1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsWebAssembly.h" 47 #include "llvm/IR/IntrinsicsX86.h" 48 #include "llvm/IR/IntrinsicsXCore.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/SymbolTableListTraits.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/IR/ValueSymbolTable.h" 59 #include "llvm/Support/Casting.h" 60 #include "llvm/Support/Compiler.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstddef> 65 #include <cstdint> 66 #include <cstring> 67 #include <string> 68 69 using namespace llvm; 70 using ProfileCount = Function::ProfileCount; 71 72 // Explicit instantiations of SymbolTableListTraits since some of the methods 73 // are not in the public header file... 74 template class llvm::SymbolTableListTraits<BasicBlock>; 75 76 //===----------------------------------------------------------------------===// 77 // Argument Implementation 78 //===----------------------------------------------------------------------===// 79 80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 81 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 82 setName(Name); 83 } 84 85 void Argument::setParent(Function *parent) { 86 Parent = parent; 87 } 88 89 bool Argument::hasNonNullAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 92 return true; 93 else if (getDereferenceableBytes() > 0 && 94 !NullPointerIsDefined(getParent(), 95 getType()->getPointerAddressSpace())) 96 return true; 97 return false; 98 } 99 100 bool Argument::hasByValAttr() const { 101 if (!getType()->isPointerTy()) return false; 102 return hasAttribute(Attribute::ByVal); 103 } 104 105 bool Argument::hasByRefAttr() const { 106 if (!getType()->isPointerTy()) 107 return false; 108 return hasAttribute(Attribute::ByRef); 109 } 110 111 bool Argument::hasSwiftSelfAttr() const { 112 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 113 } 114 115 bool Argument::hasSwiftErrorAttr() const { 116 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 117 } 118 119 bool Argument::hasInAllocaAttr() const { 120 if (!getType()->isPointerTy()) return false; 121 return hasAttribute(Attribute::InAlloca); 122 } 123 124 bool Argument::hasPreallocatedAttr() const { 125 if (!getType()->isPointerTy()) 126 return false; 127 return hasAttribute(Attribute::Preallocated); 128 } 129 130 bool Argument::hasPassPointeeByValueCopyAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 AttributeList Attrs = getParent()->getAttributes(); 133 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 134 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 135 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 136 } 137 138 bool Argument::hasPointeeInMemoryValueAttr() const { 139 if (!getType()->isPointerTy()) 140 return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 144 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 146 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 147 } 148 149 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 150 /// parameter type. 151 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 152 // FIXME: All the type carrying attributes are mutually exclusive, so there 153 // should be a single query to get the stored type that handles any of them. 154 if (Type *ByValTy = ParamAttrs.getByValType()) 155 return ByValTy; 156 if (Type *ByRefTy = ParamAttrs.getByRefType()) 157 return ByRefTy; 158 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 159 return PreAllocTy; 160 161 // FIXME: sret and inalloca always depends on pointee element type. It's also 162 // possible for byval to miss it. 163 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 164 ParamAttrs.hasAttribute(Attribute::ByVal) || 165 ParamAttrs.hasAttribute(Attribute::StructRet) || 166 ParamAttrs.hasAttribute(Attribute::Preallocated)) 167 return cast<PointerType>(ArgTy)->getElementType(); 168 169 return nullptr; 170 } 171 172 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 173 AttributeSet ParamAttrs = 174 getParent()->getAttributes().getParamAttributes(getArgNo()); 175 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 176 return DL.getTypeAllocSize(MemTy); 177 return 0; 178 } 179 180 Type *Argument::getPointeeInMemoryValueType() const { 181 AttributeSet ParamAttrs = 182 getParent()->getAttributes().getParamAttributes(getArgNo()); 183 return getMemoryParamAllocType(ParamAttrs, getType()); 184 } 185 186 unsigned Argument::getParamAlignment() const { 187 assert(getType()->isPointerTy() && "Only pointers have alignments"); 188 return getParent()->getParamAlignment(getArgNo()); 189 } 190 191 MaybeAlign Argument::getParamAlign() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlign(getArgNo()); 194 } 195 196 Type *Argument::getParamByValType() const { 197 assert(getType()->isPointerTy() && "Only pointers have byval types"); 198 return getParent()->getParamByValType(getArgNo()); 199 } 200 201 Type *Argument::getParamStructRetType() const { 202 assert(getType()->isPointerTy() && "Only pointers have sret types"); 203 return getParent()->getParamStructRetType(getArgNo()); 204 } 205 206 Type *Argument::getParamByRefType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByRefType(getArgNo()); 209 } 210 211 uint64_t Argument::getDereferenceableBytes() const { 212 assert(getType()->isPointerTy() && 213 "Only pointers have dereferenceable bytes"); 214 return getParent()->getParamDereferenceableBytes(getArgNo()); 215 } 216 217 uint64_t Argument::getDereferenceableOrNullBytes() const { 218 assert(getType()->isPointerTy() && 219 "Only pointers have dereferenceable bytes"); 220 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 221 } 222 223 bool Argument::hasNestAttr() const { 224 if (!getType()->isPointerTy()) return false; 225 return hasAttribute(Attribute::Nest); 226 } 227 228 bool Argument::hasNoAliasAttr() const { 229 if (!getType()->isPointerTy()) return false; 230 return hasAttribute(Attribute::NoAlias); 231 } 232 233 bool Argument::hasNoCaptureAttr() const { 234 if (!getType()->isPointerTy()) return false; 235 return hasAttribute(Attribute::NoCapture); 236 } 237 238 bool Argument::hasStructRetAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::StructRet); 241 } 242 243 bool Argument::hasInRegAttr() const { 244 return hasAttribute(Attribute::InReg); 245 } 246 247 bool Argument::hasReturnedAttr() const { 248 return hasAttribute(Attribute::Returned); 249 } 250 251 bool Argument::hasZExtAttr() const { 252 return hasAttribute(Attribute::ZExt); 253 } 254 255 bool Argument::hasSExtAttr() const { 256 return hasAttribute(Attribute::SExt); 257 } 258 259 bool Argument::onlyReadsMemory() const { 260 AttributeList Attrs = getParent()->getAttributes(); 261 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 262 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 263 } 264 265 void Argument::addAttrs(AttrBuilder &B) { 266 AttributeList AL = getParent()->getAttributes(); 267 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 268 getParent()->setAttributes(AL); 269 } 270 271 void Argument::addAttr(Attribute::AttrKind Kind) { 272 getParent()->addParamAttr(getArgNo(), Kind); 273 } 274 275 void Argument::addAttr(Attribute Attr) { 276 getParent()->addParamAttr(getArgNo(), Attr); 277 } 278 279 void Argument::removeAttr(Attribute::AttrKind Kind) { 280 getParent()->removeParamAttr(getArgNo(), Kind); 