1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument, Function>; 39 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { return Ty; } 228 229 bool Function::isVarArg() const { 230 return getFunctionType()->isVarArg(); 231 } 232 233 Type *Function::getReturnType() const { 234 return getFunctionType()->getReturnType(); 235 } 236 237 void Function::removeFromParent() { 238 getParent()->getFunctionList().remove(this); 239 } 240 241 void Function::eraseFromParent() { 242 getParent()->getFunctionList().erase(this); 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Function Implementation 247 //===----------------------------------------------------------------------===// 248 249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 250 Module *ParentModule) 251 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, 252 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 253 Ty(Ty) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setGlobalObjectSubClassData(0); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 if (ParentModule) 264 ParentModule->getFunctionList().push_back(this); 265 266 // Ensure intrinsics have the right parameter attributes. 267 // Note, the IntID field will have been set in Value::setName if this function 268 // name is a valid intrinsic ID. 269 if (IntID) 270 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 271 } 272 273 Function::~Function() { 274 dropAllReferences(); // After this it is safe to delete instructions. 275 276 // Delete all of the method arguments and unlink from symbol table... 277 ArgumentList.clear(); 278 delete SymTab; 279 280 // Remove the function from the on-the-side GC table. 281 clearGC(); 282 283 // FIXME: needed by operator delete 284 setFunctionNumOperands(1); 285 } 286 287 void Function::BuildLazyArguments() const { 288 // Create the arguments vector, all arguments start out unnamed. 289 FunctionType *FT = getFunctionType(); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 291 assert(!FT->getParamType(i)->isVoidTy() && 292 "Cannot have void typed arguments!"); 293 ArgumentList.push_back(new Argument(FT->getParamType(i))); 294 } 295 296 // Clear the lazy arguments bit. 297 unsigned SDC = getSubclassDataFromValue(); 298 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 299 } 300 301 size_t Function::arg_size() const { 302 return getFunctionType()->getNumParams(); 303 } 304 bool Function::arg_empty() const { 305 return getFunctionType()->getNumParams() == 0; 306 } 307 308 void Function::setParent(Module *parent) { 309 Parent = parent; 310 } 311 312 // dropAllReferences() - This function causes all the subinstructions to "let 313 // go" of all references that they are maintaining. This allows one to 314 // 'delete' a whole class at a time, even though there may be circular 315 // references... first all references are dropped, and all use counts go to 316 // zero. Then everything is deleted for real. Note that no operations are 317 // valid on an object that has "dropped all references", except operator 318 // delete. 319 // 320 void Function::dropAllReferences() { 321 setIsMaterializable(false); 322 323 for (iterator I = begin(), E = end(); I != E; ++I) 324 I->dropAllReferences(); 325 326 // Delete all basic blocks. They are now unused, except possibly by 327 // blockaddresses, but BasicBlock's destructor takes care of those. 328 while (!BasicBlocks.empty()) 329 BasicBlocks.begin()->eraseFromParent(); 330 331 // Prefix and prologue data are stored in a side table. 332 setPrefixData(nullptr); 333 setPrologueData(nullptr); 334 335 // Metadata is stored in a side-table. 