1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 if (Type *SRetTy = ParamAttrs.getStructRetType()) 173 return SRetTy; 174 175 return nullptr; 176 } 177 178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 179 AttributeSet ParamAttrs = 180 getParent()->getAttributes().getParamAttrs(getArgNo()); 181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 182 return DL.getTypeAllocSize(MemTy); 183 return 0; 184 } 185 186 Type *Argument::getPointeeInMemoryValueType() const { 187 AttributeSet ParamAttrs = 188 getParent()->getAttributes().getParamAttrs(getArgNo()); 189 return getMemoryParamAllocType(ParamAttrs); 190 } 191 192 uint64_t Argument::getParamAlignment() const { 193 assert(getType()->isPointerTy() && "Only pointers have alignments"); 194 return getParent()->getParamAlignment(getArgNo()); 195 } 196 197 MaybeAlign Argument::getParamAlign() const { 198 assert(getType()->isPointerTy() && "Only pointers have alignments"); 199 return getParent()->getParamAlign(getArgNo()); 200 } 201 202 MaybeAlign Argument::getParamStackAlign() const { 203 return getParent()->getParamStackAlign(getArgNo()); 204 } 205 206 Type *Argument::getParamByValType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByValType(getArgNo()); 209 } 210 211 Type *Argument::getParamStructRetType() const { 212 assert(getType()->isPointerTy() && "Only pointers have sret types"); 213 return getParent()->getParamStructRetType(getArgNo()); 214 } 215 216 Type *Argument::getParamByRefType() const { 217 assert(getType()->isPointerTy() && "Only pointers have byref types"); 218 return getParent()->getParamByRefType(getArgNo()); 219 } 220 221 Type *Argument::getParamInAllocaType() const { 222 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 223 return getParent()->getParamInAllocaType(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableBytes(getArgNo()); 230 } 231 232 uint64_t Argument::getDereferenceableOrNullBytes() const { 233 assert(getType()->isPointerTy() && 234 "Only pointers have dereferenceable bytes"); 235 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 236 } 237 238 bool Argument::hasNestAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::Nest); 241 } 242 243 bool Argument::hasNoAliasAttr() const { 244 if (!getType()->isPointerTy()) return false; 245 return hasAttribute(Attribute::NoAlias); 246 } 247 248 bool Argument::hasNoCaptureAttr() const { 249 if (!getType()->isPointerTy()) return false; 250 return hasAttribute(Attribute::NoCapture); 251 } 252 253 bool Argument::hasNoFreeAttr() const { 254 if (!getType()->isPointerTy()) return false; 255 return hasAttribute(Attribute::NoFree); 256 } 257 258 bool Argument::hasStructRetAttr() const { 259 if (!getType()->isPointerTy()) return false; 260 return hasAttribute(Attribute::StructRet); 261 } 262 263 bool Argument::hasInRegAttr() const { 264 return hasAttribute(Attribute::InReg); 265 } 266 267 bool Argument::hasReturnedAttr() const { 268 return hasAttribute(Attribute::Returned); 269 } 270 271 bool Argument::hasZExtAttr() const { 272 return hasAttribute(Attribute::ZExt); 273 } 274 275 bool Argument::hasSExtAttr() const { 276 return hasAttribute(Attribute::SExt); 277 } 278 279 bool Argument::onlyReadsMemory() const { 280 AttributeList Attrs = getParent()->getAttributes(); 281 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 282 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 283 } 284 285 void Argument::addAttrs(AttrBuilder &B) { 286 AttributeList AL = getParent()->getAttributes(); 287 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 288 getParent()->setAttributes(AL); 289 } 290 291 void Argument::addAttr(Attribute::AttrKind Kind) { 292 getParent()->addParamAttr(getArgNo(), Kind); 293 } 294 295 void Argument::addAttr(Attribute Attr) { 296 getParent()->addParamAttr(getArgNo(), Attr); 297 } 298 299 void Argument::removeAttr(Attribute::AttrKind Kind) { 300 getParent()->removeParamAttr(getArgNo(), Kind); 301 } 302 303 void Argument::removeAttrs(const AttrBuilder &B) { 304 AttributeList AL = getParent()->getAttributes(); 305 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 306 getParent()->setAttributes(AL); 307 } 308 309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 310 return getParent()->hasParamAttribute(getArgNo(), Kind); 311 } 312 313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 314 return getParent()->getParamAttribute(getArgNo(), Kind); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Helper Methods in Function 319 //===----------------------------------------------------------------------===// 320 321 LLVMContext &Function::getContext() const { 322 return getType()->getContext(); 323 } 324 325 unsigned Function::getInstructionCount() const { 326 unsigned NumInstrs = 0; 327 for (const BasicBlock &BB : BasicBlocks) 328 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 329 BB.instructionsWithoutDebug().end()); 330 return NumInstrs; 331 } 332 333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 334 const Twine &N, Module &M) { 335 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 336 } 337 338 Function *Function::createWithDefaultAttr(FunctionType *Ty, 339 LinkageTypes Linkage, 340 unsigned AddrSpace, const Twine &N, 341 Module *M) { 342 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 343 AttrBuilder B; 344 if (M->getUwtable()) 345 B.addAttribute(Attribute::UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 F->addFnAttrs(B); 358 return F; 359 } 360 361 void Function::removeFromParent() { 362 getParent()->getFunctionList().remove(getIterator()); 363 } 364 365 void Function::eraseFromParent() { 366 getParent()->getFunctionList().erase(getIterator()); 367 } 368 369 //===----------------------------------------------------------------------===// 370 // Function Implementation 371 //===----------------------------------------------------------------------===// 372 373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 374 // If AS == -1 and we are passed a valid module pointer we place the function 375 // in the program address space. Otherwise we default to AS0. 376 if (AddrSpace == static_cast<unsigned>(-1)) 377 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 378 return AddrSpace; 379 } 380 381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 382 const Twine &name, Module *ParentModule) 383 : GlobalObject(Ty, Value::FunctionVal, 384 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 385 computeAddrSpace(AddrSpace, ParentModule)), 386 NumArgs(Ty->getNumParams()) { 387 assert(FunctionType::isValidReturnType(getReturnType()) && 388 "invalid return type"); 389 setGlobalObjectSubClassData(0); 390 391 // We only need a symbol table for a function if the context keeps value names 392 if (!getContext().shouldDiscardValueNames()) 393 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 394 395 // If the function has arguments, mark them as lazily built. 396 if (Ty->getNumParams()) 397 setValueSubclassData(1); // Set the "has lazy arguments" bit. 398 399 if (ParentModule) 400 ParentModule->getFunctionList().push_back(this); 401 402 HasLLVMReservedName = getName().startswith("llvm."); 403 // Ensure intrinsics have the right parameter attributes. 404 // Note, the IntID field will have been set in Value::setName if this function 405 // name is a valid intrinsic ID. 406 if (IntID) 407 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 408 } 409 410 Function::~Function() { 411 dropAllReferences(); // After this it is safe to delete instructions. 412 413 // Delete all of the method arguments and unlink from symbol table... 414 if (Arguments) 415 clearArguments(); 416 417 // Remove the function from the on-the-side GC table. 