1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 if (Type *SRetTy = ParamAttrs.getStructRetType()) 173 return SRetTy; 174 175 return nullptr; 176 } 177 178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 179 AttributeSet ParamAttrs = 180 getParent()->getAttributes().getParamAttrs(getArgNo()); 181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 182 return DL.getTypeAllocSize(MemTy); 183 return 0; 184 } 185 186 Type *Argument::getPointeeInMemoryValueType() const { 187 AttributeSet ParamAttrs = 188 getParent()->getAttributes().getParamAttrs(getArgNo()); 189 return getMemoryParamAllocType(ParamAttrs, getType()); 190 } 191 192 unsigned Argument::getParamAlignment() const { 193 assert(getType()->isPointerTy() && "Only pointers have alignments"); 194 return getParent()->getParamAlignment(getArgNo()); 195 } 196 197 MaybeAlign Argument::getParamAlign() const { 198 assert(getType()->isPointerTy() && "Only pointers have alignments"); 199 return getParent()->getParamAlign(getArgNo()); 200 } 201 202 MaybeAlign Argument::getParamStackAlign() const { 203 return getParent()->getParamStackAlign(getArgNo()); 204 } 205 206 Type *Argument::getParamByValType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByValType(getArgNo()); 209 } 210 211 Type *Argument::getParamStructRetType() const { 212 assert(getType()->isPointerTy() && "Only pointers have sret types"); 213 return getParent()->getParamStructRetType(getArgNo()); 214 } 215 216 Type *Argument::getParamByRefType() const { 217 assert(getType()->isPointerTy() && "Only pointers have byref types"); 218 return getParent()->getParamByRefType(getArgNo()); 219 } 220 221 Type *Argument::getParamInAllocaType() const { 222 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 223 return getParent()->getParamInAllocaType(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableBytes(getArgNo()); 230 } 231 232 uint64_t Argument::getDereferenceableOrNullBytes() const { 233 assert(getType()->isPointerTy() && 234 "Only pointers have dereferenceable bytes"); 235 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 236 } 237 238 bool Argument::hasNestAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::Nest); 241 } 242 243 bool Argument::hasNoAliasAttr() const { 244 if (!getType()->isPointerTy()) return false; 245 return hasAttribute(Attribute::NoAlias); 246 } 247 248 bool Argument::hasNoCaptureAttr() const { 249 if (!getType()->isPointerTy()) return false; 250 return hasAttribute(Attribute::NoCapture); 251 } 252 253 bool Argument::hasNoFreeAttr() const { 254 if (!getType()->isPointerTy()) return false; 255 return hasAttribute(Attribute::NoFree); 256 } 257 258 bool Argument::hasStructRetAttr() const { 259 if (!getType()->isPointerTy()) return false; 260 return hasAttribute(Attribute::StructRet); 261 } 262 263 bool Argument::hasInRegAttr() const { 264 return hasAttribute(Attribute::InReg); 265 } 266 267 bool Argument::hasReturnedAttr() const { 268 return hasAttribute(Attribute::Returned); 269 } 270 271 bool Argument::hasZExtAttr() const { 272 return hasAttribute(Attribute::ZExt); 273 } 274 275 bool Argument::hasSExtAttr() const { 276 return hasAttribute(Attribute::SExt); 277 } 278 279 bool Argument::onlyReadsMemory() const { 280 AttributeList Attrs = getParent()->getAttributes(); 281 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 282 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 283 } 284 285 void Argument::addAttrs(AttrBuilder &B) { 286 AttributeList AL = getParent()->getAttributes(); 287 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 288 getParent()->setAttributes(AL); 289 } 290 291 void Argument::addAttr(Attribute::AttrKind Kind) { 292 getParent()->addParamAttr(getArgNo(), Kind); 293 } 294 295 void Argument::addAttr(Attribute Attr) { 296 getParent()->addParamAttr(getArgNo(), Attr); 297 } 298 299 void Argument::removeAttr(Attribute::AttrKind Kind) { 300 getParent()->removeParamAttr(getArgNo(), Kind); 301 } 302 303 void Argument::removeAttrs(const AttrBuilder &B) { 304 AttributeList AL = getParent()->getAttributes(); 305 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 306 getParent()->setAttributes(AL); 307 } 308 309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 310 return getParent()->hasParamAttribute(getArgNo(), Kind); 311 } 312 313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 314 return getParent()->getParamAttribute(getArgNo(), Kind); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Helper Methods in Function 319 //===----------------------------------------------------------------------===// 320 321 LLVMContext &Function::getContext() const { 322 return getType()->getContext(); 323 } 324 325 unsigned Function::getInstructionCount() const { 326 unsigned NumInstrs = 0; 327 for (const BasicBlock &BB : BasicBlocks) 328 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 329 BB.instructionsWithoutDebug().end()); 330 return NumInstrs; 331 } 332 333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 334 const Twine &N, Module &M) { 335 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 336 } 337 338 Function *Function::createWithDefaultAttr(FunctionType *Ty, 339 LinkageTypes Linkage, 340 unsigned AddrSpace, const Twine &N, 341 Module *M) { 342 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 343 AttrBuilder B; 344 if (M->getUwtable()) 345 B.addAttribute(Attribute::UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 F->addFnAttrs(B); 358 return F; 359 } 360 361 void Function::removeFromParent() { 362 getParent()->getFunctionList().remove(getIterator()); 363 } 364 365 void Function::eraseFromParent() { 366 getParent()->getFunctionList().erase(getIterator()); 367 } 368 369 //===----------------------------------------------------------------------===// 370 // Function Implementation 371 //===----------------------------------------------------------------------===// 372 373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 374 // If AS == -1 and we are passed a valid module pointer we place the function 375 // in the program address space. Otherwise we default to AS0. 376 if (AddrSpace == static_cast<unsigned>(-1)) 377 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 378 return AddrSpace; 379 } 380 381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 382 const Twine &name, Module *ParentModule) 383 : GlobalObject(Ty, Value::FunctionVal, 384 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 385 computeAddrSpace(AddrSpace, ParentModule)), 386 NumArgs(Ty->getNumParams()) { 387 assert(FunctionType::isValidReturnType(getReturnType()) && 388 "invalid return type"); 389 setGlobalObjectSubClassData(0); 390 391 // We only need a symbol table for a function if the context keeps value names 392 if (!getContext().shouldDiscardValueNames()) 393 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 394 395 // If the function has arguments, mark them as lazily built. 396 if (Ty->getNumParams()) 397 setValueSubclassData(1); // Set the "has lazy arguments" bit. 398 399 if (ParentModule) 400 ParentModule->getFunctionList().push_back(this); 401 402 HasLLVMReservedName = getName().startswith("llvm."); 403 // Ensure intrinsics have the right parameter attributes. 404 // Note, the IntID field will have been set in Value::setName if this function 405 // name is a valid intrinsic ID. 406 if (IntID) 407 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 408 } 409 410 Function::~Function() { 411 dropAllReferences(); // After this it is safe to delete instructions. 412 413 // Delete all of the method arguments and unlink from symbol table... 414 if (Arguments) 415 clearArguments(); 416 417 // Remove the function from the on-the-side GC table. 