1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, unsigned ArgNo) 43 : Value(Ty, Value::ArgumentVal), Parent(nullptr), ArgNo(ArgNo) { 44 setName(Name); 45 } 46 47 void Argument::setParent(Function *parent) { 48 Parent = parent; 49 } 50 51 bool Argument::hasNonNullAttr() const { 52 if (!getType()->isPointerTy()) return false; 53 if (getParent()->getAttributes(). 54 hasAttribute(getArgNo()+1, Attribute::NonNull)) 55 return true; 56 else if (getDereferenceableBytes() > 0 && 57 getType()->getPointerAddressSpace() == 0) 58 return true; 59 return false; 60 } 61 62 bool Argument::hasByValAttr() const { 63 if (!getType()->isPointerTy()) return false; 64 return hasAttribute(Attribute::ByVal); 65 } 66 67 bool Argument::hasSwiftSelfAttr() const { 68 return getParent()->getAttributes(). 69 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 70 } 71 72 bool Argument::hasSwiftErrorAttr() const { 73 return getParent()->getAttributes(). 74 hasAttribute(getArgNo()+1, Attribute::SwiftError); 75 } 76 77 bool Argument::hasInAllocaAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 return hasAttribute(Attribute::InAlloca); 80 } 81 82 bool Argument::hasByValOrInAllocaAttr() const { 83 if (!getType()->isPointerTy()) return false; 84 AttributeSet Attrs = getParent()->getAttributes(); 85 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 86 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 87 } 88 89 unsigned Argument::getParamAlignment() const { 90 assert(getType()->isPointerTy() && "Only pointers have alignments"); 91 return getParent()->getParamAlignment(getArgNo()+1); 92 93 } 94 95 uint64_t Argument::getDereferenceableBytes() const { 96 assert(getType()->isPointerTy() && 97 "Only pointers have dereferenceable bytes"); 98 return getParent()->getDereferenceableBytes(getArgNo()+1); 99 } 100 101 uint64_t Argument::getDereferenceableOrNullBytes() const { 102 assert(getType()->isPointerTy() && 103 "Only pointers have dereferenceable bytes"); 104 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 105 } 106 107 bool Argument::hasNestAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 return hasAttribute(Attribute::Nest); 110 } 111 112 bool Argument::hasNoAliasAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::NoAlias); 115 } 116 117 bool Argument::hasNoCaptureAttr() const { 118 if (!getType()->isPointerTy()) return false; 119 return hasAttribute(Attribute::NoCapture); 120 } 121 122 bool Argument::hasStructRetAttr() const { 123 if (!getType()->isPointerTy()) return false; 124 return hasAttribute(Attribute::StructRet); 125 } 126 127 bool Argument::hasReturnedAttr() const { 128 return hasAttribute(Attribute::Returned); 129 } 130 131 bool Argument::hasZExtAttr() const { 132 return hasAttribute(Attribute::ZExt); 133 } 134 135 bool Argument::hasSExtAttr() const { 136 return hasAttribute(Attribute::SExt); 137 } 138 139 bool Argument::onlyReadsMemory() const { 140 return getParent()->getAttributes(). 141 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 142 getParent()->getAttributes(). 143 hasAttribute(getArgNo()+1, Attribute::ReadNone); 144 } 145 146 void Argument::addAttr(AttributeSet AS) { 147 assert(AS.getNumSlots() <= 1 && 148 "Trying to add more than one attribute set to an argument!"); 149 AttrBuilder B(AS, AS.getSlotIndex(0)); 150 getParent()->addAttributes(getArgNo() + 1, 151 AttributeSet::get(Parent->getContext(), 152 getArgNo() + 1, B)); 153 } 154 155 void Argument::removeAttr(AttributeSet AS) { 156 assert(AS.getNumSlots() <= 1 && 157 "Trying to remove more than one attribute set from an argument!"); 158 AttrBuilder B(AS, AS.getSlotIndex(0)); 159 getParent()->removeAttributes(getArgNo() + 1, 160 AttributeSet::get(Parent->getContext(), 161 getArgNo() + 1, B)); 162 } 163 164 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 165 return getParent()->hasAttribute(getArgNo() + 1, Kind); 166 } 167 168 //===----------------------------------------------------------------------===// 169 // Helper Methods in Function 170 //===----------------------------------------------------------------------===// 171 172 LLVMContext &Function::getContext() const { 173 return getType()->getContext(); 174 } 175 176 void Function::removeFromParent() { 177 getParent()->getFunctionList().remove(getIterator()); 178 } 179 180 void Function::eraseFromParent() { 181 getParent()->getFunctionList().erase(getIterator()); 182 } 183 184 //===----------------------------------------------------------------------===// 185 // Function Implementation 186 //===----------------------------------------------------------------------===// 187 188 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 189 Module *ParentModule) 190 : GlobalObject(Ty, Value::FunctionVal, 191 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 192 assert(FunctionType::isValidReturnType(getReturnType()) && 193 "invalid return type"); 194 setGlobalObjectSubClassData(0); 195 196 // We only need a symbol table for a function if the context keeps value names 197 if (!getContext().shouldDiscardValueNames()) 198 SymTab = make_unique<ValueSymbolTable>(); 199 200 // If the function has arguments, mark them as lazily built. 