1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 SymTab = new ValueSymbolTable(); 262 263 // If the function has arguments, mark them as lazily built. 264 if (Ty->getNumParams()) 265 setValueSubclassData(1); // Set the "has lazy arguments" bit. 266 267 if (ParentModule) 268 ParentModule->getFunctionList().push_back(this); 269 270 // Ensure intrinsics have the right parameter attributes. 271 // Note, the IntID field will have been set in Value::setName if this function 272 // name is a valid intrinsic ID. 273 if (IntID) 274 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 275 } 276 277 Function::~Function() { 278 dropAllReferences(); // After this it is safe to delete instructions. 279 280 // Delete all of the method arguments and unlink from symbol table... 281 ArgumentList.clear(); 282 delete SymTab; 283 284 // Remove the function from the on-the-side GC table. 285 clearGC(); 286 } 287 288 void Function::BuildLazyArguments() const { 289 // Create the arguments vector, all arguments start out unnamed. 290 FunctionType *FT = getFunctionType(); 291 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 292 assert(!FT->getParamType(i)->isVoidTy() && 293 "Cannot have void typed arguments!"); 294 ArgumentList.push_back(new Argument(FT->getParamType(i))); 295 } 296 297 // Clear the lazy arguments bit. 298 unsigned SDC = getSubclassDataFromValue(); 299 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 300 } 301 302 void Function::stealArgumentListFrom(Function &Src) { 303 assert(isDeclaration() && "Expected no references to current arguments"); 304 305 // Drop the current arguments, if any, and set the lazy argument bit. 306 if (!hasLazyArguments()) { 307 assert(llvm::all_of(ArgumentList, 308 [](const Argument &A) { return A.use_empty(); }) && 309 "Expected arguments to be unused in declaration"); 310 ArgumentList.clear(); 311 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 312 } 313 314 // Nothing to steal if Src has lazy arguments. 315 if (Src.hasLazyArguments()) 316 return; 317 318 // Steal arguments from Src, and fix the lazy argument bits. 319 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 320 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 321 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 322 } 323 324 size_t Function::arg_size() const { 325 return getFunctionType()->getNumParams(); 326 } 327 bool Function::arg_empty() const { 328 return getFunctionType()->getNumParams() == 0; 329 } 330 331 void Function::setParent(Module *parent) { 332 Parent = parent; 333 } 334 335 // dropAllReferences() - This function causes all the subinstructions to "let 336 // go" of all references that they are maintaining. This allows one to 337 // 'delete' a whole class at a time, even though there may be circular 338 // references... first all references are dropped, and all use counts go to 339 // zero. Then everything is deleted for real. Note that no operations are 340 // valid on an object that has "dropped all references", except operator 341 // delete. 342 // 343 void Function::dropAllReferences() { 344 setIsMaterializable(false); 345 346 for (BasicBlock &BB : *this) 347 BB.dropAllReferences(); 348 349 // Delete all basic blocks. They are now unused, except possibly by 350 // blockaddresses, but BasicBlock's destructor takes care of those. 351 while (!BasicBlocks.empty()) 352 BasicBlocks.begin()->eraseFromParent(); 353 354 // Drop uses of any optional data (real or placeholder). 355 if (getNumOperands()) { 356 User::dropAllReferences(); 357 setNumHungOffUseOperands(0); 358 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 359 } 360 361 // Metadata is stored in a side-table. 