336 clearMetadata(); 337 338 setPersonalityFn(nullptr); 339 } 340 341 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 342 AttributeSet PAL = getAttributes(); 343 PAL = PAL.addAttribute(getContext(), i, attr); 344 setAttributes(PAL); 345 } 346 347 void Function::addAttributes(unsigned i, AttributeSet attrs) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttributes(getContext(), i, attrs); 350 setAttributes(PAL); 351 } 352 353 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.removeAttributes(getContext(), i, attrs); 356 setAttributes(PAL); 357 } 358 359 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 362 setAttributes(PAL); 363 } 364 365 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 368 setAttributes(PAL); 369 } 370 371 // Maintain the GC name for each function in an on-the-side table. This saves 372 // allocating an additional word in Function for programs which do not use GC 373 // (i.e., most programs) at the cost of increased overhead for clients which do 374 // use GC. 375 static DenseMap<const Function*,PooledStringPtr> *GCNames; 376 static StringPool *GCNamePool; 377 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 378 379 bool Function::hasGC() const { 380 sys::SmartScopedReader<true> Reader(*GCLock); 381 return GCNames && GCNames->count(this); 382 } 383 384 const char *Function::getGC() const { 385 assert(hasGC() && "Function has no collector"); 386 sys::SmartScopedReader<true> Reader(*GCLock); 387 return *(*GCNames)[this]; 388 } 389 390 void Function::setGC(const char *Str) { 391 sys::SmartScopedWriter<true> Writer(*GCLock); 392 if (!GCNamePool) 393 GCNamePool = new StringPool(); 394 if (!GCNames) 395 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 396 (*GCNames)[this] = GCNamePool->intern(Str); 397 } 398 399 void Function::clearGC() { 400 sys::SmartScopedWriter<true> Writer(*GCLock); 401 if (GCNames) { 402 GCNames->erase(this); 403 if (GCNames->empty()) { 404 delete GCNames; 405 GCNames = nullptr; 406 if (GCNamePool->empty()) { 407 delete GCNamePool; 408 GCNamePool = nullptr; 409 } 410 } 411 } 412 } 413 414 /// copyAttributesFrom - copy all additional attributes (those not needed to 415 /// create a Function) from the Function Src to this one. 416 void Function::copyAttributesFrom(const GlobalValue *Src) { 417 assert(isa<Function>(Src) && "Expected a Function!"); 418 GlobalObject::copyAttributesFrom(Src); 419 const Function *SrcF = cast<Function>(Src); 420 setCallingConv(SrcF->getCallingConv()); 421 setAttributes(SrcF->getAttributes()); 422 if (SrcF->hasGC()) 423 setGC(SrcF->getGC()); 424 else 425 clearGC(); 426 if (SrcF->hasPrefixData()) 427 setPrefixData(SrcF->getPrefixData()); 428 else 429 setPrefixData(nullptr); 430 if (SrcF->hasPrologueData()) 431 setPrologueData(SrcF->getPrologueData()); 432 else 433 setPrologueData(nullptr); 434 if (SrcF->hasPersonalityFn()) 435 setPersonalityFn(SrcF->getPersonalityFn()); 436 else 437 setPersonalityFn(nullptr); 438 } 439 440 /// \brief This does the actual lookup of an intrinsic ID which 441 /// matches the given function name. 442 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 443 unsigned Len = ValName->getKeyLength(); 444 const char *Name = ValName->getKeyData(); 445 446 #define GET_FUNCTION_RECOGNIZER 447 #include "llvm/IR/Intrinsics.gen" 448 #undef GET_FUNCTION_RECOGNIZER 449 450 return Intrinsic::not_intrinsic; 451 } 452 453 void Function::recalculateIntrinsicID() { 454 const ValueName *ValName = this->getValueName(); 455 if (!ValName || !isIntrinsic()) { 456 IntID = Intrinsic::not_intrinsic; 457 return; 458 } 459 IntID = lookupIntrinsicID(ValName); 460 } 461 462 /// Returns a stable mangling for the type specified for use in the name 463 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 464 /// of named types is simply their name. Manglings for unnamed types consist 465 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 466 /// combined with the mangling of their component types. A vararg function 467 /// type will have a suffix of 'vararg'. Since function types can contain 468 /// other function types, we close a function type mangling with suffix 'f' 469 /// which can't be confused with it's prefix. This ensures we don't have 470 /// collisions between two unrelated function types. Otherwise, you might 471 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 472 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 473 /// cases) fall back to the MVT codepath, where they could be mangled to 474 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 475 /// everything. 