xref: /llvm-project/llvm/lib/IR/Function.cpp (revision c8e84c7a5f38d46e97debba0eb1ae05f6a2fa39f)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs);
190 }
191 
192 uint64_t Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addRetAttr(Attribute Attr) {
557   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
558 }
559 
560 void Function::addRetAttrs(const AttrBuilder &Attrs) {
561   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
562 }
563 
564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
565   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
566 }
567 
568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
569   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
570 }
571 
572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
573   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
574 }
575 
576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
578 }
579 
580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
581   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
582 }
583 
584 void Function::removeFnAttr(Attribute::AttrKind Kind) {
585   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
586 }
587 
588 void Function::removeFnAttr(StringRef Kind) {
589   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeFnAttrs(const AttrBuilder &Attrs) {
593   AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs);
594 }
595 
596 void Function::removeRetAttr(Attribute::AttrKind Kind) {
597   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
598 }
599 
600 void Function::removeRetAttr(StringRef Kind) {
601   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
602 }
603 
604 void Function::removeRetAttrs(const AttrBuilder &Attrs) {
605   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
606 }
607 
608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
609   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
610 }
611 
612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
613   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
614 }
615 
616 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
617   AttributeSets =
618       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
619 }
620 
621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
622   AttributeSets =
623       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
624 }
625 
626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasFnAttr(Kind);
628 }
629 
630 bool Function::hasFnAttribute(StringRef Kind) const {
631   return AttributeSets.hasFnAttr(Kind);
632 }
633 
634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
635   return AttributeSets.hasRetAttr(Kind);
636 }
637 
638 bool Function::hasParamAttribute(unsigned ArgNo,
639                                  Attribute::AttrKind Kind) const {
640   return AttributeSets.hasParamAttr(ArgNo, Kind);
641 }
642 
643 Attribute Function::getAttributeAtIndex(unsigned i,
644                                         Attribute::AttrKind Kind) const {
645   return AttributeSets.getAttributeAtIndex(i, Kind);
646 }
647 
648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
649   return AttributeSets.getAttributeAtIndex(i, Kind);
650 }
651 
652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.getFnAttr(Kind);
654 }
655 
656 Attribute Function::getFnAttribute(StringRef Kind) const {
657   return AttributeSets.getFnAttr(Kind);
658 }
659 
660 /// gets the specified attribute from the list of attributes.
661 Attribute Function::getParamAttribute(unsigned ArgNo,
662                                       Attribute::AttrKind Kind) const {
663   return AttributeSets.getParamAttr(ArgNo, Kind);
664 }
665 
666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
667                                                  uint64_t Bytes) {
668   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
669                                                                   ArgNo, Bytes);
670 }
671 
672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
673   if (&FPType == &APFloat::IEEEsingle()) {
674     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
675     StringRef Val = Attr.getValueAsString();
676     if (!Val.empty())
677       return parseDenormalFPAttribute(Val);
678 
679     // If the f32 variant of the attribute isn't specified, try to use the
680     // generic one.
681   }
682 
683   Attribute Attr = getFnAttribute("denormal-fp-math");
684   return parseDenormalFPAttribute(Attr.getValueAsString());
685 }
686 
687 const std::string &Function::getGC() const {
688   assert(hasGC() && "Function has no collector");
689   return getContext().getGC(*this);
690 }
691 
692 void Function::setGC(std::string Str) {
693   setValueSubclassDataBit(14, !Str.empty());
694   getContext().setGC(*this, std::move(Str));
695 }
696 
697 void Function::clearGC() {
698   if (!hasGC())
699     return;
700   getContext().deleteGC(*this);
701   setValueSubclassDataBit(14, false);
702 }
703 
704 bool Function::hasStackProtectorFnAttr() const {
705   return hasFnAttribute(Attribute::StackProtect) ||
706          hasFnAttribute(Attribute::StackProtectStrong) ||
707          hasFnAttribute(Attribute::StackProtectReq);
708 }
709 
710 /// Copy all additional attributes (those not needed to create a Function) from
711 /// the Function Src to this one.
712 void Function::copyAttributesFrom(const Function *Src) {
713   GlobalObject::copyAttributesFrom(Src);
714   setCallingConv(Src->getCallingConv());
715   setAttributes(Src->getAttributes());
716   if (Src->hasGC())
717     setGC(Src->getGC());
718   else
719     clearGC();
720   if (Src->hasPersonalityFn())
721     setPersonalityFn(Src->getPersonalityFn());
722   if (Src->hasPrefixData())
723     setPrefixData(Src->getPrefixData());
724   if (Src->hasPrologueData())
725     setPrologueData(Src->getPrologueData());
726 }
727 
728 /// Table of string intrinsic names indexed by enum value.
729 static const char * const IntrinsicNameTable[] = {
730   "not_intrinsic",
731 #define GET_INTRINSIC_NAME_TABLE
732 #include "llvm/IR/IntrinsicImpl.inc"
733 #undef GET_INTRINSIC_NAME_TABLE
734 };
735 
736 /// Table of per-target intrinsic name tables.
737 #define GET_INTRINSIC_TARGET_DATA
738 #include "llvm/IR/IntrinsicImpl.inc"
739 #undef GET_INTRINSIC_TARGET_DATA
740 
741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
742   return IID > TargetInfos[0].Count;
743 }
744 
745 bool Function::isTargetIntrinsic() const {
746   return isTargetIntrinsic(IntID);
747 }
748 
749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
750 /// target as \c Name, or the generic table if \c Name is not target specific.
751 ///
752 /// Returns the relevant slice of \c IntrinsicNameTable
753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
754   assert(Name.startswith("llvm."));
755 
756   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
757   // Drop "llvm." and take the first dotted component. That will be the target
758   // if this is target specific.
