1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 262 // We only need a symbol table for a function if the context keeps value names 263 if (!getContext().shouldDiscardValueNames()) 264 SymTab = make_unique<ValueSymbolTable>(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 // Ensure intrinsics have the right parameter attributes. 274 // Note, the IntID field will have been set in Value::setName if this function 275 // name is a valid intrinsic ID. 276 if (IntID) 277 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 278 } 279 280 Function::~Function() { 281 dropAllReferences(); // After this it is safe to delete instructions. 282 283 // Delete all of the method arguments and unlink from symbol table... 284 ArgumentList.clear(); 285 286 // Remove the function from the on-the-side GC table. 287 clearGC(); 288 } 289 290 void Function::BuildLazyArguments() const { 291 // Create the arguments vector, all arguments start out unnamed. 292 FunctionType *FT = getFunctionType(); 293 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 294 assert(!FT->getParamType(i)->isVoidTy() && 295 "Cannot have void typed arguments!"); 296 ArgumentList.push_back(new Argument(FT->getParamType(i))); 297 } 298 299 // Clear the lazy arguments bit. 300 unsigned SDC = getSubclassDataFromValue(); 301 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 302 } 303 304 void Function::stealArgumentListFrom(Function &Src) { 305 assert(isDeclaration() && "Expected no references to current arguments"); 306 307 // Drop the current arguments, if any, and set the lazy argument bit. 308 if (!hasLazyArguments()) { 309 assert(llvm::all_of(ArgumentList, 310 [](const Argument &A) { return A.use_empty(); }) && 311 "Expected arguments to be unused in declaration"); 312 ArgumentList.clear(); 313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 314 } 315 316 // Nothing to steal if Src has lazy arguments. 317 if (Src.hasLazyArguments()) 318 return; 319 320 // Steal arguments from Src, and fix the lazy argument bits. 321 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 322 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 323 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 324 } 325 326 size_t Function::arg_size() const { 327 return getFunctionType()->getNumParams(); 328 } 329 bool Function::arg_empty() const { 330 return getFunctionType()->getNumParams() == 0; 331 } 332 333 // dropAllReferences() - This function causes all the subinstructions to "let 334 // go" of all references that they are maintaining. This allows one to 335 // 'delete' a whole class at a time, even though there may be circular 336 // references... first all references are dropped, and all use counts go to 337 // zero. Then everything is deleted for real. Note that no operations are 338 // valid on an object that has "dropped all references", except operator 339 // delete. 340 // 341 void Function::dropAllReferences() { 342 setIsMaterializable(false); 343 344 for (BasicBlock &BB : *this) 345 BB.dropAllReferences(); 346 347 // Delete all basic blocks. They are now unused, except possibly by 348 // blockaddresses, but BasicBlock's destructor takes care of those. 349 while (!BasicBlocks.empty()) 350 BasicBlocks.begin()->eraseFromParent(); 351 352 // Drop uses of any optional data (real or placeholder). 353 if (getNumOperands()) { 354 User::dropAllReferences(); 355 setNumHungOffUseOperands(0); 356 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 357 } 358 359 // Metadata is stored in a side-table. 360 clearMetadata(); 361 } 362 363 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 364 AttributeSet PAL = getAttributes(); 365 PAL = PAL.addAttribute(getContext(), i, Kind); 366 setAttributes(PAL); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute Attr) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Attr); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttributes(getContext(), i, Attrs); 378 setAttributes(PAL); 379 } 380 381 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.removeAttribute(getContext(), i, Kind); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, StringRef Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttributes(getContext(), i, Attrs); 396 setAttributes(PAL); 397 } 398 399 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 const std::string &Function::getGC() const { 412 assert(hasGC() && "Function has no collector"); 413 return getContext().getGC(*this); 414 } 415 416 void Function::setGC(std::string Str) { 417 setValueSubclassDataBit(14, !Str.empty()); 418 getContext().setGC(*this, std::move(Str)); 419 } 420 421 void Function::clearGC() { 422 if (!hasGC()) 423 return; 424 getContext().deleteGC(*this); 425 setValueSubclassDataBit(14, false); 426 } 427 428 /// Copy all additional attributes (those not needed to create a Function) from 429 /// the Function Src to this one. 430 void Function::copyAttributesFrom(const GlobalValue *Src) { 431 GlobalObject::copyAttributesFrom(Src); 432 const Function *SrcF = dyn_cast<Function>(Src); 433 if (!SrcF) 434 return; 435 436 setCallingConv(SrcF->getCallingConv()); 437 setAttributes(SrcF->getAttributes()); 438 if (SrcF->hasGC()) 439 setGC(SrcF->getGC()); 440 else 441 clearGC(); 442 if (SrcF->hasPersonalityFn()) 443 setPersonalityFn(SrcF->getPersonalityFn()); 444 if (SrcF->hasPrefixData()) 445 setPrefixData(SrcF->getPrefixData()); 446 if (SrcF->hasPrologueData()) 447 setPrologueData(SrcF->getPrologueData()); 448 } 449 450 /// Table of string intrinsic names indexed by enum value. 451 static const char * const IntrinsicNameTable[] = { 452 "not_intrinsic", 453 #define GET_INTRINSIC_NAME_TABLE 454 #include "llvm/IR/Intrinsics.gen" 455 #undef GET_INTRINSIC_NAME_TABLE 456 }; 457 458 /// Table of per-target intrinsic name tables. 459 #define GET_INTRINSIC_TARGET_DATA 460 #include "llvm/IR/Intrinsics.gen" 461 #undef GET_INTRINSIC_TARGET_DATA 462 463 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 464 /// target as \c Name, or the generic table if \c Name is not target specific. 465 /// 466 /// Returns the relevant slice of \c IntrinsicNameTable 467 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 468 assert(Name.startswith("llvm.")); 469 470 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 471 // Drop "llvm." and take the first dotted component. That will be the target 472 // if this is target specific. 473 StringRef Target = Name.drop_front(5).split('.').first; 474 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 475 [](const IntrinsicTargetInfo &TI, 476 StringRef Target) { return TI.Name < Target; }); 477 // We've either found the target or just fall back to the generic set, which 478 // is always first. 479 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 480 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 481 } 482 483 /// \brief This does the actual lookup of an intrinsic ID which 484 /// matches the given function name. 485 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 486 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 487 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 488 if (Idx == -1) 489 return Intrinsic::not_intrinsic; 490 491 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 492 // an index into a sub-table. 493 int Adjust = NameTable.data() - IntrinsicNameTable; 494 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 495 496 // If the intrinsic is not overloaded, require an exact match. If it is 497 // overloaded, require a prefix match. 498 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 499 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 500 } 501 502 void Function::recalculateIntrinsicID() { 503 const ValueName *ValName = this->getValueName(); 504 if (!ValName || !isIntrinsic()) { 505 IntID = Intrinsic::not_intrinsic; 506 return; 507 } 508 IntID = lookupIntrinsicID(ValName->getKey()); 509 } 510 511 /// Returns a stable mangling for the type specified for use in the name 512 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 513 /// of named types is simply their name. Manglings for unnamed types consist 514 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 515 /// combined with the mangling of their component types. A vararg function 516 /// type will have a suffix of 'vararg'. Since function types can contain 517 /// other function types, we close a function type mangling with suffix 'f' 518 /// which can't be confused with it's prefix. This ensures we don't have 519 /// collisions between two unrelated function types. Otherwise, you might 520 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 521 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 522 /// cases) fall back to the MVT codepath, where they could be mangled to 523 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 524 /// everything. 