1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 262 // We only need a symbol table for a function if the context keeps value names 263 if (!getContext().shouldDiscardValueNames()) 264 SymTab = make_unique<ValueSymbolTable>(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 // Ensure intrinsics have the right parameter attributes. 274 // Note, the IntID field will have been set in Value::setName if this function 275 // name is a valid intrinsic ID. 276 if (IntID) 277 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 278 } 279 280 Function::~Function() { 281 dropAllReferences(); // After this it is safe to delete instructions. 282 283 // Delete all of the method arguments and unlink from symbol table... 284 ArgumentList.clear(); 285 286 // Remove the function from the on-the-side GC table. 287 clearGC(); 288 } 289 290 void Function::BuildLazyArguments() const { 291 // Create the arguments vector, all arguments start out unnamed. 292 FunctionType *FT = getFunctionType(); 293 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 294 assert(!FT->getParamType(i)->isVoidTy() && 295 "Cannot have void typed arguments!"); 296 ArgumentList.push_back(new Argument(FT->getParamType(i))); 297 } 298 299 // Clear the lazy arguments bit. 300 unsigned SDC = getSubclassDataFromValue(); 301 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 302 } 303 304 void Function::stealArgumentListFrom(Function &Src) { 305 assert(isDeclaration() && "Expected no references to current arguments"); 306 307 // Drop the current arguments, if any, and set the lazy argument bit. 308 if (!hasLazyArguments()) { 309 assert(llvm::all_of(ArgumentList, 310 [](const Argument &A) { return A.use_empty(); }) && 311 "Expected arguments to be unused in declaration"); 312 ArgumentList.clear(); 313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 314 } 315 316 // Nothing to steal if Src has lazy arguments. 317 if (Src.hasLazyArguments()) 318 return; 319 320 // Steal arguments from Src, and fix the lazy argument bits. 321 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 322 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 323 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 324 } 325 326 size_t Function::arg_size() const { 327 return getFunctionType()->getNumParams(); 328 } 329 bool Function::arg_empty() const { 330 return getFunctionType()->getNumParams() == 0; 331 } 332 333 // dropAllReferences() - This function causes all the subinstructions to "let 334 // go" of all references that they are maintaining. This allows one to 335 // 'delete' a whole class at a time, even though there may be circular 336 // references... first all references are dropped, and all use counts go to 337 // zero. Then everything is deleted for real. Note that no operations are 338 // valid on an object that has "dropped all references", except operator 339 // delete. 340 // 341 void Function::dropAllReferences() { 342 setIsMaterializable(false); 343 344 for (BasicBlock &BB : *this) 345 BB.dropAllReferences(); 346 347 // Delete all basic blocks. They are now unused, except possibly by 348 // blockaddresses, but BasicBlock's destructor takes care of those. 349 while (!BasicBlocks.empty()) 350 BasicBlocks.begin()->eraseFromParent(); 351 352 // Drop uses of any optional data (real or placeholder). 353 if (getNumOperands()) { 354 User::dropAllReferences(); 355 setNumHungOffUseOperands(0); 356 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 357 } 358 359 // Metadata is stored in a side-table. 360 clearMetadata(); 361 } 362 363 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 364 AttributeSet PAL = getAttributes(); 365 PAL = PAL.addAttribute(getContext(), i, Kind); 366 setAttributes(PAL); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute Attr) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Attr); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttributes(getContext(), i, Attrs); 378 setAttributes(PAL); 379 } 380 381 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.removeAttribute(getContext(), i, Kind); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, StringRef Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttributes(getContext(), i, Attrs); 396 setAttributes(PAL); 397 } 398 