201 if (Ty->getNumParams()) 202 setValueSubclassData(1); // Set the "has lazy arguments" bit. 203 204 if (ParentModule) 205 ParentModule->getFunctionList().push_back(this); 206 207 HasLLVMReservedName = getName().startswith("llvm."); 208 // Ensure intrinsics have the right parameter attributes. 209 // Note, the IntID field will have been set in Value::setName if this function 210 // name is a valid intrinsic ID. 211 if (IntID) 212 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 213 } 214 215 Function::~Function() { 216 dropAllReferences(); // After this it is safe to delete instructions. 217 218 // Delete all of the method arguments and unlink from symbol table... 219 ArgumentList.clear(); 220 221 // Remove the function from the on-the-side GC table. 222 clearGC(); 223 } 224 225 void Function::BuildLazyArguments() const { 226 // Create the arguments vector, all arguments start out unnamed. 227 FunctionType *FT = getFunctionType(); 228 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 229 assert(!FT->getParamType(i)->isVoidTy() && 230 "Cannot have void typed arguments!"); 231 ArgumentList.push_back( 232 new Argument(FT->getParamType(i), "", i)); 233 } 234 235 // Clear the lazy arguments bit. 236 unsigned SDC = getSubclassDataFromValue(); 237 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 238 } 239 240 void Function::stealArgumentListFrom(Function &Src) { 241 assert(isDeclaration() && "Expected no references to current arguments"); 242 243 // Drop the current arguments, if any, and set the lazy argument bit. 244 if (!hasLazyArguments()) { 245 assert(llvm::all_of(ArgumentList, 246 [](const Argument &A) { return A.use_empty(); }) && 247 "Expected arguments to be unused in declaration"); 248 ArgumentList.clear(); 249 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 250 } 251 252 // Nothing to steal if Src has lazy arguments. 253 if (Src.hasLazyArguments()) 254 return; 255 256 // Steal arguments from Src, and fix the lazy argument bits. 257 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 258 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 259 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 260 } 261 262 // dropAllReferences() - This function causes all the subinstructions to "let 263 // go" of all references that they are maintaining. This allows one to 264 // 'delete' a whole class at a time, even though there may be circular 265 // references... first all references are dropped, and all use counts go to 266 // zero. Then everything is deleted for real. Note that no operations are 267 // valid on an object that has "dropped all references", except operator 268 // delete. 269 // 270 void Function::dropAllReferences() { 271 setIsMaterializable(false); 272 273 for (BasicBlock &BB : *this) 274 BB.dropAllReferences(); 275 276 // Delete all basic blocks. They are now unused, except possibly by 277 // blockaddresses, but BasicBlock's destructor takes care of those. 278 while (!BasicBlocks.empty()) 279 BasicBlocks.begin()->eraseFromParent(); 280 281 // Drop uses of any optional data (real or placeholder). 282 if (getNumOperands()) { 283 User::dropAllReferences(); 284 setNumHungOffUseOperands(0); 285 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 286 } 287 288 // Metadata is stored in a side-table. 289 clearMetadata(); 290 } 291 292 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 293 AttributeSet PAL = getAttributes(); 294 PAL = PAL.addAttribute(getContext(), i, Kind); 295 setAttributes(PAL); 296 } 297 298 void Function::addAttribute(unsigned i, Attribute Attr) { 299 AttributeSet PAL = getAttributes(); 300 PAL = PAL.addAttribute(getContext(), i, Attr); 301 setAttributes(PAL); 302 } 303 304 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 305 AttributeSet PAL = getAttributes(); 306 PAL = PAL.addAttributes(getContext(), i, Attrs); 307 setAttributes(PAL); 308 } 309 310 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 311 AttributeSet PAL = getAttributes(); 312 PAL = PAL.removeAttribute(getContext(), i, Kind); 313 setAttributes(PAL); 314 } 315 316 void Function::removeAttribute(unsigned i, StringRef Kind) { 317 AttributeSet PAL = getAttributes(); 318 PAL = PAL.removeAttribute(getContext(), i, Kind); 319 setAttributes(PAL); 320 } 321 322 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 323 AttributeSet PAL = getAttributes(); 324 PAL = PAL.removeAttributes(getContext(), i, Attrs); 325 setAttributes(PAL); 326 } 327 328 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 329 AttributeSet PAL = getAttributes(); 330 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 331 setAttributes(PAL); 332 } 333 334 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 335 AttributeSet PAL = getAttributes(); 336 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 337 setAttributes(PAL); 338 } 339 340 const std::string &Function::getGC() const { 341 assert(hasGC() && "Function has no collector"); 342 return getContext().getGC(*this); 343 } 344 345 void Function::setGC(std::string Str) { 346 