide4Argument: {
1474     Type *Ty = Tys[D.getArgumentNumber()];
1475     VectorType *VTy = dyn_cast<VectorType>(Ty);
1476     assert(VTy && "Expected an argument of Vector Type");
1477     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1478     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1479   }
1480   case IITDescriptor::HalfVecArgument:
1481     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1482                                                   Tys[D.getArgumentNumber()]));
1483   case IITDescriptor::SameVecWidthArgument: {
1484     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1485     Type *Ty = Tys[D.getArgumentNumber()];
1486     if (auto *VTy = dyn_cast<VectorType>(Ty))
1487       return VectorType::get(EltTy, VTy->getElementCount());
1488     return EltTy;
1489   }
1490   case IITDescriptor::VecElementArgument: {
1491     Type *Ty = Tys[D.getArgumentNumber()];
1492     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1493       return VTy->getElementType();
1494     llvm_unreachable("Expected an argument of Vector Type");
1495   }
1496   case IITDescriptor::VecOfBitcastsToInt: {
1497     Type *Ty = Tys[D.getArgumentNumber()];
1498     VectorType *VTy = dyn_cast<VectorType>(Ty);
1499     assert(VTy && "Expected an argument of Vector Type");
1500     return VectorType::getInteger(VTy);
1501   }
1502   case IITDescriptor::VecOfAnyPtrsToElt:
1503     // Return the overloaded type (which determines the pointers address space)
1504     return Tys[D.getOverloadArgNumber()];
1505   }
1506   llvm_unreachable("unhandled");
1507 }
1508 
1509 FunctionType *Intrinsic::getType(LLVMContext &Context,
1510                                  ID id, ArrayRef<Type*> Tys) {
1511   SmallVector<IITDescriptor, 8> Table;
1512   getIntrinsicInfoTableEntries(id, Table);
1513 
1514   ArrayRef<IITDescriptor> TableRef = Table;
1515   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1516 
1517   SmallVector<Type*, 8> ArgTys;
1518   while (!TableRef.empty())
1519     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1520 
1521   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1522   // If we see void type as the type of the last argument, it is vararg intrinsic
1523   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1524     ArgTys.pop_back();
1525     return FunctionType::get(ResultTy, ArgTys, true);
1526   }
1527   return FunctionType::get(ResultTy, ArgTys, false);
1528 }
1529 
1530 bool Intrinsic::isOverloaded(ID id) {
1531 #define GET_INTRINSIC_OVERLOAD_TABLE
1532 #include "llvm/IR/IntrinsicImpl.inc"
1533 #undef GET_INTRINSIC_OVERLOAD_TABLE
1534 }
1535 
1536 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1537 #define GET_INTRINSIC_ATTRIBUTES
1538 #include "llvm/IR/IntrinsicImpl.inc"
1539 #undef GET_INTRINSIC_ATTRIBUTES
1540 
1541 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1542   // There can never be multiple globals with the same name of different types,
1543   // because intrinsics must be a specific type.
1544   auto *FT = getType(M->getContext(), id, Tys);
1545   return cast<Function>(
1546       M->getOrInsertFunction(
1547            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1548           .getCallee());
1549 }
1550 
1551 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1552 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1553 #include "llvm/IR/IntrinsicImpl.inc"
1554 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1555 
1556 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1557 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1558 #include "llvm/IR/IntrinsicImpl.inc"
1559 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1560 
1561 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1562   switch (QID) {
1563 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1564   case Intrinsic::INTRINSIC:
1565 #include "llvm/IR/ConstrainedOps.def"
1566 #undef INSTRUCTION
1567     return true;
1568   default:
1569     return false;
1570   }
1571 }
1572 
1573 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
1574   switch (QID) {
1575 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1576   case Intrinsic::INTRINSIC:                                                   \
1577     return ROUND_MODE == 1;
1578 #include "llvm/IR/ConstrainedOps.def"
1579 #undef INSTRUCTION
1580   default:
1581     return false;
1582   }
1583 }
1584 
1585 using DeferredIntrinsicMatchPair =
1586     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1587 
1588 static bool matchIntrinsicType(
1589     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1590     SmallVectorImpl<Type *> &ArgTys,
1591     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1592     bool IsDeferredCheck) {
1593   using namespace Intrinsic;
1594 
1595   // If we ran out of descriptors, there are too many arguments.
