1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 void Function::convertToNewDbgValues() { 87 IsNewDbgInfoFormat = true; 88 for (auto &BB : *this) { 89 BB.convertToNewDbgValues(); 90 } 91 } 92 93 void Function::convertFromNewDbgValues() { 94 IsNewDbgInfoFormat = false; 95 for (auto &BB : *this) { 96 BB.convertFromNewDbgValues(); 97 } 98 } 99 100 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 101 if (NewFlag && !IsNewDbgInfoFormat) 102 convertToNewDbgValues(); 103 else if (!NewFlag && IsNewDbgInfoFormat) 104 convertFromNewDbgValues(); 105 } 106 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 107 for (auto &BB : *this) { 108 BB.setNewDbgInfoFormatFlag(NewFlag); 109 } 110 IsNewDbgInfoFormat = NewFlag; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Argument Implementation 115 //===----------------------------------------------------------------------===// 116 117 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 118 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 119 setName(Name); 120 } 121 122 void Argument::setParent(Function *parent) { 123 Parent = parent; 124 } 125 126 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 127 if (!getType()->isPointerTy()) return false; 128 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 129 (AllowUndefOrPoison || 130 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 131 return true; 132 else if (getDereferenceableBytes() > 0 && 133 !NullPointerIsDefined(getParent(), 134 getType()->getPointerAddressSpace())) 135 return true; 136 return false; 137 } 138 139 bool Argument::hasByValAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::ByVal); 142 } 143 144 bool Argument::hasByRefAttr() const { 145 if (!getType()->isPointerTy()) 146 return false; 147 return hasAttribute(Attribute::ByRef); 148 } 149 150 bool Argument::hasSwiftSelfAttr() const { 151 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 152 } 153 154 bool Argument::hasSwiftErrorAttr() const { 155 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 156 } 157 158 bool Argument::hasInAllocaAttr() const { 159 if (!getType()->isPointerTy()) return false; 160 return hasAttribute(Attribute::InAlloca); 161 } 162 163 bool Argument::hasPreallocatedAttr() const { 164 if (!getType()->isPointerTy()) 165 return false; 166 return hasAttribute(Attribute::Preallocated); 167 } 168 169 bool Argument::hasPassPointeeByValueCopyAttr() const { 170 if (!getType()->isPointerTy()) return false; 171 AttributeList Attrs = getParent()->getAttributes(); 172 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 173 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 174 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 175 } 176 177 bool Argument::hasPointeeInMemoryValueAttr() const { 178 if (!getType()->isPointerTy()) 179 return false; 180 AttributeList Attrs = getParent()->getAttributes(); 181 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 182 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 183 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 186 } 187 188 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 189 /// parameter type. 190 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 191 // FIXME: All the type carrying attributes are mutually exclusive, so there 192 // should be a single query to get the stored type that handles any of them. 193 if (Type *ByValTy = ParamAttrs.getByValType()) 194 return ByValTy; 195 if (Type *ByRefTy = ParamAttrs.getByRefType()) 196 return ByRefTy; 197 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 198 return PreAllocTy; 199 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 200 return InAllocaTy; 201 if (Type *SRetTy = ParamAttrs.getStructRetType()) 202 return SRetTy; 203 204 return nullptr; 205 } 206 207 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 208 AttributeSet ParamAttrs = 209 getParent()->getAttributes().getParamAttrs(getArgNo()); 210 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 211 return DL.getTypeAllocSize(MemTy); 212 return 0; 213 } 214 215 Type *Argument::getPointeeInMemoryValueType() const { 216 AttributeSet ParamAttrs = 217 getParent()->getAttributes().getParamAttrs(getArgNo()); 218 return getMemoryParamAllocType(ParamAttrs); 219 } 220 221 MaybeAlign Argument::getParamAlign() const { 222 assert(getType()->isPointerTy() && "Only pointers have alignments"); 223 return getParent()->getParamAlign(getArgNo()); 224 } 225 226 MaybeAlign Argument::getParamStackAlign() const { 227 return getParent()->getParamStackAlign(getArgNo()); 228 } 229 230 Type *Argument::getParamByValType() const { 231 assert(getType()->isPointerTy() && "Only pointers have byval types"); 232 return getParent()->getParamByValType(getArgNo()); 233 } 234 235 Type *Argument::getParamStructRetType() const { 236 assert(getType()->isPointerTy() && "Only pointers have sret types"); 237 return getParent()->getParamStructRetType(getArgNo()); 238 } 239 240 Type *Argument::getParamByRefType() const { 241 assert(getType()->isPointerTy() && "Only pointers have byref types"); 242 return getParent()->getParamByRefType(getArgNo()); 243 } 244 245 Type *Argument::getParamInAllocaType() const { 246 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 247 return getParent()->getParamInAllocaType(getArgNo()); 248 } 249 250 uint64_t Argument::getDereferenceableBytes() const { 251 assert(getType()->isPointerTy() && 252 "Only pointers have dereferenceable bytes"); 253 return getParent()->getParamDereferenceableBytes(getArgNo()); 254 } 255 256 uint64_t Argument::getDereferenceableOrNullBytes() const { 257 assert(getType()->isPointerTy() && 258 "Only pointers have dereferenceable bytes"); 259 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 260 } 261 262 FPClassTest Argument::getNoFPClass() const { 263 return getParent()->getParamNoFPClass(getArgNo()); 264 } 265 266 std::optional<ConstantRange> Argument::getRange() const { 267 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 268 if (RangeAttr.isValid()) 269 return RangeAttr.getRange(); 270 return std::nullopt; 271 } 272 273 bool Argument::hasNestAttr() const { 274 if (!getType()->isPointerTy()) return false; 275 return hasAttribute(Attribute::Nest); 276 } 277 278 bool Argument::hasNoAliasAttr() const { 279 if (!getType()->isPointerTy()) return false; 280 return hasAttribute(Attribute::NoAlias); 281 } 282 283 bool Argument::hasNoCaptureAttr() const { 284 if (!getType()->isPointerTy()) return false; 285 return hasAttribute(Attribute::NoCapture); 286 } 287 288 bool Argument::hasNoFreeAttr() const { 289 if (!getType()->isPointerTy()) return false; 290 return hasAttribute(Attribute::NoFree); 291 } 292 293 bool Argument::hasStructRetAttr() const { 294 if (!getType()->isPointerTy()) return false; 295 return hasAttribute(Attribute::StructRet); 296 } 297 298 bool Argument::hasInRegAttr() const { 299 return hasAttribute(Attribute::InReg); 300 } 301 302 bool Argument::hasReturnedAttr() const { 303 return hasAttribute(Attribute::Returned); 304 } 305 306 bool Argument::hasZExtAttr() const { 307 return hasAttribute(Attribute::ZExt); 308 } 309 310 bool Argument::hasSExtAttr() const { 311 return hasAttribute(Attribute::SExt); 312 } 313 314 bool Argument::onlyReadsMemory() const { 315 AttributeList Attrs = getParent()->getAttributes(); 316 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 317 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 318 } 319 320 void Argument::addAttrs(AttrBuilder &B) { 321 AttributeList AL = getParent()->getAttributes(); 322 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 323 getParent()->setAttributes(AL); 324 } 325 326 void Argument::addAttr(Attribute::AttrKind Kind) { 327 getParent()->addParamAttr(getArgNo(), Kind); 328 } 329 330 void Argument::addAttr(Attribute Attr) { 331 getParent()->addParamAttr(getArgNo(), Attr); 332 } 333 334 void Argument::removeAttr(Attribute::AttrKind Kind) { 335 getParent()->removeParamAttr(getArgNo(), Kind); 336 } 337 338 void Argument::removeAttrs(const AttributeMask &AM) { 339 AttributeList AL = getParent()->getAttributes(); 340 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 341 getParent()->setAttributes(AL); 342 } 343 344 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 345 return getParent()->hasParamAttribute(getArgNo(), Kind); 346 } 347 348 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 349 return getParent()->getParamAttribute(getArgNo(), Kind); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Helper Methods in Function 354 //===----------------------------------------------------------------------===// 355 356 LLVMContext &Function::getContext() const { 357 return getType()->getContext(); 358 } 359 360 unsigned Function::getInstructionCount() const { 361 unsigned NumInstrs = 0; 362 for (const BasicBlock &BB : BasicBlocks) 363 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 364 BB.instructionsWithoutDebug().end()); 365 return NumInstrs; 366 } 367 368 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 369 const Twine &N, Module &M) { 370 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 371 } 372 373 Function *Function::createWithDefaultAttr(FunctionType *Ty, 374 LinkageTypes Linkage, 375 unsigned AddrSpace, const Twine &N, 376 Module *M) { 377 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 378 AttrBuilder B(F->getContext()); 379 UWTableKind UWTable = M->getUwtable(); 380 if (UWTable != UWTableKind::None) 381 B.addUWTableAttr(UWTable); 382 switch (M->getFramePointer()) { 383 case FramePointerKind::None: 384 // 0 ("none") is the default. 