xref: /llvm-project/llvm/lib/IR/Function.cpp (revision d65a7003c435de22b8e30dca292160fea822d887)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsWebAssembly.h"
47 #include "llvm/IR/IntrinsicsX86.h"
48 #include "llvm/IR/IntrinsicsXCore.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/SymbolTableListTraits.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 // Explicit instantiations of SymbolTableListTraits since some of the methods
73 // are not in the public header file...
74 template class llvm::SymbolTableListTraits<BasicBlock>;
75 
76 //===----------------------------------------------------------------------===//
77 // Argument Implementation
78 //===----------------------------------------------------------------------===//
79 
80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
81     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
82   setName(Name);
83 }
84 
85 void Argument::setParent(Function *parent) {
86   Parent = parent;
87 }
88 
89 bool Argument::hasNonNullAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
92     return true;
93   else if (getDereferenceableBytes() > 0 &&
94            !NullPointerIsDefined(getParent(),
95                                  getType()->getPointerAddressSpace()))
96     return true;
97   return false;
98 }
99 
100 bool Argument::hasByValAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::ByVal);
103 }
104 
105 bool Argument::hasByRefAttr() const {
106   if (!getType()->isPointerTy())
107     return false;
108   return hasAttribute(Attribute::ByRef);
109 }
110 
111 bool Argument::hasSwiftSelfAttr() const {
112   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
113 }
114 
115 bool Argument::hasSwiftErrorAttr() const {
116   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
117 }
118 
119 bool Argument::hasInAllocaAttr() const {
120   if (!getType()->isPointerTy()) return false;
121   return hasAttribute(Attribute::InAlloca);
122 }
123 
124 bool Argument::hasPreallocatedAttr() const {
125   if (!getType()->isPointerTy())
126     return false;
127   return hasAttribute(Attribute::Preallocated);
128 }
129 
130 bool Argument::hasPassPointeeByValueCopyAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   AttributeList Attrs = getParent()->getAttributes();
133   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
134          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
136 }
137 
138 bool Argument::hasPointeeInMemoryValueAttr() const {
139   if (!getType()->isPointerTy())
140     return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
146          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
147 }
148 
149 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
150 /// parameter type.
151 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
152   // FIXME: All the type carrying attributes are mutually exclusive, so there
153   // should be a single query to get the stored type that handles any of them.
154   if (Type *ByValTy = ParamAttrs.getByValType())
155     return ByValTy;
156   if (Type *ByRefTy = ParamAttrs.getByRefType())
157     return ByRefTy;
158   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
159     return PreAllocTy;
160 
161   // FIXME: sret and inalloca always depends on pointee element type. It's also
162   // possible for byval to miss it.
163   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
164       ParamAttrs.hasAttribute(Attribute::ByVal) ||
165       ParamAttrs.hasAttribute(Attribute::StructRet) ||
166       ParamAttrs.hasAttribute(Attribute::Preallocated))
167     return cast<PointerType>(ArgTy)->getElementType();
168 
169   return nullptr;
170 }
171 
172 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
173   AttributeSet ParamAttrs =
174       getParent()->getAttributes().getParamAttributes(getArgNo());
175   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
176     return DL.getTypeAllocSize(MemTy);
177   return 0;
178 }
179 
180 Type *Argument::getPointeeInMemoryValueType() const {
181   AttributeSet ParamAttrs =
182       getParent()->getAttributes().getParamAttributes(getArgNo());
183   return getMemoryParamAllocType(ParamAttrs, getType());
184 }
185 
186 unsigned Argument::getParamAlignment() const {
187   assert(getType()->isPointerTy() && "Only pointers have alignments");
188   return getParent()->getParamAlignment(getArgNo());
189 }
190 
191 MaybeAlign Argument::getParamAlign() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlign(getArgNo());
194 }
195 
196 Type *Argument::getParamByValType() const {
197   assert(getType()->isPointerTy() && "Only pointers have byval types");
198   return getParent()->getParamByValType(getArgNo());
199 }
200 
201 Type *Argument::getParamStructRetType() const {
202   assert(getType()->isPointerTy() && "Only pointers have sret types");
203   return getParent()->getParamStructRetType(getArgNo());
204 }
205 
206 Type *Argument::getParamByRefType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByRefType(getArgNo());
209 }
210 
211 uint64_t Argument::getDereferenceableBytes() const {
212   assert(getType()->isPointerTy() &&
213          "Only pointers have dereferenceable bytes");
214   return getParent()->getParamDereferenceableBytes(getArgNo());
215 }
216 
217 uint64_t Argument::getDereferenceableOrNullBytes() const {
218   assert(getType()->isPointerTy() &&
219          "Only pointers have dereferenceable bytes");
220   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
221 }
222 
223 bool Argument::hasNestAttr() const {
224   if (!getType()->isPointerTy()) return false;
225   return hasAttribute(Attribute::Nest);
226 }
227 
228 bool Argument::hasNoAliasAttr() const {
229   if (!getType()->isPointerTy()) return false;
230   return hasAttribute(Attribute::NoAlias);
231 }
232 
233 bool Argument::hasNoCaptureAttr() const {
234   if (!getType()->isPointerTy()) return false;
235   return hasAttribute(Attribute::NoCapture);
236 }
237 
238 bool Argument::hasStructRetAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::StructRet);
241 }
242 
243 bool Argument::hasInRegAttr() const {
244   return hasAttribute(Attribute::InReg);
245 }
246 
247 bool Argument::hasReturnedAttr() const {
248   return hasAttribute(Attribute::Returned);
249 }
250 
251 bool Argument::hasZExtAttr() const {
252   return hasAttribute(Attribute::ZExt);
253 }
254 
255 bool Argument::hasSExtAttr() const {
256   return hasAttribute(Attribute::SExt);
257 }
258 
259 bool Argument::onlyReadsMemory() const {
260   AttributeList Attrs = getParent()->getAttributes();
261   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
262          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
263 }
264 
265 void Argument::addAttrs(AttrBuilder &B) {
266   AttributeList AL = getParent()->getAttributes();
267   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
268   getParent()->setAttributes(AL);
269 }
270 
271 void Argument::addAttr(Attribute::AttrKind Kind) {
272   getParent()->addParamAttr(getArgNo(), Kind);
273 }
274 
275 void Argument::addAttr(Attribute Attr) {
276   getParent()->addParamAttr(getArgNo(), Attr);
277 }
278 
279 void Argument::removeAttr(Attribute::AttrKind Kind) {
280   getParent()->removeParamAttr(getArgNo(), Kind);
281 }
282 
283 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
284   return getParent()->hasParamAttribute(getArgNo(), Kind);
285 }
286 
287 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
288   return getParent()->getParamAttribute(getArgNo(), Kind);
289 }
290 
291 //===----------------------------------------------------------------------===//
292 // Helper Methods in Function
293 //===----------------------------------------------------------------------===//
294 
295 LLVMContext &Function::getContext() const {
296   return getType()->getContext();
297 }
298 
299 unsigned Function::getInstructionCount() const {
300   unsigned NumInstrs = 0;
301   for (const BasicBlock &BB : BasicBlocks)
302     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
303                                BB.instructionsWithoutDebug().end());
304   return NumInstrs;
305 }
306 
307 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
308                            const Twine &N, Module &M) {
309   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
310 }
311 
312 void Function::removeFromParent() {
313   getParent()->getFunctionList().remove(getIterator());
314 }
315 
316 void Function::eraseFromParent() {
317   getParent()->getFunctionList().erase(getIterator());
318 }
319 
320 //===----------------------------------------------------------------------===//
321 // Function Implementation
322 //===----------------------------------------------------------------------===//
323 
324 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
325   // If AS == -1 and we are passed a valid module pointer we place the function
326   // in the program address space. Otherwise we default to AS0.