399 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 const std::string &Function::getGC() const { 412 assert(hasGC() && "Function has no collector"); 413 return getContext().getGC(*this); 414 } 415 416 void Function::setGC(std::string Str) { 417 setValueSubclassDataBit(14, !Str.empty()); 418 getContext().setGC(*this, std::move(Str)); 419 } 420 421 void Function::clearGC() { 422 if (!hasGC()) 423 return; 424 getContext().deleteGC(*this); 425 setValueSubclassDataBit(14, false); 426 } 427 428 /// Copy all additional attributes (those not needed to create a Function) from 429 /// the Function Src to this one. 430 void Function::copyAttributesFrom(const GlobalValue *Src) { 431 GlobalObject::copyAttributesFrom(Src); 432 const Function *SrcF = dyn_cast<Function>(Src); 433 if (!SrcF) 434 return; 435 436 setCallingConv(SrcF->getCallingConv()); 437 setAttributes(SrcF->getAttributes()); 438 if (SrcF->hasGC()) 439 setGC(SrcF->getGC()); 440 else 441 clearGC(); 442 if (SrcF->hasPersonalityFn()) 443 setPersonalityFn(SrcF->getPersonalityFn()); 444 if (SrcF->hasPrefixData()) 445 setPrefixData(SrcF->getPrefixData()); 446 if (SrcF->hasPrologueData()) 447 setPrologueData(SrcF->getPrologueData()); 448 } 449 450 /// Table of string intrinsic names indexed by enum value. 451 static const char * const IntrinsicNameTable[] = { 452 "not_intrinsic", 453 #define GET_INTRINSIC_NAME_TABLE 454 #include "llvm/IR/Intrinsics.gen" 455 #undef GET_INTRINSIC_NAME_TABLE 456 }; 457 458 /// Table of per-target intrinsic name tables. 459 #define GET_INTRINSIC_TARGET_DATA 460 #include "llvm/IR/Intrinsics.gen" 461 #undef GET_INTRINSIC_TARGET_DATA 462 463 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 464 /// target as \c Name, or the generic table if \c Name is not target specific. 465 /// 466 /// Returns the relevant slice of \c IntrinsicNameTable 467 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 468 assert(Name.startswith("llvm.")); 469 470 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 471 // Drop "llvm." and take the first dotted component. That will be the target 472 // if this is target specific. 473 StringRef Target = Name.drop_front(5).split('.').first; 474 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 475 [](const IntrinsicTargetInfo &TI, 476 StringRef Target) { return TI.Name < Target; }); 477 // We've either found the target or just fall back to the generic set, which 478 // is always first. 479 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 480 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 481 } 482 483 /// \brief This does the actual lookup of an intrinsic ID which 484 /// matches the given function name. 485 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 486 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 487 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 488 if (Idx == -1) 489 return Intrinsic::not_intrinsic; 490 491 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 492 // an index into a sub-table. 493 int Adjust = NameTable.data() - IntrinsicNameTable; 494 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 495 496 // If the intrinsic is not overloaded, require an exact match. If it is 497 // overloaded, require a prefix match. 498 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 499 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 500 } 501 502 void Function::recalculateIntrinsicID() { 503 const ValueName *ValName = this->getValueName(); 504 if (!ValName || !isIntrinsic()) { 505 IntID = Intrinsic::not_intrinsic; 506 return; 507 } 508 IntID = lookupIntrinsicID(ValName->getKey()); 509 } 510 511 /// Returns a stable mangling for the type specified for use in the name 512 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 513 /// of named types is simply their name. Manglings for unnamed types consist 514 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 515 /// combined with the mangling of their component types. A vararg function 516 /// type will have a suffix of 'vararg'. Since function types can contain 517 /// other function types, we close a function type mangling with suffix 'f' 518 /// which can't be confused with it's prefix. This ensures we don't have 519 /// collisions between two unrelated function types. Otherwise, you might 520 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 521 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 522 /// cases) fall back to the MVT codepath, where they could be mangled to 523 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 524 /// everything. 