759   StringRef Target = Name.drop_front(5).split('.').first;
760   auto It = partition_point(
761       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
762   // We've either found the target or just fall back to the generic set, which
763   // is always first.
764   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
765   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
766 }
767 
768 /// This does the actual lookup of an intrinsic ID which
769 /// matches the given function name.
770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
771   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
772   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
773   if (Idx == -1)
774     return Intrinsic::not_intrinsic;
775 
776   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
777   // an index into a sub-table.
778   int Adjust = NameTable.data() - IntrinsicNameTable;
779   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
780 
781   // If the intrinsic is not overloaded, require an exact match. If it is
782   // overloaded, require either exact or prefix match.
783   const auto MatchSize = strlen(NameTable[Idx]);
784   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
785   bool IsExactMatch = Name.size() == MatchSize;
786   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
787                                                      : Intrinsic::not_intrinsic;
788 }
789 
790 void Function::recalculateIntrinsicID() {
791   StringRef Name = getName();
792   if (!Name.startswith("llvm.")) {
793     HasLLVMReservedName = false;
794     IntID = Intrinsic::not_intrinsic;
795     return;
796   }
797   HasLLVMReservedName = true;
798   IntID = lookupIntrinsicID(Name);
799 }
800 
801 /// Returns a stable mangling for the type specified for use in the name
802 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
803 /// of named types is simply their name.  Manglings for unnamed types consist
804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
805 /// combined with the mangling of their component types.  A vararg function
806 /// type will have a suffix of 'vararg'.  Since function types can contain
807 /// other function types, we close a function type mangling with suffix 'f'
808 /// which can't be confused with it's prefix.  This ensures we don't have
809 /// collisions between two unrelated function types. Otherwise, you might
810 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
811 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
812 /// indicating that extra care must be taken to ensure a unique name.
813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
814   std::string Result;
815   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
816     Result += "p" + utostr(PTyp->getAddressSpace());
817     // Opaque pointer doesn't have pointee type information, so we just mangle
818     // address space for opaque pointer.
819     if (!PTyp->isOpaque())
820       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
821   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
822     Result += "a" + utostr(ATyp->getNumElements()) +
823               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
824   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
825     if (!STyp->isLiteral()) {
826       Result += "s_";
827       if (STyp->hasName())
828         Result += STyp->getName();
829       else
830         HasUnnamedType = true;
831     } else {
832       Result += "sl_";
833       for (auto Elem : STyp->elements())
834         Result += getMangledTypeStr(Elem, HasUnnamedType);
835     }
836     // Ensure nested structs are distinguishable.
837     Result += "s";
838   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
839     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
840     for (size_t i = 0; i < FT->getNumParams(); i++)
841       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
842     if (FT->isVarArg())
843       Result += "vararg";
844     // Ensure nested function types are distinguishable.
845     Result += "f";
846   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
847     ElementCount EC = VTy->getElementCount();
848     if (EC.isScalable())
849       Result += "nx";
850     Result += "v" + utostr(EC.getKnownMinValue()) +
851               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
852   } else if (Ty) {
853     switch (Ty->getTypeID()) {
854     default: llvm_unreachable("Unhandled type");
855     case Type::VoidTyID:      Result += "isVoid";   break;
856     case Type::MetadataTyID:  Result += "Metadata"; break;
857     case Type::HalfTyID:      Result += "f16";      break;
858     case Type::BFloatTyID:    Result += "bf16";     break;
859     case Type::FloatTyID:     Result += "f32";      break;
860     case Type::DoubleTyID:    Result += "f64";      break;
861     case Type::X86_FP80TyID:  Result += "f80";      break;
862     case Type::FP128TyID:     Result += "f128";     break;
863     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
864     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
865     case Type::X86_AMXTyID:   Result += "x86amx";   break;
866     case Type::IntegerTyID:
867       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
868       break;
869     }
870   }
871   return Result;
872 }
873 
874 StringRef Intrinsic::getBaseName(ID id) {
875   assert(id < num_intrinsics && "Invalid intrinsic ID!");
876   return IntrinsicNameTable[id];
877 }
878 
879 StringRef Intrinsic::getName(ID id) {
880   assert(id < num_intrinsics && "Invalid intrinsic ID!");
881   assert(!Intrinsic::isOverloaded(id) &&
882          "This version of getName does not support overloading");
883   return getBaseName(id);
884 }
885 
886 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
887                                         Module *M, FunctionType *FT,
888                                         bool EarlyModuleCheck) {
889 
890   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
891   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
892          "This version of getName is for overloaded intrinsics only");
893   (void)EarlyModuleCheck;
894   assert((!EarlyModuleCheck || M ||
895           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
896          "Intrinsic overloading on pointer types need to provide a Module");
897   bool HasUnnamedType = false;
898   std::string Result(Intrinsic::getBaseName(Id));
899   for (Type *Ty : Tys)
900     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
901   if (HasUnnamedType) {
902     assert(M && "unnamed types need a module");
903     if (!FT)
904       FT = Intrinsic::getType(M->getContext(), Id, Tys);
905     else
906       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
907              "Provided FunctionType must match arguments");
908     return M->getUniqueIntrinsicName(Result, Id, FT);
909   }
910   return Result;
911 }
912 
913 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
914                                FunctionType *FT) {
915   assert(M && "We need to have a Module");
916   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
917 }
918 
919 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
920   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
921 }
922 
923 /// IIT_Info - These are enumerators that describe the entries returned by the
924 /// getIntrinsicInfoTableEntries function.