362 clearMetadata(); 363 } 364 365 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addAttribute(getContext(), i, Kind); 368 setAttributes(PAL); 369 } 370 371 void Function::addAttribute(unsigned i, Attribute Attr) { 372 AttributeSet PAL = getAttributes(); 373 PAL = PAL.addAttribute(getContext(), i, Attr); 374 setAttributes(PAL); 375 } 376 377 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 378 AttributeSet PAL = getAttributes(); 379 PAL = PAL.addAttributes(getContext(), i, Attrs); 380 setAttributes(PAL); 381 } 382 383 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 384 AttributeSet PAL = getAttributes(); 385 PAL = PAL.removeAttribute(getContext(), i, Kind); 386 setAttributes(PAL); 387 } 388 389 void Function::removeAttribute(unsigned i, StringRef Kind) { 390 AttributeSet PAL = getAttributes(); 391 PAL = PAL.removeAttribute(getContext(), i, Kind); 392 setAttributes(PAL); 393 } 394 395 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 396 AttributeSet PAL = getAttributes(); 397 PAL = PAL.removeAttributes(getContext(), i, Attrs); 398 setAttributes(PAL); 399 } 400 401 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 402 AttributeSet PAL = getAttributes(); 403 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 404 setAttributes(PAL); 405 } 406 407 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 408 AttributeSet PAL = getAttributes(); 409 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 410 setAttributes(PAL); 411 } 412 413 const std::string &Function::getGC() const { 414 assert(hasGC() && "Function has no collector"); 415 return getContext().getGC(*this); 416 } 417 418 void Function::setGC(std::string Str) { 419 setValueSubclassDataBit(14, !Str.empty()); 420 getContext().setGC(*this, std::move(Str)); 421 } 422 423 void Function::clearGC() { 424 if (!hasGC()) 425 return; 426 getContext().deleteGC(*this); 427 setValueSubclassDataBit(14, false); 428 } 429 430 /// Copy all additional attributes (those not needed to create a Function) from 431 /// the Function Src to this one. 432 void Function::copyAttributesFrom(const GlobalValue *Src) { 433 GlobalObject::copyAttributesFrom(Src); 434 const Function *SrcF = dyn_cast<Function>(Src); 435 if (!SrcF) 436 return; 437 438 setCallingConv(SrcF->getCallingConv()); 439 setAttributes(SrcF->getAttributes()); 440 if (SrcF->hasGC()) 441 setGC(SrcF->getGC()); 442 else 443 clearGC(); 444 if (SrcF->hasPersonalityFn()) 445 setPersonalityFn(SrcF->getPersonalityFn()); 446 if (SrcF->hasPrefixData()) 447 setPrefixData(SrcF->getPrefixData()); 448 if (SrcF->hasPrologueData()) 449 setPrologueData(SrcF->getPrologueData()); 450 } 451 452 /// Table of string intrinsic names indexed by enum value. 453 static const char * const IntrinsicNameTable[] = { 454 "not_intrinsic", 455 #define GET_INTRINSIC_NAME_TABLE 456 #include "llvm/IR/Intrinsics.gen" 457 #undef GET_INTRINSIC_NAME_TABLE 458 }; 459 460 /// Table of per-target intrinsic name tables. 461 #define GET_INTRINSIC_TARGET_DATA 462 #include "llvm/IR/Intrinsics.gen" 463 #undef GET_INTRINSIC_TARGET_DATA 464 465 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 466 /// target as \c Name, or the generic table if \c Name is not target specific. 467 /// 468 /// Returns the relevant slice of \c IntrinsicNameTable 469 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 470 assert(Name.startswith("llvm.")); 471 472 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 473 // Drop "llvm." and take the first dotted component. That will be the target 474 // if this is target specific. 475 StringRef Target = Name.drop_front(5).split('.').first; 476 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 477 [](const IntrinsicTargetInfo &TI, 478 StringRef Target) { return TI.Name < Target; }); 479 // We've either found the target or just fall back to the generic set, which 480 // is always first. 481 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 482 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 483 } 484 485 /// \brief This does the actual lookup of an intrinsic ID which 486 /// matches the given function name. 487 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 488 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 489 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 490 if (Idx == -1) 491 return Intrinsic::not_intrinsic; 492 493 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 494 // an index into a sub-table. 495 int Adjust = NameTable.data() - IntrinsicNameTable; 496 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 497 498 // If the intrinsic is not overloaded, require an exact match. If it is 499 // overloaded, require a prefix match. 