525 static std::string getMangledTypeStr(Type* Ty) { 526 std::string Result; 527 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 528 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 529 getMangledTypeStr(PTyp->getElementType()); 530 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 531 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 532 getMangledTypeStr(ATyp->getElementType()); 533 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 534 assert(!STyp->isLiteral() && "TODO: implement literal types"); 535 Result += STyp->getName(); 536 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 537 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 538 for (size_t i = 0; i < FT->getNumParams(); i++) 539 Result += getMangledTypeStr(FT->getParamType(i)); 540 if (FT->isVarArg()) 541 Result += "vararg"; 542 // Ensure nested function types are distinguishable. 543 Result += "f"; 544 } else if (isa<VectorType>(Ty)) 545 Result += "v" + utostr(Ty->getVectorNumElements()) + 546 getMangledTypeStr(Ty->getVectorElementType()); 547 else if (Ty) 548 Result += EVT::getEVT(Ty).getEVTString(); 549 return Result; 550 } 551 552 StringRef Intrinsic::getName(ID id) { 553 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 554 assert(!isOverloaded(id) && 555 "This version of getName does not support overloading"); 556 return IntrinsicNameTable[id]; 557 } 558 559 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 560 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 561 std::string Result(IntrinsicNameTable[id]); 562 for (Type *Ty : Tys) { 563 Result += "." + getMangledTypeStr(Ty); 564 } 565 return Result; 566 } 567 568 569 /// IIT_Info - These are enumerators that describe the entries returned by the 570 /// getIntrinsicInfoTableEntries function. 571 /// 572 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 573 enum IIT_Info { 574 // Common values should be encoded with 0-15. 575 IIT_Done = 0, 576 IIT_I1 = 1, 577 IIT_I8 = 2, 578 IIT_I16 = 3, 579 IIT_I32 = 4, 580 IIT_I64 = 5, 581 IIT_F16 = 6, 582 IIT_F32 = 7, 583 IIT_F64 = 8, 584 IIT_V2 = 9, 585 IIT_V4 = 10, 586 IIT_V8 = 11, 587 IIT_V16 = 12, 588 IIT_V32 = 13, 589 IIT_PTR = 14, 590 IIT_ARG = 15, 591 592 // Values from 16+ are only encodable with the inefficient encoding. 593 IIT_V64 = 16, 594 IIT_MMX = 17, 595 IIT_TOKEN = 18, 596 IIT_METADATA = 19, 597 IIT_EMPTYSTRUCT = 20, 598 IIT_STRUCT2 = 21, 599 IIT_STRUCT3 = 22, 600 IIT_STRUCT4 = 23, 601 IIT_STRUCT5 = 24, 602 IIT_EXTEND_ARG = 25, 603 IIT_TRUNC_ARG = 26, 604 IIT_ANYPTR = 27, 605 IIT_V1 = 28, 606 IIT_VARARG = 29, 607 IIT_HALF_VEC_ARG = 30, 608 IIT_SAME_VEC_WIDTH_ARG = 31, 609 IIT_PTR_TO_ARG = 32, 610 IIT_PTR_TO_ELT = 33, 611 IIT_VEC_OF_PTRS_TO_ELT = 34, 612 IIT_I128 = 35, 613 IIT_V512 = 36, 614 IIT_V1024 = 37 615 }; 616 617 618 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 619 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 620 IIT_Info Info = IIT_Info(Infos[NextElt++]); 621 unsigned StructElts = 2; 622 using namespace Intrinsic; 623 624 switch (Info) { 625 case IIT_Done: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 627 return; 628 case IIT_VARARG: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 630 return; 631 case IIT_MMX: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 633 return; 634 case IIT_TOKEN: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 636 return; 637 case IIT_METADATA: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 639 return; 640 case IIT_F16: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 642 return; 643 case IIT_F32: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 645 return; 646 case IIT_F64: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 648 return; 649 case IIT_I1: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 651 return; 652 case IIT_I8: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 654 return; 655 case IIT_I16: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 657 return; 658 case IIT_I32: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 660 return; 661 case IIT_I64: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 663 return; 664 case IIT_I128: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 666 return; 667 case