418 clearGC(); 419 } 420 421 void Function::BuildLazyArguments() const { 422 // Create the arguments vector, all arguments start out unnamed. 423 auto *FT = getFunctionType(); 424 if (NumArgs > 0) { 425 Arguments = std::allocator<Argument>().allocate(NumArgs); 426 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 427 Type *ArgTy = FT->getParamType(i); 428 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 429 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 430 } 431 } 432 433 // Clear the lazy arguments bit. 434 unsigned SDC = getSubclassDataFromValue(); 435 SDC &= ~(1 << 0); 436 const_cast<Function*>(this)->setValueSubclassData(SDC); 437 assert(!hasLazyArguments()); 438 } 439 440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 441 return MutableArrayRef<Argument>(Args, Count); 442 } 443 444 bool Function::isConstrainedFPIntrinsic() const { 445 switch (getIntrinsicID()) { 446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 447 case Intrinsic::INTRINSIC: 448 #include "llvm/IR/ConstrainedOps.def" 449 return true; 450 #undef INSTRUCTION 451 default: 452 return false; 453 } 454 } 455 456 void Function::clearArguments() { 457 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 458 A.setName(""); 459 A.~Argument(); 460 } 461 std::allocator<Argument>().deallocate(Arguments, NumArgs); 462 Arguments = nullptr; 463 } 464 465 void Function::stealArgumentListFrom(Function &Src) { 466 assert(isDeclaration() && "Expected no references to current arguments"); 467 468 // Drop the current arguments, if any, and set the lazy argument bit. 469 if (!hasLazyArguments()) { 470 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 471 [](const Argument &A) { return A.use_empty(); }) && 472 "Expected arguments to be unused in declaration"); 473 clearArguments(); 474 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 475 } 476 477 // Nothing to steal if Src has lazy arguments. 478 if (Src.hasLazyArguments()) 479 return; 480 481 // Steal arguments from Src, and fix the lazy argument bits. 482 assert(arg_size() == Src.arg_size()); 483 Arguments = Src.Arguments; 484 Src.Arguments = nullptr; 485 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 486 // FIXME: This does the work of transferNodesFromList inefficiently. 487 SmallString<128> Name; 488 if (A.hasName()) 489 Name = A.getName(); 490 if (!Name.empty()) 491 A.setName(""); 492 A.setParent(this); 493 if (!Name.empty()) 494 A.setName(Name); 495 } 496 497 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 498 assert(!hasLazyArguments()); 499 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 500 } 501 502 // dropAllReferences() - This function causes all the subinstructions to "let 503 // go" of all references that they are maintaining. This allows one to 504 // 'delete' a whole class at a time, even though there may be circular 505 // references... first all references are dropped, and all use counts go to 506 // zero. Then everything is deleted for real. Note that no operations are 507 // valid on an object that has "dropped all references", except operator 508 // delete. 509 // 510 void Function::dropAllReferences() { 511 setIsMaterializable(false); 512 513 for (BasicBlock &BB : *this) 514 BB.dropAllReferences(); 515 516 // Delete all basic blocks. They are now unused, except possibly by 517 // blockaddresses, but BasicBlock's destructor takes care of those. 518 while (!BasicBlocks.empty()) 519 BasicBlocks.begin()->eraseFromParent(); 520 521 // Drop uses of any optional data (real or placeholder). 522 if (getNumOperands()) { 523 User::dropAllReferences(); 524 setNumHungOffUseOperands(0); 525 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 526 } 527 528 // Metadata is stored in a side-table. 529 clearMetadata(); 530 } 531 532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 533 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 534 } 535 536 void Function::addFnAttr(Attribute::AttrKind Kind) { 537 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 538 } 539 540 void Function::addFnAttr(StringRef Kind, StringRef Val) { 541 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 542 } 543 544 void Function::addFnAttr(Attribute Attr) { 545 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 546 } 547 548 void Function::addFnAttrs(const AttrBuilder &Attrs) { 549 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 550 } 551 552 void Function::addRetAttr(Attribute::AttrKind Kind) { 553 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 554 } 555 556 void Function::addRetAttr(Attribute Attr) { 557 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 558 } 559 560 void Function::addRetAttrs(const AttrBuilder &Attrs) { 561 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 562 } 563 564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 565 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 566 } 567 568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 569 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 570 } 571 572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 573 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 574 } 575 576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 577 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 578 } 579 580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 581 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 582 } 583 584 void Function::removeFnAttr(Attribute::AttrKind Kind) { 585 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 586 } 587 588 void Function::removeFnAttr(StringRef Kind) { 589 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 590 } 591 592 void Function::removeFnAttrs(const AttrBuilder &Attrs) { 593 AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs); 594 } 595 596 void Function::removeRetAttr(Attribute::AttrKind Kind) { 597 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 598 } 599 600 void Function::removeRetAttr(StringRef Kind) { 601 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 602 } 603 604 void Function::removeRetAttrs(const AttrBuilder &Attrs) { 605 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 606 } 607 608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 609 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 610 } 611 612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 613 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 614 } 615 616 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 617 AttributeSets = 618 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 619 } 620 621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 622 AttributeSets = 623 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 624 } 625 626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 627 return AttributeSets.hasFnAttr(Kind); 628 } 629 630 bool Function::hasFnAttribute(StringRef Kind) const { 631 return AttributeSets.hasFnAttr(Kind); 632 } 633 634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 635 return AttributeSets.hasRetAttr(Kind); 636 } 637 638 bool Function::hasParamAttribute(unsigned ArgNo, 639 Attribute::AttrKind Kind) const { 640 return AttributeSets.hasParamAttr(ArgNo, Kind); 641 } 642 643 Attribute Function::getAttributeAtIndex(unsigned i, 644 Attribute::AttrKind Kind) const { 645 return AttributeSets.getAttributeAtIndex(i, Kind); 646 } 647 648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 649 return AttributeSets.getAttributeAtIndex(i, Kind); 650 } 651 652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 653 return AttributeSets.getFnAttr(Kind); 654 } 655 656 Attribute Function::getFnAttribute(StringRef Kind) const { 657 return AttributeSets.getFnAttr(Kind); 658 } 659 660 /// gets the specified attribute from the list of attributes. 