500 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 501 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 502 } 503 504 void Function::recalculateIntrinsicID() { 505 const ValueName *ValName = this->getValueName(); 506 if (!ValName || !isIntrinsic()) { 507 IntID = Intrinsic::not_intrinsic; 508 return; 509 } 510 IntID = lookupIntrinsicID(ValName->getKey()); 511 } 512 513 /// Returns a stable mangling for the type specified for use in the name 514 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 515 /// of named types is simply their name. Manglings for unnamed types consist 516 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 517 /// combined with the mangling of their component types. A vararg function 518 /// type will have a suffix of 'vararg'. Since function types can contain 519 /// other function types, we close a function type mangling with suffix 'f' 520 /// which can't be confused with it's prefix. This ensures we don't have 521 /// collisions between two unrelated function types. Otherwise, you might 522 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 523 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 524 /// cases) fall back to the MVT codepath, where they could be mangled to 525 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 526 /// everything. 527 static std::string getMangledTypeStr(Type* Ty) { 528 std::string Result; 529 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 530 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 531 getMangledTypeStr(PTyp->getElementType()); 532 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 533 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 534 getMangledTypeStr(ATyp->getElementType()); 535 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 536 assert(!STyp->isLiteral() && "TODO: implement literal types"); 537 Result += STyp->getName(); 538 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 539 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 540 for (size_t i = 0; i < FT->getNumParams(); i++) 541 Result += getMangledTypeStr(FT->getParamType(i)); 542 if (FT->isVarArg()) 543 Result += "vararg"; 544 // Ensure nested function types are distinguishable. 545 Result += "f"; 546 } else if (isa<VectorType>(Ty)) 547 Result += "v" + utostr(Ty->getVectorNumElements()) + 548 getMangledTypeStr(Ty->getVectorElementType()); 549 else if (Ty) 550 Result += EVT::getEVT(Ty).getEVTString(); 551 return Result; 552 } 553 554 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 555 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 556 std::string Result(IntrinsicNameTable[id]); 557 for (Type *Ty : Tys) { 558 Result += "." + getMangledTypeStr(Ty); 559 } 560 return Result; 561 } 562 563 564 /// IIT_Info - These are enumerators that describe the entries returned by the 565 /// getIntrinsicInfoTableEntries function. 566 /// 567 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 568 enum IIT_Info { 569 // Common values should be encoded with 0-15. 570 IIT_Done = 0, 571 IIT_I1 = 1, 572 IIT_I8 = 2, 573 IIT_I16 = 3, 574 IIT_I32 = 4, 575 IIT_I64 = 5, 576 IIT_F16 = 6, 577 IIT_F32 = 7, 578 IIT_F64 = 8, 579 IIT_V2 = 9, 580 IIT_V4 = 10, 581 IIT_V8 = 11, 582 IIT_V16 = 12, 583 IIT_V32 = 13, 584 IIT_PTR = 14, 585 IIT_ARG = 15, 586 587 // Values from 16+ are only encodable with the inefficient encoding. 588 IIT_V64 = 16, 589 IIT_MMX = 17, 590 IIT_TOKEN = 18, 591 IIT_METADATA = 19, 592 IIT_EMPTYSTRUCT = 20, 593 IIT_STRUCT2 = 21, 594 IIT_STRUCT3 = 22, 595 IIT_STRUCT4 = 23, 596 IIT_STRUCT5 = 24, 597 IIT_EXTEND_ARG = 25, 598 IIT_TRUNC_ARG = 26, 599 IIT_ANYPTR = 27, 600 IIT_V1 = 28, 601 IIT_VARARG = 29, 602 IIT_HALF_VEC_ARG = 30, 603 IIT_SAME_VEC_WIDTH_ARG = 31, 604 IIT_PTR_TO_ARG = 32, 605 IIT_VEC_OF_PTRS_TO_ELT = 33, 606 IIT_I128 = 34, 607 IIT_V512 = 35, 608 IIT_V1024 = 36 609 }; 610 611 612 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 613 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 614 IIT_Info Info = IIT_Info(Infos[NextElt++]); 615 unsigned StructElts = 2; 616 using namespace Intrinsic; 617 618 switch (Info) { 619 case IIT_Done: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 621 return; 622 case IIT_VARARG: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 624 return; 625 case IIT_MMX: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 627 return; 628 case IIT_TOKEN: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 