xref: /llvm-project/llvm/lib/IR/Function.cpp (revision c9693492600e3899015a1b9134aa879e9e72bb81)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
557   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
558 }
559 
560 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
561   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
562 }
563 
564 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
565   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
566 }
567 
568 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
569   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
570 }
571 
572 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
573   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
574 }
575 
576 void Function::removeFnAttr(Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
578 }
579 
580 void Function::removeFnAttr(StringRef Kind) {
581   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
582 }
583 
584 void Function::removeFnAttrs(const AttrBuilder &Attrs) {
585   AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs);
586 }
587 
588 void Function::removeRetAttr(Attribute::AttrKind Kind) {
589   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeRetAttr(StringRef Kind) {
593   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
594 }
595 
596 void Function::removeRetAttrs(const AttrBuilder &Attrs) {
597   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
598 }
599 
600 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
601   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
602 }
603 
604 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
605   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
606 }
607 
608 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
609   AttributeSets =
610       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
611 }
612 
613 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
614   AttributeSets =
615       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
616 }
617 
618 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
619   return AttributeSets.hasFnAttr(Kind);
620 }
621 
622 bool Function::hasFnAttribute(StringRef Kind) const {
623   return AttributeSets.hasFnAttr(Kind);
624 }
625 
626 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasRetAttr(Kind);
628 }
629 
630 bool Function::hasParamAttribute(unsigned ArgNo,
631                                  Attribute::AttrKind Kind) const {
632   return AttributeSets.hasParamAttr(ArgNo, Kind);
633 }
634 
635 Attribute Function::getAttributeAtIndex(unsigned i,
636                                         Attribute::AttrKind Kind) const {
637   return AttributeSets.getAttributeAtIndex(i, Kind);
638 }
639 
640 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
641   return AttributeSets.getAttributeAtIndex(i, Kind);
642 }
643 
644 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
645   return AttributeSets.getFnAttr(Kind);
646 }
647 
648 Attribute Function::getFnAttribute(StringRef Kind) const {
649   return AttributeSets.getFnAttr(Kind);
650 }
651 
652 /// gets the specified attribute from the list of attributes.
653 Attribute Function::getParamAttribute(unsigned ArgNo,
654                                       Attribute::AttrKind Kind) const {
655   return AttributeSets.getParamAttr(ArgNo, Kind);
656 }
657 
658 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
659                                                  uint64_t Bytes) {
660   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
661                                                                   ArgNo, Bytes);
662 }
663 
664 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
665   if (&FPType == &APFloat::IEEEsingle()) {
666     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
667     StringRef Val = Attr.getValueAsString();
668     if (!Val.empty())
669       return parseDenormalFPAttribute(Val);
670 
671     // If the f32 variant of the attribute isn't specified, try to use the
672     // generic one.
673   }
674 
675   Attribute Attr = getFnAttribute("denormal-fp-math");
676   return parseDenormalFPAttribute(Attr.getValueAsString());
677 }
678 
679 const std::string &Function::getGC() const {
680   assert(hasGC() && "Function has no collector");
681   return getContext().getGC(*this);
682 }
683 
684 void Function::setGC(std::string Str) {
685   setValueSubclassDataBit(14, !Str.empty());
686   getContext().setGC(*this, std::move(Str));
687 }
688 
689 void Function::clearGC() {
690   if (!hasGC())
691     return;
692   getContext().deleteGC(*this);
693   setValueSubclassDataBit(14, false);
694 }
695 
696 bool Function::hasStackProtectorFnAttr() const {
697   return hasFnAttribute(Attribute::StackProtect) ||
698          hasFnAttribute(Attribute::StackProtectStrong) ||
699          hasFnAttribute(Attribute::StackProtectReq);
700 }
701 
702 /// Copy all additional attributes (those not needed to create a Function) from
703 /// the Function Src to this one.
704 void Function::copyAttributesFrom(const Function *Src) {
705   GlobalObject::copyAttributesFrom(Src);
706   setCallingConv(Src->getCallingConv());
707   setAttributes(Src->getAttributes());
708   if (Src->hasGC())
709     setGC(Src->getGC());
710   else
711     clearGC();
712   if (Src->hasPersonalityFn())
713     setPersonalityFn(Src->getPersonalityFn());
714   if (Src->hasPrefixData())
715     setPrefixData(Src->getPrefixData());
716   if (Src->hasPrologueData())
717     setPrologueData(Src->getPrologueData());
718 }
719 
720 /// Table of string intrinsic names indexed by enum value.
721 static const char * const IntrinsicNameTable[] = {
722   "not_intrinsic",
723 #define GET_INTRINSIC_NAME_TABLE
724 #include "llvm/IR/IntrinsicImpl.inc"
725 #undef GET_INTRINSIC_NAME_TABLE
726 };
727 
728 /// Table of per-target intrinsic name tables.
729 #define GET_INTRINSIC_TARGET_DATA
730 #include "llvm/IR/IntrinsicImpl.inc"
731 #undef GET_INTRINSIC_TARGET_DATA
732 
733 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
734   return IID > TargetInfos[0].Count;
735 }
736 
737 bool Function::isTargetIntrinsic() const {
738   return isTargetIntrinsic(IntID);
739 }
740 
741 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
742 /// target as \c Name, or the generic table if \c Name is not target specific.
743 ///
744 /// Returns the relevant slice of \c IntrinsicNameTable
745 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
746   assert(Name.startswith("llvm."));
747 
748   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
749   // Drop "llvm." and take the first dotted component. That will be the target
750   // if this is target specific.
