xref: /llvm-project/llvm/lib/IR/Function.cpp (revision d2cc6c2d0c2f8a6e272110416a3fd579ed5a3ac1)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs);
190 }
191 
192 uint64_t Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttributeMask &AM) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B(F->getContext());
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addRetAttr(Attribute Attr) {
557   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
558 }
559 
560 void Function::addRetAttrs(const AttrBuilder &Attrs) {
561   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
562 }
563 
564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
565   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
566 }
567 
568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
569   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
570 }
571 
572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
573   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
574 }
575 
576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
578 }
579 
580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
581   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
582 }
583 
584 void Function::removeFnAttr(Attribute::AttrKind Kind) {
585   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
586 }
587 
588 void Function::removeFnAttr(StringRef Kind) {
589   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeFnAttrs(const AttributeMask &AM) {
593   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
594 }
595 
596 void Function::removeRetAttr(Attribute::AttrKind Kind) {
597   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
598 }
599 
600 void Function::removeRetAttr(StringRef Kind) {
601   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
602 }
603 
604 void Function::removeRetAttrs(const AttributeMask &Attrs) {
605   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
606 }
607 
608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
609   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
610 }
611 
612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
613   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
614 }
615 
616 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
617   AttributeSets =
618       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
619 }
620 
621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
622   AttributeSets =
623       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
624 }
625 
626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasFnAttr(Kind);
628 }
629 
630 bool Function::hasFnAttribute(StringRef Kind) const {
631   return AttributeSets.hasFnAttr(Kind);
632 }
633 
634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
635   return AttributeSets.hasRetAttr(Kind);
636 }
637 
638 bool Function::hasParamAttribute(unsigned ArgNo,
639                                  Attribute::AttrKind Kind) const {
640   return AttributeSets.hasParamAttr(ArgNo, Kind);
641 }
642 
643 Attribute Function::getAttributeAtIndex(unsigned i,
644                                         Attribute::AttrKind Kind) const {
645   return AttributeSets.getAttributeAtIndex(i, Kind);
646 }
647 
648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
649   return AttributeSets.getAttributeAtIndex(i, Kind);
650 }
651 
652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.getFnAttr(Kind);
654 }
655 
656 Attribute Function::getFnAttribute(StringRef Kind) const {
657   return AttributeSets.getFnAttr(Kind);
658 }
659 
660 /// gets the specified attribute from the list of attributes.
661 Attribute Function::getParamAttribute(unsigned ArgNo,
662                                       Attribute::AttrKind Kind) const {
663   return AttributeSets.getParamAttr(ArgNo, Kind);
664 }
665 
666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
667                                                  uint64_t Bytes) {
668   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
669                                                                   ArgNo, Bytes);
670 }
671 
672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
673   if (&FPType == &APFloat::IEEEsingle()) {
674     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
675     StringRef Val = Attr.getValueAsString();
676     if (!Val.empty())
677       return parseDenormalFPAttribute(Val);
678 
679     // If the f32 variant of the attribute isn't specified, try to use the
680     // generic one.
681   }
682 
683   Attribute Attr = getFnAttribute("denormal-fp-math");
684   return parseDenormalFPAttribute(Attr.getValueAsString());
685 }
686 
687 const std::string &Function::getGC() const {
688   assert(hasGC() && "Function has no collector");
689   return getContext().getGC(*this);
690 }
691 
692 void Function::setGC(std::string Str) {
693   setValueSubclassDataBit(14, !Str.empty());
694   getContext().setGC(*this, std::move(Str));
695 }
696 
697 void Function::clearGC() {
698   if (!hasGC())
699     return;
700   getContext().deleteGC(*this);
701   setValueSubclassDataBit(14, false);
702 }
703 
704 bool Function::hasStackProtectorFnAttr() const {
705   return hasFnAttribute(Attribute::StackProtect) ||
706          hasFnAttribute(Attribute::StackProtectStrong) ||
707          hasFnAttribute(Attribute::StackProtectReq);
708 }
709 
710 /// Copy all additional attributes (those not needed to create a Function) from
711 /// the Function Src to this one.
712 void Function::copyAttributesFrom(const Function *Src) {
713   GlobalObject::copyAttributesFrom(Src);
714   setCallingConv(Src->getCallingConv());
715   setAttributes(Src->getAttributes());
716   if (Src->hasGC())
717     setGC(Src->getGC());
718   else
719     clearGC();
720   if (Src->hasPersonalityFn())
721     setPersonalityFn(Src->getPersonalityFn());
722   if (Src->hasPrefixData())
723     setPrefixData(Src->getPrefixData());
724   if (Src->hasPrologueData())
725     setPrologueData(Src->getPrologueData());
726 }
727 
728 /// Table of string intrinsic names indexed by enum value.
729 static const char * const IntrinsicNameTable[] = {
730   "not_intrinsic",
731 #define GET_INTRINSIC_NAME_TABLE
732 #include "llvm/IR/IntrinsicImpl.inc"
733 #undef GET_INTRINSIC_NAME_TABLE
734 };
735 
736 /// Table of per-target intrinsic name tables.
737 #define GET_INTRINSIC_TARGET_DATA
738 #include "llvm/IR/IntrinsicImpl.inc"
739 #undef GET_INTRINSIC_TARGET_DATA
740 
741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
742   return IID > TargetInfos[0].Count;
743 }
744 
745 bool Function::isTargetIntrinsic() const {
746   return isTargetIntrinsic(IntID);
747 }
748 
749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
750 /// target as \c Name, or the generic table if \c Name is not target specific.