327   if (AddrSpace == static_cast<unsigned>(-1))
328     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
329   return AddrSpace;
330 }
331 
332 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
333                    const Twine &name, Module *ParentModule)
334     : GlobalObject(Ty, Value::FunctionVal,
335                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
336                    computeAddrSpace(AddrSpace, ParentModule)),
337       NumArgs(Ty->getNumParams()) {
338   assert(FunctionType::isValidReturnType(getReturnType()) &&
339          "invalid return type");
340   setGlobalObjectSubClassData(0);
341 
342   // We only need a symbol table for a function if the context keeps value names
343   if (!getContext().shouldDiscardValueNames())
344     SymTab = std::make_unique<ValueSymbolTable>();
345 
346   // If the function has arguments, mark them as lazily built.
347   if (Ty->getNumParams())
348     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
349 
350   if (ParentModule)
351     ParentModule->getFunctionList().push_back(this);
352 
353   HasLLVMReservedName = getName().startswith("llvm.");
354   // Ensure intrinsics have the right parameter attributes.
355   // Note, the IntID field will have been set in Value::setName if this function
356   // name is a valid intrinsic ID.
357   if (IntID)
358     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
359 }
360 
361 Function::~Function() {
362   dropAllReferences();    // After this it is safe to delete instructions.
363 
364   // Delete all of the method arguments and unlink from symbol table...
365   if (Arguments)
366     clearArguments();
367 
368   // Remove the function from the on-the-side GC table.
369   clearGC();
370 }
371 
372 void Function::BuildLazyArguments() const {
373   // Create the arguments vector, all arguments start out unnamed.
374   auto *FT = getFunctionType();
375   if (NumArgs > 0) {
376     Arguments = std::allocator<Argument>().allocate(NumArgs);
377     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
378       Type *ArgTy = FT->getParamType(i);
379       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
380       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
381     }
382   }
383 
384   // Clear the lazy arguments bit.
385   unsigned SDC = getSubclassDataFromValue();
386   SDC &= ~(1 << 0);
387   const_cast<Function*>(this)->setValueSubclassData(SDC);
388   assert(!hasLazyArguments());
389 }
390 
391 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
392   return MutableArrayRef<Argument>(Args, Count);
393 }
394 
395 bool Function::isConstrainedFPIntrinsic() const {
396   switch (getIntrinsicID()) {
397 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
398   case Intrinsic::INTRINSIC:
399 #include "llvm/IR/ConstrainedOps.def"
400     return true;
401 #undef INSTRUCTION
402   default:
403     return false;
404   }
405 }
406 
407 void Function::clearArguments() {
408   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
409     A.setName("");
410     A.~Argument();
411   }
412   std::allocator<Argument>().deallocate(Arguments, NumArgs);
413   Arguments = nullptr;
414 }
415 
416 void Function::stealArgumentListFrom(Function &Src) {
417   assert(isDeclaration() && "Expected no references to current arguments");
418 
419   // Drop the current arguments, if any, and set the lazy argument bit.
420   if (!hasLazyArguments()) {
421     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
422                         [](const Argument &A) { return A.use_empty(); }) &&
423            "Expected arguments to be unused in declaration");
424     clearArguments();
425     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
426   }
427 
428   // Nothing to steal if Src has lazy arguments.
429   if (Src.hasLazyArguments())
430     return;
431 
432   // Steal arguments from Src, and fix the lazy argument bits.
433   assert(arg_size() == Src.arg_size());
434   Arguments = Src.Arguments;
435   Src.Arguments = nullptr;
436   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
437     // FIXME: This does the work of transferNodesFromList inefficiently.
438     SmallString<128> Name;
439     if (A.hasName())
440       Name = A.getName();
441     if (!Name.empty())
442       A.setName("");
443     A.setParent(this);
444     if (!Name.empty())
445       A.setName(Name);
446   }
447 
448   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
449   assert(!hasLazyArguments());
450   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
451 }
452 
453 // dropAllReferences() - This function causes all the subinstructions to "let
454 // go" of all references that they are maintaining.  This allows one to
455 // 'delete' a whole class at a time, even though there may be circular
456 // references... first all references are dropped, and all use counts go to
457 // zero.  Then everything is deleted for real.  Note that no operations are
458 // valid on an object that has "dropped all references", except operator
459 // delete.
460 //
461 void Function::dropAllReferences() {
462   setIsMaterializable(false);
463 
464   for (BasicBlock &BB : *this)
465     BB.dropAllReferences();
466 
467   // Delete all basic blocks. They are now unused, except possibly by
468   // blockaddresses, but BasicBlock's destructor takes care of those.
469   while (!BasicBlocks.empty())
470     BasicBlocks.begin()->eraseFromParent();
471 
472   // Drop uses of any optional data (real or placeholder).
473   if (getNumOperands()) {
474     User::dropAllReferences();
475     setNumHungOffUseOperands(0);
476     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
477   }
478 
479   // Metadata is stored in a side-table.