setValueSubclassDataBit(14, !Str.empty()); 347 getContext().setGC(*this, std::move(Str)); 348 } 349 350 void Function::clearGC() { 351 if (!hasGC()) 352 return; 353 getContext().deleteGC(*this); 354 setValueSubclassDataBit(14, false); 355 } 356 357 /// Copy all additional attributes (those not needed to create a Function) from 358 /// the Function Src to this one. 359 void Function::copyAttributesFrom(const GlobalValue *Src) { 360 GlobalObject::copyAttributesFrom(Src); 361 const Function *SrcF = dyn_cast<Function>(Src); 362 if (!SrcF) 363 return; 364 365 setCallingConv(SrcF->getCallingConv()); 366 setAttributes(SrcF->getAttributes()); 367 if (SrcF->hasGC()) 368 setGC(SrcF->getGC()); 369 else 370 clearGC(); 371 if (SrcF->hasPersonalityFn()) 372 setPersonalityFn(SrcF->getPersonalityFn()); 373 if (SrcF->hasPrefixData()) 374 setPrefixData(SrcF->getPrefixData()); 375 if (SrcF->hasPrologueData()) 376 setPrologueData(SrcF->getPrologueData()); 377 } 378 379 /// Table of string intrinsic names indexed by enum value. 380 static const char * const IntrinsicNameTable[] = { 381 "not_intrinsic", 382 #define GET_INTRINSIC_NAME_TABLE 383 #include "llvm/IR/Intrinsics.gen" 384 #undef GET_INTRINSIC_NAME_TABLE 385 }; 386 387 /// Table of per-target intrinsic name tables. 388 #define GET_INTRINSIC_TARGET_DATA 389 #include "llvm/IR/Intrinsics.gen" 390 #undef GET_INTRINSIC_TARGET_DATA 391 392 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 393 /// target as \c Name, or the generic table if \c Name is not target specific. 394 /// 395 /// Returns the relevant slice of \c IntrinsicNameTable 396 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 397 assert(Name.startswith("llvm.")); 398 399 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 400 // Drop "llvm." and take the first dotted component. That will be the target 401 // if this is target specific. 402 StringRef Target = Name.drop_front(5).split('.').first; 403 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 404 [](const IntrinsicTargetInfo &TI, 405 StringRef Target) { return TI.Name < Target; }); 406 // We've either found the target or just fall back to the generic set, which 407 // is always first. 408 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 409 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 410 } 411 412 /// \brief This does the actual lookup of an intrinsic ID which 413 /// matches the given function name. 414 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 415 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 416 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 417 if (Idx == -1) 418 return Intrinsic::not_intrinsic; 419 420 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 421 // an index into a sub-table. 422 int Adjust = NameTable.data() - IntrinsicNameTable; 423 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 424 425 // If the intrinsic is not overloaded, require an exact match. If it is 426 // overloaded, require a prefix match. 427 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 428 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 429 } 430 431 void Function::recalculateIntrinsicID() { 432 StringRef Name = getName(); 433 if (!Name.startswith("llvm.")) { 434 HasLLVMReservedName = false; 435 IntID = Intrinsic::not_intrinsic; 436 return; 437 } 438 HasLLVMReservedName = true; 439 IntID = lookupIntrinsicID(Name); 440 } 441 442 /// Returns a stable mangling for the type specified for use in the name 443 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 444 /// of named types is simply their name. Manglings for unnamed types consist 445 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 446 /// combined with the mangling of their component types. A vararg function 447 /// type will have a suffix of 'vararg'. Since function types can contain 448 /// other function types, we close a function type mangling with suffix 'f' 449 /// which can't be confused with it's prefix. This ensures we don't have 450 /// collisions between two unrelated function types. Otherwise, you might 451 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 452 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 453 /// cases) fall back to the MVT codepath, where they could be mangled to 454 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 455 /// everything. 456 static std::string getMangledTypeStr(Type* Ty) { 457 std::string Result; 458 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 459 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 460 getMangledTypeStr(PTyp->getElementType()); 461 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 462 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 463 getMangledTypeStr(ATyp->getElementType()); 464 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 465 if (!STyp->isLiteral()) { 466 Result += "s_"; 467 Result += STyp->getName(); 468 } else { 469 Result += "sl_"; 470 for (auto Elem : STyp->elements()) 471 Result += getMangledTypeStr(Elem); 472 } 473 // Ensure nested structs are distinguishable. 