xref: /llvm-project/llvm/lib/IR/Function.cpp (revision d9c99043bdde5637bf32edaad10d1b8f8cd10b38)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165 
166   // FIXME: sret and inalloca always depends on pointee element type. It's also
167   // possible for byval to miss it.
168   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
169       ParamAttrs.hasAttribute(Attribute::ByVal) ||
170       ParamAttrs.hasAttribute(Attribute::StructRet) ||
171       ParamAttrs.hasAttribute(Attribute::Preallocated))
172     return cast<PointerType>(ArgTy)->getElementType();
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttributes(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttributes(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs, getType());
189 }
190 
191 unsigned Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 Type *Argument::getParamByValType() const {
202   assert(getType()->isPointerTy() && "Only pointers have byval types");
203   return getParent()->getParamByValType(getArgNo());
204 }
205 
206 Type *Argument::getParamStructRetType() const {
207   assert(getType()->isPointerTy() && "Only pointers have sret types");
208   return getParent()->getParamStructRetType(getArgNo());
209 }
210 
211 Type *Argument::getParamByRefType() const {
212   assert(getType()->isPointerTy() && "Only pointers have byval types");
213   return getParent()->getParamByRefType(getArgNo());
214 }
215 
216 uint64_t Argument::getDereferenceableBytes() const {
217   assert(getType()->isPointerTy() &&
218          "Only pointers have dereferenceable bytes");
219   return getParent()->getParamDereferenceableBytes(getArgNo());
220 }
221 
222 uint64_t Argument::getDereferenceableOrNullBytes() const {
223   assert(getType()->isPointerTy() &&
224          "Only pointers have dereferenceable bytes");
225   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
226 }
227 
228 bool Argument::hasNestAttr() const {
229   if (!getType()->isPointerTy()) return false;
230   return hasAttribute(Attribute::Nest);
231 }
232 
233 bool Argument::hasNoAliasAttr() const {
234   if (!getType()->isPointerTy()) return false;
235   return hasAttribute(Attribute::NoAlias);
236 }
237 
238 bool Argument::hasNoCaptureAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::NoCapture);
241 }
242 
243 bool Argument::hasStructRetAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::StructRet);
246 }
247 
248 bool Argument::hasInRegAttr() const {
249   return hasAttribute(Attribute::InReg);
250 }
251 
252 bool Argument::hasReturnedAttr() const {
253   return hasAttribute(Attribute::Returned);
254 }
255 
256 bool Argument::hasZExtAttr() const {
257   return hasAttribute(Attribute::ZExt);
258 }
259 
260 bool Argument::hasSExtAttr() const {
261   return hasAttribute(Attribute::SExt);
262 }
263 
264 bool Argument::onlyReadsMemory() const {
265   AttributeList Attrs = getParent()->getAttributes();
266   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
267          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
268 }
269 
270 void Argument::addAttrs(AttrBuilder &B) {
271   AttributeList AL = getParent()->getAttributes();
272   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
273   getParent()->setAttributes(AL);
274 }
275 
276 void Argument::addAttr(Attribute::AttrKind Kind) {
277   getParent()->addParamAttr(getArgNo(), Kind);
278 }
279 
280 void Argument::addAttr(Attribute Attr) {
281   getParent()->addParamAttr(getArgNo(), Attr);
282 }
283 
284 void Argument::removeAttr(Attribute::AttrKind Kind) {
285   getParent()->removeParamAttr(getArgNo(), Kind);
286 }
287 
288 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
289   return getParent()->hasParamAttribute(getArgNo(), Kind);
290 }
291 
292 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
293   return getParent()->getParamAttribute(getArgNo(), Kind);
294 }
295 
296 //===----------------------------------------------------------------------===//
297 // Helper Methods in Function
298 //===----------------------------------------------------------------------===//
299 
300 LLVMContext &Function::getContext() const {
301   return getType()->getContext();
302 }
303 
304 unsigned Function::getInstructionCount() const {
305   unsigned NumInstrs = 0;
306   for (const BasicBlock &BB : BasicBlocks)
307     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
308                                BB.instructionsWithoutDebug().end());
309   return NumInstrs;
310 }
311 
312 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
313                            const Twine &N, Module &M) {
314   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
315 }
316 
317 void Function::removeFromParent() {
318   getParent()->getFunctionList().remove(getIterator());
319 }
320 
321 void Function::eraseFromParent() {
322   getParent()->getFunctionList().erase(getIterator());
323 }
324 
325 //===----------------------------------------------------------------------===//
326 // Function Implementation
327 //===----------------------------------------------------------------------===//
328 
329 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
330   // If AS == -1 and we are passed a valid module pointer we place the function
331   // in the program address space. Otherwise we default to AS0.
332   if (AddrSpace == static_cast<unsigned>(-1))
333     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
334   return AddrSpace;
335 }
336 
337 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
338                    const Twine &name, Module *ParentModule)
339     : GlobalObject(Ty, Value::FunctionVal,
340                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
341                    computeAddrSpace(AddrSpace, ParentModule)),
342       NumArgs(Ty->getNumParams()) {
343   assert(FunctionType::isValidReturnType(getReturnType()) &&
344          "invalid return type");
345   setGlobalObjectSubClassData(0);
346 
347   // We only need a symbol table for a function if the context keeps value names
348   if (!getContext().shouldDiscardValueNames())
349     SymTab = std::make_unique<ValueSymbolTable>();
350 
351   // If the function has arguments, mark them as lazily built.
352   if (Ty->getNumParams())
353     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
354 
355   if (ParentModule)
356     ParentModule->getFunctionList().push_back(this);
357 
358   HasLLVMReservedName = getName().startswith("llvm.");
359   // Ensure intrinsics have the right parameter attributes.
360   // Note, the IntID field will have been set in Value::setName if this function
361   // name is a valid intrinsic ID.
362   if (IntID)
363     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
364 }
365 
366 Function::~Function() {
367   dropAllReferences();    // After this it is safe to delete instructions.
368 
369   // Delete all of the method arguments and unlink from symbol table...
370   if (Arguments)
371     clearArguments();
372 
373   // Remove the function from the on-the-side GC table.
374   clearGC();
375 }
376 
377 void Function::BuildLazyArguments() const {
378   // Create the arguments vector, all arguments start out unnamed.
379   auto *FT = getFunctionType();
380   if (NumArgs > 0) {
381     Arguments = std::allocator<Argument>().allocate(NumArgs);
382     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
383       Type *ArgTy = FT->getParamType(i);
384       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
385       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
386     }
387   }
388 
389   // Clear the lazy arguments bit.