525 static std::string getMangledTypeStr(Type* Ty) { 526 std::string Result; 527 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 528 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 529 getMangledTypeStr(PTyp->getElementType()); 530 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 531 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 532 getMangledTypeStr(ATyp->getElementType()); 533 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 534 assert(!STyp->isLiteral() && "TODO: implement literal types"); 535 Result += STyp->getName(); 536 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 537 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 538 for (size_t i = 0; i < FT->getNumParams(); i++) 539 Result += getMangledTypeStr(FT->getParamType(i)); 540 if (FT->isVarArg()) 541 Result += "vararg"; 542 // Ensure nested function types are distinguishable. 543 Result += "f"; 544 } else if (isa<VectorType>(Ty)) 545 Result += "v" + utostr(Ty->getVectorNumElements()) + 546 getMangledTypeStr(Ty->getVectorElementType()); 547 else if (Ty) 548 Result += EVT::getEVT(Ty).getEVTString(); 549 return Result; 550 } 551 552 StringRef Intrinsic::getName(ID id) { 553 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 554 assert(!isOverloaded(id) && 555 "This version of getName does not support overloading"); 556 return IntrinsicNameTable[id]; 557 } 558 559 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 560 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 561 std::string Result(IntrinsicNameTable[id]); 562 for (Type *Ty : Tys) { 563 Result += "." + getMangledTypeStr(Ty); 564 } 565 return Result; 566 } 567 568 569 /// IIT_Info - These are enumerators that describe the entries returned by the 570 /// getIntrinsicInfoTableEntries function. 571 /// 572 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 573 enum IIT_Info { 574 // Common values should be encoded with 0-15. 575 IIT_Done = 0, 576 IIT_I1 = 1, 577 IIT_I8 = 2, 578 IIT_I16 = 3, 579 IIT_I32 = 4, 580 IIT_I64 = 5, 581 IIT_F16 = 6, 582 IIT_F32 = 7, 583 IIT_F64 = 8, 584 IIT_V2 = 9, 585 IIT_V4 = 10, 586 IIT_V8 = 11, 587 IIT_V16 = 12, 588 IIT_V32 = 13, 589 IIT_PTR = 14, 590 IIT_ARG = 15, 591 592 // Values from 16+ are only encodable with the inefficient encoding. 593 IIT_V64 = 16, 594 IIT_MMX = 17, 595 IIT_TOKEN = 18, 596 IIT_METADATA = 19, 597 IIT_EMPTYSTRUCT = 20, 598 IIT_STRUCT2 = 21, 599 IIT_STRUCT3 = 22, 600 IIT_STRUCT4 = 23, 601 IIT_STRUCT5 = 24, 602 IIT_EXTEND_ARG = 25, 603 IIT_TRUNC_ARG = 26, 604 IIT_ANYPTR = 27, 605 IIT_V1 = 28, 606 IIT_VARARG = 29, 607 IIT_HALF_VEC_ARG = 30, 608 IIT_SAME_VEC_WIDTH_ARG = 31, 609 IIT_PTR_TO_ARG = 32, 610 IIT_VEC_OF_PTRS_TO_ELT = 33, 611 IIT_I128 = 34, 612 IIT_V512 = 35, 613 IIT_V1024 = 36 614 }; 615 616 617 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 618 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 619 IIT_Info Info = IIT_Info(Infos[NextElt++]); 620 unsigned StructElts = 2; 621 using namespace Intrinsic; 622 623 switch (Info) { 624 case IIT_Done: 625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 626 return; 627 case IIT_VARARG: 628 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 629 return; 630 case IIT_MMX: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 632 return; 633 case IIT_TOKEN: 634 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 635 return; 636 case IIT_METADATA: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 638 return; 639 case IIT_F16: 640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 641 return; 642 case IIT_F32: 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 644 return; 645 case IIT_F64: 646 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 647 return; 648 case IIT_I1: 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 650 return; 651 case IIT_I8: 652 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 653 return; 654 case IIT_I16: 655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 