1596   if (Infos.empty()) return true;
1597 
1598   // Do this before slicing off the 'front' part
1599   auto InfosRef = Infos;
1600   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1601     DeferredChecks.emplace_back(T, InfosRef);
1602     return false;
1603   };
1604 
1605   IITDescriptor D = Infos.front();
1606   Infos = Infos.slice(1);
1607 
1608   switch (D.Kind) {
1609     case IITDescriptor::Void: return !Ty->isVoidTy();
1610     case IITDescriptor::VarArg: return true;
1611     case IITDescriptor::MMX: {
1612       FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
1613       return !VT || VT->getNumElements() != 1 ||
1614              !VT->getElementType()->isIntegerTy(64);
1615     }
1616     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1617     case IITDescriptor::Token: return !Ty->isTokenTy();
1618     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1619     case IITDescriptor::Half: return !Ty->isHalfTy();
1620     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1621     case IITDescriptor::Float: return !Ty->isFloatTy();
1622     case IITDescriptor::Double: return !Ty->isDoubleTy();
1623     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1624     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1625     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1626     case IITDescriptor::AArch64Svcount:
1627       return !isa<TargetExtType>(Ty) ||
1628              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1629     case IITDescriptor::Vector: {
1630       VectorType *VT = dyn_cast<VectorType>(Ty);
1631       return !VT || VT->getElementCount() != D.Vector_Width ||
1632              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1633                                 DeferredChecks, IsDeferredCheck);
1634     }
1635     case IITDescriptor::Pointer: {
1636       PointerType *PT = dyn_cast<PointerType>(Ty);
1637       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1638     }
1639 
1640     case IITDescriptor::Struct: {
1641       StructType *ST = dyn_cast<StructType>(Ty);
1642       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1643           ST->getNumElements() != D.Struct_NumElements)
1644         return true;
1645 
1646       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1647         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1648                                DeferredChecks, IsDeferredCheck))
1649           return true;
1650       return false;
1651     }
1652 
1653     case IITDescriptor::Argument:
1654       // If this is the second occurrence of an argument,
1655       // verify that the later instance matches the previous instance.
1656       if (D.getArgumentNumber() < ArgTys.size())
1657         return Ty != ArgTys[D.getArgumentNumber()];
1658 
1659       if (D.getArgumentNumber() > ArgTys.size() ||
1660           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1661         return IsDeferredCheck || DeferCheck(Ty);
1662 
1663       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1664              "Table consistency error");
1665       ArgTys.push_back(Ty);
1666 
1667       switch (D.getArgumentKind()) {
1668         case IITDescriptor::AK_Any:        return false; // Success
1669         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1670         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1671         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1672         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1673         default:                           break;
1674       }
1675       llvm_unreachable("all argument kinds not covered");
1676 
1677     case IITDescriptor::ExtendArgument: {
1678       // If this is a forward reference, defer the check for later.
1679       if (D.getArgumentNumber() >= ArgTys.size())
1680         return IsDeferredCheck || DeferCheck(Ty);
1681 
1682       Type *NewTy = ArgTys[D.getArgumentNumber()];
1683       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1684         NewTy = VectorType::getExtendedElementVectorType(VTy);
1685       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1686         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1687       else
1688         return true;
1689 
1690       return Ty != NewTy;
1691     }
1692     case IITDescriptor::TruncArgument: {
1693       // If this is a forward reference, defer the check for later.
1694       if (D.getArgumentNumber() >= ArgTys.size())
1695         return IsDeferredCheck || DeferCheck(Ty);
1696 
1697       Type *NewTy = ArgTys[D.getArgumentNumber()];
1698       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1699         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1700       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1701         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1702       else
1703         return true;
1704 
1705       return Ty != NewTy;
1706     }
1707     case IITDescriptor::HalfVecArgument:
1708       // If this is a forward reference, defer the check for later.
1709       if (D.getArgumentNumber() >= ArgTys.size())
1710         return IsDeferredCheck || DeferCheck(Ty);
1711       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1712              VectorType::getHalfElementsVectorType(
1713                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1714     case IITDescriptor::SameVecWidthArgument: {
1715       if (D.getArgumentNumber() >= ArgTys.size()) {
1716         // Defer check and subsequent check for the vector element type.
1717         Infos = Infos.slice(1);
1718         return IsDeferredCheck || DeferCheck(Ty);
1719       }
1720       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1721       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1722       // Both must be vectors of the same number of elements or neither.