751 ///
752 /// Returns the relevant slice of \c IntrinsicNameTable
753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
754   assert(Name.startswith("llvm."));
755 
756   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
757   // Drop "llvm." and take the first dotted component. That will be the target
758   // if this is target specific.
759   StringRef Target = Name.drop_front(5).split('.').first;
760   auto It = partition_point(
761       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
762   // We've either found the target or just fall back to the generic set, which
763   // is always first.
764   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
765   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
766 }
767 
768 /// This does the actual lookup of an intrinsic ID which
769 /// matches the given function name.
770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
771   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
772   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
773   if (Idx == -1)
774     return Intrinsic::not_intrinsic;
775 
776   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
777   // an index into a sub-table.
778   int Adjust = NameTable.data() - IntrinsicNameTable;
779   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
780 
781   // If the intrinsic is not overloaded, require an exact match. If it is
782   // overloaded, require either exact or prefix match.
783   const auto MatchSize = strlen(NameTable[Idx]);
784   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
785   bool IsExactMatch = Name.size() == MatchSize;
786   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
787                                                      : Intrinsic::not_intrinsic;
788 }
789 
790 void Function::recalculateIntrinsicID() {
791   StringRef Name = getName();
792   if (!Name.startswith("llvm.")) {
793     HasLLVMReservedName = false;
794     IntID = Intrinsic::not_intrinsic;
795     return;
796   }
797   HasLLVMReservedName = true;
798   IntID = lookupIntrinsicID(Name);
799 }
800 
801 /// Returns a stable mangling for the type specified for use in the name
802 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
803 /// of named types is simply their name.  Manglings for unnamed types consist
804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
805 /// combined with the mangling of their component types.  A vararg function
806 /// type will have a suffix of 'vararg'.  Since function types can contain
807 /// other function types, we close a function type mangling with suffix 'f'
808 /// which can't be confused with it's prefix.  This ensures we don't have
809 /// collisions between two unrelated function types. Otherwise, you might
810 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
811 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
812 /// indicating that extra care must be taken to ensure a unique name.
813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
814   std::string Result;
815   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
816     Result += "p" + utostr(PTyp->getAddressSpace());
817     // Opaque pointer doesn't have pointee type information, so we just mangle
818     // address space for opaque pointer.
819     if (!PTyp->isOpaque())
820       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
821   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
822     Result += "a" + utostr(ATyp->getNumElements()) +
823               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
824   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
825     if (!STyp->isLiteral()) {
826       Result += "s_";
827       if (STyp->hasName())
828         Result += STyp->getName();
829       else
830         HasUnnamedType = true;
831     } else {
832       Result += "sl_";
833       for (auto Elem : STyp->elements())
834         Result += getMangledTypeStr(Elem, HasUnnamedType);
835     }
836     // Ensure nested structs are distinguishable.
837     Result += "s";
838   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
839     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
840     for (size_t i = 0; i < FT->getNumParams(); i++)
841       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
842     if (FT->isVarArg())
843       Result += "vararg";
844     // Ensure nested function types are distinguishable.
845     Result += "f";
846   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
847     ElementCount EC = VTy->getElementCount();
848     if (EC.isScalable())
849       Result += "nx";
850     Result += "v" + utostr(EC.getKnownMinValue()) +
851               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
852   } else if (Ty) {
853     switch (Ty->getTypeID()) {
854     default: llvm_unreachable("Unhandled type");
855     case Type::VoidTyID:      Result += "isVoid";   break;
856     case Type::MetadataTyID:  Result += "Metadata"; break;
857     case Type::HalfTyID:      Result += "f16";      break;
858     case Type::BFloatTyID:    Result += "bf16";     break;
859     case Type::FloatTyID:     Result += "f32";      break;
860     case Type::DoubleTyID:    Result += "f64";      break;
861     case Type::X86_FP80TyID:  Result += "f80";      break;
862     case Type::FP128TyID:     Result += "f128";     break;
863     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
864     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
865     case Type::X86_AMXTyID:   Result += "x86amx";   break;
866     case Type::IntegerTyID:
867       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
868       break;
869     }
870   }
871   return Result;
872 }
873 
874 StringRef Intrinsic::getBaseName(ID id) {
875   assert(id < num_intrinsics && "Invalid intrinsic ID!");
876   return IntrinsicNameTable[id];
877 }
878 
879 StringRef Intrinsic::getName(ID id) {
880   assert(id < num_intrinsics && "Invalid intrinsic ID!");
881   assert(!Intrinsic::isOverloaded(id) &&
882          "This version of getName does not support overloading");
883   return getBaseName(id);
884 }
885 
886 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
887                                         Module *M, FunctionType *FT,
888                                         bool EarlyModuleCheck) {
889 
890   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
891   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
892          "This version of getName is for overloaded intrinsics only");
893   (void)EarlyModuleCheck;
894   assert((!EarlyModuleCheck || M ||
895           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
896          "Intrinsic overloading on pointer types need to provide a Module");
897   bool HasUnnamedType = false;
898   std::string Result(Intrinsic::getBaseName(Id));
899   for (Type *Ty : Tys)
900     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
901   if (HasUnnamedType) {
902     assert(M && "unnamed types need a module");
903     if (!FT)
904       FT = Intrinsic::getType(M->getContext(), Id, Tys);
905     else
906       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
907              "Provided FunctionType must match arguments");
908     return M->getUniqueIntrinsicName(Result, Id, FT);
909   }
910   return Result;
911 }
912 
913 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
914                                FunctionType *FT) {
915   assert(M && "We need to have a Module");
916   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
917 }
918 
919 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
920   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
921 }
922 
923 /// IIT_Info - These are enumerators that describe the entries returned by the
924 /// getIntrinsicInfoTableEntries function.