390   unsigned SDC = getSubclassDataFromValue();
391   SDC &= ~(1 << 0);
392   const_cast<Function*>(this)->setValueSubclassData(SDC);
393   assert(!hasLazyArguments());
394 }
395 
396 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
397   return MutableArrayRef<Argument>(Args, Count);
398 }
399 
400 bool Function::isConstrainedFPIntrinsic() const {
401   switch (getIntrinsicID()) {
402 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
403   case Intrinsic::INTRINSIC:
404 #include "llvm/IR/ConstrainedOps.def"
405     return true;
406 #undef INSTRUCTION
407   default:
408     return false;
409   }
410 }
411 
412 void Function::clearArguments() {
413   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
414     A.setName("");
415     A.~Argument();
416   }
417   std::allocator<Argument>().deallocate(Arguments, NumArgs);
418   Arguments = nullptr;
419 }
420 
421 void Function::stealArgumentListFrom(Function &Src) {
422   assert(isDeclaration() && "Expected no references to current arguments");
423 
424   // Drop the current arguments, if any, and set the lazy argument bit.
425   if (!hasLazyArguments()) {
426     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
427                         [](const Argument &A) { return A.use_empty(); }) &&
428            "Expected arguments to be unused in declaration");
429     clearArguments();
430     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
431   }
432 
433   // Nothing to steal if Src has lazy arguments.
434   if (Src.hasLazyArguments())
435     return;
436 
437   // Steal arguments from Src, and fix the lazy argument bits.
438   assert(arg_size() == Src.arg_size());
439   Arguments = Src.Arguments;
440   Src.Arguments = nullptr;
441   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
442     // FIXME: This does the work of transferNodesFromList inefficiently.
443     SmallString<128> Name;
444     if (A.hasName())
445       Name = A.getName();
446     if (!Name.empty())
447       A.setName("");
448     A.setParent(this);
449     if (!Name.empty())
450       A.setName(Name);
451   }
452 
453   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
454   assert(!hasLazyArguments());
455   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
456 }
457 
458 // dropAllReferences() - This function causes all the subinstructions to "let
459 // go" of all references that they are maintaining.  This allows one to
460 // 'delete' a whole class at a time, even though there may be circular
461 // references... first all references are dropped, and all use counts go to
462 // zero.  Then everything is deleted for real.  Note that no operations are
463 // valid on an object that has "dropped all references", except operator
464 // delete.
465 //
466 void Function::dropAllReferences() {
467   setIsMaterializable(false);
468 
469   for (BasicBlock &BB : *this)
470     BB.dropAllReferences();
471 
472   // Delete all basic blocks. They are now unused, except possibly by
473   // blockaddresses, but BasicBlock's destructor takes care of those.
474   while (!BasicBlocks.empty())
475     BasicBlocks.begin()->eraseFromParent();
476 
477   // Drop uses of any optional data (real or placeholder).
478   if (getNumOperands()) {
479     User::dropAllReferences();
480     setNumHungOffUseOperands(0);
481     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
482   }
483 
484   // Metadata is stored in a side-table.
485   clearMetadata();
486 }
487 
488 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
489   AttributeList PAL = getAttributes();
490   PAL = PAL.addAttribute(getContext(), i, Kind);
491   setAttributes(PAL);
492 }
493 
494 void Function::addAttribute(unsigned i, Attribute Attr) {
495   AttributeList PAL = getAttributes();
496   PAL = PAL.addAttribute(getContext(), i, Attr);
497   setAttributes(PAL);
498 }
499 
500 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.addAttributes(getContext(), i, Attrs);
503   setAttributes(PAL);
504 }
505 
506 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
509   setAttributes(PAL);
510 }
511 
512 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
515   setAttributes(PAL);
516 }
517 
518 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
521   setAttributes(PAL);
522 }
523 
524 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.removeAttribute(getContext(), i, Kind);
527   setAttributes(PAL);
528 }
529 
530 void Function::removeAttribute(unsigned i, StringRef Kind) {
531   AttributeList PAL = getAttributes();
532   PAL = PAL.removeAttribute(getContext(), i, Kind);
533   setAttributes(PAL);
534 }
535 
536 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
537   AttributeList PAL = getAttributes();
538   PAL = PAL.removeAttributes(getContext(), i, Attrs);
539   setAttributes(PAL);
540 }
541 
542 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
543   AttributeList PAL = getAttributes();
544   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
545   setAttributes(PAL);
546 }
547 
548 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
549   AttributeList PAL = getAttributes();
550   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
551   setAttributes(PAL);
552 }
553 
554 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
555   AttributeList PAL = getAttributes();
556   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
557   setAttributes(PAL);
558 }
559 
560 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
561   AttributeList PAL = getAttributes();
562   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
563   setAttributes(PAL);
564 }
565 
566 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
567   AttributeList PAL = getAttributes();
568   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
569   setAttributes(PAL);
570 }
571 
572 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
573   AttributeList PAL = getAttributes();
574   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
575   setAttributes(PAL);
576 }
577 
578 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
579                                                  uint64_t Bytes) {
580   AttributeList PAL = getAttributes();
581   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
582   setAttributes(PAL);
583 }
584 
585 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
586   if (&FPType == &APFloat::IEEEsingle()) {
587     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
588     StringRef Val = Attr.getValueAsString();
589     if (!Val.empty())
590       return parseDenormalFPAttribute(Val);
591 
592     // If the f32 variant of the attribute isn't specified, try to use the
593     // generic one.
594   }
595 
596   Attribute Attr = getFnAttribute("denormal-fp-math");
597   return parseDenormalFPAttribute(Attr.getValueAsString());
598 }
599 
600 const std::string &Function::getGC() const {
601   assert(hasGC() && "Function has no collector");
602   return getContext().getGC(*this);
603 }
604 
605 void Function::setGC(std::string Str) {
606   setValueSubclassDataBit(14, !Str.empty());
607   getContext().setGC(*this, std::move(Str));
608 }
609 
610 void Function::clearGC() {
611   if (!hasGC())
612     return;
613   getContext().deleteGC(*this);
614   setValueSubclassDataBit(14, false);
615 }
616 
617 bool Function::hasStackProtectorFnAttr() const {
618   return hasFnAttribute(Attribute::StackProtect) ||
619          hasFnAttribute(Attribute::StackProtectStrong) ||
620          hasFnAttribute(Attribute::StackProtectReq);
621 }
622 
623 /// Copy all additional attributes (those not needed to create a Function) from
624 /// the Function Src to this one.