661 Attribute Function::getParamAttribute(unsigned ArgNo, 662 Attribute::AttrKind Kind) const { 663 return AttributeSets.getParamAttr(ArgNo, Kind); 664 } 665 666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 667 uint64_t Bytes) { 668 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 669 ArgNo, Bytes); 670 } 671 672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 673 if (&FPType == &APFloat::IEEEsingle()) { 674 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 675 StringRef Val = Attr.getValueAsString(); 676 if (!Val.empty()) 677 return parseDenormalFPAttribute(Val); 678 679 // If the f32 variant of the attribute isn't specified, try to use the 680 // generic one. 681 } 682 683 Attribute Attr = getFnAttribute("denormal-fp-math"); 684 return parseDenormalFPAttribute(Attr.getValueAsString()); 685 } 686 687 const std::string &Function::getGC() const { 688 assert(hasGC() && "Function has no collector"); 689 return getContext().getGC(*this); 690 } 691 692 void Function::setGC(std::string Str) { 693 setValueSubclassDataBit(14, !Str.empty()); 694 getContext().setGC(*this, std::move(Str)); 695 } 696 697 void Function::clearGC() { 698 if (!hasGC()) 699 return; 700 getContext().deleteGC(*this); 701 setValueSubclassDataBit(14, false); 702 } 703 704 bool Function::hasStackProtectorFnAttr() const { 705 return hasFnAttribute(Attribute::StackProtect) || 706 hasFnAttribute(Attribute::StackProtectStrong) || 707 hasFnAttribute(Attribute::StackProtectReq); 708 } 709 710 /// Copy all additional attributes (those not needed to create a Function) from 711 /// the Function Src to this one. 712 void Function::copyAttributesFrom(const Function *Src) { 713 GlobalObject::copyAttributesFrom(Src); 714 setCallingConv(Src->getCallingConv()); 715 setAttributes(Src->getAttributes()); 716 if (Src->hasGC()) 717 setGC(Src->getGC()); 718 else 719 clearGC(); 720 if (Src->hasPersonalityFn()) 721 setPersonalityFn(Src->getPersonalityFn()); 722 if (Src->hasPrefixData()) 723 setPrefixData(Src->getPrefixData()); 724 if (Src->hasPrologueData()) 725 setPrologueData(Src->getPrologueData()); 726 } 727 728 /// Table of string intrinsic names indexed by enum value. 729 static const char * const IntrinsicNameTable[] = { 730 "not_intrinsic", 731 #define GET_INTRINSIC_NAME_TABLE 732 #include "llvm/IR/IntrinsicImpl.inc" 733 #undef GET_INTRINSIC_NAME_TABLE 734 }; 735 736 /// Table of per-target intrinsic name tables. 737 #define GET_INTRINSIC_TARGET_DATA 738 #include "llvm/IR/IntrinsicImpl.inc" 739 #undef GET_INTRINSIC_TARGET_DATA 740 741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 742 return IID > TargetInfos[0].Count; 743 } 744 745 bool Function::isTargetIntrinsic() const { 746 return isTargetIntrinsic(IntID); 747 } 748 749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 750 /// target as \c Name, or the generic table if \c Name is not target specific. 751 /// 752 /// Returns the relevant slice of \c IntrinsicNameTable 753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 754 assert(Name.startswith("llvm.")); 755 756 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 757 // Drop "llvm." and take the first dotted component. That will be the target 758 // if this is target specific. 759 StringRef Target = Name.drop_front(5).split('.').first; 760 auto It = partition_point( 761 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 762 // We've either found the target or just fall back to the generic set, which 763 // is always first. 764 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 765 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 766 } 767 768 /// This does the actual lookup of an intrinsic ID which 769 /// matches the given function name. 770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 771 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 772 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 773 if (Idx == -1) 774 return Intrinsic::not_intrinsic; 775 776 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 777 // an index into a sub-table. 778 int Adjust = NameTable.data() - IntrinsicNameTable; 779 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 780 781 // If the intrinsic is not overloaded, require an exact match. If it is 782 // overloaded, require either exact or prefix match. 783 const auto MatchSize = strlen(NameTable[Idx]); 784 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 785 bool IsExactMatch = Name.size() == MatchSize; 786 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 787 : Intrinsic::not_intrinsic; 788 } 789 790 void Function::recalculateIntrinsicID() { 791 StringRef Name = getName(); 792 if (!Name.startswith("llvm.")) { 793 HasLLVMReservedName = false; 794 IntID = Intrinsic::not_intrinsic; 795 return; 796 } 797 HasLLVMReservedName = true; 798 IntID = lookupIntrinsicID(Name); 799 } 800 801 /// Returns a stable mangling for the type specified for use in the name 802 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 803 /// of named types is simply their name. Manglings for unnamed types consist 804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 805 /// combined with the mangling of their component types. A vararg function 806 /// type will have a suffix of 'vararg'. Since function types can contain 807 /// other function types, we close a function type mangling with suffix 'f' 808 /// which can't be confused with it's prefix. This ensures we don't have 809 /// collisions between two unrelated function types. Otherwise, you might 810 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 811 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 812 /// indicating that extra care must be taken to ensure a unique name. 813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 814 std::string Result; 815 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 816 Result += "p" + utostr(PTyp->getAddressSpace()); 817 // Opaque pointer doesn't have pointee type information, so we just mangle 818 // address space for opaque pointer. 819 if (!PTyp->isOpaque()) 820 Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 821 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 822 Result += "a" + utostr(ATyp->getNumElements()) + 823 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 824 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 825 if (!STyp->isLiteral()) { 826 Result += "s_"; 827 if (STyp->hasName()) 828 Result += STyp->getName(); 829 else 830 HasUnnamedType = true; 831 } else { 832 Result += "sl_"; 833 for (auto Elem : STyp->elements()) 834 Result += getMangledTypeStr(Elem, HasUnnamedType); 835 } 836 // Ensure nested structs are distinguishable. 837 Result += "s"; 838 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 839 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 840 for (size_t i = 0; i < FT->getNumParams(); i++) 841 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 842 if (FT->isVarArg()) 843 Result += "vararg"; 844 // Ensure nested function types are distinguishable. 