281 } 282 283 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 284 return getParent()->hasParamAttribute(getArgNo(), Kind); 285 } 286 287 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 288 return getParent()->getParamAttribute(getArgNo(), Kind); 289 } 290 291 //===----------------------------------------------------------------------===// 292 // Helper Methods in Function 293 //===----------------------------------------------------------------------===// 294 295 LLVMContext &Function::getContext() const { 296 return getType()->getContext(); 297 } 298 299 unsigned Function::getInstructionCount() const { 300 unsigned NumInstrs = 0; 301 for (const BasicBlock &BB : BasicBlocks) 302 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 303 BB.instructionsWithoutDebug().end()); 304 return NumInstrs; 305 } 306 307 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 308 const Twine &N, Module &M) { 309 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 310 } 311 312 void Function::removeFromParent() { 313 getParent()->getFunctionList().remove(getIterator()); 314 } 315 316 void Function::eraseFromParent() { 317 getParent()->getFunctionList().erase(getIterator()); 318 } 319 320 //===----------------------------------------------------------------------===// 321 // Function Implementation 322 //===----------------------------------------------------------------------===// 323 324 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 325 // If AS == -1 and we are passed a valid module pointer we place the function 326 // in the program address space. Otherwise we default to AS0. 327 if (AddrSpace == static_cast<unsigned>(-1)) 328 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 329 return AddrSpace; 330 } 331 332 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 333 const Twine &name, Module *ParentModule) 334 : GlobalObject(Ty, Value::FunctionVal, 335 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 336 computeAddrSpace(AddrSpace, ParentModule)), 337 NumArgs(Ty->getNumParams()) { 338 assert(FunctionType::isValidReturnType(getReturnType()) && 339 "invalid return type"); 340 setGlobalObjectSubClassData(0); 341 342 // We only need a symbol table for a function if the context keeps value names 343 if (!getContext().shouldDiscardValueNames()) 344 SymTab = std::make_unique<ValueSymbolTable>(); 345 346 // If the function has arguments, mark them as lazily built. 347 if (Ty->getNumParams()) 348 setValueSubclassData(1); // Set the "has lazy arguments" bit. 349 350 if (ParentModule) 351 ParentModule->getFunctionList().push_back(this); 352 353 HasLLVMReservedName = getName().startswith("llvm."); 354 // Ensure intrinsics have the right parameter attributes. 355 // Note, the IntID field will have been set in Value::setName if this function 356 // name is a valid intrinsic ID. 357 if (IntID) 358 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 359 } 360 361 Function::~Function() { 362 dropAllReferences(); // After this it is safe to delete instructions. 363 364 // Delete all of the method arguments and unlink from symbol table... 365 if (Arguments) 366 clearArguments(); 367 368 // Remove the function from the on-the-side GC table. 369 clearGC(); 370 } 371 372 void Function::BuildLazyArguments() const { 373 // Create the arguments vector, all arguments start out unnamed. 374 auto *FT = getFunctionType(); 375 if (NumArgs > 0) { 376 Arguments = std::allocator<Argument>().allocate(NumArgs); 377 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 378 Type *ArgTy = FT->getParamType(i); 379 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 380 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 381 } 382 } 383 384 // Clear the lazy arguments bit. 385 unsigned SDC = getSubclassDataFromValue(); 386 SDC &= ~(1 << 0); 387 const_cast<Function*>(this)->setValueSubclassData(SDC); 388 assert(!hasLazyArguments()); 389 } 390 391 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 392 return MutableArrayRef<Argument>(Args, Count); 393 } 394 395 bool Function::isConstrainedFPIntrinsic() const { 396 switch (getIntrinsicID()) { 397 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 398 case Intrinsic::INTRINSIC: 399 #include "llvm/IR/ConstrainedOps.def" 400 return true; 401 #undef INSTRUCTION 402 default: 403 return false; 404 } 405 } 406 407 void Function::clearArguments() { 408 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 409 A.setName(""); 410 A.~Argument(); 411 } 412 std::allocator<Argument>().deallocate(Arguments, NumArgs); 413 Arguments = nullptr; 414 } 415 416 void Function::stealArgumentListFrom(Function &Src) { 417 assert(isDeclaration() && "Expected no references to current arguments"); 418 419 // Drop the current arguments, if any, and set the lazy argument bit. 420 if (!hasLazyArguments()) { 421 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 422 [](const Argument &A) { return A.use_empty(); }) && 423 "Expected arguments to be unused in declaration"); 424 clearArguments(); 425 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 426 } 427 428 // Nothing to steal if Src has lazy arguments. 429 if (Src.hasLazyArguments()) 430 return; 431 432 // Steal arguments from Src, and fix the lazy argument bits. 433 assert(arg_size() == Src.arg_size()); 434 Arguments = Src.Arguments; 435 Src.Arguments = nullptr; 436 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 437 // FIXME: This does the work of transferNodesFromList inefficiently. 438 SmallString<128> Name; 439 if (A.hasName()) 440 Name = A.getName(); 441 if (!Name.empty()) 442 A.setName(""); 443 A.setParent(this); 444 if (!Name.empty()) 445 A.setName(Name); 446 } 447 448 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 449 assert(!hasLazyArguments()); 450 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 451 } 452 453 // dropAllReferences() - This function causes all the subinstructions to "let 454 // go" of all references that they are maintaining. This allows one to 455 // 'delete' a whole class at a time, even though there may be circular 456 // references... first all references are dropped, and all use counts go to 457 // zero. Then everything is deleted for real. Note that no operations are 458 // valid on an object that has "dropped all references", except operator 459 // delete. 460 // 461 void Function::dropAllReferences() { 462 setIsMaterializable(false); 463 464 for (BasicBlock &BB : *this) 465 BB.dropAllReferences(); 466 467 // Delete all basic blocks. They are now unused, except possibly by 468 // blockaddresses, but BasicBlock's destructor takes care of those. 469 while (!BasicBlocks.empty()) 470 BasicBlocks.begin()->eraseFromParent(); 471 472 // Drop uses of any optional data (real or placeholder). 473 if (getNumOperands()) { 474 User::dropAllReferences(); 475 setNumHungOffUseOperands(0); 476 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 477 } 478 479 // Metadata is stored in a side-table. 