751   StringRef Target = Name.drop_front(5).split('.').first;
752   auto It = partition_point(
753       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
754   // We've either found the target or just fall back to the generic set, which
755   // is always first.
756   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
757   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
758 }
759 
760 /// This does the actual lookup of an intrinsic ID which
761 /// matches the given function name.
762 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
763   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
764   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
765   if (Idx == -1)
766     return Intrinsic::not_intrinsic;
767 
768   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
769   // an index into a sub-table.
770   int Adjust = NameTable.data() - IntrinsicNameTable;
771   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
772 
773   // If the intrinsic is not overloaded, require an exact match. If it is
774   // overloaded, require either exact or prefix match.
775   const auto MatchSize = strlen(NameTable[Idx]);
776   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
777   bool IsExactMatch = Name.size() == MatchSize;
778   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
779                                                      : Intrinsic::not_intrinsic;
780 }
781 
782 void Function::recalculateIntrinsicID() {
783   StringRef Name = getName();
784   if (!Name.startswith("llvm.")) {
785     HasLLVMReservedName = false;
786     IntID = Intrinsic::not_intrinsic;
787     return;
788   }
789   HasLLVMReservedName = true;
790   IntID = lookupIntrinsicID(Name);
791 }
792 
793 /// Returns a stable mangling for the type specified for use in the name
794 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
795 /// of named types is simply their name.  Manglings for unnamed types consist
796 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
797 /// combined with the mangling of their component types.  A vararg function
798 /// type will have a suffix of 'vararg'.  Since function types can contain
799 /// other function types, we close a function type mangling with suffix 'f'
800 /// which can't be confused with it's prefix.  This ensures we don't have
801 /// collisions between two unrelated function types. Otherwise, you might
802 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
803 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
804 /// indicating that extra care must be taken to ensure a unique name.
805 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
806   std::string Result;
807   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
808     Result += "p" + utostr(PTyp->getAddressSpace());
809     // Opaque pointer doesn't have pointee type information, so we just mangle
810     // address space for opaque pointer.
811     if (!PTyp->isOpaque())
812       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
813   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
814     Result += "a" + utostr(ATyp->getNumElements()) +
815               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
816   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
817     if (!STyp->isLiteral()) {
818       Result += "s_";
819       if (STyp->hasName())
820         Result += STyp->getName();
821       else
822         HasUnnamedType = true;
823     } else {
824       Result += "sl_";
825       for (auto Elem : STyp->elements())
826         Result += getMangledTypeStr(Elem, HasUnnamedType);
827     }
828     // Ensure nested structs are distinguishable.
829     Result += "s";
830   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
831     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
832     for (size_t i = 0; i < FT->getNumParams(); i++)
833       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
834     if (FT->isVarArg())
835       Result += "vararg";
836     // Ensure nested function types are distinguishable.
837     Result += "f";
838   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
839     ElementCount EC = VTy->getElementCount();
840     if (EC.isScalable())
841       Result += "nx";
842     Result += "v" + utostr(EC.getKnownMinValue()) +
843               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
844   } else if (Ty) {
845     switch (Ty->getTypeID()) {
846     default: llvm_unreachable("Unhandled type");
847     case Type::VoidTyID:      Result += "isVoid";   break;
848     case Type::MetadataTyID:  Result += "Metadata"; break;
849     case Type::HalfTyID:      Result += "f16";      break;
850     case Type::BFloatTyID:    Result += "bf16";     break;
851     case Type::FloatTyID:     Result += "f32";      break;
852     case Type::DoubleTyID:    Result += "f64";      break;
853     case Type::X86_FP80TyID:  Result += "f80";      break;
854     case Type::FP128TyID:     Result += "f128";     break;
855     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
856     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
857     case Type::X86_AMXTyID:   Result += "x86amx";   break;
858     case Type::IntegerTyID:
859       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
860       break;
861     }
862   }
863   return Result;
864 }
865 
866 StringRef Intrinsic::getBaseName(ID id) {
867   assert(id < num_intrinsics && "Invalid intrinsic ID!");
868   return IntrinsicNameTable[id];
869 }
870 
871 StringRef Intrinsic::getName(ID id) {
872   assert(id < num_intrinsics && "Invalid intrinsic ID!");
873   assert(!Intrinsic::isOverloaded(id) &&
874          "This version of getName does not support overloading");
875   return getBaseName(id);
876 }
877 
878 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
879                                         Module *M, FunctionType *FT,
880                                         bool EarlyModuleCheck) {
881 
882   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
883   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
884          "This version of getName is for overloaded intrinsics only");
885   (void)EarlyModuleCheck;
886   assert((!EarlyModuleCheck || M ||
887           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
888          "Intrinsic overloading on pointer types need to provide a Module");
889   bool HasUnnamedType = false;
890   std::string Result(Intrinsic::getBaseName(Id));
891   for (Type *Ty : Tys)
892     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
893   if (HasUnnamedType) {
894     assert(M && "unnamed types need a module");
895     if (!FT)
896       FT = Intrinsic::getType(M->getContext(), Id, Tys);
897     else
898       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
899              "Provided FunctionType must match arguments");
900     return M->getUniqueIntrinsicName(Result, Id, FT);
901   }
902   return Result;
903 }
904 
905 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
906                                FunctionType *FT) {
907   assert(M && "We need to have a Module");
908   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
909 }
910 
911 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
912   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
913 }
914 
915 /// IIT_Info - These are enumerators that describe the entries returned by the
916 /// getIntrinsicInfoTableEntries function.
917 ///
918 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
919 enum IIT_Info {
920   // Common values should be encoded with 0-15.