476 static std::string getMangledTypeStr(Type* Ty) { 477 std::string Result; 478 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 479 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 480 getMangledTypeStr(PTyp->getElementType()); 481 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 482 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 483 getMangledTypeStr(ATyp->getElementType()); 484 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 485 assert(!STyp->isLiteral() && "TODO: implement literal types"); 486 Result += STyp->getName(); 487 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 488 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 489 for (size_t i = 0; i < FT->getNumParams(); i++) 490 Result += getMangledTypeStr(FT->getParamType(i)); 491 if (FT->isVarArg()) 492 Result += "vararg"; 493 // Ensure nested function types are distinguishable. 494 Result += "f"; 495 } else if (Ty) 496 Result += EVT::getEVT(Ty).getEVTString(); 497 return Result; 498 } 499 500 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 501 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 502 static const char * const Table[] = { 503 "not_intrinsic", 504 #define GET_INTRINSIC_NAME_TABLE 505 #include "llvm/IR/Intrinsics.gen" 506 #undef GET_INTRINSIC_NAME_TABLE 507 }; 508 if (Tys.empty()) 509 return Table[id]; 510 std::string Result(Table[id]); 511 for (unsigned i = 0; i < Tys.size(); ++i) { 512 Result += "." + getMangledTypeStr(Tys[i]); 513 } 514 return Result; 515 } 516 517 518 /// IIT_Info - These are enumerators that describe the entries returned by the 519 /// getIntrinsicInfoTableEntries function. 520 /// 521 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 522 enum IIT_Info { 523 // Common values should be encoded with 0-15. 524 IIT_Done = 0, 525 IIT_I1 = 1, 526 IIT_I8 = 2, 527 IIT_I16 = 3, 528 IIT_I32 = 4, 529 IIT_I64 = 5, 530 IIT_F16 = 6, 531 IIT_F32 = 7, 532 IIT_F64 = 8, 533 IIT_V2 = 9, 534 IIT_V4 = 10, 535 IIT_V8 = 11, 536 IIT_V16 = 12, 537 IIT_V32 = 13, 538 IIT_PTR = 14, 539 IIT_ARG = 15, 540 541 // Values from 16+ are only encodable with the inefficient encoding. 542 IIT_V64 = 16, 543 IIT_MMX = 17, 544 IIT_METADATA = 18, 545 IIT_EMPTYSTRUCT = 19, 546 IIT_STRUCT2 = 20, 547 IIT_STRUCT3 = 21, 548 IIT_STRUCT4 = 22, 549 IIT_STRUCT5 = 23, 550 IIT_EXTEND_ARG = 24, 551 IIT_TRUNC_ARG = 25, 552 IIT_ANYPTR = 26, 553 IIT_V1 = 27, 554 IIT_VARARG = 28, 555 IIT_HALF_VEC_ARG = 29, 556 IIT_SAME_VEC_WIDTH_ARG = 30, 557 IIT_PTR_TO_ARG = 31, 558 IIT_VEC_OF_PTRS_TO_ELT = 32, 559 IIT_I128 = 33 560 }; 561 562 563 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 564 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 565 IIT_Info Info = IIT_Info(Infos[NextElt++]); 566 unsigned StructElts = 2; 567 using namespace Intrinsic; 568 569 switch (Info) { 570 case IIT_Done: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 572 return; 573 case IIT_VARARG: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 575 return; 576 case IIT_MMX: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 578 return; 579 case IIT_METADATA: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 581 return; 582 case IIT_F16: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 584 return; 585 case IIT_F32: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 587 return; 588 case IIT_F64: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 590 return; 591 case IIT_I1: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 593 return; 594 case IIT_I8: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 596 return; 597 case IIT_I16: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 599 return; 600 case IIT_I32: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 602 return; 603 case IIT_I64: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 605 return; 606 case IIT_I128: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 608 return; 609 case IIT_V1: 610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 611 DecodeIITType(NextElt, Infos, OutputTable); 612 return; 613 case IIT_V2: 614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 615 DecodeIITType(NextElt, Infos, OutputTable); 616 return; 617 case IIT_V4: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 619 DecodeIITType(NextElt, Infos, OutputTable); 620 return; 621 case IIT_V8: 622 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 623 DecodeIITType(NextElt, Infos, OutputTable); 624 return; 625 case IIT_V16: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 