385 break; 386 case FramePointerKind::NonLeaf: 387 B.addAttribute("frame-pointer", "non-leaf"); 388 break; 389 case FramePointerKind::All: 390 B.addAttribute("frame-pointer", "all"); 391 break; 392 } 393 if (M->getModuleFlag("function_return_thunk_extern")) 394 B.addAttribute(Attribute::FnRetThunkExtern); 395 F->addFnAttrs(B); 396 return F; 397 } 398 399 void Function::removeFromParent() { 400 getParent()->getFunctionList().remove(getIterator()); 401 } 402 403 void Function::eraseFromParent() { 404 getParent()->getFunctionList().erase(getIterator()); 405 } 406 407 void Function::splice(Function::iterator ToIt, Function *FromF, 408 Function::iterator FromBeginIt, 409 Function::iterator FromEndIt) { 410 #ifdef EXPENSIVE_CHECKS 411 // Check that FromBeginIt is before FromEndIt. 412 auto FromFEnd = FromF->end(); 413 for (auto It = FromBeginIt; It != FromEndIt; ++It) 414 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 415 #endif // EXPENSIVE_CHECKS 416 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 417 } 418 419 Function::iterator Function::erase(Function::iterator FromIt, 420 Function::iterator ToIt) { 421 return BasicBlocks.erase(FromIt, ToIt); 422 } 423 424 //===----------------------------------------------------------------------===// 425 // Function Implementation 426 //===----------------------------------------------------------------------===// 427 428 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 429 // If AS == -1 and we are passed a valid module pointer we place the function 430 // in the program address space. Otherwise we default to AS0. 431 if (AddrSpace == static_cast<unsigned>(-1)) 432 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 433 return AddrSpace; 434 } 435 436 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 437 const Twine &name, Module *ParentModule) 438 : GlobalObject(Ty, Value::FunctionVal, 439 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 440 computeAddrSpace(AddrSpace, ParentModule)), 441 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 442 assert(FunctionType::isValidReturnType(getReturnType()) && 443 "invalid return type"); 444 setGlobalObjectSubClassData(0); 445 446 // We only need a symbol table for a function if the context keeps value names 447 if (!getContext().shouldDiscardValueNames()) 448 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 449 450 // If the function has arguments, mark them as lazily built. 451 if (Ty->getNumParams()) 452 setValueSubclassData(1); // Set the "has lazy arguments" bit. 453 454 if (ParentModule) { 455 ParentModule->getFunctionList().push_back(this); 456 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 457 } 458 459 HasLLVMReservedName = getName().starts_with("llvm."); 460 // Ensure intrinsics have the right parameter attributes. 461 // Note, the IntID field will have been set in Value::setName if this function 462 // name is a valid intrinsic ID. 463 if (IntID) 464 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 465 } 466 467 Function::~Function() { 468 dropAllReferences(); // After this it is safe to delete instructions. 469 470 // Delete all of the method arguments and unlink from symbol table... 471 if (Arguments) 472 clearArguments(); 473 474 // Remove the function from the on-the-side GC table. 475 clearGC(); 476 } 477 478 void Function::BuildLazyArguments() const { 479 // Create the arguments vector, all arguments start out unnamed. 480 auto *FT = getFunctionType(); 481 if (NumArgs > 0) { 482 Arguments = std::allocator<Argument>().allocate(NumArgs); 483 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 484 Type *ArgTy = FT->getParamType(i); 485 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 486 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 487 } 488 } 489 490 // Clear the lazy arguments bit. 491 unsigned SDC = getSubclassDataFromValue(); 492 SDC &= ~(1 << 0); 493 const_cast<Function*>(this)->setValueSubclassData(SDC); 494 assert(!hasLazyArguments()); 495 } 496 497 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 498 return MutableArrayRef<Argument>(Args, Count); 499 } 500 501 bool Function::isConstrainedFPIntrinsic() const { 502 switch (getIntrinsicID()) { 503 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 504 case Intrinsic::INTRINSIC: 505 #include "llvm/IR/ConstrainedOps.def" 506 return true; 507 #undef INSTRUCTION 508 default: 509 return false; 510 } 511 } 512 513 void Function::clearArguments() { 514 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 515 A.setName(""); 516 A.~Argument(); 517 } 518 std::allocator<Argument>().deallocate(Arguments, NumArgs); 519 Arguments = nullptr; 520 } 521 522 void Function::stealArgumentListFrom(Function &Src) { 523 assert(isDeclaration() && "Expected no references to current arguments"); 524 525 // Drop the current arguments, if any, and set the lazy argument bit. 526 if (!hasLazyArguments()) { 527 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 528 [](const Argument &A) { return A.use_empty(); }) && 529 "Expected arguments to be unused in declaration"); 530 clearArguments(); 531 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 532 } 533 534 // Nothing to steal if Src has lazy arguments. 535 if (Src.hasLazyArguments()) 536 return; 537 538 // Steal arguments from Src, and fix the lazy argument bits. 539 assert(arg_size() == Src.arg_size()); 540 Arguments = Src.Arguments; 541 Src.Arguments = nullptr; 542 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 543 // FIXME: This does the work of transferNodesFromList inefficiently. 544 SmallString<128> Name; 545 if (A.hasName()) 546 Name = A.getName(); 547 if (!Name.empty()) 548 A.setName(""); 549 A.setParent(this); 550 if (!Name.empty()) 551 A.setName(Name); 552 } 553 554 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 555 assert(!hasLazyArguments()); 556 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 557 } 558 559 void Function::deleteBodyImpl(bool ShouldDrop) { 560 setIsMaterializable(false); 561 562 for (BasicBlock &BB : *this) 563 BB.dropAllReferences(); 564 565 // Delete all basic blocks. They are now unused, except possibly by 566 // blockaddresses, but BasicBlock's destructor takes care of those. 567 while (!BasicBlocks.empty()) 568 BasicBlocks.begin()->eraseFromParent(); 569 570 if (getNumOperands()) { 571 if (ShouldDrop) { 572 // Drop uses of any optional data (real or placeholder). 573 User::dropAllReferences(); 574 setNumHungOffUseOperands(0); 575 } else { 576 // The code needs to match Function::allocHungoffUselist(). 577 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 578 Op<0>().set(CPN); 579 Op<1>().set(CPN); 580 Op<2>().set(CPN); 581 } 582 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 583 } 584 585 // Metadata is stored in a side-table. 