1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<int> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 extern cl::opt<bool> UseNewDbgInfoFormat; 87 88 void Function::convertToNewDbgValues() { 89 IsNewDbgInfoFormat = true; 90 for (auto &BB : *this) { 91 BB.convertToNewDbgValues(); 92 } 93 } 94 95 void Function::convertFromNewDbgValues() { 96 IsNewDbgInfoFormat = false; 97 for (auto &BB : *this) { 98 BB.convertFromNewDbgValues(); 99 } 100 } 101 102 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 103 if (NewFlag && !IsNewDbgInfoFormat) 104 convertToNewDbgValues(); 105 else if (!NewFlag && IsNewDbgInfoFormat) 106 convertFromNewDbgValues(); 107 } 108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 109 for (auto &BB : *this) { 110 BB.setNewDbgInfoFormatFlag(NewFlag); 111 } 112 IsNewDbgInfoFormat = NewFlag; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Argument Implementation 117 //===----------------------------------------------------------------------===// 118 119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 120 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 121 setName(Name); 122 } 123 124 void Argument::setParent(Function *parent) { 125 Parent = parent; 126 } 127 128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 129 if (!getType()->isPointerTy()) return false; 130 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 131 (AllowUndefOrPoison || 132 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 133 return true; 134 else if (getDereferenceableBytes() > 0 && 135 !NullPointerIsDefined(getParent(), 136 getType()->getPointerAddressSpace())) 137 return true; 138 return false; 139 } 140 141 bool Argument::hasByValAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::ByVal); 144 } 145 146 bool Argument::hasByRefAttr() const { 147 if (!getType()->isPointerTy()) 148 return false; 149 return hasAttribute(Attribute::ByRef); 150 } 151 152 bool Argument::hasSwiftSelfAttr() const { 153 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 154 } 155 156 bool Argument::hasSwiftErrorAttr() const { 157 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 158 } 159 160 bool Argument::hasInAllocaAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::InAlloca); 163 } 164 165 bool Argument::hasPreallocatedAttr() const { 166 if (!getType()->isPointerTy()) 167 return false; 168 return hasAttribute(Attribute::Preallocated); 169 } 170 171 bool Argument::hasPassPointeeByValueCopyAttr() const { 172 if (!getType()->isPointerTy()) return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 177 } 178 179 bool Argument::hasPointeeInMemoryValueAttr() const { 180 if (!getType()->isPointerTy()) 181 return false; 182 AttributeList Attrs = getParent()->getAttributes(); 183 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 186 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 187 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 188 } 189 190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 191 /// parameter type. 192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 193 // FIXME: All the type carrying attributes are mutually exclusive, so there 194 // should be a single query to get the stored type that handles any of them. 195 if (Type *ByValTy = ParamAttrs.getByValType()) 196 return ByValTy; 197 if (Type *ByRefTy = ParamAttrs.getByRefType()) 198 return ByRefTy; 199 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 200 return PreAllocTy; 201 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 202 return InAllocaTy; 203 if (Type *SRetTy = ParamAttrs.getStructRetType()) 204 return SRetTy; 205 206 return nullptr; 207 } 208 209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 213 return DL.getTypeAllocSize(MemTy); 214 return 0; 215 } 216 217 Type *Argument::getPointeeInMemoryValueType() const { 218 AttributeSet ParamAttrs = 219 getParent()->getAttributes().getParamAttrs(getArgNo()); 220 return getMemoryParamAllocType(ParamAttrs); 221 } 222 223 MaybeAlign Argument::getParamAlign() const { 224 assert(getType()->isPointerTy() && "Only pointers have alignments"); 225 return getParent()->getParamAlign(getArgNo()); 226 } 227 228 MaybeAlign Argument::getParamStackAlign() const { 229 return getParent()->getParamStackAlign(getArgNo()); 230 } 231 232 Type *Argument::getParamByValType() const { 233 assert(getType()->isPointerTy() && "Only pointers have byval types"); 234 return getParent()->getParamByValType(getArgNo()); 235 } 236 237 Type *Argument::getParamStructRetType() const { 238 assert(getType()->isPointerTy() && "Only pointers have sret types"); 239 return getParent()->getParamStructRetType(getArgNo()); 240 } 241 242 Type *Argument::getParamByRefType() const { 243 assert(getType()->isPointerTy() && "Only pointers have byref types"); 244 return getParent()->getParamByRefType(getArgNo()); 245 } 246 247 Type *Argument::getParamInAllocaType() const { 248 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 249 return getParent()->getParamInAllocaType(getArgNo()); 250 } 251 252 uint64_t Argument::getDereferenceableBytes() const { 253 assert(getType()->isPointerTy() && 254 "Only pointers have dereferenceable bytes"); 255 return getParent()->getParamDereferenceableBytes(getArgNo()); 256 } 257 258 uint64_t Argument::getDereferenceableOrNullBytes() const { 259 assert(getType()->isPointerTy() && 260 "Only pointers have dereferenceable bytes"); 261 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 262 } 263 264 FPClassTest Argument::getNoFPClass() const { 265 return getParent()->getParamNoFPClass(getArgNo()); 266 } 267 268 std::optional<ConstantRange> Argument::getRange() const { 269 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 270 if (RangeAttr.isValid()) 271 return RangeAttr.getRange(); 272 return std::nullopt; 273 } 274 275 bool Argument::hasNestAttr() const { 276 if (!getType()->isPointerTy()) return false; 277 return hasAttribute(Attribute::Nest); 278 } 279 280 bool Argument::hasNoAliasAttr() const { 281 if (!getType()->isPointerTy()) return false; 282 return hasAttribute(Attribute::NoAlias); 283 } 284 285 bool Argument::hasNoCaptureAttr() const { 286 if (!getType()->isPointerTy()) return false; 287 return hasAttribute(Attribute::NoCapture); 288 } 289 290 bool Argument::hasNoFreeAttr() const { 291 if (!getType()->isPointerTy()) return false; 292 return hasAttribute(Attribute::NoFree); 293 } 294 295 bool Argument::hasStructRetAttr() const { 296 if (!getType()->isPointerTy()) return false; 297 return hasAttribute(Attribute::StructRet); 298 } 299 300 bool Argument::hasInRegAttr() const { 301 return hasAttribute(Attribute::InReg); 302 } 303 304 bool Argument::hasReturnedAttr() const { 305 return hasAttribute(Attribute::Returned); 306 } 307 308 bool Argument::hasZExtAttr() const { 309 return hasAttribute(Attribute::ZExt); 310 } 311 312 bool Argument::hasSExtAttr() const { 313 return hasAttribute(Attribute::SExt); 314 } 315 316 bool Argument::onlyReadsMemory() const { 317 AttributeList Attrs = getParent()->getAttributes(); 318 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 319 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 320 } 321 322 void Argument::addAttrs(AttrBuilder &B) { 323 AttributeList AL = getParent()->getAttributes(); 324 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 325 getParent()->setAttributes(AL); 326 } 327 328 void Argument::addAttr(Attribute::AttrKind Kind) { 329 getParent()->addParamAttr(getArgNo(), Kind); 330 } 331 332 void Argument::addAttr(Attribute Attr) { 333 getParent()->addParamAttr(getArgNo(), Attr); 334 } 335 336 void Argument::removeAttr(Attribute::AttrKind Kind) { 337 getParent()->removeParamAttr(getArgNo(), Kind); 338 } 339 340 void Argument::removeAttrs(const AttributeMask &AM) { 341 AttributeList AL = getParent()->getAttributes(); 342 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 343 getParent()->setAttributes(AL); 344 } 345 346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 347 return getParent()->hasParamAttribute(getArgNo(), Kind); 348 } 349 350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 351 return getParent()->getParamAttribute(getArgNo(), Kind); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Helper Methods in Function 356 //===----------------------------------------------------------------------===// 357 358 LLVMContext &Function::getContext() const { 359 return getType()->getContext(); 360 } 361 362 unsigned Function::getInstructionCount() const { 363 unsigned NumInstrs = 0; 364 for (const BasicBlock &BB : BasicBlocks) 365 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 366 