925 ///
926 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
927 enum IIT_Info {
928   // Common values should be encoded with 0-15.
929   IIT_Done = 0,
930   IIT_I1   = 1,
931   IIT_I8   = 2,
932   IIT_I16  = 3,
933   IIT_I32  = 4,
934   IIT_I64  = 5,
935   IIT_F16  = 6,
936   IIT_F32  = 7,
937   IIT_F64  = 8,
938   IIT_V2   = 9,
939   IIT_V4   = 10,
940   IIT_V8   = 11,
941   IIT_V16  = 12,
942   IIT_V32  = 13,
943   IIT_PTR  = 14,
944   IIT_ARG  = 15,
945 
946   // Values from 16+ are only encodable with the inefficient encoding.
947   IIT_V64  = 16,
948   IIT_MMX  = 17,
949   IIT_TOKEN = 18,
950   IIT_METADATA = 19,
951   IIT_EMPTYSTRUCT = 20,
952   IIT_STRUCT2 = 21,
953   IIT_STRUCT3 = 22,
954   IIT_STRUCT4 = 23,
955   IIT_STRUCT5 = 24,
956   IIT_EXTEND_ARG = 25,
957   IIT_TRUNC_ARG = 26,
958   IIT_ANYPTR = 27,
959   IIT_V1   = 28,
960   IIT_VARARG = 29,
961   IIT_HALF_VEC_ARG = 30,
962   IIT_SAME_VEC_WIDTH_ARG = 31,
963   IIT_PTR_TO_ARG = 32,
964   IIT_PTR_TO_ELT = 33,
965   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
966   IIT_I128 = 35,
967   IIT_V512 = 36,
968   IIT_V1024 = 37,
969   IIT_STRUCT6 = 38,
970   IIT_STRUCT7 = 39,
971   IIT_STRUCT8 = 40,
972   IIT_F128 = 41,
973   IIT_VEC_ELEMENT = 42,
974   IIT_SCALABLE_VEC = 43,
975   IIT_SUBDIVIDE2_ARG = 44,
976   IIT_SUBDIVIDE4_ARG = 45,
977   IIT_VEC_OF_BITCASTS_TO_INT = 46,
978   IIT_V128 = 47,
979   IIT_BF16 = 48,
980   IIT_STRUCT9 = 49,
981   IIT_V256 = 50,
982   IIT_AMX  = 51,
983   IIT_PPCF128 = 52,
984   IIT_V3 = 53,
985   IIT_EXTERNREF = 54,
986   IIT_FUNCREF = 55
987 };
988 
989 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
990                       IIT_Info LastInfo,
991                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
992   using namespace Intrinsic;
993 
994   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
995 
996   IIT_Info Info = IIT_Info(Infos[NextElt++]);
997   unsigned StructElts = 2;
998 
999   switch (Info) {
1000   case IIT_Done:
1001     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1002     return;
1003   case IIT_VARARG:
1004     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1005     return;
1006   case IIT_MMX:
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1008     return;
1009   case IIT_AMX:
1010     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1011     return;
1012   case IIT_TOKEN:
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1014     return;
1015   case IIT_METADATA:
1016     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1017     return;
1018   case IIT_F16:
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1020     return;
1021   case IIT_BF16:
1022     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1023     return;
1024   case IIT_F32:
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1026     return;
1027   case IIT_F64:
1028     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1029     return;
1030   case IIT_F128:
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1032     return;
1033   case IIT_PPCF128:
1034     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1035     return;
1036   case IIT_I1:
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1038     return;
1039   case IIT_I8:
1040     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1041     return;
1042   case IIT_I16:
1043     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1044     return;
1045   case IIT_I32:
1046     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1047     return;
1048   case IIT_I64:
1049     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1050     return;
1051   case IIT_I128:
1052     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1053     return;
1054   case IIT_V1:
1055     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1056     DecodeIITType(NextElt, Infos, Info, OutputTable);
1057     return;
1058   case IIT_V2:
1059     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1060     DecodeIITType(NextElt, Infos, Info, OutputTable);
1061     return;
1062   case IIT_V3:
1063     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1064     DecodeIITType(NextElt, Infos, Info, OutputTable);
1065     return;
1066   case IIT_V4:
1067     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1068     DecodeIITType(NextElt, Infos, Info, OutputTable);
1069     return;
1070   case IIT_V8:
1071     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1072     DecodeIITType(NextElt, Infos, Info, OutputTable);
1073     return;
1074   case IIT_V16:
1075     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1076     DecodeIITType(NextElt, Infos, Info, OutputTable);
1077     return;
1078   case IIT_V32:
1079     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1080     DecodeIITType(NextElt, Infos, Info, OutputTable);
1081     return;
1082   case IIT_V64:
1083     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1084     DecodeIITType(NextElt, Infos, Info, OutputTable);
1085     return;
1086   case IIT_V128:
1087     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1088     DecodeIITType(NextElt, Infos, Info, OutputTable);
1089     return;
1090   case IIT_V256:
1091     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1092     DecodeIITType(NextElt, Infos, Info, OutputTable);
1093     return;
1094   case IIT_V512:
1095     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1096     DecodeIITType(NextElt, Infos, Info, OutputTable);
1097     return;
1098   case IIT_V1024:
1099     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1100     DecodeIITType(NextElt, Infos, Info, OutputTable);
1101     return;
1102   case IIT_EXTERNREF:
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1105     return;
1106   case IIT_FUNCREF:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1109     return;
1110   case IIT_PTR:
1111     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1112     DecodeIITType(NextElt, Infos, Info, OutputTable);
1113     return;
1114   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1116                                              Infos[NextElt++]));
1117     DecodeIITType(NextElt, Infos, Info, OutputTable);
1118     return;
1119   }
1120   case IIT_ARG: {
1121     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1123     return;
1124   }
1125   case IIT_EXTEND_ARG: {
1126     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1127     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1128                                              ArgInfo));
1129     return;
1130   }
1131   case IIT_TRUNC_ARG: {
1132     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1133     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1134                                              ArgInfo));
1135     return;
1136   }
1137   case IIT_HALF_VEC_ARG: {
1138     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1139     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1140                                              ArgInfo));