586 clearMetadata(); 587 } 588 589 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 590 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 591 } 592 593 void Function::addFnAttr(Attribute::AttrKind Kind) { 594 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 595 } 596 597 void Function::addFnAttr(StringRef Kind, StringRef Val) { 598 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 599 } 600 601 void Function::addFnAttr(Attribute Attr) { 602 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 603 } 604 605 void Function::addFnAttrs(const AttrBuilder &Attrs) { 606 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 607 } 608 609 void Function::addRetAttr(Attribute::AttrKind Kind) { 610 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 611 } 612 613 void Function::addRetAttr(Attribute Attr) { 614 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 615 } 616 617 void Function::addRetAttrs(const AttrBuilder &Attrs) { 618 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 619 } 620 621 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 622 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 623 } 624 625 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 626 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 627 } 628 629 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 630 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 631 } 632 633 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 634 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 635 } 636 637 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 638 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 639 } 640 641 void Function::removeFnAttr(Attribute::AttrKind Kind) { 642 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 643 } 644 645 void Function::removeFnAttr(StringRef Kind) { 646 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 647 } 648 649 void Function::removeFnAttrs(const AttributeMask &AM) { 650 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 651 } 652 653 void Function::removeRetAttr(Attribute::AttrKind Kind) { 654 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 655 } 656 657 void Function::removeRetAttr(StringRef Kind) { 658 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 659 } 660 661 void Function::removeRetAttrs(const AttributeMask &Attrs) { 662 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 663 } 664 665 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 666 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 667 } 668 669 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 670 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 671 } 672 673 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 674 AttributeSets = 675 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 676 } 677 678 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 679 AttributeSets = 680 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 681 } 682 683 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 684 return AttributeSets.hasFnAttr(Kind); 685 } 686 687 bool Function::hasFnAttribute(StringRef Kind) const { 688 return AttributeSets.hasFnAttr(Kind); 689 } 690 691 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 692 return AttributeSets.hasRetAttr(Kind); 693 } 694 695 bool Function::hasParamAttribute(unsigned ArgNo, 696 Attribute::AttrKind Kind) const { 697 return AttributeSets.hasParamAttr(ArgNo, Kind); 698 } 699 700 Attribute Function::getAttributeAtIndex(unsigned i, 701 Attribute::AttrKind Kind) const { 702 return AttributeSets.getAttributeAtIndex(i, Kind); 703 } 704 705 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 706 return AttributeSets.getAttributeAtIndex(i, Kind); 707 } 708 709 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 710 return AttributeSets.getFnAttr(Kind); 711 } 712 713 Attribute Function::getFnAttribute(StringRef Kind) const { 714 return AttributeSets.getFnAttr(Kind); 715 } 716 717 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 718 return AttributeSets.getRetAttr(Kind); 719 } 720 721 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 722 uint64_t Default) const { 723 Attribute A = getFnAttribute(Name); 724 uint64_t Result = Default; 725 if (A.isStringAttribute()) { 726 StringRef Str = A.getValueAsString(); 727 if (Str.getAsInteger(0, Result)) 728 getContext().emitError("cannot parse integer attribute " + Name); 729 } 730 731 return Result; 732 } 733 734 /// gets the specified attribute from the list of attributes. 735 Attribute Function::getParamAttribute(unsigned ArgNo, 736 Attribute::AttrKind Kind) const { 737 return AttributeSets.getParamAttr(ArgNo, Kind); 738 } 739 740 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 741 uint64_t Bytes) { 742 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 743 ArgNo, Bytes); 744 } 745 746 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 747 if (&FPType == &APFloat::IEEEsingle()) { 748 DenormalMode Mode = getDenormalModeF32Raw(); 749 // If the f32 variant of the attribute isn't specified, try to use the 750 // generic one. 751 if (Mode.isValid()) 752 return Mode; 753 } 754 755 return getDenormalModeRaw(); 756 } 757 758 DenormalMode Function::getDenormalModeRaw() const { 759 Attribute Attr = getFnAttribute("denormal-fp-math"); 760 StringRef Val = Attr.getValueAsString(); 761 return parseDenormalFPAttribute(Val); 762 } 763 764 DenormalMode Function::getDenormalModeF32Raw() const { 765 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 766 if (Attr.isValid()) { 767 StringRef Val = Attr.getValueAsString(); 768 return parseDenormalFPAttribute(Val); 769 } 770 771 return DenormalMode::getInvalid(); 772 } 773 774 const std::string &Function::getGC() const { 775 assert(hasGC() && "Function has no collector"); 776 return getContext().getGC(*this); 777 } 778 779 void Function::setGC(std::string Str) { 780 setValueSubclassDataBit(14, !Str.empty()); 781 getContext().setGC(*this, std::move(Str)); 782 } 783 784 void Function::clearGC() { 785 if (!hasGC()) 786 return; 787 getContext().deleteGC(*this); 788 setValueSubclassDataBit(14, false); 789 } 790 791 bool Function::hasStackProtectorFnAttr() const { 792 return hasFnAttribute(Attribute::StackProtect) || 793 hasFnAttribute(Attribute::StackProtectStrong) || 794 hasFnAttribute(Attribute::StackProtectReq); 795 } 796 797 /// Copy all additional attributes (those not needed to create a Function) from 798 /// the Function Src to this one. 799 void Function::copyAttributesFrom(const Function *Src) { 800 GlobalObject::copyAttributesFrom(Src); 801 setCallingConv(Src->getCallingConv()); 802 setAttributes(Src->getAttributes()); 803 if (Src->hasGC()) 804 setGC(Src->getGC()); 805 else 806 clearGC(); 807 if (Src->hasPersonalityFn()) 808 setPersonalityFn(Src->getPersonalityFn()); 809 if (Src->hasPrefixData()) 810 setPrefixData(Src->getPrefixData()); 811 if (Src->hasPrologueData()) 812 setPrologueData(Src->getPrologueData()); 813 } 814 815 MemoryEffects Function::getMemoryEffects() const { 816 return getAttributes().getMemoryEffects(); 817 } 818 void Function::setMemoryEffects(MemoryEffects ME) { 819 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 820 } 821 822 /// Determine if the function does not access memory. 823 bool Function::doesNotAccessMemory() const { 824 return getMemoryEffects().doesNotAccessMemory(); 825 } 826 void Function::setDoesNotAccessMemory() { 827 setMemoryEffects(MemoryEffects::none()); 828 } 829 830 /// Determine if the function does not access or only reads memory. 831 bool Function::onlyReadsMemory() const { 832 return getMemoryEffects().onlyReadsMemory(); 833 } 834 void Function::setOnlyReadsMemory() { 835 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 836 } 837 838 /// Determine if the function does not access or only writes memory. 839 bool Function::onlyWritesMemory() const { 840 return getMemoryEffects().onlyWritesMemory(); 841 } 842 void Function::setOnlyWritesMemory() { 843 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 844 } 845 846 /// Determine if the call can access memmory only using pointers based 847 /// on its arguments. 848 bool Function::onlyAccessesArgMemory() const { 849 return getMemoryEffects().onlyAccessesArgPointees(); 850 } 851 void Function::setOnlyAccessesArgMemory() { 852 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 853 } 854 855 /// Determine if the function may only access memory that is 856 /// inaccessible from the IR. 857 bool Function::onlyAccessesInaccessibleMemory() const { 858 return getMemoryEffects().onlyAccessesInaccessibleMem(); 859 } 860 void Function::setOnlyAccessesInaccessibleMemory() { 861 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 862 } 863 864 /// Determine if the function may only access memory that is 865 /// either inaccessible from the IR or pointed to by its arguments. 