625 void Function::copyAttributesFrom(const Function *Src) {
626   GlobalObject::copyAttributesFrom(Src);
627   setCallingConv(Src->getCallingConv());
628   setAttributes(Src->getAttributes());
629   if (Src->hasGC())
630     setGC(Src->getGC());
631   else
632     clearGC();
633   if (Src->hasPersonalityFn())
634     setPersonalityFn(Src->getPersonalityFn());
635   if (Src->hasPrefixData())
636     setPrefixData(Src->getPrefixData());
637   if (Src->hasPrologueData())
638     setPrologueData(Src->getPrologueData());
639 }
640 
641 /// Table of string intrinsic names indexed by enum value.
642 static const char * const IntrinsicNameTable[] = {
643   "not_intrinsic",
644 #define GET_INTRINSIC_NAME_TABLE
645 #include "llvm/IR/IntrinsicImpl.inc"
646 #undef GET_INTRINSIC_NAME_TABLE
647 };
648 
649 /// Table of per-target intrinsic name tables.
650 #define GET_INTRINSIC_TARGET_DATA
651 #include "llvm/IR/IntrinsicImpl.inc"
652 #undef GET_INTRINSIC_TARGET_DATA
653 
654 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
655   return IID > TargetInfos[0].Count;
656 }
657 
658 bool Function::isTargetIntrinsic() const {
659   return isTargetIntrinsic(IntID);
660 }
661 
662 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
663 /// target as \c Name, or the generic table if \c Name is not target specific.
664 ///
665 /// Returns the relevant slice of \c IntrinsicNameTable
666 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
667   assert(Name.startswith("llvm."));
668 
669   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
670   // Drop "llvm." and take the first dotted component. That will be the target
671   // if this is target specific.
672   StringRef Target = Name.drop_front(5).split('.').first;
673   auto It = partition_point(
674       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
675   // We've either found the target or just fall back to the generic set, which
676   // is always first.
677   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
678   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
679 }
680 
681 /// This does the actual lookup of an intrinsic ID which
682 /// matches the given function name.
683 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
684   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
685   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
686   if (Idx == -1)
687     return Intrinsic::not_intrinsic;
688 
689   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
690   // an index into a sub-table.
691   int Adjust = NameTable.data() - IntrinsicNameTable;
692   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
693 
694   // If the intrinsic is not overloaded, require an exact match. If it is
695   // overloaded, require either exact or prefix match.
696   const auto MatchSize = strlen(NameTable[Idx]);
697   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
698   bool IsExactMatch = Name.size() == MatchSize;
699   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
700                                                      : Intrinsic::not_intrinsic;
701 }
702 
703 void Function::recalculateIntrinsicID() {
704   StringRef Name = getName();
705   if (!Name.startswith("llvm.")) {
706     HasLLVMReservedName = false;
707     IntID = Intrinsic::not_intrinsic;
708     return;
709   }
710   HasLLVMReservedName = true;
711   IntID = lookupIntrinsicID(Name);
712 }
713 
714 /// Returns a stable mangling for the type specified for use in the name
715 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
716 /// of named types is simply their name.  Manglings for unnamed types consist
717 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
718 /// combined with the mangling of their component types.  A vararg function
719 /// type will have a suffix of 'vararg'.  Since function types can contain
720 /// other function types, we close a function type mangling with suffix 'f'
721 /// which can't be confused with it's prefix.  This ensures we don't have
722 /// collisions between two unrelated function types. Otherwise, you might
723 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
724 ///
725 static std::string getMangledTypeStr(Type* Ty) {
726   std::string Result;
727   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
728     Result += "p" + utostr(PTyp->getAddressSpace()) +
729       getMangledTypeStr(PTyp->getElementType());
730   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
731     Result += "a" + utostr(ATyp->getNumElements()) +
732       getMangledTypeStr(ATyp->getElementType());
733   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
734     if (!STyp->isLiteral()) {
735       Result += "s_";
736       Result += STyp->getName();
737     } else {
738       Result += "sl_";
739       for (auto Elem : STyp->elements())
740         Result += getMangledTypeStr(Elem);
741     }
742     // Ensure nested structs are distinguishable.
743     Result += "s";
744   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
745     Result += "f_" + getMangledTypeStr(FT->getReturnType());
746     for (size_t i = 0; i < FT->getNumParams(); i++)
747       Result += getMangledTypeStr(FT->getParamType(i));
748     if (FT->isVarArg())
749       Result += "vararg";
750     // Ensure nested function types are distinguishable.
751     Result += "f";
752   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
753     ElementCount EC = VTy->getElementCount();
754     if (EC.isScalable())
755       Result += "nx";
756     Result += "v" + utostr(EC.getKnownMinValue()) +
757               getMangledTypeStr(VTy->getElementType());
758   } else if (Ty) {
759     switch (Ty->getTypeID()) {
760     default: llvm_unreachable("Unhandled type");
761     case Type::VoidTyID:      Result += "isVoid";   break;
762     case Type::MetadataTyID:  Result += "Metadata"; break;
763     case Type::HalfTyID:      Result += "f16";      break;
764     case Type::BFloatTyID:    Result += "bf16";     break;
765     case Type::FloatTyID:     Result += "f32";      break;
766     case Type::DoubleTyID:    Result += "f64";      break;
767     case Type::X86_FP80TyID:  Result += "f80";      break;
768     case Type::FP128TyID:     Result += "f128";     break;
769     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
770     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
771     case Type::X86_AMXTyID:   Result += "x86amx";   break;
772     case Type::IntegerTyID:
773       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
774       break;
775     }
776   }
777   return Result;
778 }
779 
780 StringRef Intrinsic::getName(ID id) {
781   assert(id < num_intrinsics && "Invalid intrinsic ID!");
782   assert(!Intrinsic::isOverloaded(id) &&
783          "This version of getName does not support overloading");
784   return IntrinsicNameTable[id];
785 }
786 
787 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
788   assert(id < num_intrinsics && "Invalid intrinsic ID!");
789   assert((Tys.empty() || Intrinsic::isOverloaded(id)) &&
790          "This version of getName is for overloaded intrinsics only");
791   std::string Result(IntrinsicNameTable[id]);
792   for (Type *Ty : Tys) {
793     Result += "." + getMangledTypeStr(Ty);
794   }
795   return Result;
796 }
797 
798 /// IIT_Info - These are enumerators that describe the entries returned by the
799 /// getIntrinsicInfoTableEntries function.