480 clearMetadata(); 481 } 482 483 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 484 AttributeList PAL = getAttributes(); 485 PAL = PAL.addAttribute(getContext(), i, Kind); 486 setAttributes(PAL); 487 } 488 489 void Function::addAttribute(unsigned i, Attribute Attr) { 490 AttributeList PAL = getAttributes(); 491 PAL = PAL.addAttribute(getContext(), i, Attr); 492 setAttributes(PAL); 493 } 494 495 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 496 AttributeList PAL = getAttributes(); 497 PAL = PAL.addAttributes(getContext(), i, Attrs); 498 setAttributes(PAL); 499 } 500 501 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 502 AttributeList PAL = getAttributes(); 503 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 504 setAttributes(PAL); 505 } 506 507 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 508 AttributeList PAL = getAttributes(); 509 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 510 setAttributes(PAL); 511 } 512 513 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 514 AttributeList PAL = getAttributes(); 515 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 516 setAttributes(PAL); 517 } 518 519 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 520 AttributeList PAL = getAttributes(); 521 PAL = PAL.removeAttribute(getContext(), i, Kind); 522 setAttributes(PAL); 523 } 524 525 void Function::removeAttribute(unsigned i, StringRef Kind) { 526 AttributeList PAL = getAttributes(); 527 PAL = PAL.removeAttribute(getContext(), i, Kind); 528 setAttributes(PAL); 529 } 530 531 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 532 AttributeList PAL = getAttributes(); 533 PAL = PAL.removeAttributes(getContext(), i, Attrs); 534 setAttributes(PAL); 535 } 536 537 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 538 AttributeList PAL = getAttributes(); 539 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 540 setAttributes(PAL); 541 } 542 543 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 544 AttributeList PAL = getAttributes(); 545 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 546 setAttributes(PAL); 547 } 548 549 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 550 AttributeList PAL = getAttributes(); 551 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 552 setAttributes(PAL); 553 } 554 555 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 556 AttributeList PAL = getAttributes(); 557 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 558 setAttributes(PAL); 559 } 560 561 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 562 AttributeList PAL = getAttributes(); 563 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 564 setAttributes(PAL); 565 } 566 567 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 568 AttributeList PAL = getAttributes(); 569 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 570 setAttributes(PAL); 571 } 572 573 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 574 uint64_t Bytes) { 575 AttributeList PAL = getAttributes(); 576 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 577 setAttributes(PAL); 578 } 579 580 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 581 if (&FPType == &APFloat::IEEEsingle()) { 582 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 583 StringRef Val = Attr.getValueAsString(); 584 if (!Val.empty()) 585 return parseDenormalFPAttribute(Val); 586 587 // If the f32 variant of the attribute isn't specified, try to use the 588 // generic one. 589 } 590 591 Attribute Attr = getFnAttribute("denormal-fp-math"); 592 return parseDenormalFPAttribute(Attr.getValueAsString()); 593 } 594 595 const std::string &Function::getGC() const { 596 assert(hasGC() && "Function has no collector"); 597 return getContext().getGC(*this); 598 } 599 600 void Function::setGC(std::string Str) { 601 setValueSubclassDataBit(14, !Str.empty()); 602 getContext().setGC(*this, std::move(Str)); 603 } 604 605 void Function::clearGC() { 606 if (!hasGC()) 607 return; 608 getContext().deleteGC(*this); 609 setValueSubclassDataBit(14, false); 610 } 611 612 /// Copy all additional attributes (those not needed to create a Function) from 613 /// the Function Src to this one. 614 void Function::copyAttributesFrom(const Function *Src) { 615 GlobalObject::copyAttributesFrom(Src); 616 setCallingConv(Src->getCallingConv()); 617 setAttributes(Src->getAttributes()); 618 if (Src->hasGC()) 619 setGC(Src->getGC()); 620 else 621 clearGC(); 622 if (Src->hasPersonalityFn()) 623 setPersonalityFn(Src->getPersonalityFn()); 624 if (Src->hasPrefixData()) 625 setPrefixData(Src->getPrefixData()); 626 if (Src->hasPrologueData()) 627 setPrologueData(Src->getPrologueData()); 628 } 629 630 /// Table of string intrinsic names indexed by enum value. 631 static const char * const IntrinsicNameTable[] = { 632 "not_intrinsic", 633 #define GET_INTRINSIC_NAME_TABLE 634 #include "llvm/IR/IntrinsicImpl.inc" 635 #undef GET_INTRINSIC_NAME_TABLE 636 }; 637 638 /// Table of per-target intrinsic name tables. 639 #define GET_INTRINSIC_TARGET_DATA 640 #include "llvm/IR/IntrinsicImpl.inc" 641 #undef GET_INTRINSIC_TARGET_DATA 642 643 bool Function::isTargetIntrinsic() const { 644 return IntID > TargetInfos[0].Count; 645 } 646 647 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 648 /// target as \c Name, or the generic table if \c Name is not target specific. 649 /// 650 /// Returns the relevant slice of \c IntrinsicNameTable 651 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 652 assert(Name.startswith("llvm.")); 653 654 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 655 // Drop "llvm." and take the first dotted component. That will be the target 656 // if this is target specific. 657 StringRef Target = Name.drop_front(5).split('.').first; 658 auto It = partition_point( 659 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 660 // We've either found the target or just fall back to the generic set, which 661 // is always first. 662 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 663 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 664 } 665 666 /// This does the actual lookup of an intrinsic ID which 667 /// matches the given function name. 668 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 669 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 670 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 671 if (Idx == -1) 672 return Intrinsic::not_intrinsic; 673 674 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 675 // an index into a sub-table. 676 int Adjust = NameTable.data() - IntrinsicNameTable; 677 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 678 679 // If the intrinsic is not overloaded, require an exact match. If it is 680 // overloaded, require either exact or prefix match. 