925 ///
926 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
927 enum IIT_Info {
928   // Common values should be encoded with 0-15.
929   IIT_Done = 0,
930   IIT_I1   = 1,
931   IIT_I8   = 2,
932   IIT_I16  = 3,
933   IIT_I32  = 4,
934   IIT_I64  = 5,
935   IIT_F16  = 6,
936   IIT_F32  = 7,
937   IIT_F64  = 8,
938   IIT_V2   = 9,
939   IIT_V4   = 10,
940   IIT_V8   = 11,
941   IIT_V16  = 12,
942   IIT_V32  = 13,
943   IIT_PTR  = 14,
944   IIT_ARG  = 15,
945 
946   // Values from 16+ are only encodable with the inefficient encoding.
947   IIT_V64  = 16,
948   IIT_MMX  = 17,
949   IIT_TOKEN = 18,
950   IIT_METADATA = 19,
951   IIT_EMPTYSTRUCT = 20,
952   IIT_STRUCT2 = 21,
953   IIT_STRUCT3 = 22,
954   IIT_STRUCT4 = 23,
955   IIT_STRUCT5 = 24,
956   IIT_EXTEND_ARG = 25,
957   IIT_TRUNC_ARG = 26,
958   IIT_ANYPTR = 27,
959   IIT_V1   = 28,
960   IIT_VARARG = 29,
961   IIT_HALF_VEC_ARG = 30,
962   IIT_SAME_VEC_WIDTH_ARG = 31,
963   IIT_PTR_TO_ARG = 32,
964   IIT_PTR_TO_ELT = 33,
965   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
966   IIT_I128 = 35,
967   IIT_V512 = 36,
968   IIT_V1024 = 37,
969   IIT_STRUCT6 = 38,
970   IIT_STRUCT7 = 39,
971   IIT_STRUCT8 = 40,
972   IIT_F128 = 41,
973   IIT_VEC_ELEMENT = 42,
974   IIT_SCALABLE_VEC = 43,
975   IIT_SUBDIVIDE2_ARG = 44,
976   IIT_SUBDIVIDE4_ARG = 45,
977   IIT_VEC_OF_BITCASTS_TO_INT = 46,
978   IIT_V128 = 47,
979   IIT_BF16 = 48,
980   IIT_STRUCT9 = 49,
981   IIT_V256 = 50,
982   IIT_AMX  = 51,
983   IIT_PPCF128 = 52,
984   IIT_V3 = 53,
985 };
986 
987 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
988                       IIT_Info LastInfo,
989                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
990   using namespace Intrinsic;
991 
992   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
993 
994   IIT_Info Info = IIT_Info(Infos[NextElt++]);
995   unsigned StructElts = 2;
996 
997   switch (Info) {
998   case IIT_Done:
999     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1000     return;
1001   case IIT_VARARG:
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1003     return;
1004   case IIT_MMX:
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1006     return;
1007   case IIT_AMX:
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1009     return;
1010   case IIT_TOKEN:
1011     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1012     return;
1013   case IIT_METADATA:
1014     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1015     return;
1016   case IIT_F16:
1017     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1018     return;
1019   case IIT_BF16:
1020     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1021     return;
1022   case IIT_F32:
1023     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1024     return;
1025   case IIT_F64:
1026     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1027     return;
1028   case IIT_F128:
1029     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1030     return;
1031   case IIT_PPCF128:
1032     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1033     return;
1034   case IIT_I1:
1035     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1036     return;
1037   case IIT_I8:
1038     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1039     return;
1040   case IIT_I16:
1041     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1042     return;
1043   case IIT_I32:
1044     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1045     return;
1046   case IIT_I64:
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1048     return;
1049   case IIT_I128:
1050     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1051     return;
1052   case IIT_V1:
1053     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1054     DecodeIITType(NextElt, Infos, Info, OutputTable);
1055     return;
1056   case IIT_V2:
1057     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1058     DecodeIITType(NextElt, Infos, Info, OutputTable);
1059     return;
1060   case IIT_V3:
1061     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1062     DecodeIITType(NextElt, Infos, Info, OutputTable);
1063     return;
1064   case IIT_V4:
1065     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1066     DecodeIITType(NextElt, Infos, Info, OutputTable);
1067     return;
1068   case IIT_V8:
1069     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1070     DecodeIITType(NextElt, Infos, Info, OutputTable);
1071     return;
1072   case IIT_V16:
1073     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1074     DecodeIITType(NextElt, Infos, Info, OutputTable);
1075     return;
1076   case IIT_V32:
1077     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1078     DecodeIITType(NextElt, Infos, Info, OutputTable);
1079     return;
1080   case IIT_V64:
1081     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1082     DecodeIITType(NextElt, Infos, Info, OutputTable);
1083     return;
1084   case IIT_V128:
1085     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1086     DecodeIITType(NextElt, Infos, Info, OutputTable);
1087     return;
1088   case IIT_V256:
1089     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1090     DecodeIITType(NextElt, Infos, Info, OutputTable);
1091     return;
1092   case IIT_V512:
1093     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1094     DecodeIITType(NextElt, Infos, Info, OutputTable);
1095     return;
1096   case IIT_V1024:
1097     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1098     DecodeIITType(NextElt, Infos, Info, OutputTable);
1099     return;
1100   case IIT_PTR:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1102     DecodeIITType(NextElt, Infos, Info, OutputTable);
1103     return;
1104   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1106                                              Infos[NextElt++]));
1107     DecodeIITType(NextElt, Infos, Info, OutputTable);
1108     return;
1109   }
1110   case IIT_ARG: {
1111     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1113     return;
1114   }
1115   case IIT_EXTEND_ARG: {
1116     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1118                                              ArgInfo));
1119     return;
1120   }
1121   case IIT_TRUNC_ARG: {
1122     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1124                                              ArgInfo));
1125     return;
1126   }
1127   case IIT_HALF_VEC_ARG: {
1128     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1129     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1130                                              ArgInfo));
1131     return;
1132   }
1133   case IIT_SAME_VEC_WIDTH_ARG: {