845 Result += "f"; 846 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 847 ElementCount EC = VTy->getElementCount(); 848 if (EC.isScalable()) 849 Result += "nx"; 850 Result += "v" + utostr(EC.getKnownMinValue()) + 851 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 852 } else if (Ty) { 853 switch (Ty->getTypeID()) { 854 default: llvm_unreachable("Unhandled type"); 855 case Type::VoidTyID: Result += "isVoid"; break; 856 case Type::MetadataTyID: Result += "Metadata"; break; 857 case Type::HalfTyID: Result += "f16"; break; 858 case Type::BFloatTyID: Result += "bf16"; break; 859 case Type::FloatTyID: Result += "f32"; break; 860 case Type::DoubleTyID: Result += "f64"; break; 861 case Type::X86_FP80TyID: Result += "f80"; break; 862 case Type::FP128TyID: Result += "f128"; break; 863 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 864 case Type::X86_MMXTyID: Result += "x86mmx"; break; 865 case Type::X86_AMXTyID: Result += "x86amx"; break; 866 case Type::IntegerTyID: 867 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 868 break; 869 } 870 } 871 return Result; 872 } 873 874 StringRef Intrinsic::getBaseName(ID id) { 875 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 876 return IntrinsicNameTable[id]; 877 } 878 879 StringRef Intrinsic::getName(ID id) { 880 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 881 assert(!Intrinsic::isOverloaded(id) && 882 "This version of getName does not support overloading"); 883 return getBaseName(id); 884 } 885 886 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 887 Module *M, FunctionType *FT, 888 bool EarlyModuleCheck) { 889 890 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 891 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 892 "This version of getName is for overloaded intrinsics only"); 893 (void)EarlyModuleCheck; 894 assert((!EarlyModuleCheck || M || 895 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 896 "Intrinsic overloading on pointer types need to provide a Module"); 897 bool HasUnnamedType = false; 898 std::string Result(Intrinsic::getBaseName(Id)); 899 for (Type *Ty : Tys) 900 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 901 if (HasUnnamedType) { 902 assert(M && "unnamed types need a module"); 903 if (!FT) 904 FT = Intrinsic::getType(M->getContext(), Id, Tys); 905 else 906 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 907 "Provided FunctionType must match arguments"); 908 return M->getUniqueIntrinsicName(Result, Id, FT); 909 } 910 return Result; 911 } 912 913 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 914 FunctionType *FT) { 915 assert(M && "We need to have a Module"); 916 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 917 } 918 919 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 920 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 921 } 922 923 /// IIT_Info - These are enumerators that describe the entries returned by the 924 /// getIntrinsicInfoTableEntries function. 925 /// 926 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 927 enum IIT_Info { 928 // Common values should be encoded with 0-15. 929 IIT_Done = 0, 930 IIT_I1 = 1, 931 IIT_I8 = 2, 932 IIT_I16 = 3, 933 IIT_I32 = 4, 934 IIT_I64 = 5, 935 IIT_F16 = 6, 936 IIT_F32 = 7, 937 IIT_F64 = 8, 938 IIT_V2 = 9, 939 IIT_V4 = 10, 940 IIT_V8 = 11, 941 IIT_V16 = 12, 942 IIT_V32 = 13, 943 IIT_PTR = 14, 944 IIT_ARG = 15, 945 946 // Values from 16+ are only encodable with the inefficient encoding. 947 IIT_V64 = 16, 948 IIT_MMX = 17, 949 IIT_TOKEN = 18, 950 IIT_METADATA = 19, 951 IIT_EMPTYSTRUCT = 20, 952 IIT_STRUCT2 = 21, 953 IIT_STRUCT3 = 22, 954 IIT_STRUCT4 = 23, 955 IIT_STRUCT5 = 24, 956 IIT_EXTEND_ARG = 25, 957 IIT_TRUNC_ARG = 26, 958 IIT_ANYPTR = 27, 959 IIT_V1 = 28, 960 IIT_VARARG = 29, 961 IIT_HALF_VEC_ARG = 30, 962 IIT_SAME_VEC_WIDTH_ARG = 31, 963 IIT_PTR_TO_ARG = 32, 964 IIT_PTR_TO_ELT = 33, 965 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 966 IIT_I128 = 35, 967 IIT_V512 = 36, 968 IIT_V1024 = 37, 969 IIT_STRUCT6 = 38, 970 IIT_STRUCT7 = 39, 971 IIT_STRUCT8 = 40, 972 IIT_F128 = 41, 973 IIT_VEC_ELEMENT = 42, 974 IIT_SCALABLE_VEC = 43, 975 IIT_SUBDIVIDE2_ARG = 44, 976 IIT_SUBDIVIDE4_ARG = 45, 977 IIT_VEC_OF_BITCASTS_TO_INT = 46, 978 IIT_V128 = 47, 979 IIT_BF16 = 48, 980 IIT_STRUCT9 = 49, 981 IIT_V256 = 50, 982 IIT_AMX = 51, 983 IIT_PPCF128 = 52, 984 IIT_V3 = 53, 985 }; 986 987 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 988 IIT_Info LastInfo, 989 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 990 using namespace Intrinsic; 991 992 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 993 994 IIT_Info Info = IIT_Info(Infos[NextElt++]); 995 unsigned StructElts = 2; 996 997 switch (Info) { 998 case IIT_Done: 999 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1000 return; 1001 case IIT_VARARG: 1002 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1003 return; 1004 case IIT_MMX: 1005 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1006 return; 1007 case IIT_AMX: 1008 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1009 return; 1010 case IIT_TOKEN: 1011 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1012 return; 1013 case IIT_METADATA: 1014 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1015 return; 1016 case IIT_F16: 1017 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1018 return; 1019 case IIT_BF16: 1020 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1021 return; 1022 case IIT_F32: 1023 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1024 return; 1025 case IIT_F64: 1026 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1027 return; 1028 case IIT_F128: 1029 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1030 return; 1031 case IIT_PPCF128: 1032 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1033 return; 1034 case IIT_I1: 1035 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1036 return; 1037 case IIT_I8: 1038 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1039 return; 1040 case IIT_I16: 1041 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1042 return; 1043 case IIT_I32: 1044 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1045 return; 1046 case IIT_I64: 1047 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1048 return; 1049 case IIT_I128: 1050 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1051 return; 1052 case IIT_V1: 1053 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1054 DecodeIITType(NextElt, Infos, Info, OutputTable); 1055 return; 1056 case IIT_V2: 1057 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1058 DecodeIITType(NextElt, Infos, Info, OutputTable); 1059 return; 1060 case IIT_V3: 1061 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1062 DecodeIITType(NextElt, Infos, Info, OutputTable); 1063 return; 1064 case IIT_V4: 1065 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1066 DecodeIITType(NextElt, Infos, Info, OutputTable); 1067 return; 1068 case IIT_V8: 1069 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1070 DecodeIITType(NextElt, Infos, Info, OutputTable); 1071 return; 1072 case IIT_V16: 1073 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1074 DecodeIITType(NextElt, Infos, Info, OutputTable); 1075 return; 1076 case IIT_V32: 1077 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1078 DecodeIITType(NextElt, Infos, Info, OutputTable); 1079 return; 1080 case IIT_V64: 1081 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1082 DecodeIITType(NextElt, Infos, Info, OutputTable); 1083 return; 1084 case IIT_V128: 1085 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1086 DecodeIITType(NextElt, Infos, Info, OutputTable); 1087 return; 1088 case IIT_V256: 1089 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1090 DecodeIITType(NextElt, Infos, Info, OutputTable); 1091 return; 1092 case IIT_V512: 1093 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1094 DecodeIITType(NextElt, Infos, Info, OutputTable); 1095 return; 1096 case IIT_V1024: 1097 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1098 DecodeIITType(NextElt, Infos, Info, OutputTable); 1099 return; 1100 case IIT_PTR: 1101 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1102 DecodeIITType(NextElt, Infos, Info, OutputTable); 1103 return; 1104 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1106 Infos[NextElt++])); 1107 DecodeIITType(NextElt, Infos, Info, OutputTable); 1108 return; 1109 } 1110 case IIT_ARG: { 1111 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1113 