627 DecodeIITType(NextElt, Infos, OutputTable); 628 return; 629 case IIT_V32: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 631 DecodeIITType(NextElt, Infos, OutputTable); 632 return; 633 case IIT_V64: 634 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 635 DecodeIITType(NextElt, Infos, OutputTable); 636 return; 637 case IIT_PTR: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 639 DecodeIITType(NextElt, Infos, OutputTable); 640 return; 641 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 643 Infos[NextElt++])); 644 DecodeIITType(NextElt, Infos, OutputTable); 645 return; 646 } 647 case IIT_ARG: { 648 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 650 return; 651 } 652 case IIT_EXTEND_ARG: { 653 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 655 ArgInfo)); 656 return; 657 } 658 case IIT_TRUNC_ARG: { 659 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 661 ArgInfo)); 662 return; 663 } 664 case IIT_HALF_VEC_ARG: { 665 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 667 ArgInfo)); 668 return; 669 } 670 case IIT_SAME_VEC_WIDTH_ARG: { 671 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 673 ArgInfo)); 674 return; 675 } 676 case IIT_PTR_TO_ARG: { 677 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 679 ArgInfo)); 680 return; 681 } 682 case IIT_VEC_OF_PTRS_TO_ELT: { 683 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 685 ArgInfo)); 686 return; 687 } 688 case IIT_EMPTYSTRUCT: 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 690 return; 691 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 692 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 693 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 694 case IIT_STRUCT2: { 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 696 697 for (unsigned i = 0; i != StructElts; ++i) 698 DecodeIITType(NextElt, Infos, OutputTable); 699 return; 700 } 701 } 702 llvm_unreachable("unhandled"); 703 } 704 705 706 #define GET_INTRINSIC_GENERATOR_GLOBAL 707 #include "llvm/IR/Intrinsics.gen" 708 #undef GET_INTRINSIC_GENERATOR_GLOBAL 709 710 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 711 SmallVectorImpl<IITDescriptor> &T){ 712 // Check to see if the intrinsic's type was expressible by the table. 713 unsigned TableVal = IIT_Table[id-1]; 714 715 // Decode the TableVal into an array of IITValues. 716 SmallVector<unsigned char, 8> IITValues; 717 ArrayRef<unsigned char> IITEntries; 718 unsigned NextElt = 0; 719 if ((TableVal >> 31) != 0) { 720 // This is an offset into the IIT_LongEncodingTable. 721 IITEntries = IIT_LongEncodingTable; 722 723 // Strip sentinel bit. 724 NextElt = (TableVal << 1) >> 1; 725 } else { 726 // Decode the TableVal into an array of IITValues. If the entry was encoded 727 // into a single word in the table itself, decode it now. 728 do { 729 IITValues.push_back(TableVal & 0xF); 730 TableVal >>= 4; 731 } while (TableVal); 732 733 IITEntries = IITValues; 734 NextElt = 0; 735 } 736 737 // Okay, decode the table into the output vector of IITDescriptors. 738 DecodeIITType(NextElt, IITEntries, T); 739 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 740 DecodeIITType(NextElt, IITEntries, T); 741 } 742 743 744 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 745 ArrayRef<Type*> Tys, LLVMContext &Context) { 746 using namespace Intrinsic; 747 IITDescriptor D = Infos.front(); 748 Infos = Infos.slice(1); 749 750 switch (D.Kind) { 751 case IITDescriptor::Void: return Type::getVoidTy(Context); 752 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 753 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 754 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 755 case IITDescriptor::Half: return Type::getHalfTy(Context); 756 case IITDescriptor::Float: return Type::getFloatTy(Context); 757 case IITDescriptor::Double: return Type::getDoubleTy(Context); 758 759 case IITDescriptor::Integer: 760 return IntegerType::get(Context, D.Integer_Width); 761 case IITDescriptor::Vector: 762 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 763 case IITDescriptor::Pointer: 764 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 765 D.Pointer_AddressSpace); 766 case IITDescriptor::Struct: { 767 Type *Elts[5]; 768 