681 const auto MatchSize = strlen(NameTable[Idx]); 682 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 683 bool IsExactMatch = Name.size() == MatchSize; 684 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 685 : Intrinsic::not_intrinsic; 686 } 687 688 void Function::recalculateIntrinsicID() { 689 StringRef Name = getName(); 690 if (!Name.startswith("llvm.")) { 691 HasLLVMReservedName = false; 692 IntID = Intrinsic::not_intrinsic; 693 return; 694 } 695 HasLLVMReservedName = true; 696 IntID = lookupIntrinsicID(Name); 697 } 698 699 /// Returns a stable mangling for the type specified for use in the name 700 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 701 /// of named types is simply their name. Manglings for unnamed types consist 702 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 703 /// combined with the mangling of their component types. A vararg function 704 /// type will have a suffix of 'vararg'. Since function types can contain 705 /// other function types, we close a function type mangling with suffix 'f' 706 /// which can't be confused with it's prefix. This ensures we don't have 707 /// collisions between two unrelated function types. Otherwise, you might 708 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 709 /// 710 static std::string getMangledTypeStr(Type* Ty) { 711 std::string Result; 712 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 713 Result += "p" + utostr(PTyp->getAddressSpace()) + 714 getMangledTypeStr(PTyp->getElementType()); 715 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 716 Result += "a" + utostr(ATyp->getNumElements()) + 717 getMangledTypeStr(ATyp->getElementType()); 718 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 719 if (!STyp->isLiteral()) { 720 Result += "s_"; 721 Result += STyp->getName(); 722 } else { 723 Result += "sl_"; 724 for (auto Elem : STyp->elements()) 725 Result += getMangledTypeStr(Elem); 726 } 727 // Ensure nested structs are distinguishable. 728 Result += "s"; 729 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 730 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 731 for (size_t i = 0; i < FT->getNumParams(); i++) 732 Result += getMangledTypeStr(FT->getParamType(i)); 733 if (FT->isVarArg()) 734 Result += "vararg"; 735 // Ensure nested function types are distinguishable. 736 Result += "f"; 737 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 738 ElementCount EC = VTy->getElementCount(); 739 if (EC.isScalable()) 740 Result += "nx"; 741 Result += "v" + utostr(EC.getKnownMinValue()) + 742 getMangledTypeStr(VTy->getElementType()); 743 } else if (Ty) { 744 switch (Ty->getTypeID()) { 745 default: llvm_unreachable("Unhandled type"); 746 case Type::VoidTyID: Result += "isVoid"; break; 747 case Type::MetadataTyID: Result += "Metadata"; break; 748 case Type::HalfTyID: Result += "f16"; break; 749 case Type::BFloatTyID: Result += "bf16"; break; 750 case Type::FloatTyID: Result += "f32"; break; 751 case Type::DoubleTyID: Result += "f64"; break; 752 case Type::X86_FP80TyID: Result += "f80"; break; 753 case Type::FP128TyID: Result += "f128"; break; 754 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 755 case Type::X86_MMXTyID: Result += "x86mmx"; break; 756 case Type::IntegerTyID: 757 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 758 break; 759 } 760 } 761 return Result; 762 } 763 764 StringRef Intrinsic::getName(ID id) { 765 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 766 assert(!Intrinsic::isOverloaded(id) && 767 "This version of getName does not support overloading"); 768 return IntrinsicNameTable[id]; 769 } 770 771 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 772 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 773 std::string Result(IntrinsicNameTable[id]); 774 for (Type *Ty : Tys) { 775 Result += "." + getMangledTypeStr(Ty); 776 } 777 return Result; 778 } 779 780 /// IIT_Info - These are enumerators that describe the entries returned by the 781 /// getIntrinsicInfoTableEntries function. 782 /// 783 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 784 enum IIT_Info { 785 // Common values should be encoded with 0-15. 786 IIT_Done = 0, 787 IIT_I1 = 1, 788 IIT_I8 = 2, 789 IIT_I16 = 3, 790 IIT_I32 = 4, 791 IIT_I64 = 5, 792 IIT_F16 = 6, 793 IIT_F32 = 7, 794 IIT_F64 = 8, 795 IIT_V2 = 9, 796 IIT_V4 = 10, 797 IIT_V8 = 11, 798 IIT_V16 = 12, 799 IIT_V32 = 13, 800 IIT_PTR = 14, 801 IIT_ARG = 15, 802 803 // Values from 16+ are only encodable with the inefficient encoding. 804 IIT_V64 = 16, 805 IIT_MMX = 17, 806 IIT_TOKEN = 18, 807 IIT_METADATA = 19, 808 IIT_EMPTYSTRUCT = 20, 809 IIT_STRUCT2 = 21, 810 IIT_STRUCT3 = 22, 811 IIT_STRUCT4 = 23, 812 IIT_STRUCT5 = 24, 813 IIT_EXTEND_ARG = 25, 814 IIT_TRUNC_ARG = 26, 815 IIT_ANYPTR = 27, 816 IIT_V1 = 28, 817 IIT_VARARG = 29, 818 IIT_HALF_VEC_ARG = 30, 819 IIT_SAME_VEC_WIDTH_ARG = 31, 820 IIT_PTR_TO_ARG = 32, 821 IIT_PTR_TO_ELT = 33, 822 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 823 IIT_I128 = 35, 824 IIT_V512 = 36, 825 IIT_V1024 = 37, 826 IIT_STRUCT6 = 38, 827 IIT_STRUCT7 = 39, 828 IIT_STRUCT8 = 40, 829 IIT_F128 = 41, 830 IIT_VEC_ELEMENT = 42, 831 IIT_SCALABLE_VEC = 43, 832 IIT_SUBDIVIDE2_ARG = 44, 833 IIT_SUBDIVIDE4_ARG = 45, 834 IIT_VEC_OF_BITCASTS_TO_INT = 46, 835 IIT_V128 = 47, 836 IIT_BF16 = 48 837 }; 838 839 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 840 IIT_Info LastInfo, 841 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 842 using namespace Intrinsic; 843 844 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 845 846 IIT_Info Info = IIT_Info(Infos[NextElt++]); 847 unsigned StructElts = 2; 848 849 switch (Info) { 850 case IIT_Done: 851 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 852 return; 853 case IIT_VARARG: 854 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 855 return; 856 case IIT_MMX: 857 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 858 return; 859 case IIT_TOKEN: 860 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 861 return; 862 case IIT_METADATA: 863 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 864 return; 865 case IIT_F16: 866 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 867 return; 868 case IIT_BF16: 869 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 870 return; 871 case IIT_F32: 872 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 873 return; 874 case IIT_F64: 875 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 876 return; 877 case IIT_F128: 878 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 879 return; 880 case IIT_I1: 881 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 882 return; 883 case IIT_I8: 884 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 885 return; 886 case IIT_I16: 887 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 888 return; 889 case IIT_I32: 890 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 891 return; 892 case IIT_I64: 893 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 894 return; 895 case IIT_I128: 896 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 897 return; 898 case IIT_V1: 899 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 900 DecodeIITType(NextElt, Infos, Info, OutputTable); 901 return; 902 case IIT_V2: 903 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 904 DecodeIITType(NextElt, Infos, Info, OutputTable); 905 return; 906 case IIT_V4: 907 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 908 DecodeIITType(NextElt, Infos, Info, OutputTable); 909 return; 910 case IIT_V8: 911 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 912 DecodeIITType(NextElt, Infos, Info, OutputTable); 913 return; 914 case IIT_V16: 915 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 916 DecodeIITType(NextElt, Infos, Info, OutputTable); 917 return; 918 case IIT_V32: 919 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 920 DecodeIITType(NextElt, Infos, Info, OutputTable); 921 return; 922 case IIT_V64: 923 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 924 DecodeIITType(NextElt, Infos, Info, OutputTable); 925 return; 926 case IIT_V128: 927 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 928 DecodeIITType(NextElt, Infos, Info, OutputTable); 