480   clearMetadata();
481 }
482 
483 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
484   AttributeList PAL = getAttributes();
485   PAL = PAL.addAttribute(getContext(), i, Kind);
486   setAttributes(PAL);
487 }
488 
489 void Function::addAttribute(unsigned i, Attribute Attr) {
490   AttributeList PAL = getAttributes();
491   PAL = PAL.addAttribute(getContext(), i, Attr);
492   setAttributes(PAL);
493 }
494 
495 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
496   AttributeList PAL = getAttributes();
497   PAL = PAL.addAttributes(getContext(), i, Attrs);
498   setAttributes(PAL);
499 }
500 
501 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
502   AttributeList PAL = getAttributes();
503   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
504   setAttributes(PAL);
505 }
506 
507 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
508   AttributeList PAL = getAttributes();
509   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
510   setAttributes(PAL);
511 }
512 
513 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
514   AttributeList PAL = getAttributes();
515   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
516   setAttributes(PAL);
517 }
518 
519 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
520   AttributeList PAL = getAttributes();
521   PAL = PAL.removeAttribute(getContext(), i, Kind);
522   setAttributes(PAL);
523 }
524 
525 void Function::removeAttribute(unsigned i, StringRef Kind) {
526   AttributeList PAL = getAttributes();
527   PAL = PAL.removeAttribute(getContext(), i, Kind);
528   setAttributes(PAL);
529 }
530 
531 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
532   AttributeList PAL = getAttributes();
533   PAL = PAL.removeAttributes(getContext(), i, Attrs);
534   setAttributes(PAL);
535 }
536 
537 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
538   AttributeList PAL = getAttributes();
539   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
540   setAttributes(PAL);
541 }
542 
543 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
544   AttributeList PAL = getAttributes();
545   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
546   setAttributes(PAL);
547 }
548 
549 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
550   AttributeList PAL = getAttributes();
551   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
552   setAttributes(PAL);
553 }
554 
555 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
556   AttributeList PAL = getAttributes();
557   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
558   setAttributes(PAL);
559 }
560 
561 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
562   AttributeList PAL = getAttributes();
563   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
564   setAttributes(PAL);
565 }
566 
567 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
568   AttributeList PAL = getAttributes();
569   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
570   setAttributes(PAL);
571 }
572 
573 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
574                                                  uint64_t Bytes) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
577   setAttributes(PAL);
578 }
579 
580 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
581   if (&FPType == &APFloat::IEEEsingle()) {
582     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
583     StringRef Val = Attr.getValueAsString();
584     if (!Val.empty())
585       return parseDenormalFPAttribute(Val);
586 
587     // If the f32 variant of the attribute isn't specified, try to use the
588     // generic one.
589   }
590 
591   Attribute Attr = getFnAttribute("denormal-fp-math");
592   return parseDenormalFPAttribute(Attr.getValueAsString());
593 }
594 
595 const std::string &Function::getGC() const {
596   assert(hasGC() && "Function has no collector");
597   return getContext().getGC(*this);
598 }
599 
600 void Function::setGC(std::string Str) {
601   setValueSubclassDataBit(14, !Str.empty());
602   getContext().setGC(*this, std::move(Str));
603 }
604 
605 void Function::clearGC() {
606   if (!hasGC())
607     return;
608   getContext().deleteGC(*this);
609   setValueSubclassDataBit(14, false);
610 }
611 
612 /// Copy all additional attributes (those not needed to create a Function) from
613 /// the Function Src to this one.
614 void Function::copyAttributesFrom(const Function *Src) {
615   GlobalObject::copyAttributesFrom(Src);
616   setCallingConv(Src->getCallingConv());
617   setAttributes(Src->getAttributes());
618   if (Src->hasGC())
619     setGC(Src->getGC());
620   else
621     clearGC();
622   if (Src->hasPersonalityFn())
623     setPersonalityFn(Src->getPersonalityFn());
624   if (Src->hasPrefixData())
625     setPrefixData(Src->getPrefixData());
626   if (Src->hasPrologueData())
627     setPrologueData(Src->getPrologueData());
628 }
629 
630 /// Table of string intrinsic names indexed by enum value.
631 static const char * const IntrinsicNameTable[] = {
632   "not_intrinsic",
633 #define GET_INTRINSIC_NAME_TABLE
634 #include "llvm/IR/IntrinsicImpl.inc"
635 #undef GET_INTRINSIC_NAME_TABLE
636 };
637 
638 /// Table of per-target intrinsic name tables.
639 #define GET_INTRINSIC_TARGET_DATA
640 #include "llvm/IR/IntrinsicImpl.inc"
641 #undef GET_INTRINSIC_TARGET_DATA
642 
643 bool Function::isTargetIntrinsic() const {
644   return IntID > TargetInfos[0].Count;
645 }
646 
647 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
648 /// target as \c Name, or the generic table if \c Name is not target specific.
649 ///
650 /// Returns the relevant slice of \c IntrinsicNameTable
651 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
652   assert(Name.startswith("llvm."));
653 
654   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
655   // Drop "llvm." and take the first dotted component. That will be the target
656   // if this is target specific.
657   StringRef Target = Name.drop_front(5).split('.').first;
658   auto It = partition_point(
659       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
660   // We've either found the target or just fall back to the generic set, which
661   // is always first.
662   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
663   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
664 }
665 
666 /// This does the actual lookup of an intrinsic ID which
667 /// matches the given function name.
668 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
669   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
670   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
671   if (Idx == -1)
672     return Intrinsic::not_intrinsic;
673 
674   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
675   // an index into a sub-table.
676   int Adjust = NameTable.data() - IntrinsicNameTable;
677   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
678 
679   // If the intrinsic is not overloaded, require an exact match. If it is
680   // overloaded, require either exact or prefix match.
681   const auto MatchSize = strlen(NameTable[Idx]);
682   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
683   bool IsExactMatch = Name.size() == MatchSize;
684   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
685                                                      : Intrinsic::not_intrinsic;
686 }
687 
688 void Function::recalculateIntrinsicID() {
689   StringRef Name = getName();
690   if (!Name.startswith("llvm.")) {
691     HasLLVMReservedName = false;
692     IntID = Intrinsic::not_intrinsic;
693     return;
694   }
695   HasLLVMReservedName = true;
696   IntID = lookupIntrinsicID(Name);
697 }
698 
699 /// Returns a stable mangling for the type specified for use in the name
700 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
701 /// of named types is simply their name.  Manglings for unnamed types consist
702 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
703 /// combined with the mangling of their component types.  A vararg function
704 /// type will have a suffix of 'vararg'.  Since function types can contain
705 /// other function types, we close a function type mangling with suffix 'f'
706 /// which can't be confused with it's prefix.  This ensures we don't have
707 /// collisions between two unrelated function types. Otherwise, you might
708 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
709 ///
710 static std::string getMangledTypeStr(Type* Ty) {
711   std::string Result;
712   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
713     Result += "p" + utostr(PTyp->getAddressSpace()) +
714       getMangledTypeStr(PTyp->getElementType());
715   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
716     Result += "a" + utostr(ATyp->getNumElements()) +
717       getMangledTypeStr(ATyp->getElementType());
718   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
719     if (!STyp->isLiteral()) {
720       Result += "s_";
721       Result += STyp->getName();
722     } else {
723       Result += "sl_";
724       for (auto Elem : STyp->elements())
725         Result += getMangledTypeStr(Elem);
726     }
727     // Ensure nested structs are distinguishable.