630 return; 631 case IIT_METADATA: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 633 return; 634 case IIT_F16: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 636 return; 637 case IIT_F32: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 639 return; 640 case IIT_F64: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 642 return; 643 case IIT_I1: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 645 return; 646 case IIT_I8: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 648 return; 649 case IIT_I16: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 651 return; 652 case IIT_I32: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 654 return; 655 case IIT_I64: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 657 return; 658 case IIT_I128: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 660 return; 661 case IIT_V1: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 663 DecodeIITType(NextElt, Infos, OutputTable); 664 return; 665 case IIT_V2: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 667 DecodeIITType(NextElt, Infos, OutputTable); 668 return; 669 case IIT_V4: 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 671 DecodeIITType(NextElt, Infos, OutputTable); 672 return; 673 case IIT_V8: 674 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 675 DecodeIITType(NextElt, Infos, OutputTable); 676 return; 677 case IIT_V16: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 679 DecodeIITType(NextElt, Infos, OutputTable); 680 return; 681 case IIT_V32: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 683 DecodeIITType(NextElt, Infos, OutputTable); 684 return; 685 case IIT_V64: 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 687 DecodeIITType(NextElt, Infos, OutputTable); 688 return; 689 case IIT_V512: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 691 DecodeIITType(NextElt, Infos, OutputTable); 692 return; 693 case IIT_V1024: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 695 DecodeIITType(NextElt, Infos, OutputTable); 696 return; 697 case IIT_PTR: 698 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 699 DecodeIITType(NextElt, Infos, OutputTable); 700 return; 701 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 703 Infos[NextElt++])); 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 } 707 case IIT_ARG: { 708 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 710 return; 711 } 712 case IIT_EXTEND_ARG: { 713 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 715 ArgInfo)); 716 return; 717 } 718 case IIT_TRUNC_ARG: { 719 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 721 ArgInfo)); 722 return; 723 } 724 case IIT_HALF_VEC_ARG: { 725 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 727 ArgInfo)); 728 return; 729 } 730 case IIT_SAME_VEC_WIDTH_ARG: { 731 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 733 ArgInfo)); 734 return; 735 } 736 case IIT_PTR_TO_ARG: { 737 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 739 ArgInfo)); 740 return; 741 } 742 case IIT_VEC_OF_PTRS_TO_ELT: { 743 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 745 ArgInfo)); 746 return; 747 } 748 case IIT_EMPTYSTRUCT: 749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 750 return; 751 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 752 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 753 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 754 case IIT_STRUCT2: { 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 756 757 for (unsigned i = 0; i != StructElts; ++i) 758 DecodeIITType(NextElt, Infos, OutputTable); 759 return; 760 } 761 } 762 llvm_unreachable("unhandled"); 763 } 764 765 766 #define GET_INTRINSIC_GENERATOR_GLOBAL 767 #include "llvm/IR/Intrinsics.gen" 768 #undef GET_INTRINSIC_GENERATOR_GLOBAL 769 770 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 771 SmallVectorImpl<IITDescriptor> &T){ 772 // Check to see if the intrinsic's type was expressible by the table. 773 unsigned TableVal = IIT_Table[id-1]; 774 775 // Decode the TableVal into an array of IITValues. 776 SmallVector<unsigned char, 8> IITValues; 777 ArrayRef<unsigned char> IITEntries; 778 unsigned NextElt = 0; 779 if ((TableVal >> 31) != 0) { 780 // This is an offset into the IIT_LongEncodingTable. 