656 return; 657 case IIT_I32: 658 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 659 return; 660 case IIT_I64: 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 662 return; 663 case IIT_I128: 664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 665 return; 666 case IIT_V1: 667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 668 DecodeIITType(NextElt, Infos, OutputTable); 669 return; 670 case IIT_V2: 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 672 DecodeIITType(NextElt, Infos, OutputTable); 673 return; 674 case IIT_V4: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 676 DecodeIITType(NextElt, Infos, OutputTable); 677 return; 678 case IIT_V8: 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 680 DecodeIITType(NextElt, Infos, OutputTable); 681 return; 682 case IIT_V16: 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 684 DecodeIITType(NextElt, Infos, OutputTable); 685 return; 686 case IIT_V32: 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 688 DecodeIITType(NextElt, Infos, OutputTable); 689 return; 690 case IIT_V64: 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 692 DecodeIITType(NextElt, Infos, OutputTable); 693 return; 694 case IIT_V512: 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 696 DecodeIITType(NextElt, Infos, OutputTable); 697 return; 698 case IIT_V1024: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 700 DecodeIITType(NextElt, Infos, OutputTable); 701 return; 702 case IIT_PTR: 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 708 Infos[NextElt++])); 709 DecodeIITType(NextElt, Infos, OutputTable); 710 return; 711 } 712 case IIT_ARG: { 713 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 715 return; 716 } 717 case IIT_EXTEND_ARG: { 718 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 719 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 720 ArgInfo)); 721 return; 722 } 723 case IIT_TRUNC_ARG: { 724 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 725 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 726 ArgInfo)); 727 return; 728 } 729 case IIT_HALF_VEC_ARG: { 730 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 732 ArgInfo)); 733 return; 734 } 735 case IIT_SAME_VEC_WIDTH_ARG: { 736 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 737 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 738 ArgInfo)); 739 return; 740 } 741 case IIT_PTR_TO_ARG: { 742 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 744 ArgInfo)); 745 return; 746 } 747 case IIT_VEC_OF_PTRS_TO_ELT: { 748 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 750 ArgInfo)); 751 return; 752 } 753 case IIT_EMPTYSTRUCT: 754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 755 return; 756 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 757 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 758 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 759 case IIT_STRUCT2: { 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 761 762 for (unsigned i = 0; i != StructElts; ++i) 763 DecodeIITType(NextElt, Infos, OutputTable); 764 return; 765 } 766 } 767 llvm_unreachable("unhandled"); 768 } 769 770 771 #define GET_INTRINSIC_GENERATOR_GLOBAL 772 #include "llvm/IR/Intrinsics.gen" 773 #undef GET_INTRINSIC_GENERATOR_GLOBAL 774 775 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 776 SmallVectorImpl<IITDescriptor> &T){ 777 // Check to see if the intrinsic's type was expressible by the table. 778 unsigned TableVal = IIT_Table[id-1]; 779 780 // Decode the TableVal into an array of IITValues. 781 SmallVector<unsigned char, 8> IITValues; 782 ArrayRef<unsigned char> IITEntries; 783 unsigned NextElt = 0; 784 if ((TableVal >> 31) != 0) { 785 // This is an offset into the IIT_LongEncodingTable. 786 IITEntries = IIT_LongEncodingTable; 787 788 // Strip sentinel bit. 789 NextElt = (TableVal << 1) >> 1; 790 } else { 791 // Decode the TableVal into an array of IITValues. If the entry was encoded 792 // into a single word in the table itself, decode it now. 793 do { 794 IITValues.push_back(TableVal & 0xF); 795 TableVal >>= 4; 796 } while (TableVal); 797 798 IITEntries = IITValues; 799 NextElt = 0; 800 } 801 802 // Okay, decode the table into the output vector of IITDescriptors. 