921   IIT_Done = 0,
922   IIT_I1   = 1,
923   IIT_I8   = 2,
924   IIT_I16  = 3,
925   IIT_I32  = 4,
926   IIT_I64  = 5,
927   IIT_F16  = 6,
928   IIT_F32  = 7,
929   IIT_F64  = 8,
930   IIT_V2   = 9,
931   IIT_V4   = 10,
932   IIT_V8   = 11,
933   IIT_V16  = 12,
934   IIT_V32  = 13,
935   IIT_PTR  = 14,
936   IIT_ARG  = 15,
937 
938   // Values from 16+ are only encodable with the inefficient encoding.
939   IIT_V64  = 16,
940   IIT_MMX  = 17,
941   IIT_TOKEN = 18,
942   IIT_METADATA = 19,
943   IIT_EMPTYSTRUCT = 20,
944   IIT_STRUCT2 = 21,
945   IIT_STRUCT3 = 22,
946   IIT_STRUCT4 = 23,
947   IIT_STRUCT5 = 24,
948   IIT_EXTEND_ARG = 25,
949   IIT_TRUNC_ARG = 26,
950   IIT_ANYPTR = 27,
951   IIT_V1   = 28,
952   IIT_VARARG = 29,
953   IIT_HALF_VEC_ARG = 30,
954   IIT_SAME_VEC_WIDTH_ARG = 31,
955   IIT_PTR_TO_ARG = 32,
956   IIT_PTR_TO_ELT = 33,
957   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
958   IIT_I128 = 35,
959   IIT_V512 = 36,
960   IIT_V1024 = 37,
961   IIT_STRUCT6 = 38,
962   IIT_STRUCT7 = 39,
963   IIT_STRUCT8 = 40,
964   IIT_F128 = 41,
965   IIT_VEC_ELEMENT = 42,
966   IIT_SCALABLE_VEC = 43,
967   IIT_SUBDIVIDE2_ARG = 44,
968   IIT_SUBDIVIDE4_ARG = 45,
969   IIT_VEC_OF_BITCASTS_TO_INT = 46,
970   IIT_V128 = 47,
971   IIT_BF16 = 48,
972   IIT_STRUCT9 = 49,
973   IIT_V256 = 50,
974   IIT_AMX  = 51
975 };
976 
977 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
978                       IIT_Info LastInfo,
979                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
980   using namespace Intrinsic;
981 
982   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
983 
984   IIT_Info Info = IIT_Info(Infos[NextElt++]);
985   unsigned StructElts = 2;
986 
987   switch (Info) {
988   case IIT_Done:
989     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
990     return;
991   case IIT_VARARG:
992     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
993     return;
994   case IIT_MMX:
995     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
996     return;
997   case IIT_AMX:
998     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
999     return;
1000   case IIT_TOKEN:
1001     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1002     return;
1003   case IIT_METADATA:
1004     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1005     return;
1006   case IIT_F16:
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1008     return;
1009   case IIT_BF16:
1010     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1011     return;
1012   case IIT_F32:
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1014     return;
1015   case IIT_F64:
1016     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1017     return;
1018   case IIT_F128:
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1020     return;
1021   case IIT_I1:
1022     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1023     return;
1024   case IIT_I8:
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1026     return;
1027   case IIT_I16:
1028     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1029     return;
1030   case IIT_I32:
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1032     return;
1033   case IIT_I64:
1034     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1035     return;
1036   case IIT_I128:
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1038     return;
1039   case IIT_V1:
1040     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1041     DecodeIITType(NextElt, Infos, Info, OutputTable);
1042     return;
1043   case IIT_V2:
1044     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1045     DecodeIITType(NextElt, Infos, Info, OutputTable);
1046     return;
1047   case IIT_V4:
1048     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1049     DecodeIITType(NextElt, Infos, Info, OutputTable);
1050     return;
1051   case IIT_V8:
1052     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1053     DecodeIITType(NextElt, Infos, Info, OutputTable);
1054     return;
1055   case IIT_V16:
1056     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1057     DecodeIITType(NextElt, Infos, Info, OutputTable);
1058     return;
1059   case IIT_V32:
1060     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1061     DecodeIITType(NextElt, Infos, Info, OutputTable);
1062     return;
1063   case IIT_V64:
1064     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1065     DecodeIITType(NextElt, Infos, Info, OutputTable);
1066     return;
1067   case IIT_V128:
1068     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1069     DecodeIITType(NextElt, Infos, Info, OutputTable);
1070     return;
1071   case IIT_V256:
1072     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1073     DecodeIITType(NextElt, Infos, Info, OutputTable);
1074     return;
1075   case IIT_V512:
1076     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1077     DecodeIITType(NextElt, Infos, Info, OutputTable);
1078     return;
1079   case IIT_V1024:
1080     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1081     DecodeIITType(NextElt, Infos, Info, OutputTable);
1082     return;
1083   case IIT_PTR:
1084     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1085     DecodeIITType(NextElt, Infos, Info, OutputTable);
1086     return;
1087   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1088     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1089                                              Infos[NextElt++]));
1090     DecodeIITType(NextElt, Infos, Info, OutputTable);
1091     return;
1092   }
1093   case IIT_ARG: {
1094     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1096     return;
1097   }
1098   case IIT_EXTEND_ARG: {
1099     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1100     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1101                                              ArgInfo));
1102     return;
1103   }
1104   case IIT_TRUNC_ARG: {
1105     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1107                                              ArgInfo));
1108     return;
1109   }
1110   case IIT_HALF_VEC_ARG: {
1111     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1113                                              ArgInfo));
1114     return;
1115   }
1116   case IIT_SAME_VEC_WIDTH_ARG: {
1117     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1119                                              ArgInfo));
1120     return;
1121   }
1122   case IIT_PTR_TO_ARG: {
1123     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1125                                              ArgInfo));
1126     return;
1127   }
1128   case IIT_PTR_TO_ELT: {