866 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 867 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 868 } 869 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 870 setMemoryEffects(getMemoryEffects() & 871 MemoryEffects::inaccessibleOrArgMemOnly()); 872 } 873 874 /// Table of string intrinsic names indexed by enum value. 875 static const char * const IntrinsicNameTable[] = { 876 "not_intrinsic", 877 #define GET_INTRINSIC_NAME_TABLE 878 #include "llvm/IR/IntrinsicImpl.inc" 879 #undef GET_INTRINSIC_NAME_TABLE 880 }; 881 882 /// Table of per-target intrinsic name tables. 883 #define GET_INTRINSIC_TARGET_DATA 884 #include "llvm/IR/IntrinsicImpl.inc" 885 #undef GET_INTRINSIC_TARGET_DATA 886 887 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 888 return IID > TargetInfos[0].Count; 889 } 890 891 bool Function::isTargetIntrinsic() const { 892 return isTargetIntrinsic(IntID); 893 } 894 895 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 896 /// target as \c Name, or the generic table if \c Name is not target specific. 897 /// 898 /// Returns the relevant slice of \c IntrinsicNameTable 899 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 900 assert(Name.starts_with("llvm.")); 901 902 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 903 // Drop "llvm." and take the first dotted component. That will be the target 904 // if this is target specific. 905 StringRef Target = Name.drop_front(5).split('.').first; 906 auto It = partition_point( 907 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 908 // We've either found the target or just fall back to the generic set, which 909 // is always first. 910 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 911 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 912 } 913 914 /// This does the actual lookup of an intrinsic ID which 915 /// matches the given function name. 916 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 917 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 918 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 919 if (Idx == -1) 920 return Intrinsic::not_intrinsic; 921 922 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 923 // an index into a sub-table. 924 int Adjust = NameTable.data() - IntrinsicNameTable; 925 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 926 927 // If the intrinsic is not overloaded, require an exact match. If it is 928 // overloaded, require either exact or prefix match. 929 const auto MatchSize = strlen(NameTable[Idx]); 930 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 931 bool IsExactMatch = Name.size() == MatchSize; 932 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 933 : Intrinsic::not_intrinsic; 934 } 935 936 void Function::updateAfterNameChange() { 937 LibFuncCache = UnknownLibFunc; 938 StringRef Name = getName(); 939 if (!Name.starts_with("llvm.")) { 940 HasLLVMReservedName = false; 941 IntID = Intrinsic::not_intrinsic; 942 return; 943 } 944 HasLLVMReservedName = true; 945 IntID = lookupIntrinsicID(Name); 946 } 947 948 /// Returns a stable mangling for the type specified for use in the name 949 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 950 /// of named types is simply their name. Manglings for unnamed types consist 951 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 952 /// combined with the mangling of their component types. A vararg function 953 /// type will have a suffix of 'vararg'. Since function types can contain 954 /// other function types, we close a function type mangling with suffix 'f' 955 /// which can't be confused with it's prefix. This ensures we don't have 956 /// collisions between two unrelated function types. Otherwise, you might 957 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 958 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 959 /// indicating that extra care must be taken to ensure a unique name. 960 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 961 std::string Result; 962 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 963 Result += "p" + utostr(PTyp->getAddressSpace()); 964 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 965 Result += "a" + utostr(ATyp->getNumElements()) + 966 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 967 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 968 if (!STyp->isLiteral()) { 969 Result += "s_"; 970 if (STyp->hasName()) 971 Result += STyp->getName(); 972 else 973 HasUnnamedType = true; 974 } else { 975 Result += "sl_"; 976 for (auto *Elem : STyp->elements()) 977 Result += getMangledTypeStr(Elem, HasUnnamedType); 978 } 979 // Ensure nested structs are distinguishable. 980 Result += "s"; 981 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 982 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 983 for (size_t i = 0; i < FT->getNumParams(); i++) 984 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 985 if (FT->isVarArg()) 986 Result += "vararg"; 987 // Ensure nested function types are distinguishable. 988 Result += "f"; 989 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 990 ElementCount EC = VTy->getElementCount(); 991 if (EC.isScalable()) 992 Result += "nx"; 993 Result += "v" + utostr(EC.getKnownMinValue()) + 994 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 995 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 996 Result += "t"; 997 Result += TETy->getName(); 998 for (Type *ParamTy : TETy->type_params()) 999 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 1000 for (unsigned IntParam : TETy->int_params()) 1001 Result += "_" + utostr(IntParam); 1002 // Ensure nested target extension types are distinguishable. 1003 Result += "t"; 1004 } else if (Ty) { 1005 switch (Ty->getTypeID()) { 1006 default: llvm_unreachable("Unhandled type"); 1007 case Type::VoidTyID: Result += "isVoid"; break; 1008 case Type::MetadataTyID: Result += "Metadata"; break; 1009 case Type::HalfTyID: Result += "f16"; break; 1010 case Type::BFloatTyID: Result += "bf16"; break; 1011 case Type::FloatTyID: Result += "f32"; break; 1012 case Type::DoubleTyID: Result += "f64"; break; 1013 case Type::X86_FP80TyID: Result += "f80"; break; 1014 case Type::FP128TyID: Result += "f128"; break; 1015 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1016 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1017 case Type::X86_AMXTyID: Result += "x86amx"; break; 1018 case Type::IntegerTyID: 1019 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1020 break; 1021 } 1022 } 1023 return Result; 1024 } 1025 1026 StringRef Intrinsic::getBaseName(ID id) { 1027 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1028 return IntrinsicNameTable[id]; 1029 } 1030 1031 StringRef Intrinsic::getName(ID id) { 1032 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1033 assert(!Intrinsic::isOverloaded(id) && 1034 "This version of getName does not support overloading"); 1035 return getBaseName(id); 1036 } 1037 1038 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1039 Module *M, FunctionType *FT, 1040 bool EarlyModuleCheck) { 1041 1042 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1043 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1044 "This version of getName is for overloaded intrinsics only"); 1045 (void)EarlyModuleCheck; 1046 assert((!EarlyModuleCheck || M || 1047 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1048 "Intrinsic overloading on pointer types need to provide a Module"); 1049 bool HasUnnamedType = false; 1050 std::string Result(Intrinsic::getBaseName(Id)); 1051 for (Type *Ty : Tys) 1052 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1053 if (HasUnnamedType) { 1054 assert(M && "unnamed types need a module"); 1055 if (!FT) 1056 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1057 else 1058 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1059 "Provided FunctionType must match arguments"); 1060 return M->getUniqueIntrinsicName(Result, Id, FT); 1061 } 1062 return Result; 1063 } 1064 1065 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1066 FunctionType *FT) { 1067 assert(M && "We need to have a Module"); 1068 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1069 } 1070 1071 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1072 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1073 } 1074 1075 /// IIT_Info - These are enumerators that describe the entries returned by the 1076 /// getIntrinsicInfoTableEntries function. 