474 Result += "s"; 475 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 476 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 477 for (size_t i = 0; i < FT->getNumParams(); i++) 478 Result += getMangledTypeStr(FT->getParamType(i)); 479 if (FT->isVarArg()) 480 Result += "vararg"; 481 // Ensure nested function types are distinguishable. 482 Result += "f"; 483 } else if (isa<VectorType>(Ty)) 484 Result += "v" + utostr(Ty->getVectorNumElements()) + 485 getMangledTypeStr(Ty->getVectorElementType()); 486 else if (Ty) 487 Result += EVT::getEVT(Ty).getEVTString(); 488 return Result; 489 } 490 491 StringRef Intrinsic::getName(ID id) { 492 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 493 assert(!isOverloaded(id) && 494 "This version of getName does not support overloading"); 495 return IntrinsicNameTable[id]; 496 } 497 498 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 499 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 500 std::string Result(IntrinsicNameTable[id]); 501 for (Type *Ty : Tys) { 502 Result += "." + getMangledTypeStr(Ty); 503 } 504 return Result; 505 } 506 507 508 /// IIT_Info - These are enumerators that describe the entries returned by the 509 /// getIntrinsicInfoTableEntries function. 510 /// 511 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 512 enum IIT_Info { 513 // Common values should be encoded with 0-15. 514 IIT_Done = 0, 515 IIT_I1 = 1, 516 IIT_I8 = 2, 517 IIT_I16 = 3, 518 IIT_I32 = 4, 519 IIT_I64 = 5, 520 IIT_F16 = 6, 521 IIT_F32 = 7, 522 IIT_F64 = 8, 523 IIT_V2 = 9, 524 IIT_V4 = 10, 525 IIT_V8 = 11, 526 IIT_V16 = 12, 527 IIT_V32 = 13, 528 IIT_PTR = 14, 529 IIT_ARG = 15, 530 531 // Values from 16+ are only encodable with the inefficient encoding. 532 IIT_V64 = 16, 533 IIT_MMX = 17, 534 IIT_TOKEN = 18, 535 IIT_METADATA = 19, 536 IIT_EMPTYSTRUCT = 20, 537 IIT_STRUCT2 = 21, 538 IIT_STRUCT3 = 22, 539 IIT_STRUCT4 = 23, 540 IIT_STRUCT5 = 24, 541 IIT_EXTEND_ARG = 25, 542 IIT_TRUNC_ARG = 26, 543 IIT_ANYPTR = 27, 544 IIT_V1 = 28, 545 IIT_VARARG = 29, 546 IIT_HALF_VEC_ARG = 30, 547 IIT_SAME_VEC_WIDTH_ARG = 31, 548 IIT_PTR_TO_ARG = 32, 549 IIT_PTR_TO_ELT = 33, 550 IIT_VEC_OF_PTRS_TO_ELT = 34, 551 IIT_I128 = 35, 552 IIT_V512 = 36, 553 IIT_V1024 = 37 554 }; 555 556 557 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 558 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 559 IIT_Info Info = IIT_Info(Infos[NextElt++]); 560 unsigned StructElts = 2; 561 using namespace Intrinsic; 562 563 switch (Info) { 564 case IIT_Done: 565 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 566 return; 567 case IIT_VARARG: 568 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 569 return; 570 case IIT_MMX: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 572 return; 573 case IIT_TOKEN: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 575 return; 576 case IIT_METADATA: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 578 return; 579 case IIT_F16: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 581 return; 582 case IIT_F32: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 584 return; 585 case IIT_F64: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 587 return; 588 case IIT_I1: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 590 return; 591 case IIT_I8: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 593 return; 594 case IIT_I16: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 596 return; 597 case IIT_I32: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 599 return; 600 case IIT_I64: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 602 return; 603 case IIT_I128: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 605 return; 606 case IIT_V1: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 608 DecodeIITType(NextElt, Infos, OutputTable); 609 return; 610 case IIT_V2: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 612 DecodeIITType(NextElt, Infos, OutputTable); 613 return; 614 case IIT_V4: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 616 DecodeIITType(NextElt, Infos, OutputTable); 617 return; 618 case IIT_V8: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V16: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_V32: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_V64: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 632 DecodeIITType(NextElt, Infos, OutputTable); 633 return; 634 case IIT_V512: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 case IIT_V1024: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 640 DecodeIITType(NextElt, Infos, OutputTable); 641 return; 642 case IIT_PTR: 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 644 DecodeIITType(NextElt, Infos, OutputTable); 645 return; 646 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 648 Infos[NextElt++])); 649 DecodeIITType(NextElt, Infos, OutputTable); 650 return; 651 } 652 case IIT_ARG: { 653 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 655 return; 656 } 657 case IIT_EXTEND_ARG: { 658 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 660 ArgInfo)); 661 return; 662 } 663 case IIT_TRUNC_ARG: { 664 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 