1129     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1130     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1131     return;
1132   }
1133   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1134     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1135     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1136     OutputTable.push_back(
1137         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1138     return;
1139   }
1140   case IIT_EMPTYSTRUCT:
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1142     return;
1143   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1144   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1145   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1146   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1147   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1148   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1149   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1150   case IIT_STRUCT2: {
1151     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1152 
1153     for (unsigned i = 0; i != StructElts; ++i)
1154       DecodeIITType(NextElt, Infos, Info, OutputTable);
1155     return;
1156   }
1157   case IIT_SUBDIVIDE2_ARG: {
1158     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1159     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1160                                              ArgInfo));
1161     return;
1162   }
1163   case IIT_SUBDIVIDE4_ARG: {
1164     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1165     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1166                                              ArgInfo));
1167     return;
1168   }
1169   case IIT_VEC_ELEMENT: {
1170     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1171     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1172                                              ArgInfo));
1173     return;
1174   }
1175   case IIT_SCALABLE_VEC: {
1176     DecodeIITType(NextElt, Infos, Info, OutputTable);
1177     return;
1178   }
1179   case IIT_VEC_OF_BITCASTS_TO_INT: {
1180     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1181     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1182                                              ArgInfo));
1183     return;
1184   }
1185   }
1186   llvm_unreachable("unhandled");
1187 }
1188 
1189 #define GET_INTRINSIC_GENERATOR_GLOBAL
1190 #include "llvm/IR/IntrinsicImpl.inc"
1191 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1192 
1193 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1194                                              SmallVectorImpl<IITDescriptor> &T){
1195   // Check to see if the intrinsic's type was expressible by the table.
1196   unsigned TableVal = IIT_Table[id-1];
1197 
1198   // Decode the TableVal into an array of IITValues.
1199   SmallVector<unsigned char, 8> IITValues;
1200   ArrayRef<unsigned char> IITEntries;
1201   unsigned NextElt = 0;
1202   if ((TableVal >> 31) != 0) {
1203     // This is an offset into the IIT_LongEncodingTable.
1204     IITEntries = IIT_LongEncodingTable;
1205 
1206     // Strip sentinel bit.
1207     NextElt = (TableVal << 1) >> 1;
1208   } else {
1209     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1210     // into a single word in the table itself, decode it now.
1211     do {
1212       IITValues.push_back(TableVal & 0xF);
1213       TableVal >>= 4;
1214     } while (TableVal);
1215 
1216     IITEntries = IITValues;
1217     NextElt = 0;
1218   }
1219 
1220   // Okay, decode the table into the output vector of IITDescriptors.
1221   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1222   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1223     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1224 }
1225 
1226 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1227                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1228   using namespace Intrinsic;
1229 
1230   IITDescriptor D = Infos.front();
1231   Infos = Infos.slice(1);
1232 
1233   switch (D.Kind) {
1234   case IITDescriptor::Void: return Type::getVoidTy(Context);
1235   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1236   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1237   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1238   case IITDescriptor::Token: return Type::getTokenTy(Context);
1239   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1240   case IITDescriptor::Half: return Type::getHalfTy(Context);
1241   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1242   case IITDescriptor::Float: return Type::getFloatTy(Context);
1243   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1244   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1245 
1246   case IITDescriptor::Integer:
1247     return IntegerType::get(Context, D.Integer_Width);
1248   case IITDescriptor::Vector:
1249     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1250                            D.Vector_Width);
1251   case IITDescriptor::Pointer:
1252     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1253                             D.Pointer_AddressSpace);
1254   case IITDescriptor::Struct: {
1255     SmallVector<Type *, 8> Elts;
1256     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1257       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1258     return StructType::get(Context, Elts);
1259   }
1260   case IITDescriptor::Argument:
1261     return Tys[D.getArgumentNumber()];
1262   case IITDescriptor::ExtendArgument: {
1263     Type *Ty = Tys[D.getArgumentNumber()];
1264     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1265       return VectorType::getExtendedElementVectorType(VTy);
1266 
1267     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1268   }
1269   case IITDescriptor::TruncArgument: {
1270     Type *Ty = Tys[D.getArgumentNumber()];
1271     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1272       return VectorType::getTruncatedElementVectorType(VTy);
1273 
1274     IntegerType *ITy = cast<IntegerType>(Ty);
1275     assert(ITy->getBitWidth() % 2 == 0);
1276     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1277   }
1278   case IITDescriptor::Subdivide2Argument:
1279   case IITDescriptor::Subdivide4Argument: {
1280     Type *Ty = Tys[D.getArgumentNumber()];
1281     VectorType *VTy = dyn_cast<VectorType>(Ty);
1282     assert(VTy && "Expected an argument of Vector Type");
1283     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1284     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1285   }
1286   case IITDescriptor::HalfVecArgument:
1287     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1288                                                   Tys[D.getArgumentNumber()]));