728     Result += "s";
729   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
730     Result += "f_" + getMangledTypeStr(FT->getReturnType());
731     for (size_t i = 0; i < FT->getNumParams(); i++)
732       Result += getMangledTypeStr(FT->getParamType(i));
733     if (FT->isVarArg())
734       Result += "vararg";
735     // Ensure nested function types are distinguishable.
736     Result += "f";
737   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
738     ElementCount EC = VTy->getElementCount();
739     if (EC.isScalable())
740       Result += "nx";
741     Result += "v" + utostr(EC.getKnownMinValue()) +
742               getMangledTypeStr(VTy->getElementType());
743   } else if (Ty) {
744     switch (Ty->getTypeID()) {
745     default: llvm_unreachable("Unhandled type");
746     case Type::VoidTyID:      Result += "isVoid";   break;
747     case Type::MetadataTyID:  Result += "Metadata"; break;
748     case Type::HalfTyID:      Result += "f16";      break;
749     case Type::BFloatTyID:    Result += "bf16";     break;
750     case Type::FloatTyID:     Result += "f32";      break;
751     case Type::DoubleTyID:    Result += "f64";      break;
752     case Type::X86_FP80TyID:  Result += "f80";      break;
753     case Type::FP128TyID:     Result += "f128";     break;
754     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
755     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
756     case Type::IntegerTyID:
757       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
758       break;
759     }
760   }
761   return Result;
762 }
763 
764 StringRef Intrinsic::getName(ID id) {
765   assert(id < num_intrinsics && "Invalid intrinsic ID!");
766   assert(!Intrinsic::isOverloaded(id) &&
767          "This version of getName does not support overloading");
768   return IntrinsicNameTable[id];
769 }
770 
771 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
772   assert(id < num_intrinsics && "Invalid intrinsic ID!");
773   std::string Result(IntrinsicNameTable[id]);
774   for (Type *Ty : Tys) {
775     Result += "." + getMangledTypeStr(Ty);
776   }
777   return Result;
778 }
779 
780 /// IIT_Info - These are enumerators that describe the entries returned by the
781 /// getIntrinsicInfoTableEntries function.
782 ///
783 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
784 enum IIT_Info {
785   // Common values should be encoded with 0-15.
786   IIT_Done = 0,
787   IIT_I1   = 1,
788   IIT_I8   = 2,
789   IIT_I16  = 3,
790   IIT_I32  = 4,
791   IIT_I64  = 5,
792   IIT_F16  = 6,
793   IIT_F32  = 7,
794   IIT_F64  = 8,
795   IIT_V2   = 9,
796   IIT_V4   = 10,
797   IIT_V8   = 11,
798   IIT_V16  = 12,
799   IIT_V32  = 13,
800   IIT_PTR  = 14,
801   IIT_ARG  = 15,
802 
803   // Values from 16+ are only encodable with the inefficient encoding.
804   IIT_V64  = 16,
805   IIT_MMX  = 17,
806   IIT_TOKEN = 18,
807   IIT_METADATA = 19,
808   IIT_EMPTYSTRUCT = 20,
809   IIT_STRUCT2 = 21,
810   IIT_STRUCT3 = 22,
811   IIT_STRUCT4 = 23,
812   IIT_STRUCT5 = 24,
813   IIT_EXTEND_ARG = 25,
814   IIT_TRUNC_ARG = 26,
815   IIT_ANYPTR = 27,
816   IIT_V1   = 28,
817   IIT_VARARG = 29,
818   IIT_HALF_VEC_ARG = 30,
819   IIT_SAME_VEC_WIDTH_ARG = 31,
820   IIT_PTR_TO_ARG = 32,
821   IIT_PTR_TO_ELT = 33,
822   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
823   IIT_I128 = 35,
824   IIT_V512 = 36,
825   IIT_V1024 = 37,
826   IIT_STRUCT6 = 38,
827   IIT_STRUCT7 = 39,
828   IIT_STRUCT8 = 40,
829   IIT_F128 = 41,
830   IIT_VEC_ELEMENT = 42,
831   IIT_SCALABLE_VEC = 43,
832   IIT_SUBDIVIDE2_ARG = 44,
833   IIT_SUBDIVIDE4_ARG = 45,
834   IIT_VEC_OF_BITCASTS_TO_INT = 46,
835   IIT_V128 = 47,
836   IIT_BF16 = 48
837 };
838 
839 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
840                       IIT_Info LastInfo,
841                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
842   using namespace Intrinsic;
843 
844   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
845 
846   IIT_Info Info = IIT_Info(Infos[NextElt++]);
847   unsigned StructElts = 2;
848 
849   switch (Info) {
850   case IIT_Done:
851     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
852     return;
853   case IIT_VARARG:
854     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
855     return;
856   case IIT_MMX:
857     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
858     return;
859   case IIT_TOKEN:
860     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
861     return;
862   case IIT_METADATA:
863     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
864     return;
865   case IIT_F16:
866     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
867     return;
868   case IIT_BF16:
869     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
870     return;
871   case IIT_F32:
872     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
873     return;
874   case IIT_F64:
875     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
876     return;
877   case IIT_F128:
878     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
879     return;
880   case IIT_I1:
881     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
882     return;
883   case IIT_I8:
884     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
885     return;
886   case IIT_I16:
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
888     return;
889   case IIT_I32:
890     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
891     return;
892   case IIT_I64:
893     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
894     return;
895   case IIT_I128:
896     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
897     return;
898   case IIT_V1:
899     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
900     DecodeIITType(NextElt, Infos, Info, OutputTable);
901     return;
902   case IIT_V2:
903     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
904     DecodeIITType(NextElt, Infos, Info, OutputTable);
905     return;
906   case IIT_V4:
907     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
908     DecodeIITType(NextElt, Infos, Info, OutputTable);
909     return;
910   case IIT_V8:
911     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
912     DecodeIITType(NextElt, Infos, Info, OutputTable);
913     return;
914   case IIT_V16:
915     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
916     DecodeIITType(NextElt, Infos, Info, OutputTable);
917     return;
918   case IIT_V32:
919     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
920     DecodeIITType(NextElt, Infos, Info, OutputTable);
921     return;
922   case IIT_V64:
923     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
924     DecodeIITType(NextElt, Infos, Info, OutputTable);
925     return;
926   case IIT_V128:
927     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
928     DecodeIITType(NextElt, Infos, Info, OutputTable);
929     return;
930   case IIT_V512:
931     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
932     DecodeIITType(NextElt, Infos, Info, OutputTable);
933     return;
934   case IIT_V1024:
935     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
936     DecodeIITType(NextElt, Infos, Info, OutputTable);
937     return;
938   case IIT_PTR:
939     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
940     DecodeIITType(NextElt, Infos, Info, OutputTable);
941     return;
942   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
943     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
944                                              Infos[NextElt++]));
945     DecodeIITType(NextElt, Infos, Info, OutputTable);
946     return;
947   }
948   case IIT_ARG: {
949     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
950     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
951     return;
952   }
953   case IIT_EXTEND_ARG: {
954     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
955     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