1141     return;
1142   }
1143   case IIT_SAME_VEC_WIDTH_ARG: {
1144     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1145     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1146                                              ArgInfo));
1147     return;
1148   }
1149   case IIT_PTR_TO_ARG: {
1150     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1151     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1152                                              ArgInfo));
1153     return;
1154   }
1155   case IIT_PTR_TO_ELT: {
1156     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1157     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1158     return;
1159   }
1160   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1161     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1162     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1163     OutputTable.push_back(
1164         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1165     return;
1166   }
1167   case IIT_EMPTYSTRUCT:
1168     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1169     return;
1170   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1171   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1172   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1173   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1174   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1175   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1176   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1177   case IIT_STRUCT2: {
1178     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1179 
1180     for (unsigned i = 0; i != StructElts; ++i)
1181       DecodeIITType(NextElt, Infos, Info, OutputTable);
1182     return;
1183   }
1184   case IIT_SUBDIVIDE2_ARG: {
1185     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1186     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1187                                              ArgInfo));
1188     return;
1189   }
1190   case IIT_SUBDIVIDE4_ARG: {
1191     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1192     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1193                                              ArgInfo));
1194     return;
1195   }
1196   case IIT_VEC_ELEMENT: {
1197     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1198     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1199                                              ArgInfo));
1200     return;
1201   }
1202   case IIT_SCALABLE_VEC: {
1203     DecodeIITType(NextElt, Infos, Info, OutputTable);
1204     return;
1205   }
1206   case IIT_VEC_OF_BITCASTS_TO_INT: {
1207     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1208     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1209                                              ArgInfo));
1210     return;
1211   }
1212   }
1213   llvm_unreachable("unhandled");
1214 }
1215 
1216 #define GET_INTRINSIC_GENERATOR_GLOBAL
1217 #include "llvm/IR/IntrinsicImpl.inc"
1218 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1219 
1220 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1221                                              SmallVectorImpl<IITDescriptor> &T){
1222   // Check to see if the intrinsic's type was expressible by the table.
1223   unsigned TableVal = IIT_Table[id-1];
1224 
1225   // Decode the TableVal into an array of IITValues.
1226   SmallVector<unsigned char, 8> IITValues;
1227   ArrayRef<unsigned char> IITEntries;
1228   unsigned NextElt = 0;
1229   if ((TableVal >> 31) != 0) {
1230     // This is an offset into the IIT_LongEncodingTable.
1231     IITEntries = IIT_LongEncodingTable;
1232 
1233     // Strip sentinel bit.
1234     NextElt = (TableVal << 1) >> 1;
1235   } else {
1236     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1237     // into a single word in the table itself, decode it now.
1238     do {
1239       IITValues.push_back(TableVal & 0xF);
1240       TableVal >>= 4;
1241     } while (TableVal);
1242 
1243     IITEntries = IITValues;
1244     NextElt = 0;
1245   }
1246 
1247   // Okay, decode the table into the output vector of IITDescriptors.
1248   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1249   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1250     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1251 }
1252 
1253 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1254                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1255   using namespace Intrinsic;
1256 
1257   IITDescriptor D = Infos.front();
1258   Infos = Infos.slice(1);
1259 
1260   switch (D.Kind) {
1261   case IITDescriptor::Void: return Type::getVoidTy(Context);
1262   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1263   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1264   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1265   case IITDescriptor::Token: return Type::getTokenTy(Context);
1266   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1267   case IITDescriptor::Half: return Type::getHalfTy(Context);
1268   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1269   case IITDescriptor::Float: return Type::getFloatTy(Context);
1270   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1271   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1272   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1273 
1274   case IITDescriptor::Integer:
1275     return IntegerType::get(Context, D.Integer_Width);
1276   case IITDescriptor::Vector:
1277     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1278                            D.Vector_Width);
1279   case IITDescriptor::Pointer:
1280     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1281                             D.Pointer_AddressSpace);
1282   case IITDescriptor::Struct: {
1283     SmallVector<Type *, 8> Elts;
1284     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1285       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1286     return StructType::get(Context, Elts);
1287   }
1288   case IITDescriptor::Argument:
1289     return Tys[D.getArgumentNumber()];
1290   case IITDescriptor::ExtendArgument: {
1291     Type *Ty = Tys[D.getArgumentNumber()];
1292     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1293       return VectorType::getExtendedElementVectorType(VTy);
1294 
1295     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1296   }
1297   case IITDescriptor::TruncArgument: {
1298     Type *Ty = Tys[D.getArgumentNumber()];
1299     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1300       return VectorType::getTruncatedElementVectorType(VTy);
1301 
1302     IntegerType *ITy = cast<IntegerType>(Ty);
1303     assert(ITy->getBitWidth() % 2 == 0);
1304     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1305   }
1306   case IITDescriptor::Subdivide2Argument:
1307   case IITDescriptor::Subdivide4Argument: {
1308     Type *Ty = Tys[D.getArgumentNumber()];
1309     VectorType *VTy = dyn_cast<VectorType>(Ty);
1310     assert(VTy && "Expected an argument of Vector Type");
1311     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1312     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1313   }
1314   case IITDescriptor::HalfVecArgument:
1315     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1316                                                   Tys[D.getArgumentNumber()]));
1317   case IITDescriptor::SameVecWidthArgument: {
1318     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1319     Type *Ty = Tys[D.getArgumentNumber()];
1320     if (auto *VTy = dyn_cast<VectorType>(Ty))
1321       return VectorType::get(EltTy, VTy->getElementCount());
1322     return EltTy;
1323   }
1324   case IITDescriptor::PtrToArgument: {
1325     Type *Ty = Tys[D.getArgumentNumber()];
1326     return PointerType::getUnqual(Ty);
1327   }
1328   case IITDescriptor::PtrToElt: {
1329     Type *Ty = Tys[D.getArgumentNumber()];
1330     VectorType *VTy = dyn_cast<VectorType>(Ty);
1331     if (!VTy)
1332       llvm_unreachable("Expected an argument of Vector Type");
1333     Type *EltTy = VTy->getElementType();
1334     return PointerType::getUnqual(EltTy);
1335   }
1336   case IITDescriptor::VecElementArgument: {
1337     Type *Ty = Tys[D.getArgumentNumber()];
1338     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1339       return VTy->getElementType();
1340     llvm_unreachable("Expected an argument of Vector Type");
1341   }
1342   case IITDescriptor::VecOfBitcastsToInt: {
1343     Type *Ty = Tys[D.getArgumentNumber()];
1344     VectorType *VTy = dyn_cast<VectorType>(Ty);
1345     assert(VTy && "Expected an argument of Vector Type");
1346     return VectorType::getInteger(VTy);
1347   }
1348   case IITDescriptor::VecOfAnyPtrsToElt:
1349     // Return the overloaded type (which determines the pointers address space)
1350     return Tys[D.getOverloadArgNumber()];
1351   }
1352   llvm_unreachable("unhandled");
1353 }
1354 
1355 FunctionType *Intrinsic::getType(LLVMContext &Context,
1356                                  ID id, ArrayRef<Type*> Tys) {
1357   SmallVector<IITDescriptor, 8> Table;
1358   getIntrinsicInfoTableEntries(id, Table);
1359 
1360   ArrayRef<IITDescriptor> TableRef = Table;
1361   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1362 
1363   SmallVector<Type*, 8> ArgTys;
1364   while (!TableRef.empty())
1365     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1366 
1367   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1368   // If we see void type as the type of the last argument, it is vararg intrinsic
1369   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1370     ArgTys.pop_back();
1371     return FunctionType::get(ResultTy, ArgTys, true);
1372   }
1373   return FunctionType::get(ResultTy, ArgTys, false);
1374 }
1375 
1376 bool Intrinsic::isOverloaded(ID id) {
1377 #define GET_INTRINSIC_OVERLOAD_TABLE
1378 #include "llvm/IR/IntrinsicImpl.inc"
1379 #undef GET_INTRINSIC_OVERLOAD_TABLE
1380 }
1381 
1382 bool Intrinsic::isLeaf(ID id) {
1383   switch (id) {
1384   default:
1385     return true;
1386 
1387   case Intrinsic::experimental_gc_statepoint:
1388   case Intrinsic::experimental_patchpoint_void:
1389   case Intrinsic::experimental_patchpoint_i64:
1390     return false;
1391   }
1392 }
1393 
1394 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1395 #define GET_INTRINSIC_ATTRIBUTES
1396 #include "llvm/IR/IntrinsicImpl.inc"
1397 #undef GET_INTRINSIC_ATTRIBUTES
1398 
1399 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1400   // There can never be multiple globals with the same name of different types,
1401   // because intrinsics must be a specific type.
1402   auto *FT = getType(M->getContext(), id, Tys);
1403   return cast<Function>(
1404       M->getOrInsertFunction(Tys.empty() ? getName(id)
1405                                          : getName(id, Tys, M, FT),
1406                              getType(M->getContext(), id, Tys))
1407           .getCallee());
1408 }
1409 
1410 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1411 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1412 #include "llvm/IR/IntrinsicImpl.inc"
1413 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1414 
1415 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1416 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1417 #include "llvm/IR/IntrinsicImpl.inc"
1418 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1419 
1420 using DeferredIntrinsicMatchPair =
1421     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1422 
1423 static bool matchIntrinsicType(
1424     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1425     SmallVectorImpl<Type *> &ArgTys,
1426     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1427     bool IsDeferredCheck) {
1428   using namespace Intrinsic;
1429 
1430   // If we ran out of descriptors, there are too many arguments.
1431   if (Infos.empty()) return true;
1432 
1433   // Do this before slicing off the 'front' part
1434   auto InfosRef = Infos;
1435   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1436     DeferredChecks.emplace_back(T, InfosRef);
1437     return false;
1438   };
1439 
1440   IITDescriptor D = Infos.front();
1441   Infos = Infos.slice(1);
1442 
1443   switch (D.Kind) {
1444     case IITDescriptor::Void: return !Ty->isVoidTy();
1445     case IITDescriptor::VarArg: return true;
1446     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1447     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1448     case IITDescriptor::Token: return !Ty->isTokenTy();
1449     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1450     case IITDescriptor::Half: return !Ty->isHalfTy();
1451     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1452     case IITDescriptor::Float: return !Ty->isFloatTy();
1453     case IITDescriptor::Double: return !Ty->isDoubleTy();
1454     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1455     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1456     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1457     case IITDescriptor::Vector: {
1458       VectorType *VT = dyn_cast<VectorType>(Ty);
1459       return !VT || VT->getElementCount() != D.Vector_Width ||
1460              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1461                                 DeferredChecks, IsDeferredCheck);
1462     }
1463     case IITDescriptor::Pointer: {
1464       PointerType *PT = dyn_cast<PointerType>(Ty);
1465       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1466         return true;
1467       if (!PT->isOpaque())
1468         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1469                                   DeferredChecks, IsDeferredCheck);
1470       // Consume IIT descriptors relating to the pointer element type.