418 clearGC(); 419 } 420 421 void Function::BuildLazyArguments() const { 422 // Create the arguments vector, all arguments start out unnamed. 423 auto *FT = getFunctionType(); 424 if (NumArgs > 0) { 425 Arguments = std::allocator<Argument>().allocate(NumArgs); 426 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 427 Type *ArgTy = FT->getParamType(i); 428 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 429 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 430 } 431 } 432 433 // Clear the lazy arguments bit. 434 unsigned SDC = getSubclassDataFromValue(); 435 SDC &= ~(1 << 0); 436 const_cast<Function*>(this)->setValueSubclassData(SDC); 437 assert(!hasLazyArguments()); 438 } 439 440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 441 return MutableArrayRef<Argument>(Args, Count); 442 } 443 444 bool Function::isConstrainedFPIntrinsic() const { 445 switch (getIntrinsicID()) { 446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 447 case Intrinsic::INTRINSIC: 448 #include "llvm/IR/ConstrainedOps.def" 449 return true; 450 #undef INSTRUCTION 451 default: 452 return false; 453 } 454 } 455 456 void Function::clearArguments() { 457 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 458 A.setName(""); 459 A.~Argument(); 460 } 461 std::allocator<Argument>().deallocate(Arguments, NumArgs); 462 Arguments = nullptr; 463 } 464 465 void Function::stealArgumentListFrom(Function &Src) { 466 assert(isDeclaration() && "Expected no references to current arguments"); 467 468 // Drop the current arguments, if any, and set the lazy argument bit. 469 if (!hasLazyArguments()) { 470 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 471 [](const Argument &A) { return A.use_empty(); }) && 472 "Expected arguments to be unused in declaration"); 473 clearArguments(); 474 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 475 } 476 477 // Nothing to steal if Src has lazy arguments. 478 if (Src.hasLazyArguments()) 479 return; 480 481 // Steal arguments from Src, and fix the lazy argument bits. 482 assert(arg_size() == Src.arg_size()); 483 Arguments = Src.Arguments; 484 Src.Arguments = nullptr; 485 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 486 // FIXME: This does the work of transferNodesFromList inefficiently. 487 SmallString<128> Name; 488 if (A.hasName()) 489 Name = A.getName(); 490 if (!Name.empty()) 491 A.setName(""); 492 A.setParent(this); 493 if (!Name.empty()) 494 A.setName(Name); 495 } 496 497 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 498 assert(!hasLazyArguments()); 499 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 500 } 501 502 // dropAllReferences() - This function causes all the subinstructions to "let 503 // go" of all references that they are maintaining. This allows one to 504 // 'delete' a whole class at a time, even though there may be circular 505 // references... first all references are dropped, and all use counts go to 506 // zero. Then everything is deleted for real. Note that no operations are 507 // valid on an object that has "dropped all references", except operator 508 // delete. 509 // 510 void Function::dropAllReferences() { 511 setIsMaterializable(false); 512 513 for (BasicBlock &BB : *this) 514 BB.dropAllReferences(); 515 516 // Delete all basic blocks. They are now unused, except possibly by 517 // blockaddresses, but BasicBlock's destructor takes care of those. 518 while (!BasicBlocks.empty()) 519 BasicBlocks.begin()->eraseFromParent(); 520 521 // Drop uses of any optional data (real or placeholder). 522 if (getNumOperands()) { 523 User::dropAllReferences(); 524 setNumHungOffUseOperands(0); 525 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 526 } 527 528 // Metadata is stored in a side-table. 529 clearMetadata(); 530 } 531 532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 533 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 534 } 535 536 void Function::addFnAttr(Attribute::AttrKind Kind) { 537 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 538 } 539 540 void Function::addFnAttr(StringRef Kind, StringRef Val) { 541 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 542 } 543 544 void Function::addFnAttr(Attribute Attr) { 545 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 546 } 547 548 void Function::addFnAttrs(const AttrBuilder &Attrs) { 549 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 550 } 551 552 void Function::addRetAttr(Attribute::AttrKind Kind) { 553 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 554 } 555 556 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 557 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 558 } 559 560 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 561 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 562 } 563 564 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 565 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 566 } 567 568 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 569 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 570 } 571 572 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 573 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 574 } 575 576 void Function::removeFnAttr(Attribute::AttrKind Kind) { 577 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 578 } 579 580 void Function::removeFnAttr(StringRef Kind) { 581 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 582 } 583 584 void Function::removeFnAttrs(const AttrBuilder &Attrs) { 585 AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs); 586 } 587 588 void Function::removeRetAttr(Attribute::AttrKind Kind) { 589 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 590 } 591 592 void Function::removeRetAttr(StringRef Kind) { 593 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 594 } 595 596 void Function::removeRetAttrs(const AttrBuilder &Attrs) { 597 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 598 } 599 600 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 601 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 602 } 603 604 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 605 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 606 } 607 608 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 609 AttributeSets = 610 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 611 } 612 613 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 614 AttributeSets = 615 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 616 } 617 618 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 619 return AttributeSets.hasFnAttr(Kind); 620 } 621 622 bool Function::hasFnAttribute(StringRef Kind) const { 623 return AttributeSets.hasFnAttr(Kind); 624 } 625 626 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 627 return AttributeSets.hasRetAttr(Kind); 628 } 629 630 bool Function::hasParamAttribute(unsigned ArgNo, 631 Attribute::AttrKind Kind) const { 632 return AttributeSets.hasParamAttr(ArgNo, Kind); 633 } 634 635 Attribute Function::getAttributeAtIndex(unsigned i, 636 Attribute::AttrKind Kind) const { 637 return AttributeSets.getAttributeAtIndex(i, Kind); 638 } 639 640 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 641 return AttributeSets.getAttributeAtIndex(i, Kind); 642 } 643 644 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 645 return AttributeSets.getFnAttr(Kind); 646 } 647 648 Attribute Function::getFnAttribute(StringRef Kind) const { 649 return AttributeSets.getFnAttr(Kind); 650 } 651 652 /// gets the specified attribute from the list of attributes. 