800 ///
801 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
802 enum IIT_Info {
803   // Common values should be encoded with 0-15.
804   IIT_Done = 0,
805   IIT_I1   = 1,
806   IIT_I8   = 2,
807   IIT_I16  = 3,
808   IIT_I32  = 4,
809   IIT_I64  = 5,
810   IIT_F16  = 6,
811   IIT_F32  = 7,
812   IIT_F64  = 8,
813   IIT_V2   = 9,
814   IIT_V4   = 10,
815   IIT_V8   = 11,
816   IIT_V16  = 12,
817   IIT_V32  = 13,
818   IIT_PTR  = 14,
819   IIT_ARG  = 15,
820 
821   // Values from 16+ are only encodable with the inefficient encoding.
822   IIT_V64  = 16,
823   IIT_MMX  = 17,
824   IIT_TOKEN = 18,
825   IIT_METADATA = 19,
826   IIT_EMPTYSTRUCT = 20,
827   IIT_STRUCT2 = 21,
828   IIT_STRUCT3 = 22,
829   IIT_STRUCT4 = 23,
830   IIT_STRUCT5 = 24,
831   IIT_EXTEND_ARG = 25,
832   IIT_TRUNC_ARG = 26,
833   IIT_ANYPTR = 27,
834   IIT_V1   = 28,
835   IIT_VARARG = 29,
836   IIT_HALF_VEC_ARG = 30,
837   IIT_SAME_VEC_WIDTH_ARG = 31,
838   IIT_PTR_TO_ARG = 32,
839   IIT_PTR_TO_ELT = 33,
840   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
841   IIT_I128 = 35,
842   IIT_V512 = 36,
843   IIT_V1024 = 37,
844   IIT_STRUCT6 = 38,
845   IIT_STRUCT7 = 39,
846   IIT_STRUCT8 = 40,
847   IIT_F128 = 41,
848   IIT_VEC_ELEMENT = 42,
849   IIT_SCALABLE_VEC = 43,
850   IIT_SUBDIVIDE2_ARG = 44,
851   IIT_SUBDIVIDE4_ARG = 45,
852   IIT_VEC_OF_BITCASTS_TO_INT = 46,
853   IIT_V128 = 47,
854   IIT_BF16 = 48,
855   IIT_STRUCT9 = 49,
856   IIT_V256 = 50,
857   IIT_AMX  = 51
858 };
859 
860 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
861                       IIT_Info LastInfo,
862                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
863   using namespace Intrinsic;
864 
865   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
866 
867   IIT_Info Info = IIT_Info(Infos[NextElt++]);
868   unsigned StructElts = 2;
869 
870   switch (Info) {
871   case IIT_Done:
872     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
873     return;
874   case IIT_VARARG:
875     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
876     return;
877   case IIT_MMX:
878     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
879     return;
880   case IIT_AMX:
881     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
882     return;
883   case IIT_TOKEN:
884     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
885     return;
886   case IIT_METADATA:
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
888     return;
889   case IIT_F16:
890     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
891     return;
892   case IIT_BF16:
893     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
894     return;
895   case IIT_F32:
896     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
897     return;
898   case IIT_F64:
899     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
900     return;
901   case IIT_F128:
902     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
903     return;
904   case IIT_I1:
905     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
906     return;
907   case IIT_I8:
908     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
909     return;
910   case IIT_I16:
911     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
912     return;
913   case IIT_I32:
914     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
915     return;
916   case IIT_I64:
917     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
918     return;
919   case IIT_I128:
920     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
921     return;
922   case IIT_V1:
923     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
924     DecodeIITType(NextElt, Infos, Info, OutputTable);
925     return;
926   case IIT_V2:
927     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
928     DecodeIITType(NextElt, Infos, Info, OutputTable);
929     return;
930   case IIT_V4:
931     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
932     DecodeIITType(NextElt, Infos, Info, OutputTable);
933     return;
934   case IIT_V8:
935     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
936     DecodeIITType(NextElt, Infos, Info, OutputTable);
937     return;
938   case IIT_V16:
939     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
940     DecodeIITType(NextElt, Infos, Info, OutputTable);
941     return;
942   case IIT_V32:
943     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
944     DecodeIITType(NextElt, Infos, Info, OutputTable);
945     return;
946   case IIT_V64:
947     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
948     DecodeIITType(NextElt, Infos, Info, OutputTable);
949     return;
950   case IIT_V128:
951     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
952     DecodeIITType(NextElt, Infos, Info, OutputTable);
953     return;
954   case IIT_V256:
955     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
956     DecodeIITType(NextElt, Infos, Info, OutputTable);
957     return;
958   case IIT_V512:
959     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
960     DecodeIITType(NextElt, Infos, Info, OutputTable);
961     return;
962   case IIT_V1024:
963     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
964     DecodeIITType(NextElt, Infos, Info, OutputTable);
965     return;
966   case IIT_PTR:
967     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
968     DecodeIITType(NextElt, Infos, Info, OutputTable);
969     return;
970   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
971     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
972                                              Infos[NextElt++]));
973     DecodeIITType(NextElt, Infos, Info, OutputTable);
974     return;
975   }
976   case IIT_ARG: {
977     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
979     return;
980   }
981   case IIT_EXTEND_ARG: {
982     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
983     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
984                                              ArgInfo));
985     return;
986   }
987   case IIT_TRUNC_ARG: {
988     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
989     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
990                                              ArgInfo));
991     return;
992   }
993   case IIT_HALF_VEC_ARG: {
994     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
995     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
996                                              ArgInfo));
997     return;
998   }
999   case IIT_SAME_VEC_WIDTH_ARG: {
1000     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1001     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1002                                              ArgInfo));
1003     return;
1004   }
1005   case IIT_PTR_TO_ARG: {
1006     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1008                                              ArgInfo));
1009     return;
1010   }
1011   case IIT_PTR_TO_ELT: {
1012     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1014     return;
1015   }
1016   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1017     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1018     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1019     OutputTable.push_back(
1020         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1021     return;
1022   }
1023   case IIT_EMPTYSTRUCT:
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1025     return;
1026   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1027   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1028   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1029   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1030   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1031   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1032   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1033   case IIT_STRUCT2: {
1034     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1035 
1036     for (unsigned i = 0; i != StructElts; ++i)
1037       DecodeIITType(NextElt, Infos, Info, OutputTable);
1038     return;
1039   }
1040   case IIT_SUBDIVIDE2_ARG: {
1041     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1042     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1043                                              ArgInfo));
1044     return;
1045   }
1046   case IIT_SUBDIVIDE4_ARG: {
1047     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1049                                              ArgInfo));
1050     return;
1051   }
1052   case IIT_VEC_ELEMENT: {
1053     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1054     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1055                                              ArgInfo));
1056     return;
1057   }
1058   case IIT_SCALABLE_VEC: {
1059     DecodeIITType(NextElt, Infos, Info, OutputTable);
1060     return;
1061   }
1062   case IIT_VEC_OF_BITCASTS_TO_INT: {
1063     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1064     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1065                                              ArgInfo));
1066     return;
1067   }
1068   }
1069   llvm_unreachable("unhandled");
1070 }
1071 
1072 #define GET_INTRINSIC_GENERATOR_GLOBAL
1073 #include "llvm/IR/IntrinsicImpl.inc"
1074 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1075 
1076 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1077                                              SmallVectorImpl<IITDescriptor> &T){
1078   // Check to see if the intrinsic's type was expressible by the table.