1134     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1135     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1136                                              ArgInfo));
1137     return;
1138   }
1139   case IIT_PTR_TO_ARG: {
1140     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1142                                              ArgInfo));
1143     return;
1144   }
1145   case IIT_PTR_TO_ELT: {
1146     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1147     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1148     return;
1149   }
1150   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1151     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1152     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1153     OutputTable.push_back(
1154         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1155     return;
1156   }
1157   case IIT_EMPTYSTRUCT:
1158     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1159     return;
1160   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1161   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1162   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1163   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1164   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1165   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1166   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1167   case IIT_STRUCT2: {
1168     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1169 
1170     for (unsigned i = 0; i != StructElts; ++i)
1171       DecodeIITType(NextElt, Infos, Info, OutputTable);
1172     return;
1173   }
1174   case IIT_SUBDIVIDE2_ARG: {
1175     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1176     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1177                                              ArgInfo));
1178     return;
1179   }
1180   case IIT_SUBDIVIDE4_ARG: {
1181     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1182     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1183                                              ArgInfo));
1184     return;
1185   }
1186   case IIT_VEC_ELEMENT: {
1187     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1188     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1189                                              ArgInfo));
1190     return;
1191   }
1192   case IIT_SCALABLE_VEC: {
1193     DecodeIITType(NextElt, Infos, Info, OutputTable);
1194     return;
1195   }
1196   case IIT_VEC_OF_BITCASTS_TO_INT: {
1197     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1198     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1199                                              ArgInfo));
1200     return;
1201   }
1202   }
1203   llvm_unreachable("unhandled");
1204 }
1205 
1206 #define GET_INTRINSIC_GENERATOR_GLOBAL
1207 #include "llvm/IR/IntrinsicImpl.inc"
1208 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1209 
1210 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1211                                              SmallVectorImpl<IITDescriptor> &T){
1212   // Check to see if the intrinsic's type was expressible by the table.
1213   unsigned TableVal = IIT_Table[id-1];
1214 
1215   // Decode the TableVal into an array of IITValues.
1216   SmallVector<unsigned char, 8> IITValues;
1217   ArrayRef<unsigned char> IITEntries;
1218   unsigned NextElt = 0;
1219   if ((TableVal >> 31) != 0) {
1220     // This is an offset into the IIT_LongEncodingTable.
1221     IITEntries = IIT_LongEncodingTable;
1222 
1223     // Strip sentinel bit.
1224     NextElt = (TableVal << 1) >> 1;
1225   } else {
1226     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1227     // into a single word in the table itself, decode it now.
1228     do {
1229       IITValues.push_back(TableVal & 0xF);
1230       TableVal >>= 4;
1231     } while (TableVal);
1232 
1233     IITEntries = IITValues;
1234     NextElt = 0;
1235   }
1236 
1237   // Okay, decode the table into the output vector of IITDescriptors.
1238   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1239   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1240     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1241 }
1242 
1243 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1244                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1245   using namespace Intrinsic;
1246 
1247   IITDescriptor D = Infos.front();
1248   Infos = Infos.slice(1);
1249 
1250   switch (D.Kind) {
1251   case IITDescriptor::Void: return Type::getVoidTy(Context);
1252   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1253   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1254   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1255   case IITDescriptor::Token: return Type::getTokenTy(Context);
1256   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1257   case IITDescriptor::Half: return Type::getHalfTy(Context);
1258   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1259   case IITDescriptor::Float: return Type::getFloatTy(Context);
1260   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1261   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1262   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1263 
1264   case IITDescriptor::Integer:
1265     return IntegerType::get(Context, D.Integer_Width);
1266   case IITDescriptor::Vector:
1267     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1268                            D.Vector_Width);
1269   case IITDescriptor::Pointer:
1270     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1271                             D.Pointer_AddressSpace);
1272   case IITDescriptor::Struct: {
1273     SmallVector<Type *, 8> Elts;
1274     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1275       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1276     return StructType::get(Context, Elts);
1277   }
1278   case IITDescriptor::Argument:
1279     return Tys[D.getArgumentNumber()];
1280   case IITDescriptor::ExtendArgument: {
1281     Type *Ty = Tys[D.getArgumentNumber()];
1282     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1283       return VectorType::getExtendedElementVectorType(VTy);
1284 
1285     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1286   }
1287   case IITDescriptor::TruncArgument: {
1288     Type *Ty = Tys[D.getArgumentNumber()];
1289     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1290       return VectorType::getTruncatedElementVectorType(VTy);
1291 
1292     IntegerType *ITy = cast<IntegerType>(Ty);
1293     assert(ITy->getBitWidth() % 2 == 0);
1294     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1295   }
1296   case IITDescriptor::Subdivide2Argument:
1297   case IITDescriptor::Subdivide4Argument: {
1298     Type *Ty = Tys[D.getArgumentNumber()];
1299     VectorType *VTy = dyn_cast<VectorType>(Ty);