929 return; 930 case IIT_V512: 931 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 932 DecodeIITType(NextElt, Infos, Info, OutputTable); 933 return; 934 case IIT_V1024: 935 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 936 DecodeIITType(NextElt, Infos, Info, OutputTable); 937 return; 938 case IIT_PTR: 939 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 940 DecodeIITType(NextElt, Infos, Info, OutputTable); 941 return; 942 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 943 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 944 Infos[NextElt++])); 945 DecodeIITType(NextElt, Infos, Info, OutputTable); 946 return; 947 } 948 case IIT_ARG: { 949 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 950 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 951 return; 952 } 953 case IIT_EXTEND_ARG: { 954 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 955 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 956 ArgInfo)); 957 return; 958 } 959 case IIT_TRUNC_ARG: { 960 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 961 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 962 ArgInfo)); 963 return; 964 } 965 case IIT_HALF_VEC_ARG: { 966 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 967 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 968 ArgInfo)); 969 return; 970 } 971 case IIT_SAME_VEC_WIDTH_ARG: { 972 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 973 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 974 ArgInfo)); 975 return; 976 } 977 case IIT_PTR_TO_ARG: { 978 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 979 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 980 ArgInfo)); 981 return; 982 } 983 case IIT_PTR_TO_ELT: { 984 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 985 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 986 return; 987 } 988 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 989 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 990 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 991 OutputTable.push_back( 992 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 993 return; 994 } 995 case IIT_EMPTYSTRUCT: 996 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 997 return; 998 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 999 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1000 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1001 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1002 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1003 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1004 case IIT_STRUCT2: { 1005 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1006 1007 for (unsigned i = 0; i != StructElts; ++i) 1008 DecodeIITType(NextElt, Infos, Info, OutputTable); 1009 return; 1010 } 1011 case IIT_SUBDIVIDE2_ARG: { 1012 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1013 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1014 ArgInfo)); 1015 return; 1016 } 1017 case IIT_SUBDIVIDE4_ARG: { 1018 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1019 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1020 ArgInfo)); 1021 return; 1022 } 1023 case IIT_VEC_ELEMENT: { 1024 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1025 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1026 ArgInfo)); 1027 return; 1028 } 1029 case IIT_SCALABLE_VEC: { 1030 DecodeIITType(NextElt, Infos, Info, OutputTable); 1031 return; 1032 } 1033 case IIT_VEC_OF_BITCASTS_TO_INT: { 1034 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1035 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1036 ArgInfo)); 1037 return; 1038 } 1039 } 1040 llvm_unreachable("unhandled"); 1041 } 1042 1043 #define GET_INTRINSIC_GENERATOR_GLOBAL 1044 #include "llvm/IR/IntrinsicImpl.inc" 1045 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1046 1047 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1048 SmallVectorImpl<IITDescriptor> &T){ 1049 // Check to see if the intrinsic's type was expressible by the table. 1050 unsigned TableVal = IIT_Table[id-1]; 1051 1052 // Decode the TableVal into an array of IITValues. 1053 SmallVector<unsigned char, 8> IITValues; 1054 ArrayRef<unsigned char> IITEntries; 1055 unsigned NextElt = 0; 1056 if ((TableVal >> 31) != 0) { 1057 // This is an offset into the IIT_LongEncodingTable. 1058 IITEntries = IIT_LongEncodingTable; 1059 1060 // Strip sentinel bit. 1061 NextElt = (TableVal << 1) >> 1; 1062 } else { 1063 // Decode the TableVal into an array of IITValues. If the entry was encoded 1064 // into a single word in the table itself, decode it now. 1065 do { 1066 IITValues.push_back(TableVal & 0xF); 1067 TableVal >>= 4; 1068 } while (TableVal); 1069 1070 IITEntries = IITValues; 1071 NextElt = 0; 1072 } 1073 1074 // Okay, decode the table into the output vector of IITDescriptors. 1075 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1076 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1077 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1078 } 1079 1080 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1081 ArrayRef<Type*> Tys, LLVMContext &Context) { 1082 using namespace Intrinsic; 1083 1084 IITDescriptor D = Infos.front(); 1085 Infos = Infos.slice(1); 1086 1087 switch (D.Kind) { 1088 case IITDescriptor::Void: return Type::getVoidTy(Context); 1089 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1090 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1091 case IITDescriptor::Token: return Type::getTokenTy(Context); 1092 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1093 case IITDescriptor::Half: return Type::getHalfTy(Context); 1094 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1095 case IITDescriptor::Float: return Type::getFloatTy(Context); 1096 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1097 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1098 1099 case IITDescriptor::Integer: 1100 return IntegerType::get(Context, D.Integer_Width); 1101 case IITDescriptor::Vector: 1102 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1103 D.Vector_Width); 1104 case IITDescriptor::Pointer: 1105 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1106 D.Pointer_AddressSpace); 1107 case IITDescriptor::Struct: { 1108 SmallVector<Type *, 8> Elts; 1109 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1110 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1111 return StructType::get(Context, Elts); 1112 } 1113 case IITDescriptor::Argument: 1114 return Tys[D.getArgumentNumber()]; 1115 case IITDescriptor::ExtendArgument: { 1116 Type *Ty = Tys[D.getArgumentNumber()]; 1117 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1118 return VectorType::getExtendedElementVectorType(VTy); 1119 1120 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1121 } 1122 case IITDescriptor::TruncArgument: { 1123 Type *Ty = Tys[D.getArgumentNumber()]; 1124 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1125 return VectorType::getTruncatedElementVectorType(VTy); 1126 1127 IntegerType *ITy = cast<IntegerType>(Ty); 1128 assert(ITy->getBitWidth() % 2 == 0); 1129 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1130 } 1131 case IITDescriptor::Subdivide2Argument: 1132 case IITDescriptor::Subdivide4Argument: { 1133 Type *Ty = Tys[D.getArgumentNumber()]; 1134 