1079   unsigned TableVal = IIT_Table[id-1];
1080 
1081   // Decode the TableVal into an array of IITValues.
1082   SmallVector<unsigned char, 8> IITValues;
1083   ArrayRef<unsigned char> IITEntries;
1084   unsigned NextElt = 0;
1085   if ((TableVal >> 31) != 0) {
1086     // This is an offset into the IIT_LongEncodingTable.
1087     IITEntries = IIT_LongEncodingTable;
1088 
1089     // Strip sentinel bit.
1090     NextElt = (TableVal << 1) >> 1;
1091   } else {
1092     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1093     // into a single word in the table itself, decode it now.
1094     do {
1095       IITValues.push_back(TableVal & 0xF);
1096       TableVal >>= 4;
1097     } while (TableVal);
1098 
1099     IITEntries = IITValues;
1100     NextElt = 0;
1101   }
1102 
1103   // Okay, decode the table into the output vector of IITDescriptors.
1104   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1105   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1106     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1107 }
1108 
1109 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1110                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1111   using namespace Intrinsic;
1112 
1113   IITDescriptor D = Infos.front();
1114   Infos = Infos.slice(1);
1115 
1116   switch (D.Kind) {
1117   case IITDescriptor::Void: return Type::getVoidTy(Context);
1118   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1119   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1120   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1121   case IITDescriptor::Token: return Type::getTokenTy(Context);
1122   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1123   case IITDescriptor::Half: return Type::getHalfTy(Context);
1124   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1125   case IITDescriptor::Float: return Type::getFloatTy(Context);
1126   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1127   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1128 
1129   case IITDescriptor::Integer:
1130     return IntegerType::get(Context, D.Integer_Width);
1131   case IITDescriptor::Vector:
1132     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1133                            D.Vector_Width);
1134   case IITDescriptor::Pointer:
1135     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1136                             D.Pointer_AddressSpace);
1137   case IITDescriptor::Struct: {
1138     SmallVector<Type *, 8> Elts;
1139     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1140       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1141     return StructType::get(Context, Elts);
1142   }
1143   case IITDescriptor::Argument:
1144     return Tys[D.getArgumentNumber()];
1145   case IITDescriptor::ExtendArgument: {
1146     Type *Ty = Tys[D.getArgumentNumber()];
1147     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1148       return VectorType::getExtendedElementVectorType(VTy);
1149 
1150     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1151   }
1152   case IITDescriptor::TruncArgument: {
1153     Type *Ty = Tys[D.getArgumentNumber()];
1154     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1155       return VectorType::getTruncatedElementVectorType(VTy);
1156 
1157     IntegerType *ITy = cast<IntegerType>(Ty);
1158     assert(ITy->getBitWidth() % 2 == 0);
1159     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1160   }
1161   case IITDescriptor::Subdivide2Argument:
1162   case IITDescriptor::Subdivide4Argument: {
1163     Type *Ty = Tys[D.getArgumentNumber()];
1164     VectorType *VTy = dyn_cast<VectorType>(Ty);
1165     assert(VTy && "Expected an argument of Vector Type");
1166     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1167     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1168   }
1169   case IITDescriptor::HalfVecArgument:
1170     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1171                                                   Tys[D.getArgumentNumber()]));
1172   case IITDescriptor::SameVecWidthArgument: {
1173     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1174     Type *Ty = Tys[D.getArgumentNumber()];
1175     if (auto *VTy = dyn_cast<VectorType>(Ty))
1176       return VectorType::get(EltTy, VTy->getElementCount());
1177     return EltTy;
1178   }
1179   case IITDescriptor::PtrToArgument: {
1180     Type *Ty = Tys[D.getArgumentNumber()];
1181     return PointerType::getUnqual(Ty);
1182   }
1183   case IITDescriptor::PtrToElt: {
1184     Type *Ty = Tys[D.getArgumentNumber()];
1185     VectorType *VTy = dyn_cast<VectorType>(Ty);
1186     if (!VTy)
1187       llvm_unreachable("Expected an argument of Vector Type");
1188     Type *EltTy = VTy->getElementType();
1189     return PointerType::getUnqual(EltTy);
1190   }
1191   case IITDescriptor::VecElementArgument: {
1192     Type *Ty = Tys[D.getArgumentNumber()];
1193     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1194       return VTy->getElementType();
1195     llvm_unreachable("Expected an argument of Vector Type");
1196   }
1197   case IITDescriptor::VecOfBitcastsToInt: {
1198     Type *Ty = Tys[D.getArgumentNumber()];
1199     VectorType *VTy = dyn_cast<VectorType>(Ty);
1200     assert(VTy && "Expected an argument of Vector Type");
1201     return VectorType::getInteger(VTy);
1202   }
1203   case IITDescriptor::VecOfAnyPtrsToElt:
1204     // Return the overloaded type (which determines the pointers address space)
1205     return Tys[D.getOverloadArgNumber()];
1206   }
1207   llvm_unreachable("unhandled");
1208 }
1209 
1210 FunctionType *Intrinsic::getType(LLVMContext &Context,
1211                                  ID id, ArrayRef<Type*> Tys) {
1212   SmallVector<IITDescriptor, 8> Table;
1213   getIntrinsicInfoTableEntries(id, Table);
1214 
1215   ArrayRef<IITDescriptor> TableRef = Table;
1216   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1217 
1218   SmallVector<Type*, 8> ArgTys;
1219   while (!TableRef.empty())
1220     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1221 
1222   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1223   // If we see void type as the type of the last argument, it is vararg intrinsic
1224   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1225     ArgTys.pop_back();
1226     return FunctionType::get(ResultTy, ArgTys, true);
1227   }
1228   return FunctionType::get(ResultTy, ArgTys, false);
1229 }
1230 
1231 bool Intrinsic::isOverloaded(ID id) {
1232 #define GET_INTRINSIC_OVERLOAD_TABLE
1233 #include "llvm/IR/IntrinsicImpl.inc"
1234 #undef GET_INTRINSIC_OVERLOAD_TABLE
1235 }
1236 
1237 bool Intrinsic::isLeaf(ID id) {
1238   switch (id) {
1239   default:
1240     return true;
1241 
1242   case Intrinsic::experimental_gc_statepoint:
1243   case Intrinsic::experimental_patchpoint_void:
1244   case Intrinsic::experimental_patchpoint_i64:
1245     return false;
1246   }
1247 }
1248 
1249 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1250 #define GET_INTRINSIC_ATTRIBUTES
1251 #include "llvm/IR/IntrinsicImpl.inc"
1252 #undef GET_INTRINSIC_ATTRIBUTES
1253 
1254 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1255   // There can never be multiple globals with the same name of different types,
1256   // because intrinsics must be a specific type.