return; 1114 } 1115 case IIT_EXTEND_ARG: { 1116 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1117 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1118 ArgInfo)); 1119 return; 1120 } 1121 case IIT_TRUNC_ARG: { 1122 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1123 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1124 ArgInfo)); 1125 return; 1126 } 1127 case IIT_HALF_VEC_ARG: { 1128 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1129 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1130 ArgInfo)); 1131 return; 1132 } 1133 case IIT_SAME_VEC_WIDTH_ARG: { 1134 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1135 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1136 ArgInfo)); 1137 return; 1138 } 1139 case IIT_PTR_TO_ARG: { 1140 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1141 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1142 ArgInfo)); 1143 return; 1144 } 1145 case IIT_PTR_TO_ELT: { 1146 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1147 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1148 return; 1149 } 1150 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1151 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1152 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1153 OutputTable.push_back( 1154 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1155 return; 1156 } 1157 case IIT_EMPTYSTRUCT: 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1159 return; 1160 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1161 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1162 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1163 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1164 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1165 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1166 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1167 case IIT_STRUCT2: { 1168 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1169 1170 for (unsigned i = 0; i != StructElts; ++i) 1171 DecodeIITType(NextElt, Infos, Info, OutputTable); 1172 return; 1173 } 1174 case IIT_SUBDIVIDE2_ARG: { 1175 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1176 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1177 ArgInfo)); 1178 return; 1179 } 1180 case IIT_SUBDIVIDE4_ARG: { 1181 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1182 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1183 ArgInfo)); 1184 return; 1185 } 1186 case IIT_VEC_ELEMENT: { 1187 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1188 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1189 ArgInfo)); 1190 return; 1191 } 1192 case IIT_SCALABLE_VEC: { 1193 DecodeIITType(NextElt, Infos, Info, OutputTable); 1194 return; 1195 } 1196 case IIT_VEC_OF_BITCASTS_TO_INT: { 1197 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1198 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1199 ArgInfo)); 1200 return; 1201 } 1202 } 1203 llvm_unreachable("unhandled"); 1204 } 1205 1206 #define GET_INTRINSIC_GENERATOR_GLOBAL 1207 #include "llvm/IR/IntrinsicImpl.inc" 1208 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1209 1210 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1211 SmallVectorImpl<IITDescriptor> &T){ 1212 // Check to see if the intrinsic's type was expressible by the table. 1213 unsigned TableVal = IIT_Table[id-1]; 1214 1215 // Decode the TableVal into an array of IITValues. 1216 SmallVector<unsigned char, 8> IITValues; 1217 ArrayRef<unsigned char> IITEntries; 1218 unsigned NextElt = 0; 1219 if ((TableVal >> 31) != 0) { 1220 // This is an offset into the IIT_LongEncodingTable. 1221 IITEntries = IIT_LongEncodingTable; 1222 1223 // Strip sentinel bit. 1224 NextElt = (TableVal << 1) >> 1; 1225 } else { 1226 // Decode the TableVal into an array of IITValues. If the entry was encoded 1227 // into a single word in the table itself, decode it now. 1228 do { 1229 IITValues.push_back(TableVal & 0xF); 1230 TableVal >>= 4; 1231 } while (TableVal); 1232 1233 IITEntries = IITValues; 1234 NextElt = 0; 1235 } 1236 1237 // Okay, decode the table into the output vector of IITDescriptors. 1238 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1239 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1240 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1241 } 1242 1243 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1244 ArrayRef<Type*> Tys, LLVMContext &Context) { 1245 using namespace Intrinsic; 1246 1247 IITDescriptor D = Infos.front(); 1248 Infos = Infos.slice(1); 1249 1250 switch (D.Kind) { 1251 case IITDescriptor::Void: return Type::getVoidTy(Context); 1252 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1253 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1254 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1255 case IITDescriptor::Token: return Type::getTokenTy(Context); 1256 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1257 case IITDescriptor::Half: return Type::getHalfTy(Context); 1258 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1259 case IITDescriptor::Float: return Type::getFloatTy(Context); 1260 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1261 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1262 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1263 1264 case IITDescriptor::Integer: 1265 return IntegerType::get(Context, D.Integer_Width); 1266 case IITDescriptor::Vector: 1267 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1268 D.Vector_Width); 1269 case IITDescriptor::Pointer: 1270 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1271 D.Pointer_AddressSpace); 1272 case IITDescriptor::Struct: { 1273 SmallVector<Type *, 8> Elts; 1274 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1275 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1276 return StructType::get(Context, Elts); 1277 } 1278 case IITDescriptor::Argument: 1279 return Tys[D.getArgumentNumber()]; 1280 case IITDescriptor::ExtendArgument: { 1281 Type *Ty = Tys[D.getArgumentNumber()]; 1282 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1283 return VectorType::getExtendedElementVectorType(VTy); 1284 1285 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1286 } 1287 case IITDescriptor::TruncArgument: { 1288 Type *Ty = Tys[D.getArgumentNumber()]; 1289 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1290 return VectorType::getTruncatedElementVectorType(VTy); 1291 1292 IntegerType *ITy = cast<IntegerType>(Ty); 1293 assert(ITy->getBitWidth() % 2 == 0); 1294 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1295 } 1296 case IITDescriptor::Subdivide2Argument: 1297 case IITDescriptor::Subdivide4Argument: { 1298 Type *Ty = Tys[D.getArgumentNumber()]; 1299 VectorType *VTy = dyn_cast<VectorType>(Ty); 1300 assert(VTy && "Expected an argument of Vector Type"); 1301 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1302 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1303 } 1304 case IITDescriptor::HalfVecArgument: 1305 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1306 Tys[D.getArgumentNumber()])); 1307 case IITDescriptor::SameVecWidthArgument: { 1308 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1309 Type *Ty = Tys[D.getArgumentNumber()]; 1310 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1311 return VectorType::get(EltTy, VTy->getElementCount()); 1312 return EltTy; 1313 } 1314 case IITDescriptor::PtrToArgument: { 1315 Type *Ty = Tys[D.getArgumentNumber()]; 1316 return PointerType::getUnqual(Ty); 1317 } 1318 case IITDescriptor::PtrToElt: { 1319 Type *Ty = Tys[D.getArgumentNumber()]; 1320 VectorType *VTy = dyn_cast<VectorType>(Ty); 1321 if (!VTy) 1322 llvm_unreachable("Expected an argument of Vector Type"); 1323 Type *EltTy = VTy->getElementType(); 1324 return PointerType::getUnqual(EltTy); 1325 } 1326 case IITDescriptor::VecElementArgument: { 1327 Type *Ty = Tys[D.getArgumentNumber()]; 1328 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1329 return VTy->getElementType(); 1330 llvm_unreachable("Expected an argument of Vector Type"); 1331 } 1332 case IITDescriptor::VecOfBitcastsToInt: { 1333 Type *Ty = Tys[D.getArgumentNumber()]; 1334 VectorType *VTy = dyn_cast<VectorType>(Ty); 1335 assert(VTy && "Expected an argument of Vector Type"); 1336 return VectorType::getInteger(VTy); 1337 } 1338 case IITDescriptor::VecOfAnyPtrsToElt: 1339 // Return the overloaded type (which determines the pointers address space) 1340 return Tys[D.getOverloadArgNumber()]; 1341 } 1342 llvm_unreachable("unhandled"); 1343 } 1344 1345 FunctionType *Intrinsic::getType(LLVMContext &Context, 1346 ID id, ArrayRef<Type*> Tys) { 1347 SmallVector<IITDescriptor, 8> Table; 1348 getIntrinsicInfoTableEntries(id, Table); 1349 1350 ArrayRef<IITDescriptor> TableRef = Table; 1351 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1352 1353 SmallVector<Type*, 8> ArgTys; 1354 while (!TableRef.empty()) 1355 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1356 1357 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1358 // If we see void type as the type of the last argument, it is vararg intrinsic 1359 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1360 ArgTys.pop_back(); 1361 return FunctionType::get(ResultTy, ArgTys, true); 1362 } 1363 return FunctionType::get(ResultTy, ArgTys, false); 1364 } 1365 1366 bool Intrinsic::isOverloaded(ID id) { 1367 #define GET_INTRINSIC_OVERLOAD_TABLE 1368 #include "llvm/IR/IntrinsicImpl.inc" 1369 #undef GET_INTRINSIC_OVERLOAD_TABLE 1370 } 1371 1372 bool Intrinsic::isLeaf(ID id) { 1373 switch (id) { 1374 default: 1375 return true; 1376 1377 case Intrinsic::experimental_gc_statepoint: 1378 case Intrinsic::experimental_patchpoint_void: 1379 case Intrinsic::experimental_patchpoint_i64: 1380 return false; 1381 } 1382 } 1383 1384 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1385 #define GET_INTRINSIC_ATTRIBUTES 1386 #include "llvm/IR/IntrinsicImpl.inc" 1387 #undef GET_INTRINSIC_ATTRIBUTES 1388 1389 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1390 // There can never be multiple globals with the same name of different types, 1391 // because intrinsics must be a specific type. 1392 auto *FT = getType(M->getContext(), id, Tys); 1393 return cast<Function>( 1394 M->getOrInsertFunction(Tys.empty() ? getName(id) 1395 : getName(id, Tys, M, FT), 1396 getType(M->getContext(), id, Tys)) 1397 .getCallee()); 1398 } 1399 1400 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1401 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1402 #include "llvm/IR/IntrinsicImpl.inc" 1403 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1404 1405 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1406 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1407 #include "llvm/IR/IntrinsicImpl.inc" 1408 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1409 1410 using DeferredIntrinsicMatchPair = 1411 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1412 1413 static bool matchIntrinsicType( 1414 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1415 SmallVectorImpl<Type *> &ArgTys, 1416 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1417 bool IsDeferredCheck) { 1418 using namespace Intrinsic; 1419 1420 // If we ran out of descriptors, there are too many arguments. 1421 if (Infos.empty()) return true; 1422 1423 // Do this before slicing off the 'front' part 1424 auto InfosRef = Infos; 1425 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1426 DeferredChecks.emplace_back(T, InfosRef); 1427 return false; 1428 }; 1429 1430 IITDescriptor D = Infos.front(); 1431 Infos = Infos.slice(1); 1432 1433 switch (D.Kind) { 1434 case IITDescriptor::Void: return !Ty->isVoidTy(); 1435 case IITDescriptor::VarArg: return true; 1436 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1437 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1438 case IITDescriptor::Token: return !Ty->isTokenTy(); 1439 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1440 case IITDescriptor::Half: return !Ty->isHalfTy(); 1441 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1442 case IITDescriptor::Float: return !Ty->isFloatTy(); 1443 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1444 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1445 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1446 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1447 case IITDescriptor::Vector: { 1448 VectorType *VT = dyn_cast<VectorType>(Ty); 1449 return !VT || VT->getElementCount() != D.Vector_Width || 1450 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1451 DeferredChecks, IsDeferredCheck); 1452 } 1453 case IITDescriptor::Pointer: { 1454 PointerType *PT = dyn_cast<PointerType>(Ty); 1455 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1456 return true; 1457 if (!PT->isOpaque()) 1458 return matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1459 DeferredChecks, IsDeferredCheck); 1460 // Consume IIT descriptors relating to the pointer element type. 1461 while (Infos.front().Kind == IITDescriptor::Pointer) 1462 Infos = Infos.slice(1); 1463 Infos = Infos.slice(1); 1464 return false; 1465 } 1466 1467 case IITDescriptor::Struct: { 1468 StructType *ST = dyn_cast<StructType>(Ty); 1469 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1470 return true; 1471 1472 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1473 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1474 DeferredChecks, IsDeferredCheck)) 1475 return true; 1476 return false; 1477 } 1478 1479 case IITDescriptor::Argument: 1480 // If this is the second occurrence of an argument, 1481 // verify that the later instance matches the previous instance. 1482 if (D.getArgumentNumber() < ArgTys.size()) 1483 return Ty != ArgTys[D.getArgumentNumber()]; 1484 1485 if (D.getArgumentNumber() > ArgTys.size() || 1486 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1487 return IsDeferredCheck || DeferCheck(Ty); 1488 1489 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1490 "Table consistency error"); 1491 ArgTys.push_back(Ty); 1492 1493 switch (D.getArgumentKind()) { 1494 case IITDescriptor::AK_Any: return false; // Success 1495 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1496 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1497 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1498 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1499 default: break; 1500 } 1501 llvm_unreachable("all argument kinds not covered"); 1502 1503 case IITDescriptor::ExtendArgument: { 1504 // If this is a forward reference, defer the check for later. 1505 if (D.getArgumentNumber() >= ArgTys.size()) 1506 return IsDeferredCheck || DeferCheck(Ty); 1507 1508 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1509 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1510 NewTy = VectorType::getExtendedElementVectorType(VTy); 1511 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1512 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1513 else 1514 return true; 1515 1516 return Ty != NewTy; 1517 } 1518 case IITDescriptor::TruncArgument: { 1519 // If this is a forward reference, defer the check for later. 1520 if (D.getArgumentNumber() >= ArgTys.size()) 1521 return IsDeferredCheck || DeferCheck(Ty); 1522 1523 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1524 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1525 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1526 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1527 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1528 else 1529 return true; 1530 1531 return Ty != NewTy; 1532 } 1533 case IITDescriptor::HalfVecArgument: 1534 // If this is a forward reference, defer the check for later. 