1289   case IITDescriptor::SameVecWidthArgument: {
1290     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1291     Type *Ty = Tys[D.getArgumentNumber()];
1292     if (auto *VTy = dyn_cast<VectorType>(Ty))
1293       return VectorType::get(EltTy, VTy->getElementCount());
1294     return EltTy;
1295   }
1296   case IITDescriptor::PtrToArgument: {
1297     Type *Ty = Tys[D.getArgumentNumber()];
1298     return PointerType::getUnqual(Ty);
1299   }
1300   case IITDescriptor::PtrToElt: {
1301     Type *Ty = Tys[D.getArgumentNumber()];
1302     VectorType *VTy = dyn_cast<VectorType>(Ty);
1303     if (!VTy)
1304       llvm_unreachable("Expected an argument of Vector Type");
1305     Type *EltTy = VTy->getElementType();
1306     return PointerType::getUnqual(EltTy);
1307   }
1308   case IITDescriptor::VecElementArgument: {
1309     Type *Ty = Tys[D.getArgumentNumber()];
1310     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1311       return VTy->getElementType();
1312     llvm_unreachable("Expected an argument of Vector Type");
1313   }
1314   case IITDescriptor::VecOfBitcastsToInt: {
1315     Type *Ty = Tys[D.getArgumentNumber()];
1316     VectorType *VTy = dyn_cast<VectorType>(Ty);
1317     assert(VTy && "Expected an argument of Vector Type");
1318     return VectorType::getInteger(VTy);
1319   }
1320   case IITDescriptor::VecOfAnyPtrsToElt:
1321     // Return the overloaded type (which determines the pointers address space)
1322     return Tys[D.getOverloadArgNumber()];
1323   }
1324   llvm_unreachable("unhandled");
1325 }
1326 
1327 FunctionType *Intrinsic::getType(LLVMContext &Context,
1328                                  ID id, ArrayRef<Type*> Tys) {
1329   SmallVector<IITDescriptor, 8> Table;
1330   getIntrinsicInfoTableEntries(id, Table);
1331 
1332   ArrayRef<IITDescriptor> TableRef = Table;
1333   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1334 
1335   SmallVector<Type*, 8> ArgTys;
1336   while (!TableRef.empty())
1337     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1338 
1339   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1340   // If we see void type as the type of the last argument, it is vararg intrinsic
1341   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1342     ArgTys.pop_back();
1343     return FunctionType::get(ResultTy, ArgTys, true);
1344   }
1345   return FunctionType::get(ResultTy, ArgTys, false);
1346 }
1347 
1348 bool Intrinsic::isOverloaded(ID id) {
1349 #define GET_INTRINSIC_OVERLOAD_TABLE
1350 #include "llvm/IR/IntrinsicImpl.inc"
1351 #undef GET_INTRINSIC_OVERLOAD_TABLE
1352 }
1353 
1354 bool Intrinsic::isLeaf(ID id) {
1355   switch (id) {
1356   default:
1357     return true;
1358 
1359   case Intrinsic::experimental_gc_statepoint:
1360   case Intrinsic::experimental_patchpoint_void:
1361   case Intrinsic::experimental_patchpoint_i64:
1362     return false;
1363   }
1364 }
1365 
1366 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1367 #define GET_INTRINSIC_ATTRIBUTES
1368 #include "llvm/IR/IntrinsicImpl.inc"
1369 #undef GET_INTRINSIC_ATTRIBUTES
1370 
1371 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1372   // There can never be multiple globals with the same name of different types,
1373   // because intrinsics must be a specific type.
1374   auto *FT = getType(M->getContext(), id, Tys);
1375   return cast<Function>(
1376       M->getOrInsertFunction(Tys.empty() ? getName(id)
1377                                          : getName(id, Tys, M, FT),
1378                              getType(M->getContext(), id, Tys))
1379           .getCallee());
1380 }
1381 
1382 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1383 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1384 #include "llvm/IR/IntrinsicImpl.inc"
1385 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1386 
1387 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1388 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1389 #include "llvm/IR/IntrinsicImpl.inc"
1390 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1391 
1392 using DeferredIntrinsicMatchPair =
1393     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1394 
1395 static bool matchIntrinsicType(
1396     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1397     SmallVectorImpl<Type *> &ArgTys,
1398     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1399     bool IsDeferredCheck) {
1400   using namespace Intrinsic;
1401 
1402   // If we ran out of descriptors, there are too many arguments.
1403   if (Infos.empty()) return true;
1404 
1405   // Do this before slicing off the 'front' part
1406   auto InfosRef = Infos;
1407   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1408     DeferredChecks.emplace_back(T, InfosRef);
1409     return false;
1410   };
1411 
1412   IITDescriptor D = Infos.front();
1413   Infos = Infos.slice(1);
1414 
1415   switch (D.Kind) {
1416     case IITDescriptor::Void: return !Ty->isVoidTy();
1417     case IITDescriptor::VarArg: return true;
1418     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1419     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1420     case IITDescriptor::Token: return !Ty->isTokenTy();
1421     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1422     case IITDescriptor::Half: return !Ty->isHalfTy();
1423     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1424     case IITDescriptor::Float: return !Ty->isFloatTy();
1425     case IITDescriptor::Double: return !Ty->isDoubleTy();
1426     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1427     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1428     case IITDescriptor::Vector: {
1429       VectorType *VT = dyn_cast<VectorType>(Ty);
1430       return !VT || VT->getElementCount() != D.Vector_Width ||
1431              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1432                                 DeferredChecks, IsDeferredCheck);
1433     }
1434     case IITDescriptor::Pointer: {
1435       PointerType *PT = dyn_cast<PointerType>(Ty);
1436       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1437         return true;
1438       if (!PT->isOpaque())
1439         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1440                                   DeferredChecks, IsDeferredCheck);
1441       // If typed pointers are supported, do not allow using opaque pointer in
1442       // place of fixed pointer type. This would make the intrinsic signature
1443       // non-unique.
1444       if (Ty->getContext().supportsTypedPointers())
1445         return true;
1446       // Consume IIT descriptors relating to the pointer element type.