956                                              ArgInfo));
957     return;
958   }
959   case IIT_TRUNC_ARG: {
960     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
961     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
962                                              ArgInfo));
963     return;
964   }
965   case IIT_HALF_VEC_ARG: {
966     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
967     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
968                                              ArgInfo));
969     return;
970   }
971   case IIT_SAME_VEC_WIDTH_ARG: {
972     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
973     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
974                                              ArgInfo));
975     return;
976   }
977   case IIT_PTR_TO_ARG: {
978     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
979     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
980                                              ArgInfo));
981     return;
982   }
983   case IIT_PTR_TO_ELT: {
984     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
985     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
986     return;
987   }
988   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
989     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
990     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
991     OutputTable.push_back(
992         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
993     return;
994   }
995   case IIT_EMPTYSTRUCT:
996     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
997     return;
998   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
999   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1000   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1001   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1002   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1003   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1004   case IIT_STRUCT2: {
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1006 
1007     for (unsigned i = 0; i != StructElts; ++i)
1008       DecodeIITType(NextElt, Infos, Info, OutputTable);
1009     return;
1010   }
1011   case IIT_SUBDIVIDE2_ARG: {
1012     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1014                                              ArgInfo));
1015     return;
1016   }
1017   case IIT_SUBDIVIDE4_ARG: {
1018     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1020                                              ArgInfo));
1021     return;
1022   }
1023   case IIT_VEC_ELEMENT: {
1024     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1026                                              ArgInfo));
1027     return;
1028   }
1029   case IIT_SCALABLE_VEC: {
1030     DecodeIITType(NextElt, Infos, Info, OutputTable);
1031     return;
1032   }
1033   case IIT_VEC_OF_BITCASTS_TO_INT: {
1034     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1035     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1036                                              ArgInfo));
1037     return;
1038   }
1039   }
1040   llvm_unreachable("unhandled");
1041 }
1042 
1043 #define GET_INTRINSIC_GENERATOR_GLOBAL
1044 #include "llvm/IR/IntrinsicImpl.inc"
1045 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1046 
1047 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1048                                              SmallVectorImpl<IITDescriptor> &T){
1049   // Check to see if the intrinsic's type was expressible by the table.
1050   unsigned TableVal = IIT_Table[id-1];
1051 
1052   // Decode the TableVal into an array of IITValues.
1053   SmallVector<unsigned char, 8> IITValues;
1054   ArrayRef<unsigned char> IITEntries;
1055   unsigned NextElt = 0;
1056   if ((TableVal >> 31) != 0) {
1057     // This is an offset into the IIT_LongEncodingTable.
1058     IITEntries = IIT_LongEncodingTable;
1059 
1060     // Strip sentinel bit.
1061     NextElt = (TableVal << 1) >> 1;
1062   } else {
1063     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1064     // into a single word in the table itself, decode it now.
1065     do {
1066       IITValues.push_back(TableVal & 0xF);
1067       TableVal >>= 4;
1068     } while (TableVal);
1069 
1070     IITEntries = IITValues;
1071     NextElt = 0;
1072   }
1073 
1074   // Okay, decode the table into the output vector of IITDescriptors.
1075   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1076   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1077     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1078 }
1079 
1080 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1081                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1082   using namespace Intrinsic;
1083 
1084   IITDescriptor D = Infos.front();
1085   Infos = Infos.slice(1);
1086 
1087   switch (D.Kind) {
1088   case IITDescriptor::Void: return Type::getVoidTy(Context);
1089   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1090   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1091   case IITDescriptor::Token: return Type::getTokenTy(Context);
1092   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1093   case IITDescriptor::Half: return Type::getHalfTy(Context);
1094   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1095   case IITDescriptor::Float: return Type::getFloatTy(Context);
1096   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1097   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1098 
1099   case IITDescriptor::Integer:
1100     return IntegerType::get(Context, D.Integer_Width);
1101   case IITDescriptor::Vector:
1102     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1103                            D.Vector_Width);
1104   case IITDescriptor::Pointer:
1105     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1106                             D.Pointer_AddressSpace);
1107   case IITDescriptor::Struct: {
1108     SmallVector<Type *, 8> Elts;
1109     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1110       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1111     return StructType::get(Context, Elts);
1112   }
1113   case IITDescriptor::Argument:
1114     return Tys[D.getArgumentNumber()];
1115   case IITDescriptor::ExtendArgument: {
1116     Type *Ty = Tys[D.getArgumentNumber()];
1117     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1118       return VectorType::getExtendedElementVectorType(VTy);
1119 
1120     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1121   }
1122   case IITDescriptor::TruncArgument: {
1123     Type *Ty = Tys[D.getArgumentNumber()];
1124     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1125       return VectorType::getTruncatedElementVectorType(VTy);
1126 
1127     IntegerType *ITy = cast<IntegerType>(Ty);
1128     assert(ITy->getBitWidth() % 2 == 0);
1129     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1130   }
1131   case IITDescriptor::Subdivide2Argument:
1132   case IITDescriptor::Subdivide4Argument: {
1133     Type *Ty = Tys[D.getArgumentNumber()];
1134     VectorType *VTy = dyn_cast<VectorType>(Ty);
1135     assert(VTy && "Expected an argument of Vector Type");
1136     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1137     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1138   }
1139   case IITDescriptor::HalfVecArgument:
1140     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1141                                                   Tys[D.getArgumentNumber()]));
1142   case IITDescriptor::SameVecWidthArgument: {
1143     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1144     Type *Ty = Tys[D.getArgumentNumber()];
1145     if (auto *VTy = dyn_cast<VectorType>(Ty))
1146       return VectorType::get(EltTy, VTy->getElementCount());
1147     return EltTy;
1148   }
1149   case IITDescriptor::PtrToArgument: {
1150     Type *Ty = Tys[D.getArgumentNumber()];
1151     return PointerType::getUnqual(Ty);