781 IITEntries = IIT_LongEncodingTable; 782 783 // Strip sentinel bit. 784 NextElt = (TableVal << 1) >> 1; 785 } else { 786 // Decode the TableVal into an array of IITValues. If the entry was encoded 787 // into a single word in the table itself, decode it now. 788 do { 789 IITValues.push_back(TableVal & 0xF); 790 TableVal >>= 4; 791 } while (TableVal); 792 793 IITEntries = IITValues; 794 NextElt = 0; 795 } 796 797 // Okay, decode the table into the output vector of IITDescriptors. 798 DecodeIITType(NextElt, IITEntries, T); 799 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 800 DecodeIITType(NextElt, IITEntries, T); 801 } 802 803 804 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 805 ArrayRef<Type*> Tys, LLVMContext &Context) { 806 using namespace Intrinsic; 807 IITDescriptor D = Infos.front(); 808 Infos = Infos.slice(1); 809 810 switch (D.Kind) { 811 case IITDescriptor::Void: return Type::getVoidTy(Context); 812 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 813 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 814 case IITDescriptor::Token: return Type::getTokenTy(Context); 815 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 816 case IITDescriptor::Half: return Type::getHalfTy(Context); 817 case IITDescriptor::Float: return Type::getFloatTy(Context); 818 case IITDescriptor::Double: return Type::getDoubleTy(Context); 819 820 case IITDescriptor::Integer: 821 return IntegerType::get(Context, D.Integer_Width); 822 case IITDescriptor::Vector: 823 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 824 case IITDescriptor::Pointer: 825 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 826 D.Pointer_AddressSpace); 827 case IITDescriptor::Struct: { 828 Type *Elts[5]; 829 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 830 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 831 Elts[i] = DecodeFixedType(Infos, Tys, Context); 832 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 833 } 834 835 case IITDescriptor::Argument: 836 return Tys[D.getArgumentNumber()]; 837 case IITDescriptor::ExtendArgument: { 838 Type *Ty = Tys[D.getArgumentNumber()]; 839 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 840 return VectorType::getExtendedElementVectorType(VTy); 841 842 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 843 } 844 case IITDescriptor::TruncArgument: { 845 Type *Ty = Tys[D.getArgumentNumber()]; 846 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 847 return VectorType::getTruncatedElementVectorType(VTy); 848 849 IntegerType *ITy = cast<IntegerType>(Ty); 850 assert(ITy->getBitWidth() % 2 == 0); 851 return IntegerType::get(Context, ITy->getBitWidth() / 2); 852 } 853 case IITDescriptor::HalfVecArgument: 854 return VectorType::getHalfElementsVectorType(cast<VectorType>( 855 Tys[D.getArgumentNumber()])); 856 case IITDescriptor::SameVecWidthArgument: { 857 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 858 Type *Ty = Tys[D.getArgumentNumber()]; 859 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 860 return VectorType::get(EltTy, VTy->getNumElements()); 861 } 862 llvm_unreachable("unhandled"); 863 } 864 case IITDescriptor::PtrToArgument: { 865 Type *Ty = Tys[D.getArgumentNumber()]; 866 return PointerType::getUnqual(Ty); 867 } 868 case IITDescriptor::VecOfPtrsToElt: { 869 Type *Ty = Tys[D.getArgumentNumber()]; 870 VectorType *VTy = dyn_cast<VectorType>(Ty); 871 if (!VTy) 872 llvm_unreachable("Expected an argument of Vector Type"); 873 Type *EltTy = VTy->getVectorElementType(); 874 return VectorType::get(PointerType::getUnqual(EltTy), 875 VTy->getNumElements()); 876 } 877 } 878 llvm_unreachable("unhandled"); 879 } 880 881 882 883 FunctionType *Intrinsic::getType(LLVMContext &Context, 884 ID id, ArrayRef<Type*> Tys) { 885 SmallVector<IITDescriptor, 8> Table; 886 getIntrinsicInfoTableEntries(id, Table); 887 888 ArrayRef<IITDescriptor> TableRef = Table; 889 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 890 891 SmallVector<Type*, 8> ArgTys; 892 while (!TableRef.empty()) 893 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 894 895 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 896 // If we see void type as the type of the last argument, it is vararg intrinsic 