1471       while (Infos.front().Kind == IITDescriptor::Pointer)
1472         Infos = Infos.slice(1);
1473       Infos = Infos.slice(1);
1474       return false;
1475     }
1476 
1477     case IITDescriptor::Struct: {
1478       StructType *ST = dyn_cast<StructType>(Ty);
1479       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1480         return true;
1481 
1482       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1483         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1484                                DeferredChecks, IsDeferredCheck))
1485           return true;
1486       return false;
1487     }
1488 
1489     case IITDescriptor::Argument:
1490       // If this is the second occurrence of an argument,
1491       // verify that the later instance matches the previous instance.
1492       if (D.getArgumentNumber() < ArgTys.size())
1493         return Ty != ArgTys[D.getArgumentNumber()];
1494 
1495       if (D.getArgumentNumber() > ArgTys.size() ||
1496           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1497         return IsDeferredCheck || DeferCheck(Ty);
1498 
1499       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1500              "Table consistency error");
1501       ArgTys.push_back(Ty);
1502 
1503       switch (D.getArgumentKind()) {
1504         case IITDescriptor::AK_Any:        return false; // Success
1505         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1506         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1507         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1508         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1509         default:                           break;
1510       }
1511       llvm_unreachable("all argument kinds not covered");
1512 
1513     case IITDescriptor::ExtendArgument: {
1514       // If this is a forward reference, defer the check for later.
1515       if (D.getArgumentNumber() >= ArgTys.size())
1516         return IsDeferredCheck || DeferCheck(Ty);
1517 
1518       Type *NewTy = ArgTys[D.getArgumentNumber()];
1519       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1520         NewTy = VectorType::getExtendedElementVectorType(VTy);
1521       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1522         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1523       else
1524         return true;
1525 
1526       return Ty != NewTy;
1527     }
1528     case IITDescriptor::TruncArgument: {
1529       // If this is a forward reference, defer the check for later.
1530       if (D.getArgumentNumber() >= ArgTys.size())
1531         return IsDeferredCheck || DeferCheck(Ty);
1532 
1533       Type *NewTy = ArgTys[D.getArgumentNumber()];
1534       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1535         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1536       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1537         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1538       else
1539         return true;
1540 
1541       return Ty != NewTy;
1542     }
1543     case IITDescriptor::HalfVecArgument:
1544       // If this is a forward reference, defer the check for later.
1545       if (D.getArgumentNumber() >= ArgTys.size())
1546         return IsDeferredCheck || DeferCheck(Ty);
1547       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1548              VectorType::getHalfElementsVectorType(
1549                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1550     case IITDescriptor::SameVecWidthArgument: {
1551       if (D.getArgumentNumber() >= ArgTys.size()) {
1552         // Defer check and subsequent check for the vector element type.
1553         Infos = Infos.slice(1);
1554         return IsDeferredCheck || DeferCheck(Ty);
1555       }
1556       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1557       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1558       // Both must be vectors of the same number of elements or neither.
1559       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1560         return true;
1561       Type *EltTy = Ty;
1562       if (ThisArgType) {
1563         if (ReferenceType->getElementCount() !=
1564             ThisArgType->getElementCount())
1565           return true;
1566         EltTy = ThisArgType->getElementType();
1567       }
1568       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1569                                 IsDeferredCheck);
1570     }
1571     case IITDescriptor::PtrToArgument: {
1572       if (D.getArgumentNumber() >= ArgTys.size())
1573         return IsDeferredCheck || DeferCheck(Ty);
1574       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1575       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1576       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1577     }
1578     case IITDescriptor::PtrToElt: {
1579       if (D.getArgumentNumber() >= ArgTys.size())
1580         return IsDeferredCheck || DeferCheck(Ty);
1581       VectorType * ReferenceType =
1582         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1583       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1584 
1585       if (!ThisArgType || !ReferenceType)
1586         return true;
1587       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1588           ReferenceType->getElementType());
1589     }
1590     case IITDescriptor::VecOfAnyPtrsToElt: {
1591       unsigned RefArgNumber = D.getRefArgNumber();
1592       if (RefArgNumber >= ArgTys.size()) {
1593         if (IsDeferredCheck)
1594           return true;
1595         // If forward referencing, already add the pointer-vector type and
1596         // defer the checks for later.
1597         ArgTys.push_back(Ty);
1598         return DeferCheck(Ty);
1599       }
1600 
1601       if (!IsDeferredCheck){
1602         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1603                "Table consistency error");
1604         ArgTys.push_back(Ty);
1605       }
1606 
1607       // Verify the overloaded type "matches" the Ref type.
1608       // i.e. Ty is a vector with the same width as Ref.
1609       // Composed of pointers to the same element type as Ref.
1610       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1611       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1612       if (!ThisArgVecTy || !ReferenceType ||
1613           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1614         return true;
1615       PointerType *ThisArgEltTy =
1616           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1617       if (!ThisArgEltTy)
1618         return true;
1619       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1620           ReferenceType->getElementType());
1621     }
1622     case IITDescriptor::VecElementArgument: {
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck ? true : DeferCheck(Ty);
1625       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1626       return !ReferenceType || Ty != ReferenceType->getElementType();
1627     }
1628     case IITDescriptor::Subdivide2Argument:
1629     case IITDescriptor::Subdivide4Argument: {
1630       // If this is a forward reference, defer the check for later.