653 Attribute Function::getParamAttribute(unsigned ArgNo, 654 Attribute::AttrKind Kind) const { 655 return AttributeSets.getParamAttr(ArgNo, Kind); 656 } 657 658 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 659 uint64_t Bytes) { 660 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 661 ArgNo, Bytes); 662 } 663 664 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 665 if (&FPType == &APFloat::IEEEsingle()) { 666 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 667 StringRef Val = Attr.getValueAsString(); 668 if (!Val.empty()) 669 return parseDenormalFPAttribute(Val); 670 671 // If the f32 variant of the attribute isn't specified, try to use the 672 // generic one. 673 } 674 675 Attribute Attr = getFnAttribute("denormal-fp-math"); 676 return parseDenormalFPAttribute(Attr.getValueAsString()); 677 } 678 679 const std::string &Function::getGC() const { 680 assert(hasGC() && "Function has no collector"); 681 return getContext().getGC(*this); 682 } 683 684 void Function::setGC(std::string Str) { 685 setValueSubclassDataBit(14, !Str.empty()); 686 getContext().setGC(*this, std::move(Str)); 687 } 688 689 void Function::clearGC() { 690 if (!hasGC()) 691 return; 692 getContext().deleteGC(*this); 693 setValueSubclassDataBit(14, false); 694 } 695 696 bool Function::hasStackProtectorFnAttr() const { 697 return hasFnAttribute(Attribute::StackProtect) || 698 hasFnAttribute(Attribute::StackProtectStrong) || 699 hasFnAttribute(Attribute::StackProtectReq); 700 } 701 702 /// Copy all additional attributes (those not needed to create a Function) from 703 /// the Function Src to this one. 704 void Function::copyAttributesFrom(const Function *Src) { 705 GlobalObject::copyAttributesFrom(Src); 706 setCallingConv(Src->getCallingConv()); 707 setAttributes(Src->getAttributes()); 708 if (Src->hasGC()) 709 setGC(Src->getGC()); 710 else 711 clearGC(); 712 if (Src->hasPersonalityFn()) 713 setPersonalityFn(Src->getPersonalityFn()); 714 if (Src->hasPrefixData()) 715 setPrefixData(Src->getPrefixData()); 716 if (Src->hasPrologueData()) 717 setPrologueData(Src->getPrologueData()); 718 } 719 720 /// Table of string intrinsic names indexed by enum value. 721 static const char * const IntrinsicNameTable[] = { 722 "not_intrinsic", 723 #define GET_INTRINSIC_NAME_TABLE 724 #include "llvm/IR/IntrinsicImpl.inc" 725 #undef GET_INTRINSIC_NAME_TABLE 726 }; 727 728 /// Table of per-target intrinsic name tables. 729 #define GET_INTRINSIC_TARGET_DATA 730 #include "llvm/IR/IntrinsicImpl.inc" 731 #undef GET_INTRINSIC_TARGET_DATA 732 733 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 734 return IID > TargetInfos[0].Count; 735 } 736 737 bool Function::isTargetIntrinsic() const { 738 return isTargetIntrinsic(IntID); 739 } 740 741 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 742 /// target as \c Name, or the generic table if \c Name is not target specific. 743 /// 744 /// Returns the relevant slice of \c IntrinsicNameTable 745 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 746 assert(Name.startswith("llvm.")); 747 748 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 749 // Drop "llvm." and take the first dotted component. That will be the target 750 // if this is target specific. 751 StringRef Target = Name.drop_front(5).split('.').first; 752 auto It = partition_point( 753 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 754 // We've either found the target or just fall back to the generic set, which 755 // is always first. 756 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 757 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 758 } 759 760 /// This does the actual lookup of an intrinsic ID which 761 /// matches the given function name. 762 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 763 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 764 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 765 if (Idx == -1) 766 return Intrinsic::not_intrinsic; 767 768 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 769 // an index into a sub-table. 770 int Adjust = NameTable.data() - IntrinsicNameTable; 771 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 772 773 // If the intrinsic is not overloaded, require an exact match. If it is 774 // overloaded, require either exact or prefix match. 775 const auto MatchSize = strlen(NameTable[Idx]); 776 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 777 bool IsExactMatch = Name.size() == MatchSize; 778 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 779 : Intrinsic::not_intrinsic; 780 } 781 782 void Function::recalculateIntrinsicID() { 783 StringRef Name = getName(); 784 if (!Name.startswith("llvm.")) { 785 HasLLVMReservedName = false; 786 IntID = Intrinsic::not_intrinsic; 787 return; 788 } 789 HasLLVMReservedName = true; 790 IntID = lookupIntrinsicID(Name); 791 } 792 793 /// Returns a stable mangling for the type specified for use in the name 794 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 795 /// of named types is simply their name. Manglings for unnamed types consist 796 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 797 /// combined with the mangling of their component types. A vararg function 798 /// type will have a suffix of 'vararg'. Since function types can contain 799 /// other function types, we close a function type mangling with suffix 'f' 800 /// which can't be confused with it's prefix. This ensures we don't have 801 /// collisions between two unrelated function types. Otherwise, you might 802 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 803 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 804 /// indicating that extra care must be taken to ensure a unique name. 805 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 806 std::string Result; 807 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 808 Result += "p" + utostr(PTyp->getAddressSpace()); 809 // Opaque pointer doesn't have pointee type information, so we just mangle 810 // address space for opaque pointer. 811 if (!PTyp->isOpaque()) 812 Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 813 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 814 Result += "a" + utostr(ATyp->getNumElements()) + 815 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 816 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 817 if (!STyp->isLiteral()) { 818 Result += "s_"; 819 if (STyp->hasName()) 820 Result += STyp->getName(); 821 else 822 HasUnnamedType = true; 823 } else { 824 Result += "sl_"; 825 for (auto Elem : STyp->elements()) 826 Result += getMangledTypeStr(Elem, HasUnnamedType); 827 } 828 // Ensure nested structs are distinguishable. 829 Result += "s"; 830 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 831 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 832 for (size_t i = 0; i < FT->getNumParams(); i++) 833 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 834 if (FT->isVarArg()) 835 Result += "vararg"; 836 // Ensure nested function types are distinguishable. 