897 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 898 ArgTys.pop_back(); 899 return FunctionType::get(ResultTy, ArgTys, true); 900 } 901 return FunctionType::get(ResultTy, ArgTys, false); 902 } 903 904 bool Intrinsic::isOverloaded(ID id) { 905 #define GET_INTRINSIC_OVERLOAD_TABLE 906 #include "llvm/IR/Intrinsics.gen" 907 #undef GET_INTRINSIC_OVERLOAD_TABLE 908 } 909 910 bool Intrinsic::isLeaf(ID id) { 911 switch (id) { 912 default: 913 return true; 914 915 case Intrinsic::experimental_gc_statepoint: 916 case Intrinsic::experimental_patchpoint_void: 917 case Intrinsic::experimental_patchpoint_i64: 918 return false; 919 } 920 } 921 922 /// This defines the "Intrinsic::getAttributes(ID id)" method. 923 #define GET_INTRINSIC_ATTRIBUTES 924 #include "llvm/IR/Intrinsics.gen" 925 #undef GET_INTRINSIC_ATTRIBUTES 926 927 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 928 // There can never be multiple globals with the same name of different types, 929 // because intrinsics must be a specific type. 930 return 931 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 932 getType(M->getContext(), id, Tys))); 933 } 934 935 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 936 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 937 #include "llvm/IR/Intrinsics.gen" 938 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 939 940 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 941 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 942 #include "llvm/IR/Intrinsics.gen" 943 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 944 945 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 946 SmallVectorImpl<Type*> &ArgTys) { 947 using namespace Intrinsic; 948 949 // If we ran out of descriptors, there are too many arguments. 950 if (Infos.empty()) return true; 951 IITDescriptor D = Infos.front(); 952 Infos = Infos.slice(1); 953 954 switch (D.Kind) { 955 case IITDescriptor::Void: return !Ty->isVoidTy(); 956 case IITDescriptor::VarArg: return true; 957 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 958 case IITDescriptor::Token: return !Ty->isTokenTy(); 959 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 960 case IITDescriptor::Half: return !Ty->isHalfTy(); 961 case IITDescriptor::Float: return !Ty->isFloatTy(); 962 case IITDescriptor::Double: return !Ty->isDoubleTy(); 963 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 964 case IITDescriptor::Vector: { 965 VectorType *VT = dyn_cast<VectorType>(Ty); 966 return !VT || VT->getNumElements() != D.Vector_Width || 967 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 968 } 969 case IITDescriptor::Pointer: { 970 PointerType *PT = dyn_cast<PointerType>(Ty); 971 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 972 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 973 } 974 975 case IITDescriptor::Struct: { 976 StructType *ST = dyn_cast<StructType>(Ty); 977 if (!ST || ST->getNumElements() != D.Struct_NumElements) 978 return true; 979 980 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 981 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 982 return true; 983 return false; 984 } 985 986 case IITDescriptor::Argument: 987 // Two cases here - If this is the second occurrence of an argument, verify 988 // that the later instance matches the previous instance. 989 if (D.getArgumentNumber() < ArgTys.size()) 990 return Ty != ArgTys[D.getArgumentNumber()]; 991 992 // Otherwise, if this is the first instance of an argument, record it and 993 // verify the "Any" kind. 994 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 995 ArgTys.push_back(Ty); 996 997 switch (D.getArgumentKind()) { 998 case IITDescriptor::AK_Any: return false; // Success 999 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1000 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1001 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1002 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1003 } 1004 llvm_unreachable("all argument kinds not covered"); 1005 1006 case IITDescriptor::ExtendArgument: { 1007 // This may only be used when referring to a previous vector argument. 