IIT_V1: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 669 DecodeIITType(NextElt, Infos, OutputTable); 670 return; 671 case IIT_V2: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 673 DecodeIITType(NextElt, Infos, OutputTable); 674 return; 675 case IIT_V4: 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 677 DecodeIITType(NextElt, Infos, OutputTable); 678 return; 679 case IIT_V8: 680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 681 DecodeIITType(NextElt, Infos, OutputTable); 682 return; 683 case IIT_V16: 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 685 DecodeIITType(NextElt, Infos, OutputTable); 686 return; 687 case IIT_V32: 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 689 DecodeIITType(NextElt, Infos, OutputTable); 690 return; 691 case IIT_V64: 692 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 693 DecodeIITType(NextElt, Infos, OutputTable); 694 return; 695 case IIT_V512: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 697 DecodeIITType(NextElt, Infos, OutputTable); 698 return; 699 case IIT_V1024: 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 701 DecodeIITType(NextElt, Infos, OutputTable); 702 return; 703 case IIT_PTR: 704 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 705 DecodeIITType(NextElt, Infos, OutputTable); 706 return; 707 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 709 Infos[NextElt++])); 710 DecodeIITType(NextElt, Infos, OutputTable); 711 return; 712 } 713 case IIT_ARG: { 714 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 716 return; 717 } 718 case IIT_EXTEND_ARG: { 719 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 721 ArgInfo)); 722 return; 723 } 724 case IIT_TRUNC_ARG: { 725 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 727 ArgInfo)); 728 return; 729 } 730 case IIT_HALF_VEC_ARG: { 731 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 733 ArgInfo)); 734 return; 735 } 736 case IIT_SAME_VEC_WIDTH_ARG: { 737 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 739 ArgInfo)); 740 return; 741 } 742 case IIT_PTR_TO_ARG: { 743 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 745 ArgInfo)); 746 return; 747 } 748 case IIT_PTR_TO_ELT: { 749 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 750 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 751 return; 752 } 753 case IIT_VEC_OF_PTRS_TO_ELT: { 754 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 756 ArgInfo)); 757 return; 758 } 759 case IIT_EMPTYSTRUCT: 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 761 return; 762 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 763 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 764 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 765 case IIT_STRUCT2: { 766 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 767 768 for (unsigned i = 0; i != StructElts; ++i) 769 DecodeIITType(NextElt, Infos, OutputTable); 770 return; 771 } 772 } 773 llvm_unreachable("unhandled"); 774 } 775 776 777 #define GET_INTRINSIC_GENERATOR_GLOBAL 778 #include "llvm/IR/Intrinsics.gen" 779 #undef GET_INTRINSIC_GENERATOR_GLOBAL 780 781 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 782 SmallVectorImpl<IITDescriptor> &T){ 783 // Check to see if the intrinsic's type was expressible by the table. 784 unsigned TableVal = IIT_Table[id-1]; 785 786 // Decode the TableVal into an array of IITValues. 787 SmallVector<unsigned char, 8> IITValues; 788 ArrayRef<unsigned char> IITEntries; 789 unsigned NextElt = 0; 790 if ((TableVal >> 31) != 0) { 791 // This is an offset into the IIT_LongEncodingTable. 792 IITEntries = IIT_LongEncodingTable; 793 794 // Strip sentinel bit. 795 NextElt = (TableVal << 1) >> 1; 796 } else { 797 // Decode the TableVal into an array of IITValues. If the entry was encoded 798 // into a single word in the table itself, decode it now. 799 do { 800 IITValues.push_back(TableVal & 0xF); 801 TableVal >>= 4; 802 } while (TableVal); 803 804 IITEntries = IITValues; 805 NextElt = 0; 806 } 807 808 // Okay, decode the table into the output vector of IITDescriptors. 