837 Result += "f"; 838 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 839 ElementCount EC = VTy->getElementCount(); 840 if (EC.isScalable()) 841 Result += "nx"; 842 Result += "v" + utostr(EC.getKnownMinValue()) + 843 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 844 } else if (Ty) { 845 switch (Ty->getTypeID()) { 846 default: llvm_unreachable("Unhandled type"); 847 case Type::VoidTyID: Result += "isVoid"; break; 848 case Type::MetadataTyID: Result += "Metadata"; break; 849 case Type::HalfTyID: Result += "f16"; break; 850 case Type::BFloatTyID: Result += "bf16"; break; 851 case Type::FloatTyID: Result += "f32"; break; 852 case Type::DoubleTyID: Result += "f64"; break; 853 case Type::X86_FP80TyID: Result += "f80"; break; 854 case Type::FP128TyID: Result += "f128"; break; 855 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 856 case Type::X86_MMXTyID: Result += "x86mmx"; break; 857 case Type::X86_AMXTyID: Result += "x86amx"; break; 858 case Type::IntegerTyID: 859 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 860 break; 861 } 862 } 863 return Result; 864 } 865 866 StringRef Intrinsic::getBaseName(ID id) { 867 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 868 return IntrinsicNameTable[id]; 869 } 870 871 StringRef Intrinsic::getName(ID id) { 872 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 873 assert(!Intrinsic::isOverloaded(id) && 874 "This version of getName does not support overloading"); 875 return getBaseName(id); 876 } 877 878 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 879 Module *M, FunctionType *FT, 880 bool EarlyModuleCheck) { 881 882 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 883 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 884 "This version of getName is for overloaded intrinsics only"); 885 (void)EarlyModuleCheck; 886 assert((!EarlyModuleCheck || M || 887 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 888 "Intrinsic overloading on pointer types need to provide a Module"); 889 bool HasUnnamedType = false; 890 std::string Result(Intrinsic::getBaseName(Id)); 891 for (Type *Ty : Tys) 892 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 893 if (HasUnnamedType) { 894 assert(M && "unnamed types need a module"); 895 if (!FT) 896 FT = Intrinsic::getType(M->getContext(), Id, Tys); 897 else 898 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 899 "Provided FunctionType must match arguments"); 900 return M->getUniqueIntrinsicName(Result, Id, FT); 901 } 902 return Result; 903 } 904 905 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 906 FunctionType *FT) { 907 assert(M && "We need to have a Module"); 908 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 909 } 910 911 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 912 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 913 } 914 915 /// IIT_Info - These are enumerators that describe the entries returned by the 916 /// getIntrinsicInfoTableEntries function. 917 /// 918 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 919 enum IIT_Info { 920 // Common values should be encoded with 0-15. 921 IIT_Done = 0, 922 IIT_I1 = 1, 923 IIT_I8 = 2, 924 IIT_I16 = 3, 925 IIT_I32 = 4, 926 IIT_I64 = 5, 927 IIT_F16 = 6, 928 IIT_F32 = 7, 929 IIT_F64 = 8, 930 IIT_V2 = 9, 931 IIT_V4 = 10, 932 IIT_V8 = 11, 933 IIT_V16 = 12, 934 IIT_V32 = 13, 935 IIT_PTR = 14, 936 IIT_ARG = 15, 937 938 // Values from 16+ are only encodable with the inefficient encoding. 939 IIT_V64 = 16, 940 IIT_MMX = 17, 941 IIT_TOKEN = 18, 942 IIT_METADATA = 19, 943 IIT_EMPTYSTRUCT = 20, 944 IIT_STRUCT2 = 21, 945 IIT_STRUCT3 = 22, 946 IIT_STRUCT4 = 23, 947 IIT_STRUCT5 = 24, 948 IIT_EXTEND_ARG = 25, 949 IIT_TRUNC_ARG = 26, 950 IIT_ANYPTR = 27, 951 IIT_V1 = 28, 952 IIT_VARARG = 29, 953 IIT_HALF_VEC_ARG = 30, 954 IIT_SAME_VEC_WIDTH_ARG = 31, 955 IIT_PTR_TO_ARG = 32, 956 IIT_PTR_TO_ELT = 33, 957 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 958 IIT_I128 = 35, 959 IIT_V512 = 36, 960 IIT_V1024 = 37, 961 IIT_STRUCT6 = 38, 962 IIT_STRUCT7 = 39, 963 IIT_STRUCT8 = 40, 964 IIT_F128 = 41, 965 IIT_VEC_ELEMENT = 42, 966 IIT_SCALABLE_VEC = 43, 967 IIT_SUBDIVIDE2_ARG = 44, 968 IIT_SUBDIVIDE4_ARG = 45, 969 IIT_VEC_OF_BITCASTS_TO_INT = 46, 970 IIT_V128 = 47, 971 IIT_BF16 = 48, 972 IIT_STRUCT9 = 49, 973 IIT_V256 = 50, 974 IIT_AMX = 51 975 }; 976 977 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 978 IIT_Info LastInfo, 979 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 980 using namespace Intrinsic; 981 982 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 983 984 IIT_Info Info = IIT_Info(Infos[NextElt++]); 985 unsigned StructElts = 2; 986 987 switch (Info) { 988 case IIT_Done: 989 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 990 return; 991 case IIT_VARARG: 992 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 993 return; 994 case IIT_MMX: 995 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 996 return; 997 case IIT_AMX: 998 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 999 return; 1000 case IIT_TOKEN: 1001 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1002 return; 1003 case IIT_METADATA: 1004 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1005 return; 1006 case IIT_F16: 1007 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1008 return; 1009 case IIT_BF16: 1010 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1011 return; 1012 case IIT_F32: 1013 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1014 return; 1015 case IIT_F64: 1016 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1017 return; 1018 case IIT_F128: 1019 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1020 return; 1021 case IIT_I1: 1022 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1023 return; 1024 case IIT_I8: 1025 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1026 return; 1027 case IIT_I16: 1028 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1029 return; 1030 case IIT_I32: 1031 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1032 return; 1033 case IIT_I64: 1034 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1035 return; 1036 case IIT_I128: 1037 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1038 return; 1039 case IIT_V1: 1040 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1041 DecodeIITType(NextElt, Infos, Info, OutputTable); 1042 return; 1043 case IIT_V2: 1044 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1045 DecodeIITType(NextElt, Infos, Info, OutputTable); 1046 return; 1047 case IIT_V4: 1048 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1049 DecodeIITType(NextElt, Infos, Info, OutputTable); 1050 return; 1051 case IIT_V8: 1052 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1053 DecodeIITType(NextElt, Infos, Info, OutputTable); 1054 return; 1055 case IIT_V16: 1056 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1057 DecodeIITType(NextElt, Infos, Info, OutputTable); 1058 return; 1059 case IIT_V32: 1060 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1061 DecodeIITType(NextElt, Infos, Info, OutputTable); 1062 return; 1063 case IIT_V64: 1064 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1065 DecodeIITType(NextElt, Infos, Info, OutputTable); 1066 return; 1067 case IIT_V128: 1068 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1069 DecodeIITType(NextElt, Infos, Info, OutputTable); 1070 return; 1071 case IIT_V256: 1072 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1073 DecodeIITType(NextElt, Infos, Info, OutputTable); 1074 return; 1075 case IIT_V512: 1076 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1077 DecodeIITType(NextElt, Infos, Info, OutputTable); 1078 return; 1079 case IIT_V1024: 1080 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1081 DecodeIITType(NextElt, Infos, Info, OutputTable); 1082 return; 1083 case IIT_PTR: 1084 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1085 DecodeIITType(NextElt, Infos, Info, OutputTable); 1086 return; 1087 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1088 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1089 Infos[NextElt++])); 1090 DecodeIITType(NextElt, Infos, Info, OutputTable); 1091 return; 1092 } 1093 case IIT_ARG: { 1094 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1096 return; 1097 } 1098 case IIT_EXTEND_ARG: { 1099 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1101 ArgInfo)); 1102 return; 1103 } 