1631       if (D.getArgumentNumber() >= ArgTys.size())
1632         return IsDeferredCheck || DeferCheck(Ty);
1633 
1634       Type *NewTy = ArgTys[D.getArgumentNumber()];
1635       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1636         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1637         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1638         return Ty != NewTy;
1639       }
1640       return true;
1641     }
1642     case IITDescriptor::VecOfBitcastsToInt: {
1643       if (D.getArgumentNumber() >= ArgTys.size())
1644         return IsDeferredCheck || DeferCheck(Ty);
1645       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1646       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1647       if (!ThisArgVecTy || !ReferenceType)
1648         return true;
1649       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1650     }
1651   }
1652   llvm_unreachable("unhandled");
1653 }
1654 
1655 Intrinsic::MatchIntrinsicTypesResult
1656 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1657                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1658                                    SmallVectorImpl<Type *> &ArgTys) {
1659   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1660   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1661                          false))
1662     return MatchIntrinsicTypes_NoMatchRet;
1663 
1664   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1665 
1666   for (auto Ty : FTy->params())
1667     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1668       return MatchIntrinsicTypes_NoMatchArg;
1669 
1670   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1671     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1672     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1673                            true))
1674       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1675                                          : MatchIntrinsicTypes_NoMatchArg;
1676   }
1677 
1678   return MatchIntrinsicTypes_Match;
1679 }
1680 
1681 bool
1682 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1683                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1684   // If there are no descriptors left, then it can't be a vararg.
1685   if (Infos.empty())
1686     return isVarArg;
1687 
1688   // There should be only one descriptor remaining at this point.
1689   if (Infos.size() != 1)
1690     return true;
1691 
1692   // Check and verify the descriptor.
1693   IITDescriptor D = Infos.front();
1694   Infos = Infos.slice(1);
1695   if (D.Kind == IITDescriptor::VarArg)
1696     return !isVarArg;
1697 
1698   return true;
1699 }
1700 
1701 bool Intrinsic::getIntrinsicSignature(Function *F,
1702                                       SmallVectorImpl<Type *> &ArgTys) {
1703   Intrinsic::ID ID = F->getIntrinsicID();
1704   if (!ID)
1705     return false;
1706 
1707   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1708   getIntrinsicInfoTableEntries(ID, Table);
1709   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1710 
1711   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1712                                          ArgTys) !=
1713       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1714     return false;
1715   }
1716   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1717                                       TableRef))
1718     return false;
1719   return true;
1720 }
1721 
1722 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1723   SmallVector<Type *, 4> ArgTys;
1724   if (!getIntrinsicSignature(F, ArgTys))
1725     return None;
1726 
1727   Intrinsic::ID ID = F->getIntrinsicID();
1728   StringRef Name = F->getName();
1729   std::string WantedName =
1730       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1731   if (Name == WantedName)
1732     return None;
1733 
1734   Function *NewDecl = [&] {
1735     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1736       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1737         if (ExistingF->getFunctionType() == F->getFunctionType())
1738           return ExistingF;
1739 
1740       // The name already exists, but is not a function or has the wrong
1741       // prototype. Make place for the new one by renaming the old version.
1742       // Either this old version will be removed later on or the module is
1743       // invalid and we'll get an error.
1744       ExistingGV->setName(WantedName + ".renamed");
1745     }
1746     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1747   }();
1748 
1749   NewDecl->setCallingConv(F->getCallingConv());
1750   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1751          "Shouldn't change the signature");
1752   return NewDecl;
1753 }
1754 
1755 /// hasAddressTaken - returns true if there are any uses of this function
1756 /// other than direct calls or invokes to it. Optionally ignores callback
1757 /// uses, assume like pointer annotation calls, and references in llvm.used
1758 /// and llvm.compiler.used variables.
1759 bool Function::hasAddressTaken(const User **PutOffender,
1760                                bool IgnoreCallbackUses,
1761                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1762                                bool IgnoreARCAttachedCall) const {
1763   for (const Use &U : uses()) {
1764     const User *FU = U.getUser();
1765     if (isa<BlockAddress>(FU))
1766       continue;
1767 
1768     if (IgnoreCallbackUses) {
1769       AbstractCallSite ACS(&U);
1770       if (ACS && ACS.isCallbackCall())
1771         continue;
1772     }
1773 
1774     const auto *Call = dyn_cast<CallBase>(FU);
1775     if (!Call) {
1776       if (IgnoreAssumeLikeCalls) {
1777         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1778           if (FI->isCast() && !FI->user_empty() &&
1779               llvm::all_of(FU->users(), [](const User *U) {
1780                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1781                   return I->isAssumeLikeIntrinsic();
1782                 return false;
1783               }))
1784             continue;
1785         }
1786       }
1787       if (IgnoreLLVMUsed && !FU->user_empty()) {
1788         const User *FUU = FU;
1789         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1790             !FU->user_begin()->user_empty())
1791           FUU = *FU->user_begin();
1792         if (llvm::all_of(FUU->users(), [](const User *U) {
1793               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1794                 return GV->hasName() &&
1795                        (GV->getName().equals("llvm.compiler.used") ||
1796                         GV->getName().equals("llvm.used"));
1797               return false;
1798             }))
1799           continue;
1800       }
1801       if (PutOffender)
1802         *PutOffender = FU;
1803       return true;
1804     }
1805     if (!Call->isCallee(&U)) {
1806       if (IgnoreARCAttachedCall &&
1807           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1808                                       U.getOperandNo()))
1809         continue;
1810 
1811       if (PutOffender)
1812         *PutOffender = FU;
1813       return true;
1814     }
1815   }
1816   return false;
1817 }
1818 
1819 bool Function::isDefTriviallyDead() const {
1820   // Check the linkage
1821   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1822       !hasAvailableExternallyLinkage())
1823     return false;
1824 
1825   // Check if the function is used by anything other than a blockaddress.