1008 if (D.getArgumentNumber() >= ArgTys.size()) 1009 return true; 1010 1011 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1012 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1013 NewTy = VectorType::getExtendedElementVectorType(VTy); 1014 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1015 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1016 else 1017 return true; 1018 1019 return Ty != NewTy; 1020 } 1021 case IITDescriptor::TruncArgument: { 1022 // This may only be used when referring to a previous vector argument. 1023 if (D.getArgumentNumber() >= ArgTys.size()) 1024 return true; 1025 1026 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1027 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1028 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1029 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1030 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1031 else 1032 return true; 1033 1034 return Ty != NewTy; 1035 } 1036 case IITDescriptor::HalfVecArgument: 1037 // This may only be used when referring to a previous vector argument. 1038 return D.getArgumentNumber() >= ArgTys.size() || 1039 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1040 VectorType::getHalfElementsVectorType( 1041 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1042 case IITDescriptor::SameVecWidthArgument: { 1043 if (D.getArgumentNumber() >= ArgTys.size()) 1044 return true; 1045 VectorType * ReferenceType = 1046 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1047 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1048 if (!ThisArgType || !ReferenceType || 1049 (ReferenceType->getVectorNumElements() != 1050 ThisArgType->getVectorNumElements())) 1051 return true; 1052 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1053 Infos, ArgTys); 1054 } 1055 case IITDescriptor::PtrToArgument: { 1056 if (D.getArgumentNumber() >= ArgTys.size()) 1057 return true; 1058 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1059 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1060 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1061 } 1062 case IITDescriptor::VecOfPtrsToElt: { 1063 if (D.getArgumentNumber() >= ArgTys.size()) 1064 return true; 1065 VectorType * ReferenceType = 1066 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1067 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1068 if (!ThisArgVecTy || !ReferenceType || 1069 (ReferenceType->getVectorNumElements() != 1070 ThisArgVecTy->getVectorNumElements())) 1071 return true; 1072 PointerType *ThisArgEltTy = 1073 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1074 if (!ThisArgEltTy) 1075 return true; 1076 return ThisArgEltTy->getElementType() != 1077 ReferenceType->getVectorElementType(); 1078 } 1079 } 1080 llvm_unreachable("unhandled"); 1081 } 1082 1083 bool 1084 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1085 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1086 // If there are no descriptors left, then it can't be a vararg. 1087 if (Infos.empty()) 1088 return isVarArg; 1089 1090 // There should be only one descriptor remaining at this point. 1091 if (Infos.size() != 1) 1092 return true; 1093 1094 // Check and verify the descriptor. 1095 IITDescriptor D = Infos.front(); 1096 Infos = Infos.slice(1); 1097 if (D.Kind == IITDescriptor::VarArg) 1098 return !isVarArg; 1099 1100 return true; 1101 } 1102 1103 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1104 Intrinsic::ID ID = F->getIntrinsicID(); 1105 if (!ID) 1106 return None; 1107 1108 FunctionType *FTy = F->getFunctionType(); 1109 // Accumulate an array of overloaded types for the given intrinsic 1110 SmallVector<Type *, 4> ArgTys; 1111 { 1112 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1113 getIntrinsicInfoTableEntries(ID, Table); 1114 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1115 1116 // If we encounter any problems matching the signature with the descriptor 1117 // just give up remangling. It's up to verifier to report the discrepancy. 