1152   }
1153   case IITDescriptor::PtrToElt: {
1154     Type *Ty = Tys[D.getArgumentNumber()];
1155     VectorType *VTy = dyn_cast<VectorType>(Ty);
1156     if (!VTy)
1157       llvm_unreachable("Expected an argument of Vector Type");
1158     Type *EltTy = VTy->getElementType();
1159     return PointerType::getUnqual(EltTy);
1160   }
1161   case IITDescriptor::VecElementArgument: {
1162     Type *Ty = Tys[D.getArgumentNumber()];
1163     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1164       return VTy->getElementType();
1165     llvm_unreachable("Expected an argument of Vector Type");
1166   }
1167   case IITDescriptor::VecOfBitcastsToInt: {
1168     Type *Ty = Tys[D.getArgumentNumber()];
1169     VectorType *VTy = dyn_cast<VectorType>(Ty);
1170     assert(VTy && "Expected an argument of Vector Type");
1171     return VectorType::getInteger(VTy);
1172   }
1173   case IITDescriptor::VecOfAnyPtrsToElt:
1174     // Return the overloaded type (which determines the pointers address space)
1175     return Tys[D.getOverloadArgNumber()];
1176   }
1177   llvm_unreachable("unhandled");
1178 }
1179 
1180 FunctionType *Intrinsic::getType(LLVMContext &Context,
1181                                  ID id, ArrayRef<Type*> Tys) {
1182   SmallVector<IITDescriptor, 8> Table;
1183   getIntrinsicInfoTableEntries(id, Table);
1184 
1185   ArrayRef<IITDescriptor> TableRef = Table;
1186   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1187 
1188   SmallVector<Type*, 8> ArgTys;
1189   while (!TableRef.empty())
1190     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1191 
1192   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1193   // If we see void type as the type of the last argument, it is vararg intrinsic
1194   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1195     ArgTys.pop_back();
1196     return FunctionType::get(ResultTy, ArgTys, true);
1197   }
1198   return FunctionType::get(ResultTy, ArgTys, false);
1199 }
1200 
1201 bool Intrinsic::isOverloaded(ID id) {
1202 #define GET_INTRINSIC_OVERLOAD_TABLE
1203 #include "llvm/IR/IntrinsicImpl.inc"
1204 #undef GET_INTRINSIC_OVERLOAD_TABLE
1205 }
1206 
1207 bool Intrinsic::isLeaf(ID id) {
1208   switch (id) {
1209   default:
1210     return true;
1211 
1212   case Intrinsic::experimental_gc_statepoint:
1213   case Intrinsic::experimental_patchpoint_void:
1214   case Intrinsic::experimental_patchpoint_i64:
1215     return false;
1216   }
1217 }
1218 
1219 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1220 #define GET_INTRINSIC_ATTRIBUTES
1221 #include "llvm/IR/IntrinsicImpl.inc"
1222 #undef GET_INTRINSIC_ATTRIBUTES
1223 
1224 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1225   // There can never be multiple globals with the same name of different types,
1226   // because intrinsics must be a specific type.
1227   return cast<Function>(
1228       M->getOrInsertFunction(getName(id, Tys),
1229                              getType(M->getContext(), id, Tys))
1230           .getCallee());
1231 }
1232 
1233 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1234 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1235 #include "llvm/IR/IntrinsicImpl.inc"
1236 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1237 
1238 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1239 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1240 #include "llvm/IR/IntrinsicImpl.inc"
1241 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1242 
1243 using DeferredIntrinsicMatchPair =
1244     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1245 
1246 static bool matchIntrinsicType(
1247     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1248     SmallVectorImpl<Type *> &ArgTys,
1249     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1250     bool IsDeferredCheck) {
1251   using namespace Intrinsic;
1252 
1253   // If we ran out of descriptors, there are too many arguments.
1254   if (Infos.empty()) return true;
1255 
1256   // Do this before slicing off the 'front' part
1257   auto InfosRef = Infos;
1258   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1259     DeferredChecks.emplace_back(T, InfosRef);
1260     return false;
1261   };
1262 
1263   IITDescriptor D = Infos.front();
1264   Infos = Infos.slice(1);
1265 
1266   switch (D.Kind) {
1267     case IITDescriptor::Void: return !Ty->isVoidTy();
1268     case IITDescriptor::VarArg: return true;
1269     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1270     case IITDescriptor::Token: return !Ty->isTokenTy();
1271     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1272     case IITDescriptor::Half: return !Ty->isHalfTy();
1273     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1274     case IITDescriptor::Float: return !Ty->isFloatTy();
1275     case IITDescriptor::Double: return !Ty->isDoubleTy();
1276     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1277     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1278     case IITDescriptor::Vector: {
1279       VectorType *VT = dyn_cast<VectorType>(Ty);
1280       return !VT || VT->getElementCount() != D.Vector_Width ||
1281              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1282                                 DeferredChecks, IsDeferredCheck);
1283     }
1284     case IITDescriptor::Pointer: {
1285       PointerType *PT = dyn_cast<PointerType>(Ty);
1286       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1287              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1288                                 DeferredChecks, IsDeferredCheck);
1289     }
1290 
1291     case IITDescriptor::Struct: {
1292       StructType *ST = dyn_cast<StructType>(Ty);
1293       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1294         return true;
1295 
1296       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1297         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1298                                DeferredChecks, IsDeferredCheck))
1299           return true;
1300       return false;
1301     }
1302 
1303     case IITDescriptor::Argument:
1304       // If this is the second occurrence of an argument,
1305       // verify that the later instance matches the previous instance.
1306       if (D.getArgumentNumber() < ArgTys.size())
1307         return Ty != ArgTys[D.getArgumentNumber()];
1308 
1309       if (D.getArgumentNumber() > ArgTys.size() ||
1310           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1311         return IsDeferredCheck || DeferCheck(Ty);
1312 
1313       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1314              "Table consistency error");
1315       ArgTys.push_back(Ty);
1316 
1317       switch (D.getArgumentKind()) {
1318         case IITDescriptor::AK_Any:        return false; // Success
1319         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1320         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1321         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1322         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1323         default:                           break;
1324       }
1325       llvm_unreachable("all argument kinds not covered");
1326 
1327     case IITDescriptor::ExtendArgument: {
1328       // If this is a forward reference, defer the check for later.
1329       if (D.getArgumentNumber() >= ArgTys.size())
1330         return IsDeferredCheck || DeferCheck(Ty);
1331 
1332       Type *NewTy = ArgTys[D.getArgumentNumber()];
1333       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1334         NewTy = VectorType::getExtendedElementVectorType(VTy);
1335       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1336         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1337       else
1338         return true;
1339 
1340       return Ty != NewTy;
1341     }
1342     case IITDescriptor::TruncArgument: {
1343       // If this is a forward reference, defer the check for later.