1535 if (D.getArgumentNumber() >= ArgTys.size()) 1536 return IsDeferredCheck || DeferCheck(Ty); 1537 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1538 VectorType::getHalfElementsVectorType( 1539 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1540 case IITDescriptor::SameVecWidthArgument: { 1541 if (D.getArgumentNumber() >= ArgTys.size()) { 1542 // Defer check and subsequent check for the vector element type. 1543 Infos = Infos.slice(1); 1544 return IsDeferredCheck || DeferCheck(Ty); 1545 } 1546 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1547 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1548 // Both must be vectors of the same number of elements or neither. 1549 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1550 return true; 1551 Type *EltTy = Ty; 1552 if (ThisArgType) { 1553 if (ReferenceType->getElementCount() != 1554 ThisArgType->getElementCount()) 1555 return true; 1556 EltTy = ThisArgType->getElementType(); 1557 } 1558 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1559 IsDeferredCheck); 1560 } 1561 case IITDescriptor::PtrToArgument: { 1562 if (D.getArgumentNumber() >= ArgTys.size()) 1563 return IsDeferredCheck || DeferCheck(Ty); 1564 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1565 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1566 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1567 } 1568 case IITDescriptor::PtrToElt: { 1569 if (D.getArgumentNumber() >= ArgTys.size()) 1570 return IsDeferredCheck || DeferCheck(Ty); 1571 VectorType * ReferenceType = 1572 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1573 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1574 1575 if (!ThisArgType || !ReferenceType) 1576 return true; 1577 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1578 ReferenceType->getElementType()); 1579 } 1580 case IITDescriptor::VecOfAnyPtrsToElt: { 1581 unsigned RefArgNumber = D.getRefArgNumber(); 1582 if (RefArgNumber >= ArgTys.size()) { 1583 if (IsDeferredCheck) 1584 return true; 1585 // If forward referencing, already add the pointer-vector type and 1586 // defer the checks for later. 1587 ArgTys.push_back(Ty); 1588 return DeferCheck(Ty); 1589 } 1590 1591 if (!IsDeferredCheck){ 1592 assert(D.getOverloadArgNumber() == ArgTys.size() && 1593 "Table consistency error"); 1594 ArgTys.push_back(Ty); 1595 } 1596 1597 // Verify the overloaded type "matches" the Ref type. 1598 // i.e. Ty is a vector with the same width as Ref. 1599 // Composed of pointers to the same element type as Ref. 1600 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1601 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1602 if (!ThisArgVecTy || !ReferenceType || 1603 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1604 return true; 1605 PointerType *ThisArgEltTy = 1606 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1607 if (!ThisArgEltTy) 1608 return true; 1609 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1610 ReferenceType->getElementType()); 1611 } 1612 case IITDescriptor::VecElementArgument: { 1613 if (D.getArgumentNumber() >= ArgTys.size()) 1614 return IsDeferredCheck ? true : DeferCheck(Ty); 1615 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1616 return !ReferenceType || Ty != ReferenceType->getElementType(); 1617 } 1618 case IITDescriptor::Subdivide2Argument: 1619 case IITDescriptor::Subdivide4Argument: { 1620 // If this is a forward reference, defer the check for later. 1621 if (D.getArgumentNumber() >= ArgTys.size()) 1622 return IsDeferredCheck || DeferCheck(Ty); 1623 1624 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1625 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1626 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1627 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1628 return Ty != NewTy; 1629 } 1630 return true; 1631 } 1632 case IITDescriptor::VecOfBitcastsToInt: { 1633 if (D.getArgumentNumber() >= ArgTys.size()) 1634 return IsDeferredCheck || DeferCheck(Ty); 1635 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1636 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1637 if (!ThisArgVecTy || !ReferenceType) 1638 return true; 1639 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1640 } 1641 } 1642 llvm_unreachable("unhandled"); 1643 } 1644 1645 Intrinsic::MatchIntrinsicTypesResult 1646 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1647 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1648 SmallVectorImpl<Type *> &ArgTys) { 1649 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1650 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1651 false)) 1652 return MatchIntrinsicTypes_NoMatchRet; 1653 1654 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1655 1656 for (auto Ty : FTy->params()) 1657 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1658 return MatchIntrinsicTypes_NoMatchArg; 1659 1660 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1661 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1662 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1663 true)) 1664 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1665 : MatchIntrinsicTypes_NoMatchArg; 1666 } 1667 1668 return MatchIntrinsicTypes_Match; 1669 } 1670 1671 bool 1672 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1673 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1674 // If there are no descriptors left, then it can't be a vararg. 1675 if (Infos.empty()) 1676 return isVarArg; 1677 1678 // There should be only one descriptor remaining at this point. 1679 if (Infos.size() != 1) 1680 return true; 1681 1682 // Check and verify the descriptor. 1683 IITDescriptor D = Infos.front(); 1684 Infos = Infos.slice(1); 1685 if (D.Kind == IITDescriptor::VarArg) 1686 return !isVarArg; 1687 1688 return true; 1689 } 1690 1691 bool Intrinsic::getIntrinsicSignature(Function *F, 1692 SmallVectorImpl<Type *> &ArgTys) { 1693 Intrinsic::ID ID = F->getIntrinsicID(); 1694 if (!ID) 1695 return false; 1696 1697 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1698 getIntrinsicInfoTableEntries(ID, Table); 1699 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1700 1701 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1702 ArgTys) != 1703 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1704 return false; 1705 } 1706 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1707 TableRef)) 1708 return false; 1709 return true; 1710 } 1711 1712 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1713 SmallVector<Type *, 4> ArgTys; 1714 if (!getIntrinsicSignature(F, ArgTys)) 1715 return None; 1716 1717 Intrinsic::ID ID = F->getIntrinsicID(); 1718 StringRef Name = F->getName(); 1719 std::string WantedName = 1720 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1721 if (Name == WantedName) 1722 return None; 1723 1724 Function *NewDecl = [&] { 1725 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1726 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1727 if (ExistingF->getFunctionType() == F->getFunctionType()) 1728 return ExistingF; 1729 1730 // The name already exists, but is not a function or has the wrong 1731 // prototype. Make place for the new one by renaming the old version. 1732 // Either this old version will be removed later on or the module is 1733 // invalid and we'll get an error. 