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 769 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 770 Elts[i] = DecodeFixedType(Infos, Tys, Context); 771 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 772 } 773 774 case IITDescriptor::Argument: 775 return Tys[D.getArgumentNumber()]; 776 case IITDescriptor::ExtendArgument: { 777 Type *Ty = Tys[D.getArgumentNumber()]; 778 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 779 return VectorType::getExtendedElementVectorType(VTy); 780 781 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 782 } 783 case IITDescriptor::TruncArgument: { 784 Type *Ty = Tys[D.getArgumentNumber()]; 785 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 786 return VectorType::getTruncatedElementVectorType(VTy); 787 788 IntegerType *ITy = cast<IntegerType>(Ty); 789 assert(ITy->getBitWidth() % 2 == 0); 790 return IntegerType::get(Context, ITy->getBitWidth() / 2); 791 } 792 case IITDescriptor::HalfVecArgument: 793 return VectorType::getHalfElementsVectorType(cast<VectorType>( 794 Tys[D.getArgumentNumber()])); 795 case IITDescriptor::SameVecWidthArgument: { 796 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 797 Type *Ty = Tys[D.getArgumentNumber()]; 798 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 799 return VectorType::get(EltTy, VTy->getNumElements()); 800 } 801 llvm_unreachable("unhandled"); 802 } 803 case IITDescriptor::PtrToArgument: { 804 Type *Ty = Tys[D.getArgumentNumber()]; 805 return PointerType::getUnqual(Ty); 806 } 807 case IITDescriptor::VecOfPtrsToElt: { 808 Type *Ty = Tys[D.getArgumentNumber()]; 809 VectorType *VTy = dyn_cast<VectorType>(Ty); 810 if (!VTy) 811 llvm_unreachable("Expected an argument of Vector Type"); 812 Type *EltTy = VTy->getVectorElementType(); 813 return VectorType::get(PointerType::getUnqual(EltTy), 814 VTy->getNumElements()); 815 } 816 } 817 llvm_unreachable("unhandled"); 818 } 819 820 821 822 FunctionType *Intrinsic::getType(LLVMContext &Context, 823 ID id, ArrayRef<Type*> Tys) { 824 SmallVector<IITDescriptor, 8> Table; 825 getIntrinsicInfoTableEntries(id, Table); 826 827 ArrayRef<IITDescriptor> TableRef = Table; 828 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 829 830 SmallVector<Type*, 8> ArgTys; 831 while (!TableRef.empty()) 832 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 833 834 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 835 // If we see void type as the type of the last argument, it is vararg intrinsic 836 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 837 ArgTys.pop_back(); 838 return FunctionType::get(ResultTy, ArgTys, true); 839 } 840 return FunctionType::get(ResultTy, ArgTys, false); 841 } 842 843 bool Intrinsic::isOverloaded(ID id) { 844 #define GET_INTRINSIC_OVERLOAD_TABLE 845 #include "llvm/IR/Intrinsics.gen" 846 #undef GET_INTRINSIC_OVERLOAD_TABLE 847 } 848 849 bool Intrinsic::isLeaf(ID id) { 850 switch (id) { 851 default: 852 return true; 853 854 case Intrinsic::experimental_gc_statepoint: 855 case Intrinsic::experimental_patchpoint_void: 856 case Intrinsic::experimental_patchpoint_i64: 857 return false; 858 } 859 } 860 861 /// This defines the "Intrinsic::getAttributes(ID id)" method. 862 #define GET_INTRINSIC_ATTRIBUTES 863 #include "llvm/IR/Intrinsics.gen" 864 #undef GET_INTRINSIC_ATTRIBUTES 865 866 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 867 // There can never be multiple globals with the same name of different types, 868 // because intrinsics must be a specific type. 869 return 870 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 871 getType(M->getContext(), id, Tys))); 872 } 873 874 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 875 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 876 #include "llvm/IR/Intrinsics.gen" 877 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 878 879 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 880 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 881 #include "llvm/IR/Intrinsics.gen" 882 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 883 884 /// hasAddressTaken - returns true if there are any uses of this function 885 /// other than direct calls or invokes to it. 886 bool Function::hasAddressTaken(const