809 DecodeIITType(NextElt, IITEntries, T); 810 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 811 DecodeIITType(NextElt, IITEntries, T); 812 } 813 814 815 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 816 ArrayRef<Type*> Tys, LLVMContext &Context) { 817 using namespace Intrinsic; 818 IITDescriptor D = Infos.front(); 819 Infos = Infos.slice(1); 820 821 switch (D.Kind) { 822 case IITDescriptor::Void: return Type::getVoidTy(Context); 823 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 824 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 825 case IITDescriptor::Token: return Type::getTokenTy(Context); 826 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 827 case IITDescriptor::Half: return Type::getHalfTy(Context); 828 case IITDescriptor::Float: return Type::getFloatTy(Context); 829 case IITDescriptor::Double: return Type::getDoubleTy(Context); 830 831 case IITDescriptor::Integer: 832 return IntegerType::get(Context, D.Integer_Width); 833 case IITDescriptor::Vector: 834 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 835 case IITDescriptor::Pointer: 836 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 837 D.Pointer_AddressSpace); 838 case IITDescriptor::Struct: { 839 Type *Elts[5]; 840 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 841 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 842 Elts[i] = DecodeFixedType(Infos, Tys, Context); 843 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 844 } 845 846 case IITDescriptor::Argument: 847 return Tys[D.getArgumentNumber()]; 848 case IITDescriptor::ExtendArgument: { 849 Type *Ty = Tys[D.getArgumentNumber()]; 850 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 851 return VectorType::getExtendedElementVectorType(VTy); 852 853 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 854 } 855 case IITDescriptor::TruncArgument: { 856 Type *Ty = Tys[D.getArgumentNumber()]; 857 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 858 return VectorType::getTruncatedElementVectorType(VTy); 859 860 IntegerType *ITy = cast<IntegerType>(Ty); 861 assert(ITy->getBitWidth() % 2 == 0); 862 return IntegerType::get(Context, ITy->getBitWidth() / 2); 863 } 864 case IITDescriptor::HalfVecArgument: 865 return VectorType::getHalfElementsVectorType(cast<VectorType>( 866 Tys[D.getArgumentNumber()])); 867 case IITDescriptor::SameVecWidthArgument: { 868 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 869 Type *Ty = Tys[D.getArgumentNumber()]; 870 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 871 return VectorType::get(EltTy, VTy->getNumElements()); 872 } 873 llvm_unreachable("unhandled"); 874 } 875 case IITDescriptor::PtrToArgument: { 876 Type *Ty = Tys[D.getArgumentNumber()]; 877 return PointerType::getUnqual(Ty); 878 } 879 case IITDescriptor::PtrToElt: { 880 Type *Ty = Tys[D.getArgumentNumber()]; 881 VectorType *VTy = dyn_cast<VectorType>(Ty); 882 if (!VTy) 883 llvm_unreachable("Expected an argument of Vector Type"); 884 Type *EltTy = VTy->getVectorElementType(); 885 return PointerType::getUnqual(EltTy); 886 } 887 case IITDescriptor::VecOfPtrsToElt: { 888 Type *Ty = Tys[D.getArgumentNumber()]; 889 VectorType *VTy = dyn_cast<VectorType>(Ty); 890 if (!VTy) 891 llvm_unreachable("Expected an argument of Vector Type"); 892 Type *EltTy = VTy->getVectorElementType(); 893 return VectorType::get(PointerType::getUnqual(EltTy), 894 VTy->getNumElements()); 895 } 896 } 897 llvm_unreachable("unhandled"); 898 } 899 900 901 902 FunctionType *Intrinsic::getType(LLVMContext &Context, 903 ID id, ArrayRef<Type*> Tys) { 904 SmallVector<IITDescriptor, 8> Table; 905 getIntrinsicInfoTableEntries(id, Table); 906 907 ArrayRef<IITDescriptor> TableRef = Table; 908 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 909 910 SmallVector<Type*, 8> ArgTys; 911 while (!TableRef.empty()) 912 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 913 914 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 915 // If we see void type as the type of the last argument, it is vararg intrinsic 916 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 917 ArgTys.pop_back(); 918 return FunctionType::get(ResultTy, ArgTys, true); 919 } 920 return FunctionType::get(ResultTy, ArgTys, false); 921 } 922 923 bool Intrinsic::isOverloaded(ID id) { 924 #define GET_INTRINSIC_OVERLOAD_TABLE 925 #include "llvm/IR/Intrinsics.gen" 926 #undef GET_INTRINSIC_OVERLOAD_TABLE 927 } 928 929 bool Intrinsic::isLeaf(ID id) { 930 switch (id) { 931 default: 932 return true; 933 934 case Intrinsic::experimental_gc_statepoint: 935 case Intrinsic::experimental_patchpoint_void: 936 case Intrinsic::experimental_patchpoint_i64: 937 return false; 938 } 939 } 940 941 /// This defines the "Intrinsic::getAttributes(ID id)" method. 