1300     assert(VTy && "Expected an argument of Vector Type");
1301     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1302     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1303   }
1304   case IITDescriptor::HalfVecArgument:
1305     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1306                                                   Tys[D.getArgumentNumber()]));
1307   case IITDescriptor::SameVecWidthArgument: {
1308     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1309     Type *Ty = Tys[D.getArgumentNumber()];
1310     if (auto *VTy = dyn_cast<VectorType>(Ty))
1311       return VectorType::get(EltTy, VTy->getElementCount());
1312     return EltTy;
1313   }
1314   case IITDescriptor::PtrToArgument: {
1315     Type *Ty = Tys[D.getArgumentNumber()];
1316     return PointerType::getUnqual(Ty);
1317   }
1318   case IITDescriptor::PtrToElt: {
1319     Type *Ty = Tys[D.getArgumentNumber()];
1320     VectorType *VTy = dyn_cast<VectorType>(Ty);
1321     if (!VTy)
1322       llvm_unreachable("Expected an argument of Vector Type");
1323     Type *EltTy = VTy->getElementType();
1324     return PointerType::getUnqual(EltTy);
1325   }
1326   case IITDescriptor::VecElementArgument: {
1327     Type *Ty = Tys[D.getArgumentNumber()];
1328     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1329       return VTy->getElementType();
1330     llvm_unreachable("Expected an argument of Vector Type");
1331   }
1332   case IITDescriptor::VecOfBitcastsToInt: {
1333     Type *Ty = Tys[D.getArgumentNumber()];
1334     VectorType *VTy = dyn_cast<VectorType>(Ty);
1335     assert(VTy && "Expected an argument of Vector Type");
1336     return VectorType::getInteger(VTy);
1337   }
1338   case IITDescriptor::VecOfAnyPtrsToElt:
1339     // Return the overloaded type (which determines the pointers address space)
1340     return Tys[D.getOverloadArgNumber()];
1341   }
1342   llvm_unreachable("unhandled");
1343 }
1344 
1345 FunctionType *Intrinsic::getType(LLVMContext &Context,
1346                                  ID id, ArrayRef<Type*> Tys) {
1347   SmallVector<IITDescriptor, 8> Table;
1348   getIntrinsicInfoTableEntries(id, Table);
1349 
1350   ArrayRef<IITDescriptor> TableRef = Table;
1351   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1352 
1353   SmallVector<Type*, 8> ArgTys;
1354   while (!TableRef.empty())
1355     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1356 
1357   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1358   // If we see void type as the type of the last argument, it is vararg intrinsic
1359   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1360     ArgTys.pop_back();
1361     return FunctionType::get(ResultTy, ArgTys, true);
1362   }
1363   return FunctionType::get(ResultTy, ArgTys, false);
1364 }
1365 
1366 bool Intrinsic::isOverloaded(ID id) {
1367 #define GET_INTRINSIC_OVERLOAD_TABLE
1368 #include "llvm/IR/IntrinsicImpl.inc"
1369 #undef GET_INTRINSIC_OVERLOAD_TABLE
1370 }
1371 
1372 bool Intrinsic::isLeaf(ID id) {
1373   switch (id) {
1374   default:
1375     return true;
1376 
1377   case Intrinsic::experimental_gc_statepoint:
1378   case Intrinsic::experimental_patchpoint_void:
1379   case Intrinsic::experimental_patchpoint_i64:
1380     return false;
1381   }
1382 }
1383 
1384 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1385 #define GET_INTRINSIC_ATTRIBUTES
1386 #include "llvm/IR/IntrinsicImpl.inc"
1387 #undef GET_INTRINSIC_ATTRIBUTES
1388 
1389 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1390   // There can never be multiple globals with the same name of different types,
1391   // because intrinsics must be a specific type.
1392   auto *FT = getType(M->getContext(), id, Tys);
1393   return cast<Function>(
1394       M->getOrInsertFunction(Tys.empty() ? getName(id)
1395                                          : getName(id, Tys, M, FT),
1396                              getType(M->getContext(), id, Tys))
1397           .getCallee());
1398 }
1399 
1400 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1401 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1402 #include "llvm/IR/IntrinsicImpl.inc"
1403 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1404 
1405 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1406 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1407 #include "llvm/IR/IntrinsicImpl.inc"
1408 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1409 
1410 using DeferredIntrinsicMatchPair =
1411     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1412 
1413 static bool matchIntrinsicType(
1414     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1415     SmallVectorImpl<Type *> &ArgTys,
1416     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1417     bool IsDeferredCheck) {
1418   using namespace Intrinsic;
1419 
1420   // If we ran out of descriptors, there are too many arguments.
1421   if (Infos.empty()) return true;
1422 
1423   // Do this before slicing off the 'front' part
1424   auto InfosRef = Infos;
1425   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1426     DeferredChecks.emplace_back(T, InfosRef);
1427     return false;
1428   };
1429 
1430   IITDescriptor D = Infos.front();
1431   Infos = Infos.slice(1);
1432 
1433   switch (D.Kind) {
1434     case IITDescriptor::Void: return !Ty->isVoidTy();
1435     case IITDescriptor::VarArg: return true;
1436     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1437     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1438     case IITDescriptor::Token: return !Ty->isTokenTy();
1439     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1440     case IITDescriptor::Half: return !Ty->isHalfTy();
1441     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1442     case IITDescriptor::Float: return !Ty->isFloatTy();
1443     case IITDescriptor::Double: return !Ty->isDoubleTy();
1444     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1445     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1446     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1447     case IITDescriptor::Vector: {
1448       VectorType *VT = dyn_cast<VectorType>(Ty);
1449       return !VT || VT->getElementCount() != D.Vector_Width ||
1450              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1451                                 DeferredChecks, IsDeferredCheck);
1452     }
1453     case IITDescriptor::Pointer: {
1454       PointerType *PT = dyn_cast<PointerType>(Ty);
1455       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1456         return true;
1457       if (!PT->isOpaque())
1458         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1459                                   DeferredChecks, IsDeferredCheck);
1460       // Consume IIT descriptors relating to the pointer element type.