1447       while (Infos.front().Kind == IITDescriptor::Pointer)
1448         Infos = Infos.slice(1);
1449       Infos = Infos.slice(1);
1450       return false;
1451     }
1452 
1453     case IITDescriptor::Struct: {
1454       StructType *ST = dyn_cast<StructType>(Ty);
1455       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1456         return true;
1457 
1458       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1459         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1460                                DeferredChecks, IsDeferredCheck))
1461           return true;
1462       return false;
1463     }
1464 
1465     case IITDescriptor::Argument:
1466       // If this is the second occurrence of an argument,
1467       // verify that the later instance matches the previous instance.
1468       if (D.getArgumentNumber() < ArgTys.size())
1469         return Ty != ArgTys[D.getArgumentNumber()];
1470 
1471       if (D.getArgumentNumber() > ArgTys.size() ||
1472           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1473         return IsDeferredCheck || DeferCheck(Ty);
1474 
1475       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1476              "Table consistency error");
1477       ArgTys.push_back(Ty);
1478 
1479       switch (D.getArgumentKind()) {
1480         case IITDescriptor::AK_Any:        return false; // Success
1481         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1482         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1483         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1484         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1485         default:                           break;
1486       }
1487       llvm_unreachable("all argument kinds not covered");
1488 
1489     case IITDescriptor::ExtendArgument: {
1490       // If this is a forward reference, defer the check for later.
1491       if (D.getArgumentNumber() >= ArgTys.size())
1492         return IsDeferredCheck || DeferCheck(Ty);
1493 
1494       Type *NewTy = ArgTys[D.getArgumentNumber()];
1495       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1496         NewTy = VectorType::getExtendedElementVectorType(VTy);
1497       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1498         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1499       else
1500         return true;
1501 
1502       return Ty != NewTy;
1503     }
1504     case IITDescriptor::TruncArgument: {
1505       // If this is a forward reference, defer the check for later.
1506       if (D.getArgumentNumber() >= ArgTys.size())
1507         return IsDeferredCheck || DeferCheck(Ty);
1508 
1509       Type *NewTy = ArgTys[D.getArgumentNumber()];
1510       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1511         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1512       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1513         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1514       else
1515         return true;
1516 
1517       return Ty != NewTy;
1518     }
1519     case IITDescriptor::HalfVecArgument:
1520       // If this is a forward reference, defer the check for later.
1521       if (D.getArgumentNumber() >= ArgTys.size())
1522         return IsDeferredCheck || DeferCheck(Ty);
1523       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1524              VectorType::getHalfElementsVectorType(
1525                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1526     case IITDescriptor::SameVecWidthArgument: {
1527       if (D.getArgumentNumber() >= ArgTys.size()) {
1528         // Defer check and subsequent check for the vector element type.
1529         Infos = Infos.slice(1);
1530         return IsDeferredCheck || DeferCheck(Ty);
1531       }
1532       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1533       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1534       // Both must be vectors of the same number of elements or neither.
1535       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1536         return true;
1537       Type *EltTy = Ty;
1538       if (ThisArgType) {
1539         if (ReferenceType->getElementCount() !=
1540             ThisArgType->getElementCount())
1541           return true;
1542         EltTy = ThisArgType->getElementType();
1543       }
1544       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1545                                 IsDeferredCheck);
1546     }
1547     case IITDescriptor::PtrToArgument: {
1548       if (D.getArgumentNumber() >= ArgTys.size())
1549         return IsDeferredCheck || DeferCheck(Ty);
1550       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1551       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1552       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1553     }
1554     case IITDescriptor::PtrToElt: {
1555       if (D.getArgumentNumber() >= ArgTys.size())
1556         return IsDeferredCheck || DeferCheck(Ty);
1557       VectorType * ReferenceType =
1558         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1559       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1560 
1561       if (!ThisArgType || !ReferenceType)
1562         return true;
1563       if (!ThisArgType->isOpaque())
1564         return ThisArgType->getElementType() != ReferenceType->getElementType();
1565       // If typed pointers are supported, do not allow opaque pointer to ensure
1566       // uniqueness.
1567       return Ty->getContext().supportsTypedPointers();
1568     }
1569     case IITDescriptor::VecOfAnyPtrsToElt: {
1570       unsigned RefArgNumber = D.getRefArgNumber();
1571       if (RefArgNumber >= ArgTys.size()) {
1572         if (IsDeferredCheck)
1573           return true;
1574         // If forward referencing, already add the pointer-vector type and
1575         // defer the checks for later.
1576         ArgTys.push_back(Ty);
1577         return DeferCheck(Ty);
1578       }
1579 
1580       if (!IsDeferredCheck){
1581         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1582                "Table consistency error");
1583         ArgTys.push_back(Ty);
1584       }
1585 
1586       // Verify the overloaded type "matches" the Ref type.
1587       // i.e. Ty is a vector with the same width as Ref.
1588       // Composed of pointers to the same element type as Ref.
1589       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1590       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1591       if (!ThisArgVecTy || !ReferenceType ||
1592           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1593         return true;
1594       PointerType *ThisArgEltTy =
1595           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1596       if (!ThisArgEltTy)
1597         return true;
1598       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1599           ReferenceType->getElementType());
1600     }
1601     case IITDescriptor::VecElementArgument: {
1602       if (D.getArgumentNumber() >= ArgTys.size())
1603         return IsDeferredCheck ? true : DeferCheck(Ty);
1604       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1605       return !ReferenceType || Ty != ReferenceType->getElementType();
1606     }
1607     case IITDescriptor::Subdivide2Argument:
1608     case IITDescriptor::Subdivide4Argument: {
1609       // If this is a forward reference, defer the check for later.