803 DecodeIITType(NextElt, IITEntries, T); 804 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 805 DecodeIITType(NextElt, IITEntries, T); 806 } 807 808 809 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 810 ArrayRef<Type*> Tys, LLVMContext &Context) { 811 using namespace Intrinsic; 812 IITDescriptor D = Infos.front(); 813 Infos = Infos.slice(1); 814 815 switch (D.Kind) { 816 case IITDescriptor::Void: return Type::getVoidTy(Context); 817 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 818 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 819 case IITDescriptor::Token: return Type::getTokenTy(Context); 820 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 821 case IITDescriptor::Half: return Type::getHalfTy(Context); 822 case IITDescriptor::Float: return Type::getFloatTy(Context); 823 case IITDescriptor::Double: return Type::getDoubleTy(Context); 824 825 case IITDescriptor::Integer: 826 return IntegerType::get(Context, D.Integer_Width); 827 case IITDescriptor::Vector: 828 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 829 case IITDescriptor::Pointer: 830 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 831 D.Pointer_AddressSpace); 832 case IITDescriptor::Struct: { 833 Type *Elts[5]; 834 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 835 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 836 Elts[i] = DecodeFixedType(Infos, Tys, Context); 837 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 838 } 839 840 case IITDescriptor::Argument: 841 return Tys[D.getArgumentNumber()]; 842 case IITDescriptor::ExtendArgument: { 843 Type *Ty = Tys[D.getArgumentNumber()]; 844 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 845 return VectorType::getExtendedElementVectorType(VTy); 846 847 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 848 } 849 case IITDescriptor::TruncArgument: { 850 Type *Ty = Tys[D.getArgumentNumber()]; 851 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 852 return VectorType::getTruncatedElementVectorType(VTy); 853 854 IntegerType *ITy = cast<IntegerType>(Ty); 855 assert(ITy->getBitWidth() % 2 == 0); 856 return IntegerType::get(Context, ITy->getBitWidth() / 2); 857 } 858 case IITDescriptor::HalfVecArgument: 859 return VectorType::getHalfElementsVectorType(cast<VectorType>( 860 Tys[D.getArgumentNumber()])); 861 case IITDescriptor::SameVecWidthArgument: { 862 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 863 Type *Ty = Tys[D.getArgumentNumber()]; 864 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 865 return VectorType::get(EltTy, VTy->getNumElements()); 866 } 867 llvm_unreachable("unhandled"); 868 } 869 case IITDescriptor::PtrToArgument: { 870 Type *Ty = Tys[D.getArgumentNumber()]; 871 return PointerType::getUnqual(Ty); 872 } 873 case IITDescriptor::VecOfPtrsToElt: { 874 Type *Ty = Tys[D.getArgumentNumber()]; 875 VectorType *VTy = dyn_cast<VectorType>(Ty); 876 if (!VTy) 877 llvm_unreachable("Expected an argument of Vector Type"); 878 Type *EltTy = VTy->getVectorElementType(); 879 return VectorType::get(PointerType::getUnqual(EltTy), 880 VTy->getNumElements()); 881 } 882 } 883 llvm_unreachable("unhandled"); 884 } 885 886 887 888 FunctionType *Intrinsic::getType(LLVMContext &Context, 889 ID id, ArrayRef<Type*> Tys) { 890 SmallVector<IITDescriptor, 8> Table; 891 getIntrinsicInfoTableEntries(id, Table); 892 893 ArrayRef<IITDescriptor> TableRef = Table; 894 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 895 896 SmallVector<Type*, 8> ArgTys; 897 while (!TableRef.empty()) 898 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 899 900 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 901 // If we see void type as the type of the last argument, it is vararg intrinsic 902 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 903 ArgTys.pop_back(); 904 return FunctionType::get(ResultTy, ArgTys, true); 905 } 906 return FunctionType::get(ResultTy, ArgTys, false); 907 } 908 909 bool Intrinsic::isOverloaded(ID id) { 910 #define GET_INTRINSIC_OVERLOAD_TABLE 911 #include "llvm/IR/Intrinsics.gen" 912 #undef GET_INTRINSIC_OVERLOAD_TABLE 913 } 914 915 bool Intrinsic::isLeaf(ID id) { 916 switch (id) { 917 default: 918 return true; 919 920 case Intrinsic::experimental_gc_statepoint: 921 case Intrinsic::experimental_patchpoint_void: 922 case Intrinsic::experimental_patchpoint_i64: 923 return false; 924 } 925 } 926 927 /// This defines the "Intrinsic::getAttributes(ID id)" method. 