1734 ExistingGV->setName(WantedName + ".renamed"); 1735 } 1736 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1737 }(); 1738 1739 NewDecl->setCallingConv(F->getCallingConv()); 1740 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1741 "Shouldn't change the signature"); 1742 return NewDecl; 1743 } 1744 1745 /// hasAddressTaken - returns true if there are any uses of this function 1746 /// other than direct calls or invokes to it. Optionally ignores callback 1747 /// uses, assume like pointer annotation calls, and references in llvm.used 1748 /// and llvm.compiler.used variables. 1749 bool Function::hasAddressTaken(const User **PutOffender, 1750 bool IgnoreCallbackUses, 1751 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1752 bool IgnoreARCAttachedCall) const { 1753 for (const Use &U : uses()) { 1754 const User *FU = U.getUser(); 1755 if (isa<BlockAddress>(FU)) 1756 continue; 1757 1758 if (IgnoreCallbackUses) { 1759 AbstractCallSite ACS(&U); 1760 if (ACS && ACS.isCallbackCall()) 1761 continue; 1762 } 1763 1764 const auto *Call = dyn_cast<CallBase>(FU); 1765 if (!Call) { 1766 if (IgnoreAssumeLikeCalls) { 1767 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1768 if (FI->isCast() && !FI->user_empty() && 1769 llvm::all_of(FU->users(), [](const User *U) { 1770 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1771 return I->isAssumeLikeIntrinsic(); 1772 return false; 1773 })) 1774 continue; 1775 } 1776 } 1777 if (IgnoreLLVMUsed && !FU->user_empty()) { 1778 const User *FUU = FU; 1779 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1780 !FU->user_begin()->user_empty()) 1781 FUU = *FU->user_begin(); 1782 if (llvm::all_of(FUU->users(), [](const User *U) { 1783 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1784 return GV->hasName() && 1785 (GV->getName().equals("llvm.compiler.used") || 1786 GV->getName().equals("llvm.used")); 1787 return false; 1788 })) 1789 continue; 1790 } 1791 if (PutOffender) 1792 *PutOffender = FU; 1793 return true; 1794 } 1795 if (!Call->isCallee(&U)) { 1796 if (IgnoreARCAttachedCall && 1797 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1798 U.getOperandNo())) 1799 continue; 1800 1801 if (PutOffender) 1802 *PutOffender = FU; 1803 return true; 1804 } 1805 } 1806 return false; 1807 } 1808 1809 bool Function::isDefTriviallyDead() const { 1810 // Check the linkage 1811 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1812 !hasAvailableExternallyLinkage()) 1813 return false; 1814 1815 // Check if the function is used by anything other than a blockaddress. 1816 for (const User *U : users()) 1817 if (!isa<BlockAddress>(U)) 1818 return false; 1819 1820 return true; 1821 } 1822 1823 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1824 /// setjmp or other function that gcc recognizes as "returning twice". 1825 bool Function::callsFunctionThatReturnsTwice() const { 1826 for (const Instruction &I : instructions(this)) 1827 if (const auto *Call = dyn_cast<CallBase>(&I)) 1828 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1829 return true; 1830 1831 return false; 1832 } 1833 1834 Constant *Function::getPersonalityFn() const { 1835 assert(hasPersonalityFn() && getNumOperands()); 1836 return cast<Constant>(Op<0>()); 1837 } 1838 1839 void Function::setPersonalityFn(Constant *Fn) { 1840 setHungoffOperand<0>(Fn); 1841 setValueSubclassDataBit(3, Fn != nullptr); 1842 } 1843 1844 Constant *Function::getPrefixData() const { 1845 assert(hasPrefixData() && getNumOperands()); 1846 return cast<Constant>(Op<1>()); 1847 } 1848 1849 void Function::setPrefixData(Constant *PrefixData) { 1850 setHungoffOperand<1>(PrefixData); 1851 setValueSubclassDataBit(1, PrefixData != nullptr); 1852 } 1853 1854 Constant *Function::getPrologueData() const { 1855 assert(hasPrologueData() && getNumOperands()); 1856 return cast<Constant>(Op<2>()); 1857 } 1858 1859 void Function::setPrologueData(Constant *PrologueData) { 1860 setHungoffOperand<2>(PrologueData); 1861 setValueSubclassDataBit(2, PrologueData != nullptr); 1862 } 1863 1864 void Function::allocHungoffUselist() { 1865 // If we've already allocated a uselist, stop here. 1866 if (getNumOperands()) 1867 return; 1868 1869 allocHungoffUses(3, /*IsPhi=*/ false); 1870 setNumHungOffUseOperands(3); 1871 1872 // Initialize the uselist with placeholder operands to allow traversal. 1873 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1874 Op<0>().set(CPN); 1875 Op<1>().set(CPN); 1876 Op<2>().set(CPN); 1877 } 1878 1879 template <int Idx> 1880 void Function::setHungoffOperand(Constant *C) { 1881 if (C) { 1882 allocHungoffUselist(); 1883 Op<Idx>().set(C); 1884 } else if (getNumOperands()) { 1885 Op<Idx>().set( 1886 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1887 } 1888 } 1889 1890 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1891 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1892 if (On) 1893 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1894 else 1895 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1896 } 1897 1898 void Function::setEntryCount(ProfileCount Count, 1899 const DenseSet<GlobalValue::GUID> *S) { 1900 #if !defined(NDEBUG) 1901 auto PrevCount = getEntryCount(); 1902 assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType()); 1903 #endif 1904 1905 auto ImportGUIDs = getImportGUIDs(); 1906 if (S == nullptr && ImportGUIDs.size()) 1907 S = &ImportGUIDs; 1908 1909 MDBuilder MDB(getContext()); 1910 setMetadata( 1911 LLVMContext::MD_prof, 1912 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1913 } 1914 1915 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1916 const DenseSet<GlobalValue::GUID> *Imports) { 1917 setEntryCount(ProfileCount(Count, Type), Imports); 1918 } 1919 1920 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1921 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1922 if (MD && MD->getOperand(0)) 1923 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1924 if (MDS->getString().equals("function_entry_count")) { 1925 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1926 uint64_t Count = CI->getValue().getZExtValue(); 1927 // A value of -1 is used for SamplePGO when there were no samples. 1928 // Treat this the same as unknown. 1929 if (Count == (uint64_t)-1) 1930 return None; 1931 return ProfileCount(Count, PCT_Real); 1932 } else if (AllowSynthetic && 1933 MDS->getString().equals("synthetic_function_entry_count")) { 1934 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1935 uint64_t Count = CI->getValue().getZExtValue(); 1936 return ProfileCount(Count, PCT_Synthetic); 1937 } 1938 } 1939 return None; 1940 } 1941 1942 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1943 DenseSet<GlobalValue::GUID> R; 1944 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1945 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1946 if (MDS->getString().equals("function_entry_count")) 1947 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1948 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1949 ->getValue() 1950 .getZExtValue()); 1951 return R; 1952 } 1953 1954 void Function::setSectionPrefix(StringRef Prefix) { 1955 MDBuilder MDB(getContext()); 1956 setMetadata(LLVMContext::MD_section_prefix, 1957 MDB.createFunctionSectionPrefix(Prefix)); 1958 } 1959 1960 Optional<StringRef> Function::getSectionPrefix() const { 1961 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1962 assert(cast<MDString>(MD->getOperand(0)) 1963 ->getString() 1964 .equals("function_section_prefix") && 1965 "Metadata not match"); 1966 return cast<MDString>(MD->getOperand(1))->getString(); 1967 } 1968 return None; 1969 } 1970 1971 bool Function::nullPointerIsDefined() const { 1972 return hasFnAttribute(Attribute::NullPointerIsValid); 1973 } 1974 1975 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1976 if (F && F->nullPointerIsDefined()) 1977 return true; 1978 1979 if (AS != 0) 1980 return true; 1981 1982 return false; 1983 } 1984