1257   return cast<Function>(
1258       M->getOrInsertFunction(Tys.empty() ? getName(id) : getName(id, Tys),
1259                              getType(M->getContext(), id, Tys))
1260           .getCallee());
1261 }
1262 
1263 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1264 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1265 #include "llvm/IR/IntrinsicImpl.inc"
1266 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1267 
1268 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1269 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1270 #include "llvm/IR/IntrinsicImpl.inc"
1271 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1272 
1273 using DeferredIntrinsicMatchPair =
1274     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1275 
1276 static bool matchIntrinsicType(
1277     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1278     SmallVectorImpl<Type *> &ArgTys,
1279     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1280     bool IsDeferredCheck) {
1281   using namespace Intrinsic;
1282 
1283   // If we ran out of descriptors, there are too many arguments.
1284   if (Infos.empty()) return true;
1285 
1286   // Do this before slicing off the 'front' part
1287   auto InfosRef = Infos;
1288   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1289     DeferredChecks.emplace_back(T, InfosRef);
1290     return false;
1291   };
1292 
1293   IITDescriptor D = Infos.front();
1294   Infos = Infos.slice(1);
1295 
1296   switch (D.Kind) {
1297     case IITDescriptor::Void: return !Ty->isVoidTy();
1298     case IITDescriptor::VarArg: return true;
1299     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1300     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1301     case IITDescriptor::Token: return !Ty->isTokenTy();
1302     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1303     case IITDescriptor::Half: return !Ty->isHalfTy();
1304     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1305     case IITDescriptor::Float: return !Ty->isFloatTy();
1306     case IITDescriptor::Double: return !Ty->isDoubleTy();
1307     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1308     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1309     case IITDescriptor::Vector: {
1310       VectorType *VT = dyn_cast<VectorType>(Ty);
1311       return !VT || VT->getElementCount() != D.Vector_Width ||
1312              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1313                                 DeferredChecks, IsDeferredCheck);
1314     }
1315     case IITDescriptor::Pointer: {
1316       PointerType *PT = dyn_cast<PointerType>(Ty);
1317       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1318              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1319                                 DeferredChecks, IsDeferredCheck);
1320     }
1321 
1322     case IITDescriptor::Struct: {
1323       StructType *ST = dyn_cast<StructType>(Ty);
1324       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1325         return true;
1326 
1327       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1328         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1329                                DeferredChecks, IsDeferredCheck))
1330           return true;
1331       return false;
1332     }
1333 
1334     case IITDescriptor::Argument:
1335       // If this is the second occurrence of an argument,
1336       // verify that the later instance matches the previous instance.
1337       if (D.getArgumentNumber() < ArgTys.size())
1338         return Ty != ArgTys[D.getArgumentNumber()];
1339 
1340       if (D.getArgumentNumber() > ArgTys.size() ||
1341           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1342         return IsDeferredCheck || DeferCheck(Ty);
1343 
1344       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1345              "Table consistency error");
1346       ArgTys.push_back(Ty);
1347 
1348       switch (D.getArgumentKind()) {
1349         case IITDescriptor::AK_Any:        return false; // Success
1350         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1351         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1352         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1353         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1354         default:                           break;
1355       }
1356       llvm_unreachable("all argument kinds not covered");
1357 
1358     case IITDescriptor::ExtendArgument: {
1359       // If this is a forward reference, defer the check for later.
1360       if (D.getArgumentNumber() >= ArgTys.size())
1361         return IsDeferredCheck || DeferCheck(Ty);
1362 
1363       Type *NewTy = ArgTys[D.getArgumentNumber()];
1364       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1365         NewTy = VectorType::getExtendedElementVectorType(VTy);
1366       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1367         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1368       else
1369         return true;
1370 
1371       return Ty != NewTy;
1372     }
1373     case IITDescriptor::TruncArgument: {
1374       // If this is a forward reference, defer the check for later.
1375       if (D.getArgumentNumber() >= ArgTys.size())
1376         return IsDeferredCheck || DeferCheck(Ty);
1377 
1378       Type *NewTy = ArgTys[D.getArgumentNumber()];
1379       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1380         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1381       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1382         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1383       else
1384         return true;
1385 
1386       return Ty != NewTy;
1387     }
1388     case IITDescriptor::HalfVecArgument:
1389       // If this is a forward reference, defer the check for later.
1390       if (D.getArgumentNumber() >= ArgTys.size())
1391         return IsDeferredCheck || DeferCheck(Ty);
1392       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1393              VectorType::getHalfElementsVectorType(
1394                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1395     case IITDescriptor::SameVecWidthArgument: {
1396       if (D.getArgumentNumber() >= ArgTys.size()) {
1397         // Defer check and subsequent check for the vector element type.
1398         Infos = Infos.slice(1);
1399         return IsDeferredCheck || DeferCheck(Ty);
1400       }
1401       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1402       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1403       // Both must be vectors of the same number of elements or neither.