VectorType *VTy = dyn_cast<VectorType>(Ty); 1135 assert(VTy && "Expected an argument of Vector Type"); 1136 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1137 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1138 } 1139 case IITDescriptor::HalfVecArgument: 1140 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1141 Tys[D.getArgumentNumber()])); 1142 case IITDescriptor::SameVecWidthArgument: { 1143 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1144 Type *Ty = Tys[D.getArgumentNumber()]; 1145 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1146 return VectorType::get(EltTy, VTy->getElementCount()); 1147 return EltTy; 1148 } 1149 case IITDescriptor::PtrToArgument: { 1150 Type *Ty = Tys[D.getArgumentNumber()]; 1151 return PointerType::getUnqual(Ty); 1152 } 1153 case IITDescriptor::PtrToElt: { 1154 Type *Ty = Tys[D.getArgumentNumber()]; 1155 VectorType *VTy = dyn_cast<VectorType>(Ty); 1156 if (!VTy) 1157 llvm_unreachable("Expected an argument of Vector Type"); 1158 Type *EltTy = VTy->getElementType(); 1159 return PointerType::getUnqual(EltTy); 1160 } 1161 case IITDescriptor::VecElementArgument: { 1162 Type *Ty = Tys[D.getArgumentNumber()]; 1163 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1164 return VTy->getElementType(); 1165 llvm_unreachable("Expected an argument of Vector Type"); 1166 } 1167 case IITDescriptor::VecOfBitcastsToInt: { 1168 Type *Ty = Tys[D.getArgumentNumber()]; 1169 VectorType *VTy = dyn_cast<VectorType>(Ty); 1170 assert(VTy && "Expected an argument of Vector Type"); 1171 return VectorType::getInteger(VTy); 1172 } 1173 case IITDescriptor::VecOfAnyPtrsToElt: 1174 // Return the overloaded type (which determines the pointers address space) 1175 return Tys[D.getOverloadArgNumber()]; 1176 } 1177 llvm_unreachable("unhandled"); 1178 } 1179 1180 FunctionType *Intrinsic::getType(LLVMContext &Context, 1181 ID id, ArrayRef<Type*> Tys) { 1182 SmallVector<IITDescriptor, 8> Table; 1183 getIntrinsicInfoTableEntries(id, Table); 1184 1185 ArrayRef<IITDescriptor> TableRef = Table; 1186 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1187 1188 SmallVector<Type*, 8> ArgTys; 1189 while (!TableRef.empty()) 1190 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1191 1192 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1193 // If we see void type as the type of the last argument, it is vararg intrinsic 1194 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1195 ArgTys.pop_back(); 1196 return FunctionType::get(ResultTy, ArgTys, true); 1197 } 1198 return FunctionType::get(ResultTy, ArgTys, false); 1199 } 1200 1201 bool Intrinsic::isOverloaded(ID id) { 1202 #define GET_INTRINSIC_OVERLOAD_TABLE 1203 #include "llvm/IR/IntrinsicImpl.inc" 1204 #undef GET_INTRINSIC_OVERLOAD_TABLE 1205 } 1206 1207 bool Intrinsic::isLeaf(ID id) { 1208 switch (id) { 1209 default: 1210 return true; 1211 1212 case Intrinsic::experimental_gc_statepoint: 1213 case Intrinsic::experimental_patchpoint_void: 1214 case Intrinsic::experimental_patchpoint_i64: 1215 return false; 1216 } 1217 } 1218 1219 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1220 #define GET_INTRINSIC_ATTRIBUTES 1221 #include "llvm/IR/IntrinsicImpl.inc" 1222 #undef GET_INTRINSIC_ATTRIBUTES 1223 1224 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1225 // There can never be multiple globals with the same name of different types, 1226 // because intrinsics must be a specific type. 1227 return cast<Function>( 1228 M->getOrInsertFunction(getName(id, Tys), 1229 getType(M->getContext(), id, Tys)) 1230 .getCallee()); 1231 } 1232 1233 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1234 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1235 #include "llvm/IR/IntrinsicImpl.inc" 1236 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1237 1238 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1239 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1240 #include "llvm/IR/IntrinsicImpl.inc" 1241 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1242 1243 using DeferredIntrinsicMatchPair = 1244 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1245 1246 static bool matchIntrinsicType( 1247 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1248 SmallVectorImpl<Type *> &ArgTys, 1249 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1250 bool IsDeferredCheck) { 1251 using namespace Intrinsic; 1252 1253 // If we ran out of descriptors, there are too many arguments. 1254 if (Infos.empty()) return true; 1255 1256 // Do this before slicing off the 'front' part 1257 auto InfosRef = Infos; 1258 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1259 DeferredChecks.emplace_back(T, InfosRef); 1260 return false; 1261 }; 1262 1263 IITDescriptor D = Infos.front(); 1264 Infos = Infos.slice(1); 1265 1266 switch (D.Kind) { 1267 case IITDescriptor::Void: return !Ty->isVoidTy(); 1268 case IITDescriptor::VarArg: return true; 1269 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1270 case IITDescriptor::Token: return !Ty->isTokenTy(); 1271 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1272 case IITDescriptor::Half: return !Ty->isHalfTy(); 1273 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1274 case IITDescriptor::Float: return !Ty->isFloatTy(); 1275 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1276 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1277 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1278 case IITDescriptor::Vector: { 1279 VectorType *VT = dyn_cast<VectorType>(Ty); 1280 return !VT || VT->getElementCount() != D.Vector_Width || 1281 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1282 DeferredChecks, IsDeferredCheck); 1283 } 1284 case IITDescriptor::Pointer: { 1285 PointerType *PT = dyn_cast<PointerType>(Ty); 1286 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1287 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1288 DeferredChecks, IsDeferredCheck); 1289 } 1290 1291 case IITDescriptor::Struct: { 1292 StructType *ST = dyn_cast<StructType>(Ty); 1293 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1294 return true; 1295 1296 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1297 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1298 DeferredChecks, IsDeferredCheck)) 1299 return true; 1300 return false; 1301 } 1302 1303 case IITDescriptor::Argument: 1304 // If this is the second occurrence of an argument, 1305 // verify that the later instance matches the previous instance. 1306 if (D.getArgumentNumber() < ArgTys.size()) 1307 return Ty != ArgTys[D.getArgumentNumber()]; 1308 1309 if (D.getArgumentNumber() > ArgTys.size() || 1310 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1311 return IsDeferredCheck || DeferCheck(Ty); 1312 1313 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1314 "Table consistency error"); 1315 ArgTys.push_back(Ty); 1316 1317 switch (D.getArgumentKind()) { 1318 case IITDescriptor::AK_Any: return false; // Success 1319 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1320 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1321 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1322 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1323 default: break; 1324 } 1325 llvm_unreachable("all argument kinds not covered"); 1326 1327 case IITDescriptor::ExtendArgument: { 1328 // If this is a forward reference, defer the check for later. 