User* *PutOffender) const { 887 for (const Use &U : uses()) { 888 const User *FU = U.getUser(); 889 if (isa<BlockAddress>(FU)) 890 continue; 891 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 892 return PutOffender ? (*PutOffender = FU, true) : true; 893 ImmutableCallSite CS(cast<Instruction>(FU)); 894 if (!CS.isCallee(&U)) 895 return PutOffender ? (*PutOffender = FU, true) : true; 896 } 897 return false; 898 } 899 900 bool Function::isDefTriviallyDead() const { 901 // Check the linkage 902 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 903 !hasAvailableExternallyLinkage()) 904 return false; 905 906 // Check if the function is used by anything other than a blockaddress. 907 for (const User *U : users()) 908 if (!isa<BlockAddress>(U)) 909 return false; 910 911 return true; 912 } 913 914 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 915 /// setjmp or other function that gcc recognizes as "returning twice". 916 bool Function::callsFunctionThatReturnsTwice() const { 917 for (const_inst_iterator 918 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 919 ImmutableCallSite CS(&*I); 920 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 921 return true; 922 } 923 924 return false; 925 } 926 927 Constant *Function::getPrefixData() const { 928 assert(hasPrefixData()); 929 const LLVMContextImpl::PrefixDataMapTy &PDMap = 930 getContext().pImpl->PrefixDataMap; 931 assert(PDMap.find(this) != PDMap.end()); 932 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 933 } 934 935 void Function::setPrefixData(Constant *PrefixData) { 936 if (!PrefixData && !hasPrefixData()) 937 return; 938 939 unsigned SCData = getSubclassDataFromValue(); 940 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 941 ReturnInst *&PDHolder = PDMap[this]; 942 if (PrefixData) { 943 if (PDHolder) 944 PDHolder->setOperand(0, PrefixData); 945 else 946 PDHolder = ReturnInst::Create(getContext(), PrefixData); 947 SCData |= (1<<1); 948 } else { 949 delete PDHolder; 950 PDMap.erase(this); 951 SCData &= ~(1<<1); 952 } 953 setValueSubclassData(SCData); 954 } 955 956 Constant *Function::getPrologueData() const { 957 assert(hasPrologueData()); 958 const LLVMContextImpl::PrologueDataMapTy &SOMap = 959 getContext().pImpl->PrologueDataMap; 960 assert(SOMap.find(this) != SOMap.end()); 961 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 962 } 963 964 void Function::setPrologueData(Constant *PrologueData) { 965 if (!PrologueData && !hasPrologueData()) 966 return; 967 968 unsigned PDData = getSubclassDataFromValue(); 969 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 970 ReturnInst *&PDHolder = PDMap[this]; 971 if (PrologueData) { 972 if (PDHolder) 973 PDHolder->setOperand(0, PrologueData); 974 else 975 PDHolder = ReturnInst::Create(getContext(), PrologueData); 976 PDData |= (1<<2); 977 } else { 978 delete PDHolder; 979 PDMap.erase(this); 980 PDData &= ~(1<<2); 981 } 982 setValueSubclassData(PDData); 983 } 984 985 void Function::setEntryCount(uint64_t Count) { 986 MDBuilder MDB(getContext()); 987 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 988 } 989 990 Optional<uint64_t> Function::getEntryCount() const { 991 MDNode *MD = getMetadata(LLVMContext::MD_prof); 992 if (MD && MD->getOperand(0)) 993 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 994 if (MDS->getString().equals("function_entry_count")) { 995 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 996 return CI->getValue().getZExtValue(); 997 } 998 return None; 999 } 1000 1001 void Function::setPersonalityFn(Constant *C) { 1002 if (!C) { 1003 if (hasPersonalityFn()) { 1004 // Note, the num operands is used to compute the offset of the operand, so 1005 // the order here matters. Clearing the operand then clearing the num 1006 // operands ensures we have the correct offset to the operand. 1007 Op<0>().set(nullptr); 1008 setFunctionNumOperands(0); 1009 } 1010 } else { 1011 // Note, the num operands is used to compute the offset of the operand, so 1012 // the order here matters. We need to set num operands to 1 first so that 1013 // we get the correct offset to the first operand when we set it. 1014 if (!hasPersonalityFn()) 1015 setFunctionNumOperands(1); 1016 Op<0>().set(C); 1017 } 1018 } 1019