1610       if (D.getArgumentNumber() >= ArgTys.size())
1611         return IsDeferredCheck || DeferCheck(Ty);
1612 
1613       Type *NewTy = ArgTys[D.getArgumentNumber()];
1614       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1615         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1616         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1617         return Ty != NewTy;
1618       }
1619       return true;
1620     }
1621     case IITDescriptor::VecOfBitcastsToInt: {
1622       if (D.getArgumentNumber() >= ArgTys.size())
1623         return IsDeferredCheck || DeferCheck(Ty);
1624       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1625       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1626       if (!ThisArgVecTy || !ReferenceType)
1627         return true;
1628       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1629     }
1630   }
1631   llvm_unreachable("unhandled");
1632 }
1633 
1634 Intrinsic::MatchIntrinsicTypesResult
1635 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1636                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1637                                    SmallVectorImpl<Type *> &ArgTys) {
1638   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1639   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1640                          false))
1641     return MatchIntrinsicTypes_NoMatchRet;
1642 
1643   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1644 
1645   for (auto Ty : FTy->params())
1646     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1647       return MatchIntrinsicTypes_NoMatchArg;
1648 
1649   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1650     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1651     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1652                            true))
1653       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1654                                          : MatchIntrinsicTypes_NoMatchArg;
1655   }
1656 
1657   return MatchIntrinsicTypes_Match;
1658 }
1659 
1660 bool
1661 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1662                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1663   // If there are no descriptors left, then it can't be a vararg.
1664   if (Infos.empty())
1665     return isVarArg;
1666 
1667   // There should be only one descriptor remaining at this point.
1668   if (Infos.size() != 1)
1669     return true;
1670 
1671   // Check and verify the descriptor.
1672   IITDescriptor D = Infos.front();
1673   Infos = Infos.slice(1);
1674   if (D.Kind == IITDescriptor::VarArg)
1675     return !isVarArg;
1676 
1677   return true;
1678 }
1679 
1680 bool Intrinsic::getIntrinsicSignature(Function *F,
1681                                       SmallVectorImpl<Type *> &ArgTys) {
1682   Intrinsic::ID ID = F->getIntrinsicID();
1683   if (!ID)
1684     return false;
1685 
1686   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1687   getIntrinsicInfoTableEntries(ID, Table);
1688   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1689 
1690   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1691                                          ArgTys) !=
1692       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1693     return false;
1694   }
1695   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1696                                       TableRef))
1697     return false;
1698   return true;
1699 }
1700 
1701 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1702   SmallVector<Type *, 4> ArgTys;
1703   if (!getIntrinsicSignature(F, ArgTys))
1704     return None;
1705 
1706   Intrinsic::ID ID = F->getIntrinsicID();
1707   StringRef Name = F->getName();
1708   std::string WantedName =
1709       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1710   if (Name == WantedName)
1711     return None;
1712 
1713   Function *NewDecl = [&] {
1714     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1715       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1716         if (ExistingF->getFunctionType() == F->getFunctionType())
1717           return ExistingF;
1718 
1719       // The name already exists, but is not a function or has the wrong
1720       // prototype. Make place for the new one by renaming the old version.
1721       // Either this old version will be removed later on or the module is
1722       // invalid and we'll get an error.
1723       ExistingGV->setName(WantedName + ".renamed");
1724     }
1725     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1726   }();
1727 
1728   NewDecl->setCallingConv(F->getCallingConv());
1729   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1730          "Shouldn't change the signature");
1731   return NewDecl;
1732 }
1733 
1734 /// hasAddressTaken - returns true if there are any uses of this function
1735 /// other than direct calls or invokes to it. Optionally ignores callback
1736 /// uses, assume like pointer annotation calls, and references in llvm.used
1737 /// and llvm.compiler.used variables.
1738 bool Function::hasAddressTaken(const User **PutOffender,
1739                                bool IgnoreCallbackUses,
1740                                bool IgnoreAssumeLikeCalls,
1741                                bool IgnoreLLVMUsed) const {
1742   for (const Use &U : uses()) {
1743     const User *FU = U.getUser();
1744     if (isa<BlockAddress>(FU))
1745       continue;
1746 
1747     if (IgnoreCallbackUses) {
1748       AbstractCallSite ACS(&U);
1749       if (ACS && ACS.isCallbackCall())
1750         continue;
1751     }
1752 
1753     const auto *Call = dyn_cast<CallBase>(FU);
1754     if (!Call) {
1755       if (IgnoreAssumeLikeCalls) {
1756         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1757           if (FI->isCast() && !FI->user_empty() &&
1758               llvm::all_of(FU->users(), [](const User *U) {
1759                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1760                   return I->isAssumeLikeIntrinsic();
1761                 return false;
1762               }))
1763             continue;
1764         }
1765       }
1766       if (IgnoreLLVMUsed && !FU->user_empty()) {
1767         const User *FUU = FU;
1768         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1769             !FU->user_begin()->user_empty())
1770           FUU = *FU->user_begin();
1771         if (llvm::all_of(FUU->users(), [](const User *U) {
1772               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1773                 return GV->hasName() &&
1774                        (GV->getName().equals("llvm.compiler.used") ||
1775                         GV->getName().equals("llvm.used"));
1776               return false;
1777             }))
1778           continue;
1779       }
1780       if (PutOffender)
1781         *PutOffender = FU;
1782       return true;
1783     }
1784     if (!Call->isCallee(&U)) {
1785       if (PutOffender)
1786         *PutOffender = FU;
1787       return true;
1788     }
1789   }
1790   return false;
1791 }
1792 
1793 bool Function::isDefTriviallyDead() const {
1794   // Check the linkage
1795   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1796       !hasAvailableExternallyLinkage())
1797     return false;
1798 
1799   // Check if the function is used by anything other than a blockaddress.