1404       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1405         return true;
1406       Type *EltTy = Ty;
1407       if (ThisArgType) {
1408         if (ReferenceType->getElementCount() !=
1409             ThisArgType->getElementCount())
1410           return true;
1411         EltTy = ThisArgType->getElementType();
1412       }
1413       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1414                                 IsDeferredCheck);
1415     }
1416     case IITDescriptor::PtrToArgument: {
1417       if (D.getArgumentNumber() >= ArgTys.size())
1418         return IsDeferredCheck || DeferCheck(Ty);
1419       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1420       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1421       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1422     }
1423     case IITDescriptor::PtrToElt: {
1424       if (D.getArgumentNumber() >= ArgTys.size())
1425         return IsDeferredCheck || DeferCheck(Ty);
1426       VectorType * ReferenceType =
1427         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1428       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1429 
1430       return (!ThisArgType || !ReferenceType ||
1431               ThisArgType->getElementType() != ReferenceType->getElementType());
1432     }
1433     case IITDescriptor::VecOfAnyPtrsToElt: {
1434       unsigned RefArgNumber = D.getRefArgNumber();
1435       if (RefArgNumber >= ArgTys.size()) {
1436         if (IsDeferredCheck)
1437           return true;
1438         // If forward referencing, already add the pointer-vector type and
1439         // defer the checks for later.
1440         ArgTys.push_back(Ty);
1441         return DeferCheck(Ty);
1442       }
1443 
1444       if (!IsDeferredCheck){
1445         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1446                "Table consistency error");
1447         ArgTys.push_back(Ty);
1448       }
1449 
1450       // Verify the overloaded type "matches" the Ref type.
1451       // i.e. Ty is a vector with the same width as Ref.
1452       // Composed of pointers to the same element type as Ref.
1453       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1454       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1455       if (!ThisArgVecTy || !ReferenceType ||
1456           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1457         return true;
1458       PointerType *ThisArgEltTy =
1459           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1460       if (!ThisArgEltTy)
1461         return true;
1462       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1463     }
1464     case IITDescriptor::VecElementArgument: {
1465       if (D.getArgumentNumber() >= ArgTys.size())
1466         return IsDeferredCheck ? true : DeferCheck(Ty);
1467       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1468       return !ReferenceType || Ty != ReferenceType->getElementType();
1469     }
1470     case IITDescriptor::Subdivide2Argument:
1471     case IITDescriptor::Subdivide4Argument: {
1472       // If this is a forward reference, defer the check for later.
1473       if (D.getArgumentNumber() >= ArgTys.size())
1474         return IsDeferredCheck || DeferCheck(Ty);
1475 
1476       Type *NewTy = ArgTys[D.getArgumentNumber()];
1477       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1478         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1479         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1480         return Ty != NewTy;
1481       }
1482       return true;
1483     }
1484     case IITDescriptor::VecOfBitcastsToInt: {
1485       if (D.getArgumentNumber() >= ArgTys.size())
1486         return IsDeferredCheck || DeferCheck(Ty);
1487       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1488       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1489       if (!ThisArgVecTy || !ReferenceType)
1490         return true;
1491       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1492     }
1493   }
1494   llvm_unreachable("unhandled");
1495 }
1496 
1497 Intrinsic::MatchIntrinsicTypesResult
1498 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1499                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1500                                    SmallVectorImpl<Type *> &ArgTys) {
1501   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1502   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1503                          false))
1504     return MatchIntrinsicTypes_NoMatchRet;
1505 
1506   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1507 
1508   for (auto Ty : FTy->params())
1509     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1510       return MatchIntrinsicTypes_NoMatchArg;
1511 
1512   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1513     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1514     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1515                            true))
1516       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1517                                          : MatchIntrinsicTypes_NoMatchArg;
1518   }
1519 
1520   return MatchIntrinsicTypes_Match;
1521 }
1522 
1523 bool
1524 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1525                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1526   // If there are no descriptors left, then it can't be a vararg.
1527   if (Infos.empty())
1528     return isVarArg;
1529 
1530   // There should be only one descriptor remaining at this point.
1531   if (Infos.size() != 1)
1532     return true;
1533 
1534   // Check and verify the descriptor.
1535   IITDescriptor D = Infos.front();
1536   Infos = Infos.slice(1);
1537   if (D.Kind == IITDescriptor::VarArg)
1538     return !isVarArg;
1539 
1540   return true;
1541 }
1542 
1543 bool Intrinsic::getIntrinsicSignature(Function *F,
1544                                       SmallVectorImpl<Type *> &ArgTys) {
1545   Intrinsic::ID ID = F->getIntrinsicID();
1546   if (!ID)
1547     return false;
1548 
1549   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1550   getIntrinsicInfoTableEntries(ID, Table);
1551   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1552 
1553   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1554                                          ArgTys) !=
1555       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1556     return false;
1557   }
1558   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1559                                       TableRef))
1560     return false;
1561   return true;
1562 }
1563 
1564 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1565   SmallVector<Type *, 4> ArgTys;
1566   if (!getIntrinsicSignature(F, ArgTys))
1567     return None;
1568 
1569   Intrinsic::ID ID = F->getIntrinsicID();
1570   StringRef Name = F->getName();
1571   if (Name == Intrinsic::getName(ID, ArgTys))
1572     return None;
1573 
1574   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1575   NewDecl->setCallingConv(F->getCallingConv());
1576   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1577          "Shouldn't change the signature");
1578   return NewDecl;
1579 }
1580 
1581 /// hasAddressTaken - returns true if there are any uses of this function
1582 /// other than direct calls or invokes to it. Optionally ignores callback
1583 /// uses, assume like pointer annotation calls, and references in llvm.used
1584 /// and llvm.compiler.used variables.
1585 bool Function::hasAddressTaken(const User **PutOffender,
1586                                bool IgnoreCallbackUses,
1587                                bool IgnoreAssumeLikeCalls,
1588                                bool IgnoreLLVMUsed) const {
1589   for (const Use &U : uses()) {
1590     const User *FU = U.getUser();
1591     if (isa<BlockAddress>(FU))
1592       continue;
1593 
1594     if (IgnoreCallbackUses) {
1595       AbstractCallSite ACS(&U);
1596       if (ACS && ACS.isCallbackCall())
1597         continue;
1598     }
1599 
1600     const auto *Call = dyn_cast<CallBase>(FU);
1601     if (!Call) {
1602       if (IgnoreAssumeLikeCalls) {
1603         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1604           if (FI->isCast() && !FI->user_empty() &&
1605               llvm::all_of(FU->users(), [](const User *U) {
1606                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1607                   return I->isAssumeLikeIntrinsic();
1608                 return false;
1609               }))
1610             continue;
1611         }
1612       }
1613       if (IgnoreLLVMUsed && !FU->user_empty()) {
1614         const User *FUU = FU;
1615         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1616             !FU->user_begin()->user_empty())
1617           FUU = *FU->user_begin();
1618         if (llvm::all_of(FUU->users(), [](const User *U) {
1619               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1620                 return GV->hasName() &&
1621                        (GV->getName().equals("llvm.compiler.used") ||
1622                         GV->getName().equals("llvm.used"));
1623               return false;
1624             }))
1625           continue;
1626       }
1627       if (PutOffender)
1628         *PutOffender = FU;
1629       return true;
1630     }
1631     if (!Call->isCallee(&U)) {
1632       if (PutOffender)
1633         *PutOffender = FU;
1634       return true;
1635     }
1636   }
1637   return false;
1638 }
1639 
1640 bool Function::isDefTriviallyDead() const {
1641   // Check the linkage
1642   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1643       !hasAvailableExternallyLinkage())
1644     return false;
1645 
1646   // Check if the function is used by anything other than a blockaddress.