1723       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1724         return true;
1725       Type *EltTy = Ty;
1726       if (ThisArgType) {
1727         if (ReferenceType->getElementCount() !=
1728             ThisArgType->getElementCount())
1729           return true;
1730         EltTy = ThisArgType->getElementType();
1731       }
1732       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1733                                 IsDeferredCheck);
1734     }
1735     case IITDescriptor::VecOfAnyPtrsToElt: {
1736       unsigned RefArgNumber = D.getRefArgNumber();
1737       if (RefArgNumber >= ArgTys.size()) {
1738         if (IsDeferredCheck)
1739           return true;
1740         // If forward referencing, already add the pointer-vector type and
1741         // defer the checks for later.
1742         ArgTys.push_back(Ty);
1743         return DeferCheck(Ty);
1744       }
1745 
1746       if (!IsDeferredCheck){
1747         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1748                "Table consistency error");
1749         ArgTys.push_back(Ty);
1750       }
1751 
1752       // Verify the overloaded type "matches" the Ref type.
1753       // i.e. Ty is a vector with the same width as Ref.
1754       // Composed of pointers to the same element type as Ref.
1755       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1756       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1757       if (!ThisArgVecTy || !ReferenceType ||
1758           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1759         return true;
1760       return !ThisArgVecTy->getElementType()->isPointerTy();
1761     }
1762     case IITDescriptor::VecElementArgument: {
1763       if (D.getArgumentNumber() >= ArgTys.size())
1764         return IsDeferredCheck ? true : DeferCheck(Ty);
1765       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1766       return !ReferenceType || Ty != ReferenceType->getElementType();
1767     }
1768     case IITDescriptor::Subdivide2Argument:
1769     case IITDescriptor::Subdivide4Argument: {
1770       // If this is a forward reference, defer the check for later.
1771       if (D.getArgumentNumber() >= ArgTys.size())
1772         return IsDeferredCheck || DeferCheck(Ty);
1773 
1774       Type *NewTy = ArgTys[D.getArgumentNumber()];
1775       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1776         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1777         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1778         return Ty != NewTy;
1779       }
1780       return true;
1781     }
1782     case IITDescriptor::VecOfBitcastsToInt: {
1783       if (D.getArgumentNumber() >= ArgTys.size())
1784         return IsDeferredCheck || DeferCheck(Ty);
1785       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1786       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1787       if (!ThisArgVecTy || !ReferenceType)
1788         return true;
1789       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1790     }
1791   }
1792   llvm_unreachable("unhandled");
1793 }
1794 
1795 Intrinsic::MatchIntrinsicTypesResult
1796 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1797                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1798                                    SmallVectorImpl<Type *> &ArgTys) {
1799   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1800   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1801                          false))
1802     return MatchIntrinsicTypes_NoMatchRet;
1803 
1804   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1805 
1806   for (auto *Ty : FTy->params())
1807     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1808       return MatchIntrinsicTypes_NoMatchArg;
1809 
1810   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1811     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1812     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1813                            true))
1814       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1815                                          : MatchIntrinsicTypes_NoMatchArg;
1816   }
1817 
1818   return MatchIntrinsicTypes_Match;
1819 }
1820 
1821 bool
1822 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1823                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1824   // If there are no descriptors left, then it can't be a vararg.
1825   if (Infos.empty())
1826     return isVarArg;
1827 
1828   // There should be only one descriptor remaining at this point.
1829   if (Infos.size() != 1)
1830     return true;
1831 
1832   // Check and verify the descriptor.
1833   IITDescriptor D = Infos.front();
1834   Infos = Infos.slice(1);
1835   if (D.Kind == IITDescriptor::VarArg)
1836     return !isVarArg;
1837 
1838   return true;
1839 }
1840 
1841 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1842                                       SmallVectorImpl<Type *> &ArgTys) {
1843   if (!ID)
1844     return false;
1845 
1846   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1847   getIntrinsicInfoTableEntries(ID, Table);
1848   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1849 
1850   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1851       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1852     return false;
1853   }
1854   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1855     return false;
1856   return true;
1857 }
1858 
1859 bool Intrinsic::getIntrinsicSignature(Function *F,
1860                                       SmallVectorImpl<Type *> &ArgTys) {
1861   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1862                                ArgTys);
1863 }
1864 
1865 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1866   SmallVector<Type *, 4> ArgTys;
1867   if (!getIntrinsicSignature(F, ArgTys))
1868     return std::nullopt;
1869 
1870   Intrinsic::ID ID = F->getIntrinsicID();
1871   StringRef Name = F->getName();
1872   std::string WantedName =
1873       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1874   if (Name == WantedName)
1875     return std::nullopt;
1876 
1877   Function *NewDecl = [&] {
1878     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1879       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1880         if (ExistingF->getFunctionType() == F->getFunctionType())
1881           return ExistingF;
1882 
1883       // The name already exists, but is not a function or has the wrong
1884       // prototype. Make place for the new one by renaming the old version.