1461       while (Infos.front().Kind == IITDescriptor::Pointer)
1462         Infos = Infos.slice(1);
1463       Infos = Infos.slice(1);
1464       return false;
1465     }
1466 
1467     case IITDescriptor::Struct: {
1468       StructType *ST = dyn_cast<StructType>(Ty);
1469       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1470         return true;
1471 
1472       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1473         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1474                                DeferredChecks, IsDeferredCheck))
1475           return true;
1476       return false;
1477     }
1478 
1479     case IITDescriptor::Argument:
1480       // If this is the second occurrence of an argument,
1481       // verify that the later instance matches the previous instance.
1482       if (D.getArgumentNumber() < ArgTys.size())
1483         return Ty != ArgTys[D.getArgumentNumber()];
1484 
1485       if (D.getArgumentNumber() > ArgTys.size() ||
1486           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1487         return IsDeferredCheck || DeferCheck(Ty);
1488 
1489       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1490              "Table consistency error");
1491       ArgTys.push_back(Ty);
1492 
1493       switch (D.getArgumentKind()) {
1494         case IITDescriptor::AK_Any:        return false; // Success
1495         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1496         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1497         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1498         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1499         default:                           break;
1500       }
1501       llvm_unreachable("all argument kinds not covered");
1502 
1503     case IITDescriptor::ExtendArgument: {
1504       // If this is a forward reference, defer the check for later.
1505       if (D.getArgumentNumber() >= ArgTys.size())
1506         return IsDeferredCheck || DeferCheck(Ty);
1507 
1508       Type *NewTy = ArgTys[D.getArgumentNumber()];
1509       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1510         NewTy = VectorType::getExtendedElementVectorType(VTy);
1511       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1512         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1513       else
1514         return true;
1515 
1516       return Ty != NewTy;
1517     }
1518     case IITDescriptor::TruncArgument: {
1519       // If this is a forward reference, defer the check for later.
1520       if (D.getArgumentNumber() >= ArgTys.size())
1521         return IsDeferredCheck || DeferCheck(Ty);
1522 
1523       Type *NewTy = ArgTys[D.getArgumentNumber()];
1524       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1525         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1526       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1527         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1528       else
1529         return true;
1530 
1531       return Ty != NewTy;
1532     }
1533     case IITDescriptor::HalfVecArgument:
1534       // If this is a forward reference, defer the check for later.
1535       if (D.getArgumentNumber() >= ArgTys.size())
1536         return IsDeferredCheck || DeferCheck(Ty);
1537       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1538              VectorType::getHalfElementsVectorType(
1539                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1540     case IITDescriptor::SameVecWidthArgument: {
1541       if (D.getArgumentNumber() >= ArgTys.size()) {
1542         // Defer check and subsequent check for the vector element type.
1543         Infos = Infos.slice(1);
1544         return IsDeferredCheck || DeferCheck(Ty);
1545       }
1546       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1547       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1548       // Both must be vectors of the same number of elements or neither.
1549       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1550         return true;
1551       Type *EltTy = Ty;
1552       if (ThisArgType) {
1553         if (ReferenceType->getElementCount() !=
1554             ThisArgType->getElementCount())
1555           return true;
1556         EltTy = ThisArgType->getElementType();
1557       }
1558       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1559                                 IsDeferredCheck);
1560     }
1561     case IITDescriptor::PtrToArgument: {
1562       if (D.getArgumentNumber() >= ArgTys.size())
1563         return IsDeferredCheck || DeferCheck(Ty);
1564       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1565       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1566       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1567     }
1568     case IITDescriptor::PtrToElt: {
1569       if (D.getArgumentNumber() >= ArgTys.size())
1570         return IsDeferredCheck || DeferCheck(Ty);
1571       VectorType * ReferenceType =
1572         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1573       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1574 
1575       if (!ThisArgType || !ReferenceType)
1576         return true;
1577       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1578           ReferenceType->getElementType());
1579     }
1580     case IITDescriptor::VecOfAnyPtrsToElt: {
1581       unsigned RefArgNumber = D.getRefArgNumber();
1582       if (RefArgNumber >= ArgTys.size()) {
1583         if (IsDeferredCheck)
1584           return true;
1585         // If forward referencing, already add the pointer-vector type and
1586         // defer the checks for later.
1587         ArgTys.push_back(Ty);
1588         return DeferCheck(Ty);
1589       }
1590 
1591       if (!IsDeferredCheck){
1592         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1593                "Table consistency error");
1594         ArgTys.push_back(Ty);
1595       }
1596 
1597       // Verify the overloaded type "matches" the Ref type.
1598       // i.e. Ty is a vector with the same width as Ref.
1599       // Composed of pointers to the same element type as Ref.
1600       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1601       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1602       if (!ThisArgVecTy || !ReferenceType ||
1603           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1604         return true;
1605       PointerType *ThisArgEltTy =
1606           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1607       if (!ThisArgEltTy)
1608         return true;
1609       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1610           ReferenceType->getElementType());
1611     }
1612     case IITDescriptor::VecElementArgument: {
1613       if (D.getArgumentNumber() >= ArgTys.size())
1614         return IsDeferredCheck ? true : DeferCheck(Ty);
1615       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1616       return !ReferenceType || Ty != ReferenceType->getElementType();
1617     }
1618     case IITDescriptor::Subdivide2Argument:
1619     case IITDescriptor::Subdivide4Argument: {
1620       // If this is a forward reference, defer the check for later.