1104 case IIT_TRUNC_ARG: { 1105 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1107 ArgInfo)); 1108 return; 1109 } 1110 case IIT_HALF_VEC_ARG: { 1111 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1113 ArgInfo)); 1114 return; 1115 } 1116 case IIT_SAME_VEC_WIDTH_ARG: { 1117 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1119 ArgInfo)); 1120 return; 1121 } 1122 case IIT_PTR_TO_ARG: { 1123 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1125 ArgInfo)); 1126 return; 1127 } 1128 case IIT_PTR_TO_ELT: { 1129 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1131 return; 1132 } 1133 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1134 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1135 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1136 OutputTable.push_back( 1137 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1138 return; 1139 } 1140 case IIT_EMPTYSTRUCT: 1141 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1142 return; 1143 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1144 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1145 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1146 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1147 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1148 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1149 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1150 case IIT_STRUCT2: { 1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1152 1153 for (unsigned i = 0; i != StructElts; ++i) 1154 DecodeIITType(NextElt, Infos, Info, OutputTable); 1155 return; 1156 } 1157 case IIT_SUBDIVIDE2_ARG: { 1158 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1159 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1160 ArgInfo)); 1161 return; 1162 } 1163 case IIT_SUBDIVIDE4_ARG: { 1164 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1165 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1166 ArgInfo)); 1167 return; 1168 } 1169 case IIT_VEC_ELEMENT: { 1170 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1171 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1172 ArgInfo)); 1173 return; 1174 } 1175 case IIT_SCALABLE_VEC: { 1176 DecodeIITType(NextElt, Infos, Info, OutputTable); 1177 return; 1178 } 1179 case IIT_VEC_OF_BITCASTS_TO_INT: { 1180 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1181 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1182 ArgInfo)); 1183 return; 1184 } 1185 } 1186 llvm_unreachable("unhandled"); 1187 } 1188 1189 #define GET_INTRINSIC_GENERATOR_GLOBAL 1190 #include "llvm/IR/IntrinsicImpl.inc" 1191 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1192 1193 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1194 SmallVectorImpl<IITDescriptor> &T){ 1195 // Check to see if the intrinsic's type was expressible by the table. 1196 unsigned TableVal = IIT_Table[id-1]; 1197 1198 // Decode the TableVal into an array of IITValues. 1199 SmallVector<unsigned char, 8> IITValues; 1200 ArrayRef<unsigned char> IITEntries; 1201 unsigned NextElt = 0; 1202 if ((TableVal >> 31) != 0) { 1203 // This is an offset into the IIT_LongEncodingTable. 1204 IITEntries = IIT_LongEncodingTable; 1205 1206 // Strip sentinel bit. 1207 NextElt = (TableVal << 1) >> 1; 1208 } else { 1209 // Decode the TableVal into an array of IITValues. If the entry was encoded 1210 // into a single word in the table itself, decode it now. 1211 do { 1212 IITValues.push_back(TableVal & 0xF); 1213 TableVal >>= 4; 1214 } while (TableVal); 1215 1216 IITEntries = IITValues; 1217 NextElt = 0; 1218 } 1219 1220 // Okay, decode the table into the output vector of IITDescriptors. 1221 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1222 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1223 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1224 } 1225 1226 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1227 ArrayRef<Type*> Tys, LLVMContext &Context) { 1228 using namespace Intrinsic; 1229 1230 IITDescriptor D = Infos.front(); 1231 Infos = Infos.slice(1); 1232 1233 switch (D.Kind) { 1234 case IITDescriptor::Void: return Type::getVoidTy(Context); 1235 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1236 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1237 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1238 case IITDescriptor::Token: return Type::getTokenTy(Context); 1239 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1240 case IITDescriptor::Half: return Type::getHalfTy(Context); 1241 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1242 case IITDescriptor::Float: return Type::getFloatTy(Context); 1243 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1244 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1245 1246 case IITDescriptor::Integer: 1247 return IntegerType::get(Context, D.Integer_Width); 1248 case IITDescriptor::Vector: 1249 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1250 D.Vector_Width); 1251 case IITDescriptor::Pointer: 1252 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1253 D.Pointer_AddressSpace); 1254 case IITDescriptor::Struct: { 1255 SmallVector<Type *, 8> Elts; 1256 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1257 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1258 return StructType::get(Context, Elts); 1259 } 1260 case IITDescriptor::Argument: 1261 return Tys[D.getArgumentNumber()]; 1262 case IITDescriptor::ExtendArgument: { 1263 Type *Ty = Tys[D.getArgumentNumber()]; 1264 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1265 return VectorType::getExtendedElementVectorType(VTy); 1266 1267 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1268 } 1269 case IITDescriptor::TruncArgument: { 1270 Type *Ty = Tys[D.getArgumentNumber()]; 1271 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1272 return VectorType::getTruncatedElementVectorType(VTy); 1273 1274 IntegerType *ITy = cast<IntegerType>(Ty); 1275 assert(ITy->getBitWidth() % 2 == 0); 1276 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1277 } 1278 case IITDescriptor::Subdivide2Argument: 1279 case IITDescriptor::Subdivide4Argument: { 1280 Type *Ty = Tys[D.getArgumentNumber()]; 1281 VectorType *VTy = dyn_cast<VectorType>(Ty); 1282 assert(VTy && "Expected an argument of Vector Type"); 1283 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1284 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1285 } 1286 case IITDescriptor::HalfVecArgument: 1287 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1288 Tys[D.getArgumentNumber()])); 1289 case IITDescriptor::SameVecWidthArgument: { 1290 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1291 Type *Ty = Tys[D.getArgumentNumber()]; 1292 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1293 return VectorType::get(EltTy, VTy->getElementCount()); 1294 return EltTy; 1295 } 1296 case IITDescriptor::PtrToArgument: { 1297 Type *Ty = Tys[D.getArgumentNumber()]; 1298 return PointerType::getUnqual(Ty); 1299 } 1300 case IITDescriptor::PtrToElt: { 1301 Type *Ty = Tys[D.getArgumentNumber()]; 1302 VectorType *VTy = dyn_cast<VectorType>(Ty); 1303 if (!VTy) 1304 llvm_unreachable("Expected an argument of Vector Type"); 1305 Type *EltTy = VTy->getElementType(); 1306 return PointerType::getUnqual(EltTy); 1307 } 1308 case IITDescriptor::VecElementArgument: { 1309 Type *Ty = Tys[D.getArgumentNumber()]; 1310 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1311 return VTy->getElementType(); 1312 llvm_unreachable("Expected an argument of Vector Type"); 1313 } 1314 case IITDescriptor::VecOfBitcastsToInt: { 1315 Type *Ty = Tys[D.getArgumentNumber()]; 1316 VectorType *VTy = dyn_cast<VectorType>(Ty); 1317 