1885       // Either this old version will be removed later on or the module is
1886       // invalid and we'll get an error.
1887       ExistingGV->setName(WantedName + ".renamed");
1888     }
1889     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1890   }();
1891 
1892   NewDecl->setCallingConv(F->getCallingConv());
1893   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1894          "Shouldn't change the signature");
1895   return NewDecl;
1896 }
1897 
1898 /// hasAddressTaken - returns true if there are any uses of this function
1899 /// other than direct calls or invokes to it. Optionally ignores callback
1900 /// uses, assume like pointer annotation calls, and references in llvm.used
1901 /// and llvm.compiler.used variables.
1902 bool Function::hasAddressTaken(const User **PutOffender,
1903                                bool IgnoreCallbackUses,
1904                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1905                                bool IgnoreARCAttachedCall,
1906                                bool IgnoreCastedDirectCall) const {
1907   for (const Use &U : uses()) {
1908     const User *FU = U.getUser();
1909     if (isa<BlockAddress>(FU))
1910       continue;
1911 
1912     if (IgnoreCallbackUses) {
1913       AbstractCallSite ACS(&U);
1914       if (ACS && ACS.isCallbackCall())
1915         continue;
1916     }
1917 
1918     const auto *Call = dyn_cast<CallBase>(FU);
1919     if (!Call) {
1920       if (IgnoreAssumeLikeCalls &&
1921           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1922           all_of(FU->users(), [](const User *U) {
1923             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1924               return I->isAssumeLikeIntrinsic();
1925             return false;
1926           })) {
1927         continue;
1928       }
1929 
1930       if (IgnoreLLVMUsed && !FU->user_empty()) {
1931         const User *FUU = FU;
1932         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1933             FU->hasOneUse() && !FU->user_begin()->user_empty())
1934           FUU = *FU->user_begin();
1935         if (llvm::all_of(FUU->users(), [](const User *U) {
1936               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1937                 return GV->hasName() &&
1938                        (GV->getName() == "llvm.compiler.used" ||
1939                         GV->getName() == "llvm.used");
1940               return false;
1941             }))
1942           continue;
1943       }
1944       if (PutOffender)
1945         *PutOffender = FU;
1946       return true;
1947     }
1948 
1949     if (IgnoreAssumeLikeCalls) {
1950       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1951         if (I->isAssumeLikeIntrinsic())
1952           continue;
1953     }
1954 
1955     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1956                                 Call->getFunctionType() != getFunctionType())) {
1957       if (IgnoreARCAttachedCall &&
1958           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1959                                       U.getOperandNo()))
1960         continue;
1961 
1962       if (PutOffender)
1963         *PutOffender = FU;
1964       return true;
1965     }
1966   }
1967   return false;
1968 }
1969 
1970 bool Function::isDefTriviallyDead() const {
1971   // Check the linkage
1972   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1973       !hasAvailableExternallyLinkage())
1974     return false;
1975 
1976   // Check if the function is used by anything other than a blockaddress.
1977   for (const User *U : users())
1978     if (!isa<BlockAddress>(U))
1979       return false;
1980 
1981   return true;
1982 }
1983 
1984 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1985 /// setjmp or other function that gcc recognizes as "returning twice".