1621       if (D.getArgumentNumber() >= ArgTys.size())
1622         return IsDeferredCheck || DeferCheck(Ty);
1623 
1624       Type *NewTy = ArgTys[D.getArgumentNumber()];
1625       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1626         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1627         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1628         return Ty != NewTy;
1629       }
1630       return true;
1631     }
1632     case IITDescriptor::VecOfBitcastsToInt: {
1633       if (D.getArgumentNumber() >= ArgTys.size())
1634         return IsDeferredCheck || DeferCheck(Ty);
1635       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1636       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1637       if (!ThisArgVecTy || !ReferenceType)
1638         return true;
1639       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1640     }
1641   }
1642   llvm_unreachable("unhandled");
1643 }
1644 
1645 Intrinsic::MatchIntrinsicTypesResult
1646 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1647                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1648                                    SmallVectorImpl<Type *> &ArgTys) {
1649   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1650   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1651                          false))
1652     return MatchIntrinsicTypes_NoMatchRet;
1653 
1654   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1655 
1656   for (auto Ty : FTy->params())
1657     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1658       return MatchIntrinsicTypes_NoMatchArg;
1659 
1660   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1661     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1662     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1663                            true))
1664       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1665                                          : MatchIntrinsicTypes_NoMatchArg;
1666   }
1667 
1668   return MatchIntrinsicTypes_Match;
1669 }
1670 
1671 bool
1672 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1673                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1674   // If there are no descriptors left, then it can't be a vararg.
1675   if (Infos.empty())
1676     return isVarArg;
1677 
1678   // There should be only one descriptor remaining at this point.
1679   if (Infos.size() != 1)
1680     return true;
1681 
1682   // Check and verify the descriptor.
1683   IITDescriptor D = Infos.front();
1684   Infos = Infos.slice(1);
1685   if (D.Kind == IITDescriptor::VarArg)
1686     return !isVarArg;
1687 
1688   return true;
1689 }
1690 
1691 bool Intrinsic::getIntrinsicSignature(Function *F,
1692                                       SmallVectorImpl<Type *> &ArgTys) {
1693   Intrinsic::ID ID = F->getIntrinsicID();
1694   if (!ID)
1695     return false;
1696 
1697   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1698   getIntrinsicInfoTableEntries(ID, Table);
1699   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1700 
1701   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1702                                          ArgTys) !=
1703       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1704     return false;
1705   }
1706   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1707                                       TableRef))
1708     return false;
1709   return true;
1710 }
1711 
1712 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1713   SmallVector<Type *, 4> ArgTys;
1714   if (!getIntrinsicSignature(F, ArgTys))
1715     return None;
1716 
1717   Intrinsic::ID ID = F->getIntrinsicID();
1718   StringRef Name = F->getName();
1719   std::string WantedName =
1720       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1721   if (Name == WantedName)
1722     return None;
1723 
1724   Function *NewDecl = [&] {
1725     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1726       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1727         if (ExistingF->getFunctionType() == F->getFunctionType())
1728           return ExistingF;
1729 
1730       // The name already exists, but is not a function or has the wrong
1731       // prototype. Make place for the new one by renaming the old version.
1732       // Either this old version will be removed later on or the module is
1733       // invalid and we'll get an error.
1734       ExistingGV->setName(WantedName + ".renamed");
1735     }
1736     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1737   }();
1738 
1739   NewDecl->setCallingConv(F->getCallingConv());
1740   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1741          "Shouldn't change the signature");
1742   return NewDecl;
1743 }
1744 
1745 /// hasAddressTaken - returns true if there are any uses of this function
1746 /// other than direct calls or invokes to it. Optionally ignores callback
1747 /// uses, assume like pointer annotation calls, and references in llvm.used
1748 /// and llvm.compiler.used variables.
1749 bool Function::hasAddressTaken(const User **PutOffender,
1750                                bool IgnoreCallbackUses,
1751                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1752                                bool IgnoreARCAttachedCall) const {
1753   for (const Use &U : uses()) {
1754     const User *FU = U.getUser();
1755     if (isa<BlockAddress>(FU))
1756       continue;
1757 
1758     if (IgnoreCallbackUses) {
1759       AbstractCallSite ACS(&U);
1760       if (ACS && ACS.isCallbackCall())
1761         continue;
1762     }
1763 
1764     const auto *Call = dyn_cast<CallBase>(FU);
1765     if (!Call) {
1766       if (IgnoreAssumeLikeCalls) {
1767         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1768           if (FI->isCast() && !FI->user_empty() &&
1769               llvm::all_of(FU->users(), [](const User *U) {
1770                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1771                   return I->isAssumeLikeIntrinsic();
1772                 return false;
1773               }))
1774             continue;
1775         }
1776       }
1777       if (IgnoreLLVMUsed && !FU->user_empty()) {
1778         const User *FUU = FU;
1779         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1780             !FU->user_begin()->user_empty())
1781           FUU = *FU->user_begin();
1782         if (llvm::all_of(FUU->users(), [](const User *U) {
1783               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1784                 return GV->hasName() &&
1785                        (GV->getName().equals("llvm.compiler.used") ||
1786                         GV->getName().equals("llvm.used"));
1787               return false;
1788             }))
1789           continue;
1790       }
1791       if (PutOffender)
1792         *PutOffender = FU;
1793       return true;
1794     }
1795     if (!Call->isCallee(&U)) {
1796       if (IgnoreARCAttachedCall &&
1797           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1798                                       U.getOperandNo()))
1799         continue;
1800 
1801       if (PutOffender)
1802         *PutOffender = FU;
1803       return true;
1804     }
1805   }
1806   return false;
1807 }
1808 
1809 bool Function::isDefTriviallyDead() const {
1810   // Check the linkage
1811   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1812       !hasAvailableExternallyLinkage())
1813     return false;
1814 
1815   // Check if the function is used by anything other than a blockaddress.