666 ArgInfo)); 667 return; 668 } 669 case IIT_HALF_VEC_ARG: { 670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 672 ArgInfo)); 673 return; 674 } 675 case IIT_SAME_VEC_WIDTH_ARG: { 676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 678 ArgInfo)); 679 return; 680 } 681 case IIT_PTR_TO_ARG: { 682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 684 ArgInfo)); 685 return; 686 } 687 case IIT_PTR_TO_ELT: { 688 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 690 return; 691 } 692 case IIT_VEC_OF_PTRS_TO_ELT: { 693 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 695 ArgInfo)); 696 return; 697 } 698 case IIT_EMPTYSTRUCT: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 700 return; 701 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 702 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 703 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 704 case IIT_STRUCT2: { 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 706 707 for (unsigned i = 0; i != StructElts; ++i) 708 DecodeIITType(NextElt, Infos, OutputTable); 709 return; 710 } 711 } 712 llvm_unreachable("unhandled"); 713 } 714 715 716 #define GET_INTRINSIC_GENERATOR_GLOBAL 717 #include "llvm/IR/Intrinsics.gen" 718 #undef GET_INTRINSIC_GENERATOR_GLOBAL 719 720 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 721 SmallVectorImpl<IITDescriptor> &T){ 722 // Check to see if the intrinsic's type was expressible by the table. 723 unsigned TableVal = IIT_Table[id-1]; 724 725 // Decode the TableVal into an array of IITValues. 726 SmallVector<unsigned char, 8> IITValues; 727 ArrayRef<unsigned char> IITEntries; 728 unsigned NextElt = 0; 729 if ((TableVal >> 31) != 0) { 730 // This is an offset into the IIT_LongEncodingTable. 731 IITEntries = IIT_LongEncodingTable; 732 733 // Strip sentinel bit. 734 NextElt = (TableVal << 1) >> 1; 735 } else { 736 // Decode the TableVal into an array of IITValues. If the entry was encoded 737 // into a single word in the table itself, decode it now. 738 do { 739 IITValues.push_back(TableVal & 0xF); 740 TableVal >>= 4; 741 } while (TableVal); 742 743 IITEntries = IITValues; 744 NextElt = 0; 745 } 746 747 // Okay, decode the table into the output vector of IITDescriptors. 748 DecodeIITType(NextElt, IITEntries, T); 749 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 750 DecodeIITType(NextElt, IITEntries, T); 751 } 752 753 754 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 755 ArrayRef<Type*> Tys, LLVMContext &Context) { 756 using namespace Intrinsic; 757 IITDescriptor D = Infos.front(); 758 Infos = Infos.slice(1); 759 760 switch (D.Kind) { 761 case IITDescriptor::Void: return Type::getVoidTy(Context); 762 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 763 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 764 case IITDescriptor::Token: return Type::getTokenTy(Context); 765 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 766 case IITDescriptor::Half: return Type::getHalfTy(Context); 767 case IITDescriptor::Float: return Type::getFloatTy(Context); 768 case IITDescriptor::Double: return Type::getDoubleTy(Context); 769 770 case IITDescriptor::Integer: 771 return IntegerType::get(Context, D.Integer_Width); 772 case IITDescriptor::Vector: 773 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 774 case IITDescriptor::Pointer: 775 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 776 D.Pointer_AddressSpace); 777 case IITDescriptor::Struct: { 778 Type *Elts[5]; 779 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 780 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 781 Elts[i] = DecodeFixedType(Infos, Tys, Context); 782 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 783 } 784 785 case IITDescriptor::Argument: 786 return Tys[D.getArgumentNumber()]; 787 case IITDescriptor::ExtendArgument: { 788 Type *Ty = Tys[D.getArgumentNumber()]; 789 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 790 return VectorType::getExtendedElementVectorType(VTy); 791 792 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 793 } 794 case IITDescriptor::TruncArgument: { 795 Type *Ty = Tys[D.getArgumentNumber()]; 796 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 797 return VectorType::getTruncatedElementVectorType(VTy); 798 799 IntegerType *ITy = cast<IntegerType>(Ty); 800 assert(ITy->getBitWidth() % 2 == 0); 801 return IntegerType::get(Context, ITy->getBitWidth() / 2); 802 } 803 case IITDescriptor::HalfVecArgument: 804 return VectorType::getHalfElementsVectorType(cast<VectorType>( 805 Tys[D.getArgumentNumber()])); 806 case IITDescriptor::SameVecWidthArgument: { 807 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 808 Type *Ty = Tys[D.getArgumentNumber()]; 809 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 810 return VectorType::get(EltTy, VTy->getNumElements()); 811 } 812 llvm_unreachable("unhandled"); 813 } 814 case IITDescriptor::PtrToArgument: { 815 Type *Ty = Tys[D.getArgumentNumber()]; 816 return PointerType::getUnqual(Ty); 817 } 818 case IITDescriptor::PtrToElt: { 819 Type *Ty = Tys[D.getArgumentNumber()]; 820 VectorType *VTy = dyn_cast<VectorType>(Ty); 821 if (!VTy) 822 llvm_unreachable("Expected an argument of Vector Type"); 823 Type *EltTy = VTy->getVectorElementType(); 824 return PointerType::getUnqual(EltTy); 825 } 826 case IITDescriptor::VecOfPtrsToElt: { 827 Type *Ty = Tys[D.getArgumentNumber()]; 828 VectorType *VTy = dyn_cast<VectorType>(Ty); 829 if (!VTy) 830 llvm_unreachable("Expected an argument of Vector Type"); 831 Type *EltTy = VTy->getVectorElementType(); 832 return VectorType::get(PointerType::getUnqual(EltTy), 833 VTy->getNumElements()); 834 } 835 } 836 llvm_unreachable("unhandled"); 837 } 838 839 840 841 FunctionType *Intrinsic::getType(LLVMContext &Context, 842 ID id, ArrayRef<Type*> Tys) { 843 SmallVector<IITDescriptor, 8> Table; 844 getIntrinsicInfoTableEntries(id, Table); 845 846 ArrayRef<IITDescriptor> TableRef = Table; 847 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 848 849 SmallVector<Type*, 8> ArgTys; 850 while (!TableRef.empty()) 851 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 852 853 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 854 // If we see void type as the type of the last argument, it is vararg intrinsic 855 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 856 ArgTys.pop_back(); 857 return FunctionType::get(ResultTy, ArgTys, true); 858 } 859 return FunctionType::get(ResultTy, ArgTys, false); 860 } 861 862 bool Intrinsic::isOverloaded(ID id) { 863 #define GET_INTRINSIC_OVERLOAD_TABLE 864 #include "llvm/IR/Intrinsics.gen" 865 #undef GET_INTRINSIC_OVERLOAD_TABLE 866 } 867 868 bool Intrinsic::isLeaf(ID id) { 869 switch (id) { 870 default: 871 return true; 872 873 case Intrinsic::experimental_gc_statepoint: 874 case Intrinsic::experimental_patchpoint_void: 875 case Intrinsic::experimental_patchpoint_i64: 876 return false; 877 } 878 } 879 880 /// This defines the "Intrinsic::getAttributes(ID id)" method. 881 #define GET_INTRINSIC_ATTRIBUTES 882 #include "llvm/IR/Intrinsics.gen" 883 #undef GET_INTRINSIC_ATTRIBUTES 884 885 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 886 // There can never be multiple globals with the same name of different types, 887 // because intrinsics must be a specific type. 888 return 889 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 890 getType(M->getContext(), id, Tys))); 891 } 892 893 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 894 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 895 #include "llvm/IR/Intrinsics.gen" 896 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 897 898 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 899 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 900 #include "llvm/IR/Intrinsics.gen" 901 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 902 903 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 904 SmallVectorImpl<Type*> &ArgTys) { 905 using namespace Intrinsic; 906 907 // If we ran out of descriptors, there are too many arguments. 908 if (Infos.empty()) return true; 909 IITDescriptor D = Infos.front(); 910 Infos = Infos.slice(1); 911 912 switch (D.Kind) { 913 case IITDescriptor::Void: return !Ty->isVoidTy(); 914 case IITDescriptor::VarArg: return true; 915 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 916 case IITDescriptor::Token: return !Ty->isTokenTy(); 917 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 918 case IITDescriptor::Half: return !Ty->isHalfTy(); 919 case IITDescriptor::Float: return !Ty->isFloatTy(); 920 case IITDescriptor::Double: return !Ty->isDoubleTy(); 921 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 922 case IITDescriptor::Vector: { 923 VectorType *VT = dyn_cast<VectorType>(Ty); 924 return !VT || VT->getNumElements() != D.Vector_Width || 925 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 926 } 927 case IITDescriptor::Pointer: { 928 PointerType *PT = dyn_cast<PointerType>(Ty); 929 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 930 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 931 } 932 933 case IITDescriptor::Struct: { 934 StructType *ST = dyn_cast<StructType>(Ty); 935 if (!ST || ST->getNumElements() != D.Struct_NumElements) 936 return true; 937 938 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 939 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 940 return true; 941 return false; 942 } 943 944 case IITDescriptor::Argument: 945 // Two cases here - If this is the second occurrence of an argument, verify 946 // that the later instance matches the previous instance. 947 if (D.getArgumentNumber() < ArgTys.size()) 948 return Ty != ArgTys[D.getArgumentNumber()]; 949 950 // Otherwise, if this is the first instance of an argument, record it and 951 // verify the "Any" kind. 952 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 953 ArgTys.push_back(Ty); 954 955 switch (D.getArgumentKind()) { 956 case IITDescriptor::AK_Any: return false; // Success 957 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 958 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 959 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 960 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 961 } 962 llvm_unreachable("all argument kinds not covered"); 963 964 case IITDescriptor::ExtendArgument: { 965 // This may only be used when referring to a previous vector argument. 