1344       if (D.getArgumentNumber() >= ArgTys.size())
1345         return IsDeferredCheck || DeferCheck(Ty);
1346 
1347       Type *NewTy = ArgTys[D.getArgumentNumber()];
1348       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1349         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1350       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1351         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1352       else
1353         return true;
1354 
1355       return Ty != NewTy;
1356     }
1357     case IITDescriptor::HalfVecArgument:
1358       // If this is a forward reference, defer the check for later.
1359       if (D.getArgumentNumber() >= ArgTys.size())
1360         return IsDeferredCheck || DeferCheck(Ty);
1361       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1362              VectorType::getHalfElementsVectorType(
1363                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1364     case IITDescriptor::SameVecWidthArgument: {
1365       if (D.getArgumentNumber() >= ArgTys.size()) {
1366         // Defer check and subsequent check for the vector element type.
1367         Infos = Infos.slice(1);
1368         return IsDeferredCheck || DeferCheck(Ty);
1369       }
1370       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1371       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1372       // Both must be vectors of the same number of elements or neither.
1373       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1374         return true;
1375       Type *EltTy = Ty;
1376       if (ThisArgType) {
1377         if (ReferenceType->getElementCount() !=
1378             ThisArgType->getElementCount())
1379           return true;
1380         EltTy = ThisArgType->getElementType();
1381       }
1382       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1383                                 IsDeferredCheck);
1384     }
1385     case IITDescriptor::PtrToArgument: {
1386       if (D.getArgumentNumber() >= ArgTys.size())
1387         return IsDeferredCheck || DeferCheck(Ty);
1388       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1389       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1390       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1391     }
1392     case IITDescriptor::PtrToElt: {
1393       if (D.getArgumentNumber() >= ArgTys.size())
1394         return IsDeferredCheck || DeferCheck(Ty);
1395       VectorType * ReferenceType =
1396         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1397       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1398 
1399       return (!ThisArgType || !ReferenceType ||
1400               ThisArgType->getElementType() != ReferenceType->getElementType());
1401     }
1402     case IITDescriptor::VecOfAnyPtrsToElt: {
1403       unsigned RefArgNumber = D.getRefArgNumber();
1404       if (RefArgNumber >= ArgTys.size()) {
1405         if (IsDeferredCheck)
1406           return true;
1407         // If forward referencing, already add the pointer-vector type and
1408         // defer the checks for later.
1409         ArgTys.push_back(Ty);
1410         return DeferCheck(Ty);
1411       }
1412 
1413       if (!IsDeferredCheck){
1414         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1415                "Table consistency error");
1416         ArgTys.push_back(Ty);
1417       }
1418 
1419       // Verify the overloaded type "matches" the Ref type.
1420       // i.e. Ty is a vector with the same width as Ref.
1421       // Composed of pointers to the same element type as Ref.
1422       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1423       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1424       if (!ThisArgVecTy || !ReferenceType ||
1425           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1426         return true;
1427       PointerType *ThisArgEltTy =
1428           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1429       if (!ThisArgEltTy)
1430         return true;
1431       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1432     }
1433     case IITDescriptor::VecElementArgument: {
1434       if (D.getArgumentNumber() >= ArgTys.size())
1435         return IsDeferredCheck ? true : DeferCheck(Ty);
1436       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1437       return !ReferenceType || Ty != ReferenceType->getElementType();
1438     }
1439     case IITDescriptor::Subdivide2Argument:
1440     case IITDescriptor::Subdivide4Argument: {
1441       // If this is a forward reference, defer the check for later.
1442       if (D.getArgumentNumber() >= ArgTys.size())
1443         return IsDeferredCheck || DeferCheck(Ty);
1444 
1445       Type *NewTy = ArgTys[D.getArgumentNumber()];
1446       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1447         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1448         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1449         return Ty != NewTy;
1450       }
1451       return true;
1452     }
1453     case IITDescriptor::VecOfBitcastsToInt: {
1454       if (D.getArgumentNumber() >= ArgTys.size())
1455         return IsDeferredCheck || DeferCheck(Ty);
1456       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1457       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1458       if (!ThisArgVecTy || !ReferenceType)
1459         return true;
1460       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1461     }
1462   }
1463   llvm_unreachable("unhandled");
1464 }
1465 
1466 Intrinsic::MatchIntrinsicTypesResult
1467 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1468                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1469                                    SmallVectorImpl<Type *> &ArgTys) {
1470   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1471   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1472                          false))
1473     return MatchIntrinsicTypes_NoMatchRet;
1474 
1475   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1476 
1477   for (auto Ty : FTy->params())
1478     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1479       return MatchIntrinsicTypes_NoMatchArg;
1480 
1481   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1482     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1483     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1484                            true))
1485       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1486                                          : MatchIntrinsicTypes_NoMatchArg;
1487   }
1488 
1489   return MatchIntrinsicTypes_Match;
1490 }
1491 
1492 bool
1493 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1494                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1495   // If there are no descriptors left, then it can't be a vararg.
1496   if (Infos.empty())
1497     return isVarArg;
1498 
1499   // There should be only one descriptor remaining at this point.
1500   if (Infos.size() != 1)
1501     return true;
1502 
1503   // Check and verify the descriptor.
1504   IITDescriptor D = Infos.front();
1505   Infos = Infos.slice(1);
1506   if (D.Kind == IITDescriptor::VarArg)
1507     return !isVarArg;
1508 
1509   return true;
1510 }
1511 
1512 bool Intrinsic::getIntrinsicSignature(Function *F,
1513                                       SmallVectorImpl<Type *> &ArgTys) {
1514   Intrinsic::ID ID = F->getIntrinsicID();
1515   if (!ID)
1516     return false;
1517 
1518   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1519   getIntrinsicInfoTableEntries(ID, Table);
1520   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1521 
1522   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1523                                          ArgTys) !=
1524       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1525     return false;
1526   }
1527   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1528                                       TableRef))
1529     return false;
1530   return true;
1531 }
1532 
1533 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1534   SmallVector<Type *, 4> ArgTys;
1535   if (!getIntrinsicSignature(F, ArgTys))
1536     return None;
1537 
1538   Intrinsic::ID ID = F->getIntrinsicID();
1539   StringRef Name = F->getName();
1540   if (Name == Intrinsic::getName(ID, ArgTys))
1541     return None;
1542 
1543   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1544   NewDecl->setCallingConv(F->getCallingConv());
1545   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1546          "Shouldn't change the signature");
1547   return NewDecl;
1548 }
1549 
1550 /// hasAddressTaken - returns true if there are any uses of this function
1551 /// other than direct calls or invokes to it. Optionally ignores callback
1552 /// uses.