942 #define GET_INTRINSIC_ATTRIBUTES 943 #include "llvm/IR/Intrinsics.gen" 944 #undef GET_INTRINSIC_ATTRIBUTES 945 946 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 947 // There can never be multiple globals with the same name of different types, 948 // because intrinsics must be a specific type. 949 return 950 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 951 getType(M->getContext(), id, Tys))); 952 } 953 954 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 955 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 956 #include "llvm/IR/Intrinsics.gen" 957 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 958 959 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 960 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 961 #include "llvm/IR/Intrinsics.gen" 962 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 963 964 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 965 SmallVectorImpl<Type*> &ArgTys) { 966 using namespace Intrinsic; 967 968 // If we ran out of descriptors, there are too many arguments. 969 if (Infos.empty()) return true; 970 IITDescriptor D = Infos.front(); 971 Infos = Infos.slice(1); 972 973 switch (D.Kind) { 974 case IITDescriptor::Void: return !Ty->isVoidTy(); 975 case IITDescriptor::VarArg: return true; 976 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 977 case IITDescriptor::Token: return !Ty->isTokenTy(); 978 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 979 case IITDescriptor::Half: return !Ty->isHalfTy(); 980 case IITDescriptor::Float: return !Ty->isFloatTy(); 981 case IITDescriptor::Double: return !Ty->isDoubleTy(); 982 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 983 case IITDescriptor::Vector: { 984 VectorType *VT = dyn_cast<VectorType>(Ty); 985 return !VT || VT->getNumElements() != D.Vector_Width || 986 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 987 } 988 case IITDescriptor::Pointer: { 989 PointerType *PT = dyn_cast<PointerType>(Ty); 990 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 991 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 992 } 993 994 case IITDescriptor::Struct: { 995 StructType *ST = dyn_cast<StructType>(Ty); 996 if (!ST || ST->getNumElements() != D.Struct_NumElements) 997 return true; 998 999 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1000 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1001 return true; 1002 return false; 1003 } 1004 1005 case IITDescriptor::Argument: 1006 // Two cases here - If this is the second occurrence of an argument, verify 1007 // that the later instance matches the previous instance. 1008 if (D.getArgumentNumber() < ArgTys.size()) 1009 return Ty != ArgTys[D.getArgumentNumber()]; 1010 1011 // Otherwise, if this is the first instance of an argument, record it and 1012 // verify the "Any" kind. 1013 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1014 ArgTys.push_back(Ty); 1015 1016 switch (D.getArgumentKind()) { 1017 case IITDescriptor::AK_Any: return false; // Success 1018 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1019 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1020 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1021 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1022 } 1023 llvm_unreachable("all argument kinds not covered"); 1024 1025 case IITDescriptor::ExtendArgument: { 1026 // This may only be used when referring to a previous vector argument. 1027 if (D.getArgumentNumber() >= ArgTys.size()) 1028 return true; 1029 1030 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1031 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1032 NewTy = VectorType::getExtendedElementVectorType(VTy); 1033 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1034 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1035 else 1036 return true; 1037 1038 return Ty != NewTy; 1039 } 1040 case IITDescriptor::TruncArgument: { 1041 // This may only be used when referring to a previous vector argument. 1042 if (D.getArgumentNumber() >= ArgTys.size()) 1043 return true; 1044 1045 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1046 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1047 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1048 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1049 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1050 else 1051 return true; 1052 1053 return Ty != NewTy; 1054 } 1055 case IITDescriptor::HalfVecArgument: 1056 // This may only be used when referring to a previous vector argument. 