1077 /// 1078 /// Defined in Intrinsics.td. 1079 enum IIT_Info { 1080 #define GET_INTRINSIC_IITINFO 1081 #include "llvm/IR/IntrinsicImpl.inc" 1082 #undef GET_INTRINSIC_IITINFO 1083 }; 1084 1085 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1086 IIT_Info LastInfo, 1087 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1088 using namespace Intrinsic; 1089 1090 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1091 1092 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1093 unsigned StructElts = 2; 1094 1095 switch (Info) { 1096 case IIT_Done: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1098 return; 1099 case IIT_VARARG: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1101 return; 1102 case IIT_MMX: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1104 return; 1105 case IIT_AMX: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1107 return; 1108 case IIT_TOKEN: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1110 return; 1111 case IIT_METADATA: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1113 return; 1114 case IIT_F16: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1116 return; 1117 case IIT_BF16: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1119 return; 1120 case IIT_F32: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1122 return; 1123 case IIT_F64: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1125 return; 1126 case IIT_F128: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1128 return; 1129 case IIT_PPCF128: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1131 return; 1132 case IIT_I1: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1134 return; 1135 case IIT_I2: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1137 return; 1138 case IIT_I4: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1140 return; 1141 case IIT_AARCH64_SVCOUNT: 1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1143 return; 1144 case IIT_I8: 1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1146 return; 1147 case IIT_I16: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1149 return; 1150 case IIT_I32: 1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1152 return; 1153 case IIT_I64: 1154 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1155 return; 1156 case IIT_I128: 1157 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1158 return; 1159 case IIT_V1: 1160 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1161 DecodeIITType(NextElt, Infos, Info, OutputTable); 1162 return; 1163 case IIT_V2: 1164 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1165 DecodeIITType(NextElt, Infos, Info, OutputTable); 1166 return; 1167 case IIT_V3: 1168 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1169 DecodeIITType(NextElt, Infos, Info, OutputTable); 1170 return; 1171 case IIT_V4: 1172 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1173 DecodeIITType(NextElt, Infos, Info, OutputTable); 1174 return; 1175 case IIT_V6: 1176 OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector)); 1177 DecodeIITType(NextElt, Infos, Info, OutputTable); 1178 return; 1179 case IIT_V8: 1180 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1181 DecodeIITType(NextElt, Infos, Info, OutputTable); 1182 return; 1183 case IIT_V16: 1184 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1185 DecodeIITType(NextElt, Infos, Info, OutputTable); 1186 return; 1187 case IIT_V32: 1188 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1189 DecodeIITType(NextElt, Infos, Info, OutputTable); 1190 return; 1191 case IIT_V64: 1192 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1193 DecodeIITType(NextElt, Infos, Info, OutputTable); 1194 return; 1195 case IIT_V128: 1196 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1197 DecodeIITType(NextElt, Infos, Info, OutputTable); 1198 return; 1199 case IIT_V256: 1200 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 case IIT_V512: 1204 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1205 DecodeIITType(NextElt, Infos, Info, OutputTable); 1206 return; 1207 case IIT_V1024: 1208 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1209 DecodeIITType(NextElt, Infos, Info, OutputTable); 1210 return; 1211 case IIT_EXTERNREF: 1212 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1213 return; 1214 case IIT_FUNCREF: 1215 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1216 return; 1217 case IIT_PTR: 1218 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1219 return; 1220 case IIT_ANYPTR: // [ANYPTR addrspace] 1221 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1222 Infos[NextElt++])); 1223 return; 1224 case IIT_ARG: { 1225 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1226 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1227 return; 1228 } 1229 case IIT_EXTEND_ARG: { 1230 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1231 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1232 ArgInfo)); 1233 return; 1234 } 1235 case IIT_TRUNC_ARG: { 1236 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1237 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1238 ArgInfo)); 1239 return; 1240 } 1241 case IIT_HALF_VEC_ARG: { 1242 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1243 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1244 ArgInfo)); 1245 return; 1246 } 1247 case IIT_SAME_VEC_WIDTH_ARG: { 1248 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1249 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1250 ArgInfo)); 1251 return; 1252 } 1253 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1254 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1255 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1256 OutputTable.push_back( 1257 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1258 return; 1259 } 1260 case IIT_EMPTYSTRUCT: 1261 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1262 return; 1263 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1264 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1265 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1266 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1267 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1268 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1269 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1270 case IIT_STRUCT2: { 1271 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1272 1273 for (unsigned i = 0; i != StructElts; ++i) 1274 DecodeIITType(NextElt, Infos, Info, OutputTable); 1275 return; 1276 } 1277 case IIT_SUBDIVIDE2_ARG: { 1278 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1279 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1280 ArgInfo)); 1281 return; 1282 } 1283 case IIT_SUBDIVIDE4_ARG: { 1284 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1285 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1286 ArgInfo)); 1287 return; 1288 } 1289 case IIT_VEC_ELEMENT: { 1290 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1291 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1292 ArgInfo)); 1293 return; 1294 } 1295 case IIT_SCALABLE_VEC: { 1296 DecodeIITType(NextElt, Infos, Info, OutputTable); 1297 return; 1298 } 1299 case IIT_VEC_OF_BITCASTS_TO_INT: { 1300 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1301 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1302 ArgInfo)); 1303 return; 1304 } 1305 } 1306 llvm_unreachable("unhandled"); 1307 } 1308 1309 #define GET_INTRINSIC_GENERATOR_GLOBAL 1310 #include "llvm/IR/IntrinsicImpl.inc" 1311 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1312 1313 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1314 SmallVectorImpl<IITDescriptor> &T){ 1315 // Check to see if the intrinsic's type was expressible by the table. 1316 unsigned TableVal = IIT_Table[id-1]; 1317 1318 // Decode the TableVal into an array of IITValues. 1319 SmallVector<unsigned char, 8> IITValues; 1320 ArrayRef<unsigned char> IITEntries; 1321 unsigned NextElt = 0; 1322 if ((TableVal >> 31) != 0) { 1323 // This is an offset into the IIT_LongEncodingTable. 1324 IITEntries = IIT_LongEncodingTable; 1325 1326 // Strip sentinel bit. 1327 NextElt = (TableVal << 1) >> 1; 1328 } else { 1329 // Decode the TableVal into an array of IITValues. If the entry was encoded 1330 // into a single word in the table itself, decode it now. 1331 do { 1332 IITValues.push_back(TableVal & 0xF); 1333 TableVal >>= 4; 1334 } while (TableVal); 1335 1336 IITEntries = IITValues; 1337 NextElt = 0; 1338 } 1339 1340 // Okay, decode the table into the output vector of IITDescriptors. 