1826   for (const User *U : users())
1827     if (!isa<BlockAddress>(U))
1828       return false;
1829 
1830   return true;
1831 }
1832 
1833 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1834 /// setjmp or other function that gcc recognizes as "returning twice".
1835 bool Function::callsFunctionThatReturnsTwice() const {
1836   for (const Instruction &I : instructions(this))
1837     if (const auto *Call = dyn_cast<CallBase>(&I))
1838       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1839         return true;
1840 
1841   return false;
1842 }
1843 
1844 Constant *Function::getPersonalityFn() const {
1845   assert(hasPersonalityFn() && getNumOperands());
1846   return cast<Constant>(Op<0>());
1847 }
1848 
1849 void Function::setPersonalityFn(Constant *Fn) {
1850   setHungoffOperand<0>(Fn);
1851   setValueSubclassDataBit(3, Fn != nullptr);
1852 }
1853 
1854 Constant *Function::getPrefixData() const {
1855   assert(hasPrefixData() && getNumOperands());
1856   return cast<Constant>(Op<1>());
1857 }
1858 
1859 void Function::setPrefixData(Constant *PrefixData) {
1860   setHungoffOperand<1>(PrefixData);
1861   setValueSubclassDataBit(1, PrefixData != nullptr);
1862 }
1863 
1864 Constant *Function::getPrologueData() const {
1865   assert(hasPrologueData() && getNumOperands());
1866   return cast<Constant>(Op<2>());
1867 }
1868 
1869 void Function::setPrologueData(Constant *PrologueData) {
1870   setHungoffOperand<2>(PrologueData);
1871   setValueSubclassDataBit(2, PrologueData != nullptr);
1872 }
1873 
1874 void Function::allocHungoffUselist() {
1875   // If we've already allocated a uselist, stop here.
1876   if (getNumOperands())
1877     return;
1878 
1879   allocHungoffUses(3, /*IsPhi=*/ false);
1880   setNumHungOffUseOperands(3);
1881 
1882   // Initialize the uselist with placeholder operands to allow traversal.
1883   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1884   Op<0>().set(CPN);
1885   Op<1>().set(CPN);
1886   Op<2>().set(CPN);
1887 }
1888 
1889 template <int Idx>
1890 void Function::setHungoffOperand(Constant *C) {
1891   if (C) {
1892     allocHungoffUselist();
1893     Op<Idx>().set(C);
1894   } else if (getNumOperands()) {
1895     Op<Idx>().set(
1896         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1897   }
1898 }
1899 
1900 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1901   assert(Bit < 16 && "SubclassData contains only 16 bits");
1902   if (On)
1903     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1904   else
1905     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1906 }
1907 
1908 void Function::setEntryCount(ProfileCount Count,
1909                              const DenseSet<GlobalValue::GUID> *S) {
1910 #if !defined(NDEBUG)
1911   auto PrevCount = getEntryCount();
1912   assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType());
1913 #endif
1914 
1915   auto ImportGUIDs = getImportGUIDs();
1916   if (S == nullptr && ImportGUIDs.size())
1917     S = &ImportGUIDs;
1918 
1919   MDBuilder MDB(getContext());
1920   setMetadata(
1921       LLVMContext::MD_prof,
1922       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1923 }
1924 
1925 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1926                              const DenseSet<GlobalValue::GUID> *Imports) {
1927   setEntryCount(ProfileCount(Count, Type), Imports);
1928 }
1929 
1930 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1931   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1932   if (MD && MD->getOperand(0))
1933     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1934       if (MDS->getString().equals("function_entry_count")) {
1935         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1936         uint64_t Count = CI->getValue().getZExtValue();
1937         // A value of -1 is used for SamplePGO when there were no samples.
1938         // Treat this the same as unknown.
1939         if (Count == (uint64_t)-1)
1940           return None;
1941         return ProfileCount(Count, PCT_Real);
1942       } else if (AllowSynthetic &&
1943                  MDS->getString().equals("synthetic_function_entry_count")) {
1944         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1945         uint64_t Count = CI->getValue().getZExtValue();
1946         return ProfileCount(Count, PCT_Synthetic);
1947       }
1948     }
1949   return None;
1950 }
1951 
1952 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1953   DenseSet<GlobalValue::GUID> R;
1954   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1955     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1956       if (MDS->getString().equals("function_entry_count"))
1957         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1958           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1959                        ->getValue()
1960                        .getZExtValue());
1961   return R;
1962 }
1963 
1964 void Function::setSectionPrefix(StringRef Prefix) {
1965   MDBuilder MDB(getContext());
1966   setMetadata(LLVMContext::MD_section_prefix,
1967               MDB.createFunctionSectionPrefix(Prefix));
1968 }
1969 
1970 Optional<StringRef> Function::getSectionPrefix() const {
1971   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1972     assert(cast<MDString>(MD->getOperand(0))
1973                ->getString()
1974                .equals("function_section_prefix") &&
1975            "Metadata not match");
1976     return cast<MDString>(MD->getOperand(1))->getString();
1977   }
1978   return None;
1979 }
1980 
1981 bool Function::nullPointerIsDefined() const {
1982   return hasFnAttribute(Attribute::NullPointerIsValid);
1983 }
1984 
1985 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1986   if (F && F->nullPointerIsDefined())
1987     return true;
1988 
1989   if (AS != 0)
1990     return true;
1991 
1992   return false;
1993 }
1994