966 if (D.getArgumentNumber() >= ArgTys.size()) 967 return true; 968 969 Type *NewTy = ArgTys[D.getArgumentNumber()]; 970 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 971 NewTy = VectorType::getExtendedElementVectorType(VTy); 972 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 973 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 974 else 975 return true; 976 977 return Ty != NewTy; 978 } 979 case IITDescriptor::TruncArgument: { 980 // This may only be used when referring to a previous vector argument. 981 if (D.getArgumentNumber() >= ArgTys.size()) 982 return true; 983 984 Type *NewTy = ArgTys[D.getArgumentNumber()]; 985 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 986 NewTy = VectorType::getTruncatedElementVectorType(VTy); 987 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 988 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 989 else 990 return true; 991 992 return Ty != NewTy; 993 } 994 case IITDescriptor::HalfVecArgument: 995 // This may only be used when referring to a previous vector argument. 996 return D.getArgumentNumber() >= ArgTys.size() || 997 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 998 VectorType::getHalfElementsVectorType( 999 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1000 case IITDescriptor::SameVecWidthArgument: { 1001 if (D.getArgumentNumber() >= ArgTys.size()) 1002 return true; 1003 VectorType * ReferenceType = 1004 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1005 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1006 if (!ThisArgType || !ReferenceType || 1007 (ReferenceType->getVectorNumElements() != 1008 ThisArgType->getVectorNumElements())) 1009 return true; 1010 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1011 Infos, ArgTys); 1012 } 1013 case IITDescriptor::PtrToArgument: { 1014 if (D.getArgumentNumber() >= ArgTys.size()) 1015 return true; 1016 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1017 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1018 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1019 } 1020 case IITDescriptor::PtrToElt: { 1021 if (D.getArgumentNumber() >= ArgTys.size()) 1022 return true; 1023 VectorType * ReferenceType = 1024 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1025 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1026 1027 return (!ThisArgType || !ReferenceType || 1028 ThisArgType->getElementType() != ReferenceType->getElementType()); 1029 } 1030 case IITDescriptor::VecOfPtrsToElt: { 1031 if (D.getArgumentNumber() >= ArgTys.size()) 1032 return true; 1033 VectorType * ReferenceType = 1034 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1035 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1036 if (!ThisArgVecTy || !ReferenceType || 1037 (ReferenceType->getVectorNumElements() != 1038 ThisArgVecTy->getVectorNumElements())) 1039 return true; 1040 PointerType *ThisArgEltTy = 1041 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1042 if (!ThisArgEltTy) 1043 return true; 1044 return ThisArgEltTy->getElementType() != 1045 ReferenceType->getVectorElementType(); 1046 } 1047 } 1048 llvm_unreachable("unhandled"); 1049 } 1050 1051 bool 1052 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1053 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1054 // If there are no descriptors left, then it can't be a vararg. 1055 if (Infos.empty()) 1056 return isVarArg; 1057 1058 // There should be only one descriptor remaining at this point. 1059 if (Infos.size() != 1) 1060 return true; 1061 1062 // Check and verify the descriptor. 1063 IITDescriptor D = Infos.front(); 1064 Infos = Infos.slice(1); 1065 if (D.Kind == IITDescriptor::VarArg) 1066 return !isVarArg; 1067 1068 return true; 1069 } 1070 1071 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1072 Intrinsic::ID ID = F->getIntrinsicID(); 1073 if (!ID) 1074 return None; 1075 1076 FunctionType *FTy = F->getFunctionType(); 1077 // Accumulate an array of overloaded types for the given intrinsic 1078 SmallVector<Type *, 4> ArgTys; 1079 { 1080 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1081 getIntrinsicInfoTableEntries(ID, Table); 1082 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1083 1084 // If we encounter any problems matching the signature with the descriptor 1085 // just give up remangling. It's up to verifier to report the discrepancy. 