1341 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1342 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1343 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1344 } 1345 1346 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1347 ArrayRef<Type*> Tys, LLVMContext &Context) { 1348 using namespace Intrinsic; 1349 1350 IITDescriptor D = Infos.front(); 1351 Infos = Infos.slice(1); 1352 1353 switch (D.Kind) { 1354 case IITDescriptor::Void: return Type::getVoidTy(Context); 1355 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1356 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1357 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1358 case IITDescriptor::Token: return Type::getTokenTy(Context); 1359 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1360 case IITDescriptor::Half: return Type::getHalfTy(Context); 1361 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1362 case IITDescriptor::Float: return Type::getFloatTy(Context); 1363 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1364 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1365 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1366 case IITDescriptor::AArch64Svcount: 1367 return TargetExtType::get(Context, "aarch64.svcount"); 1368 1369 case IITDescriptor::Integer: 1370 return IntegerType::get(Context, D.Integer_Width); 1371 case IITDescriptor::Vector: 1372 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1373 D.Vector_Width); 1374 case IITDescriptor::Pointer: 1375 return PointerType::get(Context, D.Pointer_AddressSpace); 1376 case IITDescriptor::Struct: { 1377 SmallVector<Type *, 8> Elts; 1378 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1379 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1380 return StructType::get(Context, Elts); 1381 } 1382 case IITDescriptor::Argument: 1383 return Tys[D.getArgumentNumber()]; 1384 case IITDescriptor::ExtendArgument: { 1385 Type *Ty = Tys[D.getArgumentNumber()]; 1386 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1387 return VectorType::getExtendedElementVectorType(VTy); 1388 1389 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1390 } 1391 case IITDescriptor::TruncArgument: { 1392 Type *Ty = Tys[D.getArgumentNumber()]; 1393 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1394 return VectorType::getTruncatedElementVectorType(VTy); 1395 1396 IntegerType *ITy = cast<IntegerType>(Ty); 1397 assert(ITy->getBitWidth() % 2 == 0); 1398 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1399 } 1400 case IITDescriptor::Subdivide2Argument: 1401 case IITDescriptor::Subdivide4Argument: { 1402 Type *Ty = Tys[D.getArgumentNumber()]; 1403 VectorType *VTy = dyn_cast<VectorType>(Ty); 1404 assert(VTy && "Expected an argument of Vector Type"); 1405 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1406 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1407 } 1408 case IITDescriptor::HalfVecArgument: 1409 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1410 Tys[D.getArgumentNumber()])); 1411 case IITDescriptor::SameVecWidthArgument: { 1412 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1413 Type *Ty = Tys[D.getArgumentNumber()]; 1414 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1415 return VectorType::get(EltTy, VTy->getElementCount()); 1416 return EltTy; 1417 } 1418 case IITDescriptor::VecElementArgument: { 1419 Type *Ty = Tys[D.getArgumentNumber()]; 1420 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1421 return VTy->getElementType(); 1422 llvm_unreachable("Expected an argument of Vector Type"); 1423 } 1424 case IITDescriptor::VecOfBitcastsToInt: { 1425 Type *Ty = Tys[D.getArgumentNumber()]; 1426 VectorType *VTy = dyn_cast<VectorType>(Ty); 1427 assert(VTy && "Expected an argument of Vector Type"); 1428 return VectorType::getInteger(VTy); 1429 } 1430 case IITDescriptor::VecOfAnyPtrsToElt: 1431 // Return the overloaded type (which determines the pointers address space) 1432 return Tys[D.getOverloadArgNumber()]; 1433 } 1434 llvm_unreachable("unhandled"); 1435 } 1436 1437 FunctionType *Intrinsic::getType(LLVMContext &Context, 1438 ID id, ArrayRef<Type*> Tys) { 1439 SmallVector<IITDescriptor, 8> Table; 1440 getIntrinsicInfoTableEntries(id, Table); 1441 1442 ArrayRef<IITDescriptor> TableRef = Table; 1443 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1444 1445 SmallVector<Type*, 8> ArgTys; 1446 while (!TableRef.empty()) 1447 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1448 1449 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1450 // If we see void type as the type of the last argument, it is vararg intrinsic 1451 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1452 ArgTys.pop_back(); 1453 return FunctionType::get(ResultTy, ArgTys, true); 1454 } 1455 return FunctionType::get(ResultTy, ArgTys, false); 1456 } 1457 1458 bool Intrinsic::isOverloaded(ID id) { 1459 #define GET_INTRINSIC_OVERLOAD_TABLE 1460 #include "llvm/IR/IntrinsicImpl.inc" 1461 #undef GET_INTRINSIC_OVERLOAD_TABLE 1462 } 1463 1464 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1465 #define GET_INTRINSIC_ATTRIBUTES 1466 #include "llvm/IR/IntrinsicImpl.inc" 1467 #undef GET_INTRINSIC_ATTRIBUTES 1468 1469 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1470 // There can never be multiple globals with the same name of different types, 1471 // because intrinsics must be a specific type. 1472 auto *FT = getType(M->getContext(), id, Tys); 1473 return cast<Function>( 1474 M->getOrInsertFunction( 1475 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1476 .getCallee()); 1477 } 1478 1479 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1480 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1481 #include "llvm/IR/IntrinsicImpl.inc" 1482 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1483 1484 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1485 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1486 #include "llvm/IR/IntrinsicImpl.inc" 1487 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1488 1489 using DeferredIntrinsicMatchPair = 1490 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1491 1492 static bool matchIntrinsicType( 1493 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1494 SmallVectorImpl<Type *> &ArgTys, 1495 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1496 bool IsDeferredCheck) { 1497 using namespace Intrinsic; 1498 1499 // If we ran out of descriptors, there are too many arguments. 1500 if (Infos.empty()) return true; 1501 1502 // Do this before slicing off the 'front' part 1503 auto InfosRef = Infos; 1504 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1505 DeferredChecks.emplace_back(T, InfosRef); 1506 return false; 1507 }; 1508 1509 IITDescriptor D = Infos.front(); 1510 Infos = Infos.slice(1); 1511 1512 switch (D.Kind) { 1513 case IITDescriptor::Void: return !Ty->isVoidTy(); 1514 case IITDescriptor::VarArg: return true; 1515 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1516 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1517 case IITDescriptor::Token: return !Ty->isTokenTy(); 1518 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1519 case IITDescriptor::Half: return !Ty->isHalfTy(); 1520 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1521 case IITDescriptor::Float: return !Ty->isFloatTy(); 1522 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1523 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1524 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1525 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1526 case IITDescriptor::AArch64Svcount: 1527 return !isa<TargetExtType>(Ty) || 1528 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1529 case IITDescriptor::Vector: { 1530 VectorType *VT = dyn_cast<VectorType>(Ty); 1531 return !VT || VT->getElementCount() != D.Vector_Width || 1532 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1533 DeferredChecks, IsDeferredCheck); 1534 } 1535 case IITDescriptor::Pointer: { 1536 PointerType *PT = dyn_cast<PointerType>(Ty); 1537 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1538 } 1539 1540 case IITDescriptor::Struct: { 1541 StructType *ST = dyn_cast<StructType>(Ty); 1542 if (!ST || !ST->isLiteral() || ST->isPacked() || 1543 ST->getNumElements() != D.Struct_NumElements) 1544 return true; 1545 1546 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1547 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1548 DeferredChecks, IsDeferredCheck)) 1549 return true; 1550 return false; 1551 } 1552 1553 case IITDescriptor::Argument: 1554 // If this is the second occurrence of an argument, 1555 // verify that the later instance matches the previous instance. 