assert(VTy && "Expected an argument of Vector Type"); 1318 return VectorType::getInteger(VTy); 1319 } 1320 case IITDescriptor::VecOfAnyPtrsToElt: 1321 // Return the overloaded type (which determines the pointers address space) 1322 return Tys[D.getOverloadArgNumber()]; 1323 } 1324 llvm_unreachable("unhandled"); 1325 } 1326 1327 FunctionType *Intrinsic::getType(LLVMContext &Context, 1328 ID id, ArrayRef<Type*> Tys) { 1329 SmallVector<IITDescriptor, 8> Table; 1330 getIntrinsicInfoTableEntries(id, Table); 1331 1332 ArrayRef<IITDescriptor> TableRef = Table; 1333 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1334 1335 SmallVector<Type*, 8> ArgTys; 1336 while (!TableRef.empty()) 1337 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1338 1339 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1340 // If we see void type as the type of the last argument, it is vararg intrinsic 1341 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1342 ArgTys.pop_back(); 1343 return FunctionType::get(ResultTy, ArgTys, true); 1344 } 1345 return FunctionType::get(ResultTy, ArgTys, false); 1346 } 1347 1348 bool Intrinsic::isOverloaded(ID id) { 1349 #define GET_INTRINSIC_OVERLOAD_TABLE 1350 #include "llvm/IR/IntrinsicImpl.inc" 1351 #undef GET_INTRINSIC_OVERLOAD_TABLE 1352 } 1353 1354 bool Intrinsic::isLeaf(ID id) { 1355 switch (id) { 1356 default: 1357 return true; 1358 1359 case Intrinsic::experimental_gc_statepoint: 1360 case Intrinsic::experimental_patchpoint_void: 1361 case Intrinsic::experimental_patchpoint_i64: 1362 return false; 1363 } 1364 } 1365 1366 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1367 #define GET_INTRINSIC_ATTRIBUTES 1368 #include "llvm/IR/IntrinsicImpl.inc" 1369 #undef GET_INTRINSIC_ATTRIBUTES 1370 1371 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1372 // There can never be multiple globals with the same name of different types, 1373 // because intrinsics must be a specific type. 1374 auto *FT = getType(M->getContext(), id, Tys); 1375 return cast<Function>( 1376 M->getOrInsertFunction(Tys.empty() ? getName(id) 1377 : getName(id, Tys, M, FT), 1378 getType(M->getContext(), id, Tys)) 1379 .getCallee()); 1380 } 1381 1382 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1383 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1384 #include "llvm/IR/IntrinsicImpl.inc" 1385 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1386 1387 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1388 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1389 #include "llvm/IR/IntrinsicImpl.inc" 1390 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1391 1392 using DeferredIntrinsicMatchPair = 1393 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1394 1395 static bool matchIntrinsicType( 1396 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1397 SmallVectorImpl<Type *> &ArgTys, 1398 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1399 bool IsDeferredCheck) { 1400 using namespace Intrinsic; 1401 1402 // If we ran out of descriptors, there are too many arguments. 1403 if (Infos.empty()) return true; 1404 1405 // Do this before slicing off the 'front' part 1406 auto InfosRef = Infos; 1407 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1408 DeferredChecks.emplace_back(T, InfosRef); 1409 return false; 1410 }; 1411 1412 IITDescriptor D = Infos.front(); 1413 Infos = Infos.slice(1); 1414 1415 switch (D.Kind) { 1416 case IITDescriptor::Void: return !Ty->isVoidTy(); 1417 case IITDescriptor::VarArg: return true; 1418 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1419 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1420 case IITDescriptor::Token: return !Ty->isTokenTy(); 1421 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1422 case IITDescriptor::Half: return !Ty->isHalfTy(); 1423 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1424 case IITDescriptor::Float: return !Ty->isFloatTy(); 1425 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1426 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1427 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1428 case IITDescriptor::Vector: { 1429 VectorType *VT = dyn_cast<VectorType>(Ty); 1430 return !VT || VT->getElementCount() != D.Vector_Width || 1431 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1432 DeferredChecks, IsDeferredCheck); 1433 } 1434 case IITDescriptor::Pointer: { 1435 PointerType *PT = dyn_cast<PointerType>(Ty); 1436 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1437 return true; 1438 if (!PT->isOpaque()) 1439 return matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1440 DeferredChecks, IsDeferredCheck); 1441 // If typed pointers are supported, do not allow using opaque pointer in 1442 // place of fixed pointer type. This would make the intrinsic signature 1443 // non-unique. 1444 if (Ty->getContext().supportsTypedPointers()) 1445 return true; 1446 // Consume IIT descriptors relating to the pointer element type. 1447 while (Infos.front().Kind == IITDescriptor::Pointer) 1448 Infos = Infos.slice(1); 1449 Infos = Infos.slice(1); 1450 return false; 1451 } 1452 1453 case IITDescriptor::Struct: { 1454 StructType *ST = dyn_cast<StructType>(Ty); 1455 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1456 return true; 1457 1458 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1459 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1460 DeferredChecks, IsDeferredCheck)) 1461 return true; 1462 return false; 1463 } 1464 1465 case IITDescriptor::Argument: 1466 // If this is the second occurrence of an argument, 1467 // verify that the later instance matches the previous instance. 1468 if (D.getArgumentNumber() < ArgTys.size()) 1469 return Ty != ArgTys[D.getArgumentNumber()]; 1470 1471 if (D.getArgumentNumber() > ArgTys.size() || 1472 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1473 return IsDeferredCheck || DeferCheck(Ty); 1474 1475 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1476 "Table consistency error"); 1477 ArgTys.push_back(Ty); 1478 1479 switch (D.getArgumentKind()) { 1480 case IITDescriptor::AK_Any: return false; // Success 1481 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1482 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1483 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1484 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1485 default: break; 1486 } 1487 llvm_unreachable("all argument kinds not covered"); 1488 1489 case IITDescriptor::ExtendArgument: { 1490 // If this is a forward reference, defer the check for later. 1491 if (D.getArgumentNumber() >= ArgTys.size()) 1492 return IsDeferredCheck || DeferCheck(Ty); 1493 1494 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1495 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1496 NewTy = VectorType::getExtendedElementVectorType(VTy); 1497 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1498 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1499 else 1500 return true; 1501 1502 return Ty != NewTy; 1503 } 1504 case IITDescriptor::TruncArgument: { 1505 // If this is a forward reference, defer the check for later. 1506 if (D.getArgumentNumber() >= ArgTys.size()) 1507 return IsDeferredCheck || DeferCheck(Ty); 1508 1509 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1510 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1511 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1512 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1513 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1514 else 1515 return true; 1516 1517 return Ty != NewTy; 1518 } 1519 case IITDescriptor::HalfVecArgument: 1520 // If this is a forward reference, defer the check for later. 