1086 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1087 return None; 1088 for (auto Ty : FTy->params()) 1089 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1090 return None; 1091 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1092 return None; 1093 } 1094 1095 StringRef Name = F->getName(); 1096 if (Name == Intrinsic::getName(ID, ArgTys)) 1097 return None; 1098 1099 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1100 NewDecl->setCallingConv(F->getCallingConv()); 1101 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1102 return NewDecl; 1103 } 1104 1105 /// hasAddressTaken - returns true if there are any uses of this function 1106 /// other than direct calls or invokes to it. 1107 bool Function::hasAddressTaken(const User* *PutOffender) const { 1108 for (const Use &U : uses()) { 1109 const User *FU = U.getUser(); 1110 if (isa<BlockAddress>(FU)) 1111 continue; 1112 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1113 if (PutOffender) 1114 *PutOffender = FU; 1115 return true; 1116 } 1117 ImmutableCallSite CS(cast<Instruction>(FU)); 1118 if (!CS.isCallee(&U)) { 1119 if (PutOffender) 1120 *PutOffender = FU; 1121 return true; 1122 } 1123 } 1124 return false; 1125 } 1126 1127 bool Function::isDefTriviallyDead() const { 1128 // Check the linkage 1129 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1130 !hasAvailableExternallyLinkage()) 1131 return false; 1132 1133 // Check if the function is used by anything other than a blockaddress. 1134 for (const User *U : users()) 1135 if (!isa<BlockAddress>(U)) 1136 return false; 1137 1138 return true; 1139 } 1140 1141 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1142 /// setjmp or other function that gcc recognizes as "returning twice". 1143 bool Function::callsFunctionThatReturnsTwice() const { 1144 for (const_inst_iterator 1145 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1146 ImmutableCallSite CS(&*I); 1147 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1148 return true; 1149 } 1150 1151 return false; 1152 } 1153 1154 Constant *Function::getPersonalityFn() const { 1155 assert(hasPersonalityFn() && getNumOperands()); 1156 return cast<Constant>(Op<0>()); 1157 } 1158 1159 void Function::setPersonalityFn(Constant *Fn) { 1160 setHungoffOperand<0>(Fn); 1161 setValueSubclassDataBit(3, Fn != nullptr); 1162 } 1163 1164 Constant *Function::getPrefixData() const { 1165 assert(hasPrefixData() && getNumOperands()); 1166 return cast<Constant>(Op<1>()); 1167 } 1168 1169 void Function::setPrefixData(Constant *PrefixData) { 1170 setHungoffOperand<1>(PrefixData); 1171 setValueSubclassDataBit(1, PrefixData != nullptr); 1172 } 1173 1174 Constant *Function::getPrologueData() const { 1175 assert(hasPrologueData() && getNumOperands()); 1176 return cast<Constant>(Op<2>()); 1177 } 1178 1179 void Function::setPrologueData(Constant *PrologueData) { 1180 setHungoffOperand<2>(PrologueData); 1181 setValueSubclassDataBit(2, PrologueData != nullptr); 1182 } 1183 1184 void Function::allocHungoffUselist() { 1185 // If we've already allocated a uselist, stop here. 1186 if (getNumOperands()) 1187 return; 1188 1189 allocHungoffUses(3, /*IsPhi=*/ false); 1190 setNumHungOffUseOperands(3); 1191 1192 // Initialize the uselist with placeholder operands to allow traversal. 1193 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1194 Op<0>().set(CPN); 1195 Op<1>().set(CPN); 1196 Op<2>().set(CPN); 1197 } 1198 1199 template <int Idx> 1200 void Function::setHungoffOperand(Constant *C) { 1201 if (C) { 1202 allocHungoffUselist(); 1203 Op<Idx>().set(C); 1204 } else if (getNumOperands()) { 1205 Op<Idx>().set( 1206 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1207 } 1208 } 1209 1210 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1211 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1212 if (On) 1213 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1214 else 1215 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1216 } 1217 1218 void Function::setEntryCount(uint64_t Count, 1219 const DenseSet<GlobalValue::GUID> *S) { 1220 MDBuilder MDB(getContext()); 1221 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1222 } 1223 1224 Optional<uint64_t> Function::getEntryCount() const { 1225 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1226 if (MD && MD->getOperand(0)) 1227 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1228 if (MDS->getString().equals("function_entry_count")) { 1229 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1230 uint64_t Count = CI->getValue().getZExtValue(); 1231 if (Count == 0) 1232 return None; 1233 return Count; 1234 } 1235 return None; 1236 } 1237 1238 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1239 DenseSet<GlobalValue::GUID> R; 1240 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1241 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1242 if (MDS->getString().equals("function_entry_count")) 1243 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1244 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1245 ->getValue() 1246 .getZExtValue()); 1247 return R; 1248 } 1249 1250 void Function::setSectionPrefix(StringRef Prefix) { 1251 MDBuilder MDB(getContext()); 1252 setMetadata(LLVMContext::MD_section_prefix, 1253 MDB.createFunctionSectionPrefix(Prefix)); 1254 } 1255 1256 Optional<StringRef> Function::getSectionPrefix() const { 1257 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1258 assert(dyn_cast<MDString>(MD->getOperand(0)) 1259 ->getString() 1260 .equals("function_section_prefix") && 1261 "Metadata not match"); 1262 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1263 } 1264 return None; 1265 } 1266