1556 if (D.getArgumentNumber() < ArgTys.size()) 1557 return Ty != ArgTys[D.getArgumentNumber()]; 1558 1559 if (D.getArgumentNumber() > ArgTys.size() || 1560 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1561 return IsDeferredCheck || DeferCheck(Ty); 1562 1563 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1564 "Table consistency error"); 1565 ArgTys.push_back(Ty); 1566 1567 switch (D.getArgumentKind()) { 1568 case IITDescriptor::AK_Any: return false; // Success 1569 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1570 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1571 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1572 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1573 default: break; 1574 } 1575 llvm_unreachable("all argument kinds not covered"); 1576 1577 case IITDescriptor::ExtendArgument: { 1578 // If this is a forward reference, defer the check for later. 1579 if (D.getArgumentNumber() >= ArgTys.size()) 1580 return IsDeferredCheck || DeferCheck(Ty); 1581 1582 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1583 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1584 NewTy = VectorType::getExtendedElementVectorType(VTy); 1585 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1586 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1587 else 1588 return true; 1589 1590 return Ty != NewTy; 1591 } 1592 case IITDescriptor::TruncArgument: { 1593 // If this is a forward reference, defer the check for later. 1594 if (D.getArgumentNumber() >= ArgTys.size()) 1595 return IsDeferredCheck || DeferCheck(Ty); 1596 1597 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1598 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1599 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1600 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1601 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1602 else 1603 return true; 1604 1605 return Ty != NewTy; 1606 } 1607 case IITDescriptor::HalfVecArgument: 1608 // If this is a forward reference, defer the check for later. 1609 if (D.getArgumentNumber() >= ArgTys.size()) 1610 return IsDeferredCheck || DeferCheck(Ty); 1611 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1612 VectorType::getHalfElementsVectorType( 1613 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1614 case IITDescriptor::SameVecWidthArgument: { 1615 if (D.getArgumentNumber() >= ArgTys.size()) { 1616 // Defer check and subsequent check for the vector element type. 1617 Infos = Infos.slice(1); 1618 return IsDeferredCheck || DeferCheck(Ty); 1619 } 1620 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1621 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1622 // Both must be vectors of the same number of elements or neither. 1623 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1624 return true; 1625 Type *EltTy = Ty; 1626 if (ThisArgType) { 1627 if (ReferenceType->getElementCount() != 1628 ThisArgType->getElementCount()) 1629 return true; 1630 EltTy = ThisArgType->getElementType(); 1631 } 1632 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1633 IsDeferredCheck); 1634 } 1635 case IITDescriptor::VecOfAnyPtrsToElt: { 1636 unsigned RefArgNumber = D.getRefArgNumber(); 1637 if (RefArgNumber >= ArgTys.size()) { 1638 if (IsDeferredCheck) 1639 return true; 1640 // If forward referencing, already add the pointer-vector type and 1641 // defer the checks for later. 1642 ArgTys.push_back(Ty); 1643 return DeferCheck(Ty); 1644 } 1645 1646 if (!IsDeferredCheck){ 1647 assert(D.getOverloadArgNumber() == ArgTys.size() && 1648 "Table consistency error"); 1649 ArgTys.push_back(Ty); 1650 } 1651 1652 // Verify the overloaded type "matches" the Ref type. 1653 // i.e. Ty is a vector with the same width as Ref. 1654 // Composed of pointers to the same element type as Ref. 1655 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1656 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1657 if (!ThisArgVecTy || !ReferenceType || 1658 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1659 return true; 1660 return !ThisArgVecTy->getElementType()->isPointerTy(); 1661 } 1662 case IITDescriptor::VecElementArgument: { 1663 if (D.getArgumentNumber() >= ArgTys.size()) 1664 return IsDeferredCheck ? true : DeferCheck(Ty); 1665 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1666 return !ReferenceType || Ty != ReferenceType->getElementType(); 1667 } 1668 case IITDescriptor::Subdivide2Argument: 1669 case IITDescriptor::Subdivide4Argument: { 1670 // If this is a forward reference, defer the check for later. 1671 if (D.getArgumentNumber() >= ArgTys.size()) 1672 return IsDeferredCheck || DeferCheck(Ty); 1673 1674 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1675 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1676 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1677 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1678 return Ty != NewTy; 1679 } 1680 return true; 1681 } 1682 case IITDescriptor::VecOfBitcastsToInt: { 1683 if (D.getArgumentNumber() >= ArgTys.size()) 1684 return IsDeferredCheck || DeferCheck(Ty); 1685 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1686 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1687 if (!ThisArgVecTy || !ReferenceType) 1688 return true; 1689 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1690 } 1691 } 1692 llvm_unreachable("unhandled"); 1693 } 1694 1695 Intrinsic::MatchIntrinsicTypesResult 1696 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1697 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1698 SmallVectorImpl<Type *> &ArgTys) { 1699 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1700 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1701 false)) 1702 return MatchIntrinsicTypes_NoMatchRet; 1703 1704 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1705 1706 for (auto *Ty : FTy->params()) 1707 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1708 return MatchIntrinsicTypes_NoMatchArg; 1709 1710 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1711 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1712 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1713 true)) 1714 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1715 : MatchIntrinsicTypes_NoMatchArg; 1716 } 1717 1718 return MatchIntrinsicTypes_Match; 1719 } 1720 1721 bool 1722 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1723 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1724 // If there are no descriptors left, then it can't be a vararg. 1725 if (Infos.empty()) 1726 return isVarArg; 1727 1728 // There should be only one descriptor remaining at this point. 1729 if (Infos.size() != 1) 1730 return true; 1731 1732 // Check and verify the descriptor. 1733 IITDescriptor D = Infos.front(); 1734 Infos = Infos.slice(1); 1735 if (D.Kind == IITDescriptor::VarArg) 1736 return !isVarArg; 1737 1738 return true; 1739 } 1740 1741 bool Intrinsic::getIntrinsicSignature(Function *F, 1742 SmallVectorImpl<Type *> &ArgTys) { 1743 Intrinsic::ID ID = F->getIntrinsicID(); 1744 if (!ID) 1745 return false; 1746 1747 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1748 getIntrinsicInfoTableEntries(ID, Table); 1749 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1750 1751 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1752 ArgTys) != 1753 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1754 return false; 1755 } 1756 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1757 TableRef)) 1758 return false; 1759 return true; 1760 } 1761 1762 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1763 SmallVector<Type *, 4> ArgTys; 1764 if (!getIntrinsicSignature(F, ArgTys)) 1765 return std::nullopt; 1766 1767 Intrinsic::ID ID = F->getIntrinsicID(); 1768 StringRef Name = F->getName(); 1769 std::string WantedName = 1770 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1771 if (Name == WantedName) 1772 return std::nullopt; 1773 1774 Function *NewDecl = [&] { 1775 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1776 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1777 if (ExistingF->getFunctionType() == F->getFunctionType()) 1778 return ExistingF; 1779 1780 // The name already exists, but is not a function or has the wrong 1781 // prototype. Make place for the new one by renaming the old version. 