1057 return D.getArgumentNumber() >= ArgTys.size() || 1058 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1059 VectorType::getHalfElementsVectorType( 1060 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1061 case IITDescriptor::SameVecWidthArgument: { 1062 if (D.getArgumentNumber() >= ArgTys.size()) 1063 return true; 1064 VectorType * ReferenceType = 1065 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1066 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1067 if (!ThisArgType || !ReferenceType || 1068 (ReferenceType->getVectorNumElements() != 1069 ThisArgType->getVectorNumElements())) 1070 return true; 1071 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1072 Infos, ArgTys); 1073 } 1074 case IITDescriptor::PtrToArgument: { 1075 if (D.getArgumentNumber() >= ArgTys.size()) 1076 return true; 1077 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1078 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1079 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1080 } 1081 case IITDescriptor::PtrToElt: { 1082 if (D.getArgumentNumber() >= ArgTys.size()) 1083 return true; 1084 VectorType * ReferenceType = 1085 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1086 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1087 1088 return (!ThisArgType || !ReferenceType || 1089 ThisArgType->getElementType() != ReferenceType->getElementType()); 1090 } 1091 case IITDescriptor::VecOfPtrsToElt: { 1092 if (D.getArgumentNumber() >= ArgTys.size()) 1093 return true; 1094 VectorType * ReferenceType = 1095 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1096 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1097 if (!ThisArgVecTy || !ReferenceType || 1098 (ReferenceType->getVectorNumElements() != 1099 ThisArgVecTy->getVectorNumElements())) 1100 return true; 1101 PointerType *ThisArgEltTy = 1102 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1103 if (!ThisArgEltTy) 1104 return true; 1105 return ThisArgEltTy->getElementType() != 1106 ReferenceType->getVectorElementType(); 1107 } 1108 } 1109 llvm_unreachable("unhandled"); 1110 } 1111 1112 bool 1113 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1114 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1115 // If there are no descriptors left, then it can't be a vararg. 1116 if (Infos.empty()) 1117 return isVarArg; 1118 1119 // There should be only one descriptor remaining at this point. 1120 if (Infos.size() != 1) 1121 return true; 1122 1123 // Check and verify the descriptor. 1124 IITDescriptor D = Infos.front(); 1125 Infos = Infos.slice(1); 1126 if (D.Kind == IITDescriptor::VarArg) 1127 return !isVarArg; 1128 1129 return true; 1130 } 1131 1132 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1133 Intrinsic::ID ID = F->getIntrinsicID(); 1134 if (!ID) 1135 return None; 1136 1137 FunctionType *FTy = F->getFunctionType(); 1138 // Accumulate an array of overloaded types for the given intrinsic 1139 SmallVector<Type *, 4> ArgTys; 1140 { 1141 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1142 getIntrinsicInfoTableEntries(ID, Table); 1143 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1144 1145 // If we encounter any problems matching the signature with the descriptor 1146 // just give up remangling. It's up to verifier to report the discrepancy. 1147 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1148 return None; 1149 for (auto Ty : FTy->params()) 1150 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1151 return None; 1152 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1153 return None; 1154 } 1155 1156 StringRef Name = F->getName(); 1157 if (Name == Intrinsic::getName(ID, ArgTys)) 1158 return None; 1159 1160 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1161 NewDecl->setCallingConv(F->getCallingConv()); 1162 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1163 return NewDecl; 1164 } 1165 1166 /// hasAddressTaken - returns true if there are any uses of this function 1167 /// other than direct calls or invokes to it. 1168 bool Function::hasAddressTaken(const User* *PutOffender) const { 1169 for (const Use &U : uses()) { 1170 const User *FU = U.getUser(); 1171 if (isa<BlockAddress>(FU)) 1172 continue; 1173 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1174 if (PutOffender) 1175 *PutOffender = FU; 1176 return true; 1177 } 1178 ImmutableCallSite CS(cast<Instruction>(FU)); 1179 if (!CS.isCallee(&U)) { 1180 if (PutOffender) 1181 *PutOffender = FU; 1182 return true; 1183 } 1184 } 1185 return false; 1186 } 1187 1188 bool Function::isDefTriviallyDead() const { 1189 // Check the linkage 1190 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1191 !hasAvailableExternallyLinkage()) 1192 return false; 1193 1194 // Check if the function is used by anything other than a blockaddress. 1195 for (const User *U : users()) 1196 if (!isa<BlockAddress>(U)) 1197 return false; 1198 1199 return true; 1200 } 1201 1202 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1203 /// setjmp or other function that gcc recognizes as "returning twice". 1204 bool Function::callsFunctionThatReturnsTwice() const { 1205 for (const_inst_iterator 1206 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1207 ImmutableCallSite CS(&*I); 1208 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1209 return true; 1210 } 1211 1212 return false; 1213 } 1214 1215 Constant *Function::getPersonalityFn() const { 1216 assert(hasPersonalityFn() && getNumOperands()); 1217 return cast<Constant>(Op<0>()); 1218 } 1219 1220 void Function::setPersonalityFn(Constant *Fn) { 1221 setHungoffOperand<0>(Fn); 1222 setValueSubclassDataBit(3, Fn != nullptr); 1223 } 1224 1225 Constant *Function::getPrefixData() const { 1226 assert(hasPrefixData() && getNumOperands()); 1227 return cast<Constant>(Op<1>()); 1228 } 1229 1230 void Function::setPrefixData(Constant *PrefixData) { 1231 setHungoffOperand<1>(PrefixData); 1232 setValueSubclassDataBit(1, PrefixData != nullptr); 1233 } 1234 1235 Constant *Function::getPrologueData() const { 1236 assert(hasPrologueData() && getNumOperands()); 1237 return cast<Constant>(Op<2>()); 1238 } 1239 1240 void Function::setPrologueData(Constant *PrologueData) { 1241 setHungoffOperand<2>(PrologueData); 1242 setValueSubclassDataBit(2, PrologueData != nullptr); 1243 } 1244 1245 void Function::allocHungoffUselist() { 1246 // If we've already allocated a uselist, stop here. 1247 if (getNumOperands()) 1248 return; 1249 1250 allocHungoffUses(3, /*IsPhi=*/ false); 1251 setNumHungOffUseOperands(3); 1252 1253 // Initialize the uselist with placeholder operands to allow traversal. 1254 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1255 Op<0>().set(CPN); 1256 Op<1>().set(CPN); 1257 Op<2>().set(CPN); 1258 } 1259 1260 template <int Idx> 1261 void Function::setHungoffOperand(Constant *C) { 1262 if (C) { 1263 allocHungoffUselist(); 1264 Op<Idx>().set(C); 1265 } else if (getNumOperands()) { 1266 Op<Idx>().set( 1267 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1268 } 1269 } 1270 1271 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1272 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1273 if (On) 1274 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1275 else 1276 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1277 } 1278 1279 void Function::setEntryCount(uint64_t Count) { 1280 MDBuilder MDB(getContext()); 1281 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1282 } 1283 1284 Optional<uint64_t> Function::getEntryCount() const { 1285 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1286 if (MD && MD->getOperand(0)) 1287 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1288 if (MDS->getString().equals("function_entry_count")) { 1289 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1290 uint64_t Count = CI->getValue().getZExtValue(); 1291 if (Count == 0) 1292 return None; 1293 return Count; 1294 } 1295 return None; 1296 } 1297 1298 void Function::setSectionPrefix(StringRef Prefix) { 1299 MDBuilder MDB(getContext()); 1300 setMetadata(LLVMContext::MD_section_prefix, 1301 MDB.createFunctionSectionPrefix(Prefix)); 1302 } 1303 1304 Optional<StringRef> Function::getSectionPrefix() const { 1305 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1306 assert(dyn_cast<MDString>(MD->getOperand(0)) 1307 ->getString() 1308 .equals("function_section_prefix") && 1309 "Metadata not match"); 1310 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1311 } 1312 return None; 1313 } 1314