1553 bool Function::hasAddressTaken(const User **PutOffender,
1554                                bool IgnoreCallbackUses) const {
1555   for (const Use &U : uses()) {
1556     const User *FU = U.getUser();
1557     if (isa<BlockAddress>(FU))
1558       continue;
1559 
1560     if (IgnoreCallbackUses) {
1561       AbstractCallSite ACS(&U);
1562       if (ACS && ACS.isCallbackCall())
1563         continue;
1564     }
1565 
1566     const auto *Call = dyn_cast<CallBase>(FU);
1567     if (!Call) {
1568       if (PutOffender)
1569         *PutOffender = FU;
1570       return true;
1571     }
1572     if (!Call->isCallee(&U)) {
1573       if (PutOffender)
1574         *PutOffender = FU;
1575       return true;
1576     }
1577   }
1578   return false;
1579 }
1580 
1581 bool Function::isDefTriviallyDead() const {
1582   // Check the linkage
1583   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1584       !hasAvailableExternallyLinkage())
1585     return false;
1586 
1587   // Check if the function is used by anything other than a blockaddress.
1588   for (const User *U : users())
1589     if (!isa<BlockAddress>(U))
1590       return false;
1591 
1592   return true;
1593 }
1594 
1595 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1596 /// setjmp or other function that gcc recognizes as "returning twice".
1597 bool Function::callsFunctionThatReturnsTwice() const {
1598   for (const Instruction &I : instructions(this))
1599     if (const auto *Call = dyn_cast<CallBase>(&I))
1600       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1601         return true;
1602 
1603   return false;
1604 }
1605 
1606 Constant *Function::getPersonalityFn() const {
1607   assert(hasPersonalityFn() && getNumOperands());
1608   return cast<Constant>(Op<0>());
1609 }
1610 
1611 void Function::setPersonalityFn(Constant *Fn) {
1612   setHungoffOperand<0>(Fn);
1613   setValueSubclassDataBit(3, Fn != nullptr);
1614 }
1615 
1616 Constant *Function::getPrefixData() const {
1617   assert(hasPrefixData() && getNumOperands());
1618   return cast<Constant>(Op<1>());
1619 }
1620 
1621 void Function::setPrefixData(Constant *PrefixData) {
1622   setHungoffOperand<1>(PrefixData);
1623   setValueSubclassDataBit(1, PrefixData != nullptr);
1624 }
1625 
1626 Constant *Function::getPrologueData() const {
1627   assert(hasPrologueData() && getNumOperands());
1628   return cast<Constant>(Op<2>());
1629 }
1630 
1631 void Function::setPrologueData(Constant *PrologueData) {
1632   setHungoffOperand<2>(PrologueData);
1633   setValueSubclassDataBit(2, PrologueData != nullptr);
1634 }
1635 
1636 void Function::allocHungoffUselist() {
1637   // If we've already allocated a uselist, stop here.
1638   if (getNumOperands())
1639     return;
1640 
1641   allocHungoffUses(3, /*IsPhi=*/ false);
1642   setNumHungOffUseOperands(3);
1643 
1644   // Initialize the uselist with placeholder operands to allow traversal.
1645   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1646   Op<0>().set(CPN);
1647   Op<1>().set(CPN);
1648   Op<2>().set(CPN);
1649 }
1650 
1651 template <int Idx>
1652 void Function::setHungoffOperand(Constant *C) {
1653   if (C) {
1654     allocHungoffUselist();
1655     Op<Idx>().set(C);
1656   } else if (getNumOperands()) {
1657     Op<Idx>().set(
1658         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1659   }
1660 }
1661 
1662 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1663   assert(Bit < 16 && "SubclassData contains only 16 bits");
1664   if (On)
1665     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1666   else
1667     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1668 }
1669 
1670 void Function::setEntryCount(ProfileCount Count,
1671                              const DenseSet<GlobalValue::GUID> *S) {
1672   assert(Count.hasValue());
1673 #if !defined(NDEBUG)
1674   auto PrevCount = getEntryCount();
1675   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1676 #endif
1677 
1678   auto ImportGUIDs = getImportGUIDs();
1679   if (S == nullptr && ImportGUIDs.size())
1680     S = &ImportGUIDs;
1681 
1682   MDBuilder MDB(getContext());
1683   setMetadata(
1684       LLVMContext::MD_prof,
1685       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1686 }
1687 
1688 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1689                              const DenseSet<GlobalValue::GUID> *Imports) {
1690   setEntryCount(ProfileCount(Count, Type), Imports);
1691 }
1692 
1693 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1694   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1695   if (MD && MD->getOperand(0))
1696     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1697       if (MDS->getString().equals("function_entry_count")) {
1698         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1699         uint64_t Count = CI->getValue().getZExtValue();
1700         // A value of -1 is used for SamplePGO when there were no samples.
1701         // Treat this the same as unknown.
1702         if (Count == (uint64_t)-1)
1703           return ProfileCount::getInvalid();
1704         return ProfileCount(Count, PCT_Real);
1705       } else if (AllowSynthetic &&
1706                  MDS->getString().equals("synthetic_function_entry_count")) {
1707         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1708         uint64_t Count = CI->getValue().getZExtValue();
1709         return ProfileCount(Count, PCT_Synthetic);
1710       }
1711     }
1712   return ProfileCount::getInvalid();
1713 }
1714 
1715 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1716   DenseSet<GlobalValue::GUID> R;
1717   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1718     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1719       if (MDS->getString().equals("function_entry_count"))
1720         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1721           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1722                        ->getValue()
1723                        .getZExtValue());
1724   return R;
1725 }
1726 
1727 void Function::setSectionPrefix(StringRef Prefix) {
1728   MDBuilder MDB(getContext());
1729   setMetadata(LLVMContext::MD_section_prefix,
1730               MDB.createFunctionSectionPrefix(Prefix));
1731 }
1732 
1733 Optional<StringRef> Function::getSectionPrefix() const {
1734   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1735     assert(cast<MDString>(MD->getOperand(0))
1736                ->getString()
1737                .equals("function_section_prefix") &&
1738            "Metadata not match");
1739     return cast<MDString>(MD->getOperand(1))->getString();
1740   }
1741   return None;
1742 }
1743 
1744 bool Function::nullPointerIsDefined() const {
1745   return hasFnAttribute(Attribute::NullPointerIsValid);
1746 }
1747 
1748 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1749   if (F && F->nullPointerIsDefined())
1750     return true;
1751 
1752   if (AS != 0)
1753     return true;
1754 
1755   return false;
1756 }
1757