1521 if (D.getArgumentNumber() >= ArgTys.size()) 1522 return IsDeferredCheck || DeferCheck(Ty); 1523 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1524 VectorType::getHalfElementsVectorType( 1525 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1526 case IITDescriptor::SameVecWidthArgument: { 1527 if (D.getArgumentNumber() >= ArgTys.size()) { 1528 // Defer check and subsequent check for the vector element type. 1529 Infos = Infos.slice(1); 1530 return IsDeferredCheck || DeferCheck(Ty); 1531 } 1532 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1533 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1534 // Both must be vectors of the same number of elements or neither. 1535 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1536 return true; 1537 Type *EltTy = Ty; 1538 if (ThisArgType) { 1539 if (ReferenceType->getElementCount() != 1540 ThisArgType->getElementCount()) 1541 return true; 1542 EltTy = ThisArgType->getElementType(); 1543 } 1544 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1545 IsDeferredCheck); 1546 } 1547 case IITDescriptor::PtrToArgument: { 1548 if (D.getArgumentNumber() >= ArgTys.size()) 1549 return IsDeferredCheck || DeferCheck(Ty); 1550 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1551 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1552 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1553 } 1554 case IITDescriptor::PtrToElt: { 1555 if (D.getArgumentNumber() >= ArgTys.size()) 1556 return IsDeferredCheck || DeferCheck(Ty); 1557 VectorType * ReferenceType = 1558 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1559 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1560 1561 if (!ThisArgType || !ReferenceType) 1562 return true; 1563 if (!ThisArgType->isOpaque()) 1564 return ThisArgType->getElementType() != ReferenceType->getElementType(); 1565 // If typed pointers are supported, do not allow opaque pointer to ensure 1566 // uniqueness. 1567 return Ty->getContext().supportsTypedPointers(); 1568 } 1569 case IITDescriptor::VecOfAnyPtrsToElt: { 1570 unsigned RefArgNumber = D.getRefArgNumber(); 1571 if (RefArgNumber >= ArgTys.size()) { 1572 if (IsDeferredCheck) 1573 return true; 1574 // If forward referencing, already add the pointer-vector type and 1575 // defer the checks for later. 1576 ArgTys.push_back(Ty); 1577 return DeferCheck(Ty); 1578 } 1579 1580 if (!IsDeferredCheck){ 1581 assert(D.getOverloadArgNumber() == ArgTys.size() && 1582 "Table consistency error"); 1583 ArgTys.push_back(Ty); 1584 } 1585 1586 // Verify the overloaded type "matches" the Ref type. 1587 // i.e. Ty is a vector with the same width as Ref. 1588 // Composed of pointers to the same element type as Ref. 1589 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1590 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1591 if (!ThisArgVecTy || !ReferenceType || 1592 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1593 return true; 1594 PointerType *ThisArgEltTy = 1595 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1596 if (!ThisArgEltTy) 1597 return true; 1598 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1599 ReferenceType->getElementType()); 1600 } 1601 case IITDescriptor::VecElementArgument: { 1602 if (D.getArgumentNumber() >= ArgTys.size()) 1603 return IsDeferredCheck ? true : DeferCheck(Ty); 1604 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1605 return !ReferenceType || Ty != ReferenceType->getElementType(); 1606 } 1607 case IITDescriptor::Subdivide2Argument: 1608 case IITDescriptor::Subdivide4Argument: { 1609 // If this is a forward reference, defer the check for later. 1610 if (D.getArgumentNumber() >= ArgTys.size()) 1611 return IsDeferredCheck || DeferCheck(Ty); 1612 1613 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1614 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1615 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1616 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1617 return Ty != NewTy; 1618 } 1619 return true; 1620 } 1621 case IITDescriptor::VecOfBitcastsToInt: { 1622 if (D.getArgumentNumber() >= ArgTys.size()) 1623 return IsDeferredCheck || DeferCheck(Ty); 1624 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1625 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1626 if (!ThisArgVecTy || !ReferenceType) 1627 return true; 1628 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1629 } 1630 } 1631 llvm_unreachable("unhandled"); 1632 } 1633 1634 Intrinsic::MatchIntrinsicTypesResult 1635 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1636 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1637 SmallVectorImpl<Type *> &ArgTys) { 1638 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1639 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1640 false)) 1641 return MatchIntrinsicTypes_NoMatchRet; 1642 1643 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1644 1645 for (auto Ty : FTy->params()) 1646 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1647 return MatchIntrinsicTypes_NoMatchArg; 1648 1649 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1650 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1651 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1652 true)) 1653 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1654 : MatchIntrinsicTypes_NoMatchArg; 1655 } 1656 1657 return MatchIntrinsicTypes_Match; 1658 } 1659 1660 bool 1661 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1662 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1663 // If there are no descriptors left, then it can't be a vararg. 1664 if (Infos.empty()) 1665 return isVarArg; 1666 1667 // There should be only one descriptor remaining at this point. 1668 if (Infos.size() != 1) 1669 return true; 1670 1671 // Check and verify the descriptor. 1672 IITDescriptor D = Infos.front(); 1673 Infos = Infos.slice(1); 1674 if (D.Kind == IITDescriptor::VarArg) 1675 return !isVarArg; 1676 1677 return true; 1678 } 1679 1680 bool Intrinsic::getIntrinsicSignature(Function *F, 1681 SmallVectorImpl<Type *> &ArgTys) { 1682 Intrinsic::ID ID = F->getIntrinsicID(); 1683 if (!ID) 1684 return false; 1685 1686 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1687 getIntrinsicInfoTableEntries(ID, Table); 1688 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1689 1690 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1691 ArgTys) != 1692 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1693 return false; 1694 } 1695 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1696 TableRef)) 1697 return false; 1698 return true; 1699 } 1700 1701 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1702 SmallVector<Type *, 4> ArgTys; 1703 if (!getIntrinsicSignature(F, ArgTys)) 1704 return None; 1705 1706 Intrinsic::ID ID = F->getIntrinsicID(); 1707 StringRef Name = F->getName(); 1708 std::string WantedName = 1709 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1710 if (Name == WantedName) 1711 return None; 1712 1713 Function *NewDecl = [&] { 1714 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1715 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1716 if (ExistingF->getFunctionType() == F->getFunctionType()) 1717 return ExistingF; 1718 1719 // The name already exists, but is not a function or has the wrong 1720 // prototype. Make place for the new one by renaming the old version. 1721 // Either this old version will be removed later on or the module is 1722 // invalid and we'll get an error. 