1986 bool Function::callsFunctionThatReturnsTwice() const {
1987   for (const Instruction &I : instructions(this))
1988     if (const auto *Call = dyn_cast<CallBase>(&I))
1989       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1990         return true;
1991 
1992   return false;
1993 }
1994 
1995 Constant *Function::getPersonalityFn() const {
1996   assert(hasPersonalityFn() && getNumOperands());
1997   return cast<Constant>(Op<0>());
1998 }
1999 
2000 void Function::setPersonalityFn(Constant *Fn) {
2001   setHungoffOperand<0>(Fn);
2002   setValueSubclassDataBit(3, Fn != nullptr);
2003 }
2004 
2005 Constant *Function::getPrefixData() const {
2006   assert(hasPrefixData() && getNumOperands());
2007   return cast<Constant>(Op<1>());
2008 }
2009 
2010 void Function::setPrefixData(Constant *PrefixData) {
2011   setHungoffOperand<1>(PrefixData);
2012   setValueSubclassDataBit(1, PrefixData != nullptr);
2013 }
2014 
2015 Constant *Function::getPrologueData() const {
2016   assert(hasPrologueData() && getNumOperands());
2017   return cast<Constant>(Op<2>());
2018 }
2019 
2020 void Function::setPrologueData(Constant *PrologueData) {
2021   setHungoffOperand<2>(PrologueData);
2022   setValueSubclassDataBit(2, PrologueData != nullptr);
2023 }
2024 
2025 void Function::allocHungoffUselist() {
2026   // If we've already allocated a uselist, stop here.
2027   if (getNumOperands())
2028     return;
2029 
2030   allocHungoffUses(3, /*IsPhi=*/ false);
2031   setNumHungOffUseOperands(3);
2032 
2033   // Initialize the uselist with placeholder operands to allow traversal.
2034   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
2035   Op<0>().set(CPN);
2036   Op<1>().set(CPN);
2037   Op<2>().set(CPN);
2038 }
2039 
2040 template <int Idx>
2041 void Function::setHungoffOperand(Constant *C) {
2042   if (C) {
2043     allocHungoffUselist();
2044     Op<Idx>().set(C);
2045   } else if (getNumOperands()) {
2046     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
2047   }
2048 }
2049 
2050 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2051   assert(Bit < 16 && "SubclassData contains only 16 bits");
2052   if (On)
2053     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2054   else
2055     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2056 }
2057 
2058 void Function::setEntryCount(ProfileCount Count,
2059                              const DenseSet<GlobalValue::GUID> *S) {
2060 #if !defined(NDEBUG)
2061   auto PrevCount = getEntryCount();
2062   assert(!PrevCount || PrevCount->getType() == Count.getType());
2063 #endif
2064 
2065   auto ImportGUIDs = getImportGUIDs();
2066   if (S == nullptr && ImportGUIDs.size())
2067     S = &ImportGUIDs;
2068 
2069   MDBuilder MDB(getContext());
2070   setMetadata(
2071       LLVMContext::MD_prof,
2072       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2073 }
2074 
2075 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2076                              const DenseSet<GlobalValue::GUID> *Imports) {
2077   setEntryCount(ProfileCount(Count, Type), Imports);
2078 }
2079 
2080 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2081   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2082   if (MD && MD->getOperand(0))
2083     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2084       if (MDS->getString() == "function_entry_count") {
2085         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2086         uint64_t Count = CI->getValue().getZExtValue();
2087         // A value of -1 is used for SamplePGO when there were no samples.
2088         // Treat this the same as unknown.
2089         if (Count == (uint64_t)-1)
2090           return std::nullopt;
2091         return ProfileCount(Count, PCT_Real);
2092       } else if (AllowSynthetic &&
2093                  MDS->getString() == "synthetic_function_entry_count") {
2094         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2095         uint64_t Count = CI->getValue().getZExtValue();
2096         return ProfileCount(Count, PCT_Synthetic);
2097       }
2098     }
2099   return std::nullopt;
2100 }
2101 
2102 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2103   DenseSet<GlobalValue::GUID> R;
2104   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2105     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2106       if (MDS->getString() == "function_entry_count")
2107         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2108           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2109                        ->getValue()
2110                        .getZExtValue());
2111   return R;
2112 }
2113 
2114 void Function::setSectionPrefix(StringRef Prefix) {
2115   MDBuilder MDB(getContext());
2116   setMetadata(LLVMContext::MD_section_prefix,
2117               MDB.createFunctionSectionPrefix(Prefix));
2118 }
2119 
2120 std::optional<StringRef> Function::getSectionPrefix() const {
2121   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2122     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2123                "function_section_prefix" &&
2124            "Metadata not match");
2125     return cast<MDString>(MD->getOperand(1))->getString();
2126   }
2127   return std::nullopt;
2128 }
2129 
2130 bool Function::nullPointerIsDefined() const {
2131   return hasFnAttribute(Attribute::NullPointerIsValid);
2132 }
2133 
2134 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2135   if (F && F->nullPointerIsDefined())
2136     return true;
2137 
2138   if (AS != 0)
2139     return true;
2140 
2141   return false;
2142 }
2143