1647   for (const User *U : users())
1648     if (!isa<BlockAddress>(U))
1649       return false;
1650 
1651   return true;
1652 }
1653 
1654 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1655 /// setjmp or other function that gcc recognizes as "returning twice".
1656 bool Function::callsFunctionThatReturnsTwice() const {
1657   for (const Instruction &I : instructions(this))
1658     if (const auto *Call = dyn_cast<CallBase>(&I))
1659       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1660         return true;
1661 
1662   return false;
1663 }
1664 
1665 Constant *Function::getPersonalityFn() const {
1666   assert(hasPersonalityFn() && getNumOperands());
1667   return cast<Constant>(Op<0>());
1668 }
1669 
1670 void Function::setPersonalityFn(Constant *Fn) {
1671   setHungoffOperand<0>(Fn);
1672   setValueSubclassDataBit(3, Fn != nullptr);
1673 }
1674 
1675 Constant *Function::getPrefixData() const {
1676   assert(hasPrefixData() && getNumOperands());
1677   return cast<Constant>(Op<1>());
1678 }
1679 
1680 void Function::setPrefixData(Constant *PrefixData) {
1681   setHungoffOperand<1>(PrefixData);
1682   setValueSubclassDataBit(1, PrefixData != nullptr);
1683 }
1684 
1685 Constant *Function::getPrologueData() const {
1686   assert(hasPrologueData() && getNumOperands());
1687   return cast<Constant>(Op<2>());
1688 }
1689 
1690 void Function::setPrologueData(Constant *PrologueData) {
1691   setHungoffOperand<2>(PrologueData);
1692   setValueSubclassDataBit(2, PrologueData != nullptr);
1693 }
1694 
1695 void Function::allocHungoffUselist() {
1696   // If we've already allocated a uselist, stop here.
1697   if (getNumOperands())
1698     return;
1699 
1700   allocHungoffUses(3, /*IsPhi=*/ false);
1701   setNumHungOffUseOperands(3);
1702 
1703   // Initialize the uselist with placeholder operands to allow traversal.
1704   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1705   Op<0>().set(CPN);
1706   Op<1>().set(CPN);
1707   Op<2>().set(CPN);
1708 }
1709 
1710 template <int Idx>
1711 void Function::setHungoffOperand(Constant *C) {
1712   if (C) {
1713     allocHungoffUselist();
1714     Op<Idx>().set(C);
1715   } else if (getNumOperands()) {
1716     Op<Idx>().set(
1717         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1718   }
1719 }
1720 
1721 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1722   assert(Bit < 16 && "SubclassData contains only 16 bits");
1723   if (On)
1724     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1725   else
1726     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1727 }
1728 
1729 void Function::setEntryCount(ProfileCount Count,
1730                              const DenseSet<GlobalValue::GUID> *S) {
1731   assert(Count.hasValue());
1732 #if !defined(NDEBUG)
1733   auto PrevCount = getEntryCount();
1734   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1735 #endif
1736 
1737   auto ImportGUIDs = getImportGUIDs();
1738   if (S == nullptr && ImportGUIDs.size())
1739     S = &ImportGUIDs;
1740 
1741   MDBuilder MDB(getContext());
1742   setMetadata(
1743       LLVMContext::MD_prof,
1744       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1745 }
1746 
1747 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1748                              const DenseSet<GlobalValue::GUID> *Imports) {
1749   setEntryCount(ProfileCount(Count, Type), Imports);
1750 }
1751 
1752 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1753   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1754   if (MD && MD->getOperand(0))
1755     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1756       if (MDS->getString().equals("function_entry_count")) {
1757         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1758         uint64_t Count = CI->getValue().getZExtValue();
1759         // A value of -1 is used for SamplePGO when there were no samples.
1760         // Treat this the same as unknown.
1761         if (Count == (uint64_t)-1)
1762           return ProfileCount::getInvalid();
1763         return ProfileCount(Count, PCT_Real);
1764       } else if (AllowSynthetic &&
1765                  MDS->getString().equals("synthetic_function_entry_count")) {
1766         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1767         uint64_t Count = CI->getValue().getZExtValue();
1768         return ProfileCount(Count, PCT_Synthetic);
1769       }
1770     }
1771   return ProfileCount::getInvalid();
1772 }
1773 
1774 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1775   DenseSet<GlobalValue::GUID> R;
1776   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1777     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1778       if (MDS->getString().equals("function_entry_count"))
1779         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1780           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1781                        ->getValue()
1782                        .getZExtValue());
1783   return R;
1784 }
1785 
1786 void Function::setSectionPrefix(StringRef Prefix) {
1787   MDBuilder MDB(getContext());
1788   setMetadata(LLVMContext::MD_section_prefix,
1789               MDB.createFunctionSectionPrefix(Prefix));
1790 }
1791 
1792 Optional<StringRef> Function::getSectionPrefix() const {
1793   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1794     assert(cast<MDString>(MD->getOperand(0))
1795                ->getString()
1796                .equals("function_section_prefix") &&
1797            "Metadata not match");
1798     return cast<MDString>(MD->getOperand(1))->getString();
1799   }
1800   return None;
1801 }
1802 
1803 bool Function::nullPointerIsDefined() const {
1804   return hasFnAttribute(Attribute::NullPointerIsValid);
1805 }
1806 
1807 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1808   if (F && F->nullPointerIsDefined())
1809     return true;
1810 
1811   if (AS != 0)
1812     return true;
1813 
1814   return false;
1815 }
1816