1800   for (const User *U : users())
1801     if (!isa<BlockAddress>(U))
1802       return false;
1803 
1804   return true;
1805 }
1806 
1807 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1808 /// setjmp or other function that gcc recognizes as "returning twice".
1809 bool Function::callsFunctionThatReturnsTwice() const {
1810   for (const Instruction &I : instructions(this))
1811     if (const auto *Call = dyn_cast<CallBase>(&I))
1812       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1813         return true;
1814 
1815   return false;
1816 }
1817 
1818 Constant *Function::getPersonalityFn() const {
1819   assert(hasPersonalityFn() && getNumOperands());
1820   return cast<Constant>(Op<0>());
1821 }
1822 
1823 void Function::setPersonalityFn(Constant *Fn) {
1824   setHungoffOperand<0>(Fn);
1825   setValueSubclassDataBit(3, Fn != nullptr);
1826 }
1827 
1828 Constant *Function::getPrefixData() const {
1829   assert(hasPrefixData() && getNumOperands());
1830   return cast<Constant>(Op<1>());
1831 }
1832 
1833 void Function::setPrefixData(Constant *PrefixData) {
1834   setHungoffOperand<1>(PrefixData);
1835   setValueSubclassDataBit(1, PrefixData != nullptr);
1836 }
1837 
1838 Constant *Function::getPrologueData() const {
1839   assert(hasPrologueData() && getNumOperands());
1840   return cast<Constant>(Op<2>());
1841 }
1842 
1843 void Function::setPrologueData(Constant *PrologueData) {
1844   setHungoffOperand<2>(PrologueData);
1845   setValueSubclassDataBit(2, PrologueData != nullptr);
1846 }
1847 
1848 void Function::allocHungoffUselist() {
1849   // If we've already allocated a uselist, stop here.
1850   if (getNumOperands())
1851     return;
1852 
1853   allocHungoffUses(3, /*IsPhi=*/ false);
1854   setNumHungOffUseOperands(3);
1855 
1856   // Initialize the uselist with placeholder operands to allow traversal.
1857   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1858   Op<0>().set(CPN);
1859   Op<1>().set(CPN);
1860   Op<2>().set(CPN);
1861 }
1862 
1863 template <int Idx>
1864 void Function::setHungoffOperand(Constant *C) {
1865   if (C) {
1866     allocHungoffUselist();
1867     Op<Idx>().set(C);
1868   } else if (getNumOperands()) {
1869     Op<Idx>().set(
1870         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1871   }
1872 }
1873 
1874 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1875   assert(Bit < 16 && "SubclassData contains only 16 bits");
1876   if (On)
1877     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1878   else
1879     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1880 }
1881 
1882 void Function::setEntryCount(ProfileCount Count,
1883                              const DenseSet<GlobalValue::GUID> *S) {
1884   assert(Count.hasValue());
1885 #if !defined(NDEBUG)
1886   auto PrevCount = getEntryCount();
1887   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1888 #endif
1889 
1890   auto ImportGUIDs = getImportGUIDs();
1891   if (S == nullptr && ImportGUIDs.size())
1892     S = &ImportGUIDs;
1893 
1894   MDBuilder MDB(getContext());
1895   setMetadata(
1896       LLVMContext::MD_prof,
1897       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1898 }
1899 
1900 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1901                              const DenseSet<GlobalValue::GUID> *Imports) {
1902   setEntryCount(ProfileCount(Count, Type), Imports);
1903 }
1904 
1905 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1906   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1907   if (MD && MD->getOperand(0))
1908     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1909       if (MDS->getString().equals("function_entry_count")) {
1910         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1911         uint64_t Count = CI->getValue().getZExtValue();
1912         // A value of -1 is used for SamplePGO when there were no samples.
1913         // Treat this the same as unknown.
1914         if (Count == (uint64_t)-1)
1915           return ProfileCount::getInvalid();
1916         return ProfileCount(Count, PCT_Real);
1917       } else if (AllowSynthetic &&
1918                  MDS->getString().equals("synthetic_function_entry_count")) {
1919         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1920         uint64_t Count = CI->getValue().getZExtValue();
1921         return ProfileCount(Count, PCT_Synthetic);
1922       }
1923     }
1924   return ProfileCount::getInvalid();
1925 }
1926 
1927 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1928   DenseSet<GlobalValue::GUID> R;
1929   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1930     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1931       if (MDS->getString().equals("function_entry_count"))
1932         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1933           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1934                        ->getValue()
1935                        .getZExtValue());
1936   return R;
1937 }
1938 
1939 void Function::setSectionPrefix(StringRef Prefix) {
1940   MDBuilder MDB(getContext());
1941   setMetadata(LLVMContext::MD_section_prefix,
1942               MDB.createFunctionSectionPrefix(Prefix));
1943 }
1944 
1945 Optional<StringRef> Function::getSectionPrefix() const {
1946   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1947     assert(cast<MDString>(MD->getOperand(0))
1948                ->getString()
1949                .equals("function_section_prefix") &&
1950            "Metadata not match");
1951     return cast<MDString>(MD->getOperand(1))->getString();
1952   }
1953   return None;
1954 }
1955 
1956 bool Function::nullPointerIsDefined() const {
1957   return hasFnAttribute(Attribute::NullPointerIsValid);
1958 }
1959 
1960 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1961   if (F && F->nullPointerIsDefined())
1962     return true;
1963 
1964   if (AS != 0)
1965     return true;
1966 
1967   return false;
1968 }
1969