1329 if (D.getArgumentNumber() >= ArgTys.size()) 1330 return IsDeferredCheck || DeferCheck(Ty); 1331 1332 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1333 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1334 NewTy = VectorType::getExtendedElementVectorType(VTy); 1335 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1336 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1337 else 1338 return true; 1339 1340 return Ty != NewTy; 1341 } 1342 case IITDescriptor::TruncArgument: { 1343 // If this is a forward reference, defer the check for later. 1344 if (D.getArgumentNumber() >= ArgTys.size()) 1345 return IsDeferredCheck || DeferCheck(Ty); 1346 1347 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1348 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1349 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1350 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1351 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1352 else 1353 return true; 1354 1355 return Ty != NewTy; 1356 } 1357 case IITDescriptor::HalfVecArgument: 1358 // If this is a forward reference, defer the check for later. 1359 if (D.getArgumentNumber() >= ArgTys.size()) 1360 return IsDeferredCheck || DeferCheck(Ty); 1361 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1362 VectorType::getHalfElementsVectorType( 1363 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1364 case IITDescriptor::SameVecWidthArgument: { 1365 if (D.getArgumentNumber() >= ArgTys.size()) { 1366 // Defer check and subsequent check for the vector element type. 1367 Infos = Infos.slice(1); 1368 return IsDeferredCheck || DeferCheck(Ty); 1369 } 1370 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1371 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1372 // Both must be vectors of the same number of elements or neither. 1373 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1374 return true; 1375 Type *EltTy = Ty; 1376 if (ThisArgType) { 1377 if (ReferenceType->getElementCount() != 1378 ThisArgType->getElementCount()) 1379 return true; 1380 EltTy = ThisArgType->getElementType(); 1381 } 1382 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1383 IsDeferredCheck); 1384 } 1385 case IITDescriptor::PtrToArgument: { 1386 if (D.getArgumentNumber() >= ArgTys.size()) 1387 return IsDeferredCheck || DeferCheck(Ty); 1388 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1389 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1390 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1391 } 1392 case IITDescriptor::PtrToElt: { 1393 if (D.getArgumentNumber() >= ArgTys.size()) 1394 return IsDeferredCheck || DeferCheck(Ty); 1395 VectorType * ReferenceType = 1396 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1397 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1398 1399 return (!ThisArgType || !ReferenceType || 1400 ThisArgType->getElementType() != ReferenceType->getElementType()); 1401 } 1402 case IITDescriptor::VecOfAnyPtrsToElt: { 1403 unsigned RefArgNumber = D.getRefArgNumber(); 1404 if (RefArgNumber >= ArgTys.size()) { 1405 if (IsDeferredCheck) 1406 return true; 1407 // If forward referencing, already add the pointer-vector type and 1408 // defer the checks for later. 1409 ArgTys.push_back(Ty); 1410 return DeferCheck(Ty); 1411 } 1412 1413 if (!IsDeferredCheck){ 1414 assert(D.getOverloadArgNumber() == ArgTys.size() && 1415 "Table consistency error"); 1416 ArgTys.push_back(Ty); 1417 } 1418 1419 // Verify the overloaded type "matches" the Ref type. 1420 // i.e. Ty is a vector with the same width as Ref. 1421 // Composed of pointers to the same element type as Ref. 1422 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1423 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1424 if (!ThisArgVecTy || !ReferenceType || 1425 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1426 return true; 1427 PointerType *ThisArgEltTy = 1428 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1429 if (!ThisArgEltTy) 1430 return true; 1431 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1432 } 1433 case IITDescriptor::VecElementArgument: { 1434 if (D.getArgumentNumber() >= ArgTys.size()) 1435 return IsDeferredCheck ? true : DeferCheck(Ty); 1436 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1437 return !ReferenceType || Ty != ReferenceType->getElementType(); 1438 } 1439 case IITDescriptor::Subdivide2Argument: 1440 case IITDescriptor::Subdivide4Argument: { 1441 // If this is a forward reference, defer the check for later. 1442 if (D.getArgumentNumber() >= ArgTys.size()) 1443 return IsDeferredCheck || DeferCheck(Ty); 1444 1445 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1446 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1447 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1448 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1449 return Ty != NewTy; 1450 } 1451 return true; 1452 } 1453 case IITDescriptor::VecOfBitcastsToInt: { 1454 if (D.getArgumentNumber() >= ArgTys.size()) 1455 return IsDeferredCheck || DeferCheck(Ty); 1456 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1457 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1458 if (!ThisArgVecTy || !ReferenceType) 1459 return true; 1460 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1461 } 1462 } 1463 llvm_unreachable("unhandled"); 1464 } 1465 1466 Intrinsic::MatchIntrinsicTypesResult 1467 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1468 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1469 SmallVectorImpl<Type *> &ArgTys) { 1470 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1471 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1472 false)) 1473 return MatchIntrinsicTypes_NoMatchRet; 1474 1475 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1476 1477 for (auto Ty : FTy->params()) 1478 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1479 return MatchIntrinsicTypes_NoMatchArg; 1480 1481 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1482 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1483 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1484 true)) 1485 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1486 : MatchIntrinsicTypes_NoMatchArg; 1487 } 1488 1489 return MatchIntrinsicTypes_Match; 1490 } 1491 1492 bool 1493 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1494 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1495 // If there are no descriptors left, then it can't be a vararg. 1496 if (Infos.empty()) 1497 return isVarArg; 1498 1499 // There should be only one descriptor remaining at this point. 1500 if (Infos.size() != 1) 1501 return true; 1502 1503 // Check and verify the descriptor. 