928 #define GET_INTRINSIC_ATTRIBUTES 929 #include "llvm/IR/Intrinsics.gen" 930 #undef GET_INTRINSIC_ATTRIBUTES 931 932 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 933 // There can never be multiple globals with the same name of different types, 934 // because intrinsics must be a specific type. 935 return 936 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 937 getType(M->getContext(), id, Tys))); 938 } 939 940 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 941 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 942 #include "llvm/IR/Intrinsics.gen" 943 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 944 945 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 946 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 947 #include "llvm/IR/Intrinsics.gen" 948 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 949 950 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 951 SmallVectorImpl<Type*> &ArgTys) { 952 using namespace Intrinsic; 953 954 // If we ran out of descriptors, there are too many arguments. 955 if (Infos.empty()) return true; 956 IITDescriptor D = Infos.front(); 957 Infos = Infos.slice(1); 958 959 switch (D.Kind) { 960 case IITDescriptor::Void: return !Ty->isVoidTy(); 961 case IITDescriptor::VarArg: return true; 962 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 963 case IITDescriptor::Token: return !Ty->isTokenTy(); 964 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 965 case IITDescriptor::Half: return !Ty->isHalfTy(); 966 case IITDescriptor::Float: return !Ty->isFloatTy(); 967 case IITDescriptor::Double: return !Ty->isDoubleTy(); 968 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 969 case IITDescriptor::Vector: { 970 VectorType *VT = dyn_cast<VectorType>(Ty); 971 return !VT || VT->getNumElements() != D.Vector_Width || 972 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 973 } 974 case IITDescriptor::Pointer: { 975 PointerType *PT = dyn_cast<PointerType>(Ty); 976 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 977 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 978 } 979 980 case IITDescriptor::Struct: { 981 StructType *ST = dyn_cast<StructType>(Ty); 982 if (!ST || ST->getNumElements() != D.Struct_NumElements) 983 return true; 984 985 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 986 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 987 return true; 988 return false; 989 } 990 991 case IITDescriptor::Argument: 992 // Two cases here - If this is the second occurrence of an argument, verify 993 // that the later instance matches the previous instance. 994 if (D.getArgumentNumber() < ArgTys.size()) 995 return Ty != ArgTys[D.getArgumentNumber()]; 996 997 // Otherwise, if this is the first instance of an argument, record it and 998 // verify the "Any" kind. 999 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1000 ArgTys.push_back(Ty); 1001 1002 switch (D.getArgumentKind()) { 1003 case IITDescriptor::AK_Any: return false; // Success 1004 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1005 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1006 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1007 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1008 } 1009 llvm_unreachable("all argument kinds not covered"); 1010 1011 case IITDescriptor::ExtendArgument: { 1012 // This may only be used when referring to a previous vector argument. 1013 if (D.getArgumentNumber() >= ArgTys.size()) 1014 return true; 1015 1016 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1017 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1018 NewTy = VectorType::getExtendedElementVectorType(VTy); 1019 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1020 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1021 else 1022 return true; 1023 1024 return Ty != NewTy; 1025 } 1026 case IITDescriptor::TruncArgument: { 1027 // This may only be used when referring to a previous vector argument. 