1118 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1119 return None; 1120 for (auto Ty : FTy->params()) 1121 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1122 return None; 1123 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1124 return None; 1125 } 1126 1127 StringRef Name = F->getName(); 1128 if (Name == Intrinsic::getName(ID, ArgTys)) 1129 return None; 1130 1131 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1132 NewDecl->setCallingConv(F->getCallingConv()); 1133 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1134 return NewDecl; 1135 } 1136 1137 /// hasAddressTaken - returns true if there are any uses of this function 1138 /// other than direct calls or invokes to it. 1139 bool Function::hasAddressTaken(const User* *PutOffender) const { 1140 for (const Use &U : uses()) { 1141 const User *FU = U.getUser(); 1142 if (isa<BlockAddress>(FU)) 1143 continue; 1144 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1145 if (PutOffender) 1146 *PutOffender = FU; 1147 return true; 1148 } 1149 ImmutableCallSite CS(cast<Instruction>(FU)); 1150 if (!CS.isCallee(&U)) { 1151 if (PutOffender) 1152 *PutOffender = FU; 1153 return true; 1154 } 1155 } 1156 return false; 1157 } 1158 1159 bool Function::isDefTriviallyDead() const { 1160 // Check the linkage 1161 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1162 !hasAvailableExternallyLinkage()) 1163 return false; 1164 1165 // Check if the function is used by anything other than a blockaddress. 1166 for (const User *U : users()) 1167 if (!isa<BlockAddress>(U)) 1168 return false; 1169 1170 return true; 1171 } 1172 1173 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1174 /// setjmp or other function that gcc recognizes as "returning twice". 1175 bool Function::callsFunctionThatReturnsTwice() const { 1176 for (const_inst_iterator 1177 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1178 ImmutableCallSite CS(&*I); 1179 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1180 return true; 1181 } 1182 1183 return false; 1184 } 1185 1186 Constant *Function::getPersonalityFn() const { 1187 assert(hasPersonalityFn() && getNumOperands()); 1188 return cast<Constant>(Op<0>()); 1189 } 1190 1191 void Function::setPersonalityFn(Constant *Fn) { 1192 setHungoffOperand<0>(Fn); 1193 setValueSubclassDataBit(3, Fn != nullptr); 1194 } 1195 1196 Constant *Function::getPrefixData() const { 1197 assert(hasPrefixData() && getNumOperands()); 1198 return cast<Constant>(Op<1>()); 1199 } 1200 1201 void Function::setPrefixData(Constant *PrefixData) { 1202 setHungoffOperand<1>(PrefixData); 1203 setValueSubclassDataBit(1, PrefixData != nullptr); 1204 } 1205 1206 Constant *Function::getPrologueData() const { 1207 assert(hasPrologueData() && getNumOperands()); 1208 return cast<Constant>(Op<2>()); 1209 } 1210 1211 void Function::setPrologueData(Constant *PrologueData) { 1212 setHungoffOperand<2>(PrologueData); 1213 setValueSubclassDataBit(2, PrologueData != nullptr); 1214 } 1215 1216 void Function::allocHungoffUselist() { 1217 // If we've already allocated a uselist, stop here. 1218 if (getNumOperands()) 1219 return; 1220 1221 allocHungoffUses(3, /*IsPhi=*/ false); 1222 setNumHungOffUseOperands(3); 1223 1224 // Initialize the uselist with placeholder operands to allow traversal. 1225 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1226 Op<0>().set(CPN); 1227 Op<1>().set(CPN); 1228 Op<2>().set(CPN); 1229 } 1230 1231 template <int Idx> 1232 void Function::setHungoffOperand(Constant *C) { 1233 if (C) { 1234 allocHungoffUselist(); 1235 Op<Idx>().set(C); 1236 } else if (getNumOperands()) { 1237 Op<Idx>().set( 1238 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1239 } 1240 } 1241 1242 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1243 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1244 if (On) 1245 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1246 else 1247 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1248 } 1249 1250 void Function::setEntryCount(uint64_t Count) { 1251 MDBuilder MDB(getContext()); 1252 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1253 } 1254 1255 Optional<uint64_t> Function::getEntryCount() const { 1256 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1257 if (MD && MD->getOperand(0)) 1258 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1259 if (MDS->getString().equals("function_entry_count")) { 1260 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1261 uint64_t Count = CI->getValue().getZExtValue(); 1262 if (Count == 0) 1263 return None; 1264 return Count; 1265 } 1266 return None; 1267 } 1268