1723 ExistingGV->setName(WantedName + ".renamed"); 1724 } 1725 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1726 }(); 1727 1728 NewDecl->setCallingConv(F->getCallingConv()); 1729 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1730 "Shouldn't change the signature"); 1731 return NewDecl; 1732 } 1733 1734 /// hasAddressTaken - returns true if there are any uses of this function 1735 /// other than direct calls or invokes to it. Optionally ignores callback 1736 /// uses, assume like pointer annotation calls, and references in llvm.used 1737 /// and llvm.compiler.used variables. 1738 bool Function::hasAddressTaken(const User **PutOffender, 1739 bool IgnoreCallbackUses, 1740 bool IgnoreAssumeLikeCalls, 1741 bool IgnoreLLVMUsed) const { 1742 for (const Use &U : uses()) { 1743 const User *FU = U.getUser(); 1744 if (isa<BlockAddress>(FU)) 1745 continue; 1746 1747 if (IgnoreCallbackUses) { 1748 AbstractCallSite ACS(&U); 1749 if (ACS && ACS.isCallbackCall()) 1750 continue; 1751 } 1752 1753 const auto *Call = dyn_cast<CallBase>(FU); 1754 if (!Call) { 1755 if (IgnoreAssumeLikeCalls) { 1756 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1757 if (FI->isCast() && !FI->user_empty() && 1758 llvm::all_of(FU->users(), [](const User *U) { 1759 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1760 return I->isAssumeLikeIntrinsic(); 1761 return false; 1762 })) 1763 continue; 1764 } 1765 } 1766 if (IgnoreLLVMUsed && !FU->user_empty()) { 1767 const User *FUU = FU; 1768 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1769 !FU->user_begin()->user_empty()) 1770 FUU = *FU->user_begin(); 1771 if (llvm::all_of(FUU->users(), [](const User *U) { 1772 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1773 return GV->hasName() && 1774 (GV->getName().equals("llvm.compiler.used") || 1775 GV->getName().equals("llvm.used")); 1776 return false; 1777 })) 1778 continue; 1779 } 1780 if (PutOffender) 1781 *PutOffender = FU; 1782 return true; 1783 } 1784 if (!Call->isCallee(&U)) { 1785 if (PutOffender) 1786 *PutOffender = FU; 1787 return true; 1788 } 1789 } 1790 return false; 1791 } 1792 1793 bool Function::isDefTriviallyDead() const { 1794 // Check the linkage 1795 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1796 !hasAvailableExternallyLinkage()) 1797 return false; 1798 1799 // Check if the function is used by anything other than a blockaddress. 1800 for (const User *U : users()) 1801 if (!isa<BlockAddress>(U)) 1802 return false; 1803 1804 return true; 1805 } 1806 1807 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1808 /// setjmp or other function that gcc recognizes as "returning twice". 1809 bool Function::callsFunctionThatReturnsTwice() const { 1810 for (const Instruction &I : instructions(this)) 1811 if (const auto *Call = dyn_cast<CallBase>(&I)) 1812 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1813 return true; 1814 1815 return false; 1816 } 1817 1818 Constant *Function::getPersonalityFn() const { 1819 assert(hasPersonalityFn() && getNumOperands()); 1820 return cast<Constant>(Op<0>()); 1821 } 1822 1823 void Function::setPersonalityFn(Constant *Fn) { 1824 setHungoffOperand<0>(Fn); 1825 setValueSubclassDataBit(3, Fn != nullptr); 1826 } 1827 1828 Constant *Function::getPrefixData() const { 1829 assert(hasPrefixData() && getNumOperands()); 1830 return cast<Constant>(Op<1>()); 1831 } 1832 1833 void Function::setPrefixData(Constant *PrefixData) { 1834 setHungoffOperand<1>(PrefixData); 1835 setValueSubclassDataBit(1, PrefixData != nullptr); 1836 } 1837 1838 Constant *Function::getPrologueData() const { 1839 assert(hasPrologueData() && getNumOperands()); 1840 return cast<Constant>(Op<2>()); 1841 } 1842 1843 void Function::setPrologueData(Constant *PrologueData) { 1844 setHungoffOperand<2>(PrologueData); 1845 setValueSubclassDataBit(2, PrologueData != nullptr); 1846 } 1847 1848 void Function::allocHungoffUselist() { 1849 // If we've already allocated a uselist, stop here. 1850 if (getNumOperands()) 1851 return; 1852 1853 allocHungoffUses(3, /*IsPhi=*/ false); 1854 setNumHungOffUseOperands(3); 1855 1856 // Initialize the uselist with placeholder operands to allow traversal. 1857 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1858 Op<0>().set(CPN); 1859 Op<1>().set(CPN); 1860 Op<2>().set(CPN); 1861 } 1862 1863 template <int Idx> 1864 void Function::setHungoffOperand(Constant *C) { 1865 if (C) { 1866 allocHungoffUselist(); 1867 Op<Idx>().set(C); 1868 } else if (getNumOperands()) { 1869 Op<Idx>().set( 1870 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1871 } 1872 } 1873 1874 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1875 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1876 if (On) 1877 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1878 else 1879 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1880 } 1881 1882 void Function::setEntryCount(ProfileCount Count, 1883 const DenseSet<GlobalValue::GUID> *S) { 1884 assert(Count.hasValue()); 1885 #if !defined(NDEBUG) 1886 auto PrevCount = getEntryCount(); 1887 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1888 #endif 1889 1890 auto ImportGUIDs = getImportGUIDs(); 1891 if (S == nullptr && ImportGUIDs.size()) 1892 S = &ImportGUIDs; 1893 1894 MDBuilder MDB(getContext()); 1895 setMetadata( 1896 LLVMContext::MD_prof, 1897 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1898 } 1899 1900 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1901 const DenseSet<GlobalValue::GUID> *Imports) { 1902 setEntryCount(ProfileCount(Count, Type), Imports); 1903 } 1904 1905 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1906 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1907 if (MD && MD->getOperand(0)) 1908 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1909 if (MDS->getString().equals("function_entry_count")) { 1910 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1911 uint64_t Count = CI->getValue().getZExtValue(); 1912 // A value of -1 is used for SamplePGO when there were no samples. 1913 // Treat this the same as unknown. 1914 if (Count == (uint64_t)-1) 1915 return ProfileCount::getInvalid(); 1916 return ProfileCount(Count, PCT_Real); 1917 } else if (AllowSynthetic && 1918 MDS->getString().equals("synthetic_function_entry_count")) { 1919 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1920 uint64_t Count = CI->getValue().getZExtValue(); 1921 return ProfileCount(Count, PCT_Synthetic); 1922 } 1923 } 1924 return ProfileCount::getInvalid(); 1925 } 1926 1927 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1928 DenseSet<GlobalValue::GUID> R; 1929 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1930 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1931 if (MDS->getString().equals("function_entry_count")) 1932 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1933 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1934 ->getValue() 1935 .getZExtValue()); 1936 return R; 1937 } 1938 1939 void Function::setSectionPrefix(StringRef Prefix) { 1940 MDBuilder MDB(getContext()); 1941 setMetadata(LLVMContext::MD_section_prefix, 1942 MDB.createFunctionSectionPrefix(Prefix)); 1943 } 1944 1945 Optional<StringRef> Function::getSectionPrefix() const { 1946 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1947 assert(cast<MDString>(MD->getOperand(0)) 1948 ->getString() 1949 .equals("function_section_prefix") && 1950 "Metadata not match"); 1951 return cast<MDString>(MD->getOperand(1))->getString(); 1952 } 1953 return None; 1954 } 1955 1956 bool Function::nullPointerIsDefined() const { 1957 return hasFnAttribute(Attribute::NullPointerIsValid); 1958 } 1959 1960 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1961 if (F && F->nullPointerIsDefined()) 1962 return true; 1963 1964 if (AS != 0) 1965 return true; 1966 1967 return false; 1968 } 1969