1816   for (const User *U : users())
1817     if (!isa<BlockAddress>(U))
1818       return false;
1819 
1820   return true;
1821 }
1822 
1823 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1824 /// setjmp or other function that gcc recognizes as "returning twice".
1825 bool Function::callsFunctionThatReturnsTwice() const {
1826   for (const Instruction &I : instructions(this))
1827     if (const auto *Call = dyn_cast<CallBase>(&I))
1828       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1829         return true;
1830 
1831   return false;
1832 }
1833 
1834 Constant *Function::getPersonalityFn() const {
1835   assert(hasPersonalityFn() && getNumOperands());
1836   return cast<Constant>(Op<0>());
1837 }
1838 
1839 void Function::setPersonalityFn(Constant *Fn) {
1840   setHungoffOperand<0>(Fn);
1841   setValueSubclassDataBit(3, Fn != nullptr);
1842 }
1843 
1844 Constant *Function::getPrefixData() const {
1845   assert(hasPrefixData() && getNumOperands());
1846   return cast<Constant>(Op<1>());
1847 }
1848 
1849 void Function::setPrefixData(Constant *PrefixData) {
1850   setHungoffOperand<1>(PrefixData);
1851   setValueSubclassDataBit(1, PrefixData != nullptr);
1852 }
1853 
1854 Constant *Function::getPrologueData() const {
1855   assert(hasPrologueData() && getNumOperands());
1856   return cast<Constant>(Op<2>());
1857 }
1858 
1859 void Function::setPrologueData(Constant *PrologueData) {
1860   setHungoffOperand<2>(PrologueData);
1861   setValueSubclassDataBit(2, PrologueData != nullptr);
1862 }
1863 
1864 void Function::allocHungoffUselist() {
1865   // If we've already allocated a uselist, stop here.
1866   if (getNumOperands())
1867     return;
1868 
1869   allocHungoffUses(3, /*IsPhi=*/ false);
1870   setNumHungOffUseOperands(3);
1871 
1872   // Initialize the uselist with placeholder operands to allow traversal.
1873   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1874   Op<0>().set(CPN);
1875   Op<1>().set(CPN);
1876   Op<2>().set(CPN);
1877 }
1878 
1879 template <int Idx>
1880 void Function::setHungoffOperand(Constant *C) {
1881   if (C) {
1882     allocHungoffUselist();
1883     Op<Idx>().set(C);
1884   } else if (getNumOperands()) {
1885     Op<Idx>().set(
1886         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1887   }
1888 }
1889 
1890 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1891   assert(Bit < 16 && "SubclassData contains only 16 bits");
1892   if (On)
1893     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1894   else
1895     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1896 }
1897 
1898 void Function::setEntryCount(ProfileCount Count,
1899                              const DenseSet<GlobalValue::GUID> *S) {
1900 #if !defined(NDEBUG)
1901   auto PrevCount = getEntryCount();
1902   assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType());
1903 #endif
1904 
1905   auto ImportGUIDs = getImportGUIDs();
1906   if (S == nullptr && ImportGUIDs.size())
1907     S = &ImportGUIDs;
1908 
1909   MDBuilder MDB(getContext());
1910   setMetadata(
1911       LLVMContext::MD_prof,
1912       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1913 }
1914 
1915 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1916                              const DenseSet<GlobalValue::GUID> *Imports) {
1917   setEntryCount(ProfileCount(Count, Type), Imports);
1918 }
1919 
1920 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1921   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1922   if (MD && MD->getOperand(0))
1923     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1924       if (MDS->getString().equals("function_entry_count")) {
1925         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1926         uint64_t Count = CI->getValue().getZExtValue();
1927         // A value of -1 is used for SamplePGO when there were no samples.
1928         // Treat this the same as unknown.
1929         if (Count == (uint64_t)-1)
1930           return None;
1931         return ProfileCount(Count, PCT_Real);
1932       } else if (AllowSynthetic &&
1933                  MDS->getString().equals("synthetic_function_entry_count")) {
1934         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1935         uint64_t Count = CI->getValue().getZExtValue();
1936         return ProfileCount(Count, PCT_Synthetic);
1937       }
1938     }
1939   return None;
1940 }
1941 
1942 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1943   DenseSet<GlobalValue::GUID> R;
1944   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1945     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1946       if (MDS->getString().equals("function_entry_count"))
1947         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1948           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1949                        ->getValue()
1950                        .getZExtValue());
1951   return R;
1952 }
1953 
1954 void Function::setSectionPrefix(StringRef Prefix) {
1955   MDBuilder MDB(getContext());
1956   setMetadata(LLVMContext::MD_section_prefix,
1957               MDB.createFunctionSectionPrefix(Prefix));
1958 }
1959 
1960 Optional<StringRef> Function::getSectionPrefix() const {
1961   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1962     assert(cast<MDString>(MD->getOperand(0))
1963                ->getString()
1964                .equals("function_section_prefix") &&
1965            "Metadata not match");
1966     return cast<MDString>(MD->getOperand(1))->getString();
1967   }
1968   return None;
1969 }
1970 
1971 bool Function::nullPointerIsDefined() const {
1972   return hasFnAttribute(Attribute::NullPointerIsValid);
1973 }
1974 
1975 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1976   if (F && F->nullPointerIsDefined())
1977     return true;
1978 
1979   if (AS != 0)
1980     return true;
1981 
1982   return false;
1983 }
1984