1504 IITDescriptor D = Infos.front(); 1505 Infos = Infos.slice(1); 1506 if (D.Kind == IITDescriptor::VarArg) 1507 return !isVarArg; 1508 1509 return true; 1510 } 1511 1512 bool Intrinsic::getIntrinsicSignature(Function *F, 1513 SmallVectorImpl<Type *> &ArgTys) { 1514 Intrinsic::ID ID = F->getIntrinsicID(); 1515 if (!ID) 1516 return false; 1517 1518 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1519 getIntrinsicInfoTableEntries(ID, Table); 1520 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1521 1522 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1523 ArgTys) != 1524 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1525 return false; 1526 } 1527 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1528 TableRef)) 1529 return false; 1530 return true; 1531 } 1532 1533 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1534 SmallVector<Type *, 4> ArgTys; 1535 if (!getIntrinsicSignature(F, ArgTys)) 1536 return None; 1537 1538 Intrinsic::ID ID = F->getIntrinsicID(); 1539 StringRef Name = F->getName(); 1540 if (Name == Intrinsic::getName(ID, ArgTys)) 1541 return None; 1542 1543 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1544 NewDecl->setCallingConv(F->getCallingConv()); 1545 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1546 "Shouldn't change the signature"); 1547 return NewDecl; 1548 } 1549 1550 /// hasAddressTaken - returns true if there are any uses of this function 1551 /// other than direct calls or invokes to it. Optionally ignores callback 1552 /// uses. 1553 bool Function::hasAddressTaken(const User **PutOffender, 1554 bool IgnoreCallbackUses) const { 1555 for (const Use &U : uses()) { 1556 const User *FU = U.getUser(); 1557 if (isa<BlockAddress>(FU)) 1558 continue; 1559 1560 if (IgnoreCallbackUses) { 1561 AbstractCallSite ACS(&U); 1562 if (ACS && ACS.isCallbackCall()) 1563 continue; 1564 } 1565 1566 const auto *Call = dyn_cast<CallBase>(FU); 1567 if (!Call) { 1568 if (PutOffender) 1569 *PutOffender = FU; 1570 return true; 1571 } 1572 if (!Call->isCallee(&U)) { 1573 if (PutOffender) 1574 *PutOffender = FU; 1575 return true; 1576 } 1577 } 1578 return false; 1579 } 1580 1581 bool Function::isDefTriviallyDead() const { 1582 // Check the linkage 1583 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1584 !hasAvailableExternallyLinkage()) 1585 return false; 1586 1587 // Check if the function is used by anything other than a blockaddress. 1588 for (const User *U : users()) 1589 if (!isa<BlockAddress>(U)) 1590 return false; 1591 1592 return true; 1593 } 1594 1595 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1596 /// setjmp or other function that gcc recognizes as "returning twice". 1597 bool Function::callsFunctionThatReturnsTwice() const { 1598 for (const Instruction &I : instructions(this)) 1599 if (const auto *Call = dyn_cast<CallBase>(&I)) 1600 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1601 return true; 1602 1603 return false; 1604 } 1605 1606 Constant *Function::getPersonalityFn() const { 1607 assert(hasPersonalityFn() && getNumOperands()); 1608 return cast<Constant>(Op<0>()); 1609 } 1610 1611 void Function::setPersonalityFn(Constant *Fn) { 1612 setHungoffOperand<0>(Fn); 1613 setValueSubclassDataBit(3, Fn != nullptr); 1614 } 1615 1616 Constant *Function::getPrefixData() const { 1617 assert(hasPrefixData() && getNumOperands()); 1618 return cast<Constant>(Op<1>()); 1619 } 1620 1621 void Function::setPrefixData(Constant *PrefixData) { 1622 setHungoffOperand<1>(PrefixData); 1623 setValueSubclassDataBit(1, PrefixData != nullptr); 1624 } 1625 1626 Constant *Function::getPrologueData() const { 1627 assert(hasPrologueData() && getNumOperands()); 1628 return cast<Constant>(Op<2>()); 1629 } 1630 1631 void Function::setPrologueData(Constant *PrologueData) { 1632 setHungoffOperand<2>(PrologueData); 1633 setValueSubclassDataBit(2, PrologueData != nullptr); 1634 } 1635 1636 void Function::allocHungoffUselist() { 1637 // If we've already allocated a uselist, stop here. 1638 if (getNumOperands()) 1639 return; 1640 1641 allocHungoffUses(3, /*IsPhi=*/ false); 1642 setNumHungOffUseOperands(3); 1643 1644 // Initialize the uselist with placeholder operands to allow traversal. 1645 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1646 Op<0>().set(CPN); 1647 Op<1>().set(CPN); 1648 Op<2>().set(CPN); 1649 } 1650 1651 template <int Idx> 1652 void Function::setHungoffOperand(Constant *C) { 1653 if (C) { 1654 allocHungoffUselist(); 1655 Op<Idx>().set(C); 1656 } else if (getNumOperands()) { 1657 Op<Idx>().set( 1658 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1659 } 1660 } 1661 1662 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1663 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1664 if (On) 1665 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1666 else 1667 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1668 } 1669 1670 void Function::setEntryCount(ProfileCount Count, 1671 const DenseSet<GlobalValue::GUID> *S) { 1672 assert(Count.hasValue()); 1673 #if !defined(NDEBUG) 1674 auto PrevCount = getEntryCount(); 1675 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1676 #endif 1677 1678 auto ImportGUIDs = getImportGUIDs(); 1679 if (S == nullptr && ImportGUIDs.size()) 1680 S = &ImportGUIDs; 1681 1682 MDBuilder MDB(getContext()); 1683 setMetadata( 1684 LLVMContext::MD_prof, 1685 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1686 } 1687 1688 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1689 const DenseSet<GlobalValue::GUID> *Imports) { 1690 setEntryCount(ProfileCount(Count, Type), Imports); 1691 } 1692 1693 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1694 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1695 if (MD && MD->getOperand(0)) 1696 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1697 if (MDS->getString().equals("function_entry_count")) { 1698 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1699 uint64_t Count = CI->getValue().getZExtValue(); 1700 // A value of -1 is used for SamplePGO when there were no samples. 1701 // Treat this the same as unknown. 1702 if (Count == (uint64_t)-1) 1703 return ProfileCount::getInvalid(); 1704 return ProfileCount(Count, PCT_Real); 1705 } else if (AllowSynthetic && 1706 MDS->getString().equals("synthetic_function_entry_count")) { 1707 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1708 uint64_t Count = CI->getValue().getZExtValue(); 1709 return ProfileCount(Count, PCT_Synthetic); 1710 } 1711 } 1712 return ProfileCount::getInvalid(); 1713 } 1714 1715 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1716 DenseSet<GlobalValue::GUID> R; 1717 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1718 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1719 if (MDS->getString().equals("function_entry_count")) 1720 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1721 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1722 ->getValue() 1723 .getZExtValue()); 1724 return R; 1725 } 1726 1727 void Function::setSectionPrefix(StringRef Prefix) { 1728 MDBuilder MDB(getContext()); 1729 setMetadata(LLVMContext::MD_section_prefix, 1730 MDB.createFunctionSectionPrefix(Prefix)); 1731 } 1732 1733 Optional<StringRef> Function::getSectionPrefix() const { 1734 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1735 assert(cast<MDString>(MD->getOperand(0)) 1736 ->getString() 1737 .equals("function_section_prefix") && 1738 "Metadata not match"); 1739 return cast<MDString>(MD->getOperand(1))->getString(); 1740 } 1741 return None; 1742 } 1743 1744 bool Function::nullPointerIsDefined() const { 1745 return hasFnAttribute(Attribute::NullPointerIsValid); 1746 } 1747 1748 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1749 if (F && F->nullPointerIsDefined()) 1750 return true; 1751 1752 if (AS != 0) 1753 return true; 1754 1755 return false; 1756 } 1757