1028 if (D.getArgumentNumber() >= ArgTys.size()) 1029 return true; 1030 1031 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1032 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1033 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1034 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1035 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1036 else 1037 return true; 1038 1039 return Ty != NewTy; 1040 } 1041 case IITDescriptor::HalfVecArgument: 1042 // This may only be used when referring to a previous vector argument. 1043 return D.getArgumentNumber() >= ArgTys.size() || 1044 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1045 VectorType::getHalfElementsVectorType( 1046 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1047 case IITDescriptor::SameVecWidthArgument: { 1048 if (D.getArgumentNumber() >= ArgTys.size()) 1049 return true; 1050 VectorType * ReferenceType = 1051 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1052 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1053 if (!ThisArgType || !ReferenceType || 1054 (ReferenceType->getVectorNumElements() != 1055 ThisArgType->getVectorNumElements())) 1056 return true; 1057 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1058 Infos, ArgTys); 1059 } 1060 case IITDescriptor::PtrToArgument: { 1061 if (D.getArgumentNumber() >= ArgTys.size()) 1062 return true; 1063 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1064 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1065 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1066 } 1067 case IITDescriptor::VecOfPtrsToElt: { 1068 if (D.getArgumentNumber() >= ArgTys.size()) 1069 return true; 1070 VectorType * ReferenceType = 1071 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1072 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1073 if (!ThisArgVecTy || !ReferenceType || 1074 (ReferenceType->getVectorNumElements() != 1075 ThisArgVecTy->getVectorNumElements())) 1076 return true; 1077 PointerType *ThisArgEltTy = 1078 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1079 if (!ThisArgEltTy) 1080 return true; 1081 return ThisArgEltTy->getElementType() != 1082 ReferenceType->getVectorElementType(); 1083 } 1084 } 1085 llvm_unreachable("unhandled"); 1086 } 1087 1088 bool 1089 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1090 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1091 // If there are no descriptors left, then it can't be a vararg. 1092 if (Infos.empty()) 1093 return isVarArg; 1094 1095 // There should be only one descriptor remaining at this point. 1096 if (Infos.size() != 1) 1097 return true; 1098 1099 // Check and verify the descriptor. 1100 IITDescriptor D = Infos.front(); 1101 Infos = Infos.slice(1); 1102 if (D.Kind == IITDescriptor::VarArg) 1103 return !isVarArg; 1104 1105 return true; 1106 } 1107 1108 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1109 Intrinsic::ID ID = F->getIntrinsicID(); 1110 if (!ID) 1111 return None; 1112 1113 FunctionType *FTy = F->getFunctionType(); 1114 // Accumulate an array of overloaded types for the given intrinsic 1115 SmallVector<Type *, 4> ArgTys; 1116 { 1117 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1118 getIntrinsicInfoTableEntries(ID, Table); 1119 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1120 1121 // If we encounter any problems matching the signature with the descriptor 1122 // just give up remangling. It's up to verifier to report the discrepancy. 1123 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1124 return None; 1125 for (auto Ty : FTy->params()) 1126 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1127 return None; 1128 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1129 return None; 1130 } 1131 1132 StringRef Name = F->getName(); 1133 if (Name == Intrinsic::getName(ID, ArgTys)) 1134 return None; 1135 1136 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1137 NewDecl->setCallingConv(F->getCallingConv()); 1138 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1139 return NewDecl; 1140 } 1141 1142 /// hasAddressTaken - returns true if there are any uses of this function 1143 /// other than direct calls or invokes to it. 1144 bool Function::hasAddressTaken(const User* *PutOffender) const { 1145 for (const Use &U : uses()) { 1146 const User *FU = U.getUser(); 1147 if (isa<BlockAddress>(FU)) 1148 continue; 1149 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1150 if (PutOffender) 1151 *PutOffender = FU; 1152 return true; 1153 } 1154 ImmutableCallSite CS(cast<Instruction>(FU)); 1155 if (!CS.isCallee(&U)) { 1156 if (PutOffender) 1157 *PutOffender = FU; 1158 return true; 1159 } 1160 } 1161 return false; 1162 } 1163 1164 bool Function::isDefTriviallyDead() const { 1165 // Check the linkage 1166 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1167 !hasAvailableExternallyLinkage()) 1168 return false; 1169 1170 // Check if the function is used by anything other than a blockaddress. 