1782 // Either this old version will be removed later on or the module is 1783 // invalid and we'll get an error. 1784 ExistingGV->setName(WantedName + ".renamed"); 1785 } 1786 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1787 }(); 1788 1789 NewDecl->setCallingConv(F->getCallingConv()); 1790 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1791 "Shouldn't change the signature"); 1792 return NewDecl; 1793 } 1794 1795 /// hasAddressTaken - returns true if there are any uses of this function 1796 /// other than direct calls or invokes to it. Optionally ignores callback 1797 /// uses, assume like pointer annotation calls, and references in llvm.used 1798 /// and llvm.compiler.used variables. 1799 bool Function::hasAddressTaken(const User **PutOffender, 1800 bool IgnoreCallbackUses, 1801 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1802 bool IgnoreARCAttachedCall, 1803 bool IgnoreCastedDirectCall) const { 1804 for (const Use &U : uses()) { 1805 const User *FU = U.getUser(); 1806 if (isa<BlockAddress>(FU)) 1807 continue; 1808 1809 if (IgnoreCallbackUses) { 1810 AbstractCallSite ACS(&U); 1811 if (ACS && ACS.isCallbackCall()) 1812 continue; 1813 } 1814 1815 const auto *Call = dyn_cast<CallBase>(FU); 1816 if (!Call) { 1817 if (IgnoreAssumeLikeCalls && 1818 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1819 all_of(FU->users(), [](const User *U) { 1820 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1821 return I->isAssumeLikeIntrinsic(); 1822 return false; 1823 })) { 1824 continue; 1825 } 1826 1827 if (IgnoreLLVMUsed && !FU->user_empty()) { 1828 const User *FUU = FU; 1829 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1830 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1831 FUU = *FU->user_begin(); 1832 if (llvm::all_of(FUU->users(), [](const User *U) { 1833 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1834 return GV->hasName() && 1835 (GV->getName().equals("llvm.compiler.used") || 1836 GV->getName().equals("llvm.used")); 1837 return false; 1838 })) 1839 continue; 1840 } 1841 if (PutOffender) 1842 *PutOffender = FU; 1843 return true; 1844 } 1845 1846 if (IgnoreAssumeLikeCalls) { 1847 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1848 if (I->isAssumeLikeIntrinsic()) 1849 continue; 1850 } 1851 1852 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1853 Call->getFunctionType() != getFunctionType())) { 1854 if (IgnoreARCAttachedCall && 1855 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1856 U.getOperandNo())) 1857 continue; 1858 1859 if (PutOffender) 1860 *PutOffender = FU; 1861 return true; 1862 } 1863 } 1864 return false; 1865 } 1866 1867 bool Function::isDefTriviallyDead() const { 1868 // Check the linkage 1869 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1870 !hasAvailableExternallyLinkage()) 1871 return false; 1872 1873 // Check if the function is used by anything other than a blockaddress. 1874 for (const User *U : users()) 1875 if (!isa<BlockAddress>(U)) 1876 return false; 1877 1878 return true; 1879 } 1880 1881 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1882 /// setjmp or other function that gcc recognizes as "returning twice". 1883 bool Function::callsFunctionThatReturnsTwice() const { 1884 for (const Instruction &I : instructions(this)) 1885 if (const auto *Call = dyn_cast<CallBase>(&I)) 1886 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1887 return true; 1888 1889 return false; 1890 } 1891 1892 Constant *Function::getPersonalityFn() const { 1893 assert(hasPersonalityFn() && getNumOperands()); 1894 return cast<Constant>(Op<0>()); 1895 } 1896 1897 void Function::setPersonalityFn(Constant *Fn) { 1898 setHungoffOperand<0>(Fn); 1899 setValueSubclassDataBit(3, Fn != nullptr); 1900 } 1901 1902 Constant *Function::getPrefixData() const { 1903 assert(hasPrefixData() && getNumOperands()); 1904 return cast<Constant>(Op<1>()); 1905 } 1906 1907 void Function::setPrefixData(Constant *PrefixData) { 1908 setHungoffOperand<1>(PrefixData); 1909 setValueSubclassDataBit(1, PrefixData != nullptr); 1910 } 1911 1912 Constant *Function::getPrologueData() const { 1913 assert(hasPrologueData() && getNumOperands()); 1914 return cast<Constant>(Op<2>()); 1915 } 1916 1917 void Function::setPrologueData(Constant *PrologueData) { 1918 setHungoffOperand<2>(PrologueData); 1919 setValueSubclassDataBit(2, PrologueData != nullptr); 1920 } 1921 1922 void Function::allocHungoffUselist() { 1923 // If we've already allocated a uselist, stop here. 1924 if (getNumOperands()) 1925 return; 1926 1927 allocHungoffUses(3, /*IsPhi=*/ false); 1928 setNumHungOffUseOperands(3); 1929 1930 // Initialize the uselist with placeholder operands to allow traversal. 1931 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1932 Op<0>().set(CPN); 1933 Op<1>().set(CPN); 1934 Op<2>().set(CPN); 1935 } 1936 1937 template <int Idx> 1938 void Function::setHungoffOperand(Constant *C) { 1939 if (C) { 1940 allocHungoffUselist(); 1941 Op<Idx>().set(C); 1942 } else if (getNumOperands()) { 1943 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1944 } 1945 } 1946 1947 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1948 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1949 if (On) 1950 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1951 else 1952 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1953 } 1954 1955 void Function::setEntryCount(ProfileCount Count, 1956 const DenseSet<GlobalValue::GUID> *S) { 1957 #if !defined(NDEBUG) 1958 auto PrevCount = getEntryCount(); 1959 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1960 #endif 1961 1962 auto ImportGUIDs = getImportGUIDs(); 1963 if (S == nullptr && ImportGUIDs.size()) 1964 S = &ImportGUIDs; 1965 1966 MDBuilder MDB(getContext()); 1967 setMetadata( 1968 LLVMContext::MD_prof, 1969 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1970 } 1971 1972 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1973 const DenseSet<GlobalValue::GUID> *Imports) { 1974 setEntryCount(ProfileCount(Count, Type), Imports); 1975 } 1976 1977 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1978 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1979 if (MD && MD->getOperand(0)) 1980 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1981 if (MDS->getString().equals("function_entry_count")) { 1982 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1983 uint64_t Count = CI->getValue().getZExtValue(); 1984 // A value of -1 is used for SamplePGO when there were no samples. 1985 // Treat this the same as unknown. 1986 if (Count == (uint64_t)-1) 1987 return std::nullopt; 1988 return ProfileCount(Count, PCT_Real); 1989 } else if (AllowSynthetic && 1990 MDS->getString().equals("synthetic_function_entry_count")) { 1991 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1992 uint64_t Count = CI->getValue().getZExtValue(); 1993 return ProfileCount(Count, PCT_Synthetic); 1994 } 1995 } 1996 return std::nullopt; 1997 } 1998 1999 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2000 DenseSet<GlobalValue::GUID> R; 2001 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2002 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2003 if (MDS->getString().equals("function_entry_count")) 2004 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2005 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2006 ->getValue() 2007 .getZExtValue()); 2008 return R; 2009 } 2010 2011 void Function::setSectionPrefix(StringRef Prefix) { 2012 MDBuilder MDB(getContext()); 2013 setMetadata(LLVMContext::MD_section_prefix, 2014 MDB.createFunctionSectionPrefix(Prefix)); 2015 } 2016 2017 std::optional<StringRef> Function::getSectionPrefix() const { 2018 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2019 assert(cast<MDString>(MD->getOperand(0)) 2020 ->getString() 2021 .equals("function_section_prefix") && 2022 "Metadata not match"); 2023 return cast<MDString>(MD->getOperand(1))->getString(); 2024 } 2025 return std::nullopt; 2026 } 2027 2028 bool Function::nullPointerIsDefined() const { 2029 return hasFnAttribute(Attribute::NullPointerIsValid); 2030 } 2031 2032 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2033 if (F && F->nullPointerIsDefined()) 2034 return true; 2035 2036 if (AS != 0) 2037 return true; 2038 2039 return false; 2040 } 2041