1171 for (const User *U : users()) 1172 if (!isa<BlockAddress>(U)) 1173 return false; 1174 1175 return true; 1176 } 1177 1178 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1179 /// setjmp or other function that gcc recognizes as "returning twice". 1180 bool Function::callsFunctionThatReturnsTwice() const { 1181 for (const_inst_iterator 1182 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1183 ImmutableCallSite CS(&*I); 1184 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1185 return true; 1186 } 1187 1188 return false; 1189 } 1190 1191 Constant *Function::getPersonalityFn() const { 1192 assert(hasPersonalityFn() && getNumOperands()); 1193 return cast<Constant>(Op<0>()); 1194 } 1195 1196 void Function::setPersonalityFn(Constant *Fn) { 1197 setHungoffOperand<0>(Fn); 1198 setValueSubclassDataBit(3, Fn != nullptr); 1199 } 1200 1201 Constant *Function::getPrefixData() const { 1202 assert(hasPrefixData() && getNumOperands()); 1203 return cast<Constant>(Op<1>()); 1204 } 1205 1206 void Function::setPrefixData(Constant *PrefixData) { 1207 setHungoffOperand<1>(PrefixData); 1208 setValueSubclassDataBit(1, PrefixData != nullptr); 1209 } 1210 1211 Constant *Function::getPrologueData() const { 1212 assert(hasPrologueData() && getNumOperands()); 1213 return cast<Constant>(Op<2>()); 1214 } 1215 1216 void Function::setPrologueData(Constant *PrologueData) { 1217 setHungoffOperand<2>(PrologueData); 1218 setValueSubclassDataBit(2, PrologueData != nullptr); 1219 } 1220 1221 void Function::allocHungoffUselist() { 1222 // If we've already allocated a uselist, stop here. 1223 if (getNumOperands()) 1224 return; 1225 1226 allocHungoffUses(3, /*IsPhi=*/ false); 1227 setNumHungOffUseOperands(3); 1228 1229 // Initialize the uselist with placeholder operands to allow traversal. 1230 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1231 Op<0>().set(CPN); 1232 Op<1>().set(CPN); 1233 Op<2>().set(CPN); 1234 } 1235 1236 template <int Idx> 1237 void Function::setHungoffOperand(Constant *C) { 1238 if (C) { 1239 allocHungoffUselist(); 1240 Op<Idx>().set(C); 1241 } else if (getNumOperands()) { 1242 Op<Idx>().set( 1243 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1244 } 1245 } 1246 1247 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1248 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1249 if (On) 1250 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1251 else 1252 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1253 } 1254 1255 void Function::setEntryCount(uint64_t Count) { 1256 MDBuilder MDB(getContext()); 1257 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1258 } 1259 1260 Optional<uint64_t> Function::getEntryCount() const { 1261 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1262 if (MD && MD->getOperand(0)) 1263 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1264 if (MDS->getString().equals("function_entry_count")) { 1265 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1266 uint64_t Count = CI->getValue().getZExtValue(); 1267 if (Count == 0) 1268 return None; 1269 return Count; 1270 } 1271 return None; 1272 } 1273 1274 void Function::setSectionPrefix(StringRef Prefix) { 1275 MDBuilder MDB(getContext()); 1276 setMetadata(LLVMContext::MD_section_prefix, 1277 MDB.createFunctionSectionPrefix(Prefix)); 1278 } 1279 1280 Optional<StringRef> Function::getSectionPrefix() const { 1281 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1282 assert(dyn_cast<MDString>(MD->getOperand(0)) 1283 ->getString() 1284 .equals("function_section_prefix") && 1285 "Metadata not match"); 1286 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1287 } 1288 return None; 1289 } 1290