BB.instructionsWithoutDebug().end()); 367 return NumInstrs; 368 } 369 370 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 371 const Twine &N, Module &M) { 372 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 373 } 374 375 Function *Function::createWithDefaultAttr(FunctionType *Ty, 376 LinkageTypes Linkage, 377 unsigned AddrSpace, const Twine &N, 378 Module *M) { 379 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 380 AttrBuilder B(F->getContext()); 381 UWTableKind UWTable = M->getUwtable(); 382 if (UWTable != UWTableKind::None) 383 B.addUWTableAttr(UWTable); 384 switch (M->getFramePointer()) { 385 case FramePointerKind::None: 386 // 0 ("none") is the default. 387 break; 388 case FramePointerKind::Reserved: 389 B.addAttribute("frame-pointer", "reserved"); 390 break; 391 case FramePointerKind::NonLeaf: 392 B.addAttribute("frame-pointer", "non-leaf"); 393 break; 394 case FramePointerKind::All: 395 B.addAttribute("frame-pointer", "all"); 396 break; 397 } 398 if (M->getModuleFlag("function_return_thunk_extern")) 399 B.addAttribute(Attribute::FnRetThunkExtern); 400 F->addFnAttrs(B); 401 return F; 402 } 403 404 void Function::removeFromParent() { 405 getParent()->getFunctionList().remove(getIterator()); 406 } 407 408 void Function::eraseFromParent() { 409 getParent()->getFunctionList().erase(getIterator()); 410 } 411 412 void Function::splice(Function::iterator ToIt, Function *FromF, 413 Function::iterator FromBeginIt, 414 Function::iterator FromEndIt) { 415 #ifdef EXPENSIVE_CHECKS 416 // Check that FromBeginIt is before FromEndIt. 417 auto FromFEnd = FromF->end(); 418 for (auto It = FromBeginIt; It != FromEndIt; ++It) 419 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 420 #endif // EXPENSIVE_CHECKS 421 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 422 } 423 424 Function::iterator Function::erase(Function::iterator FromIt, 425 Function::iterator ToIt) { 426 return BasicBlocks.erase(FromIt, ToIt); 427 } 428 429 //===----------------------------------------------------------------------===// 430 // Function Implementation 431 //===----------------------------------------------------------------------===// 432 433 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 434 // If AS == -1 and we are passed a valid module pointer we place the function 435 // in the program address space. Otherwise we default to AS0. 436 if (AddrSpace == static_cast<unsigned>(-1)) 437 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 438 return AddrSpace; 439 } 440 441 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 442 const Twine &name, Module *ParentModule) 443 : GlobalObject(Ty, Value::FunctionVal, 444 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 445 computeAddrSpace(AddrSpace, ParentModule)), 446 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) { 447 assert(FunctionType::isValidReturnType(getReturnType()) && 448 "invalid return type"); 449 setGlobalObjectSubClassData(0); 450 451 // We only need a symbol table for a function if the context keeps value names 452 if (!getContext().shouldDiscardValueNames()) 453 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 454 455 // If the function has arguments, mark them as lazily built. 456 if (Ty->getNumParams()) 457 setValueSubclassData(1); // Set the "has lazy arguments" bit. 458 459 if (ParentModule) { 460 ParentModule->getFunctionList().push_back(this); 461 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 462 } 463 464 HasLLVMReservedName = getName().starts_with("llvm."); 465 // Ensure intrinsics have the right parameter attributes. 466 // Note, the IntID field will have been set in Value::setName if this function 467 // name is a valid intrinsic ID. 468 if (IntID) 469 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 470 } 471 472 Function::~Function() { 473 dropAllReferences(); // After this it is safe to delete instructions. 474 475 // Delete all of the method arguments and unlink from symbol table... 476 if (Arguments) 477 clearArguments(); 478 479 // Remove the function from the on-the-side GC table. 480 clearGC(); 481 } 482 483 void Function::BuildLazyArguments() const { 484 // Create the arguments vector, all arguments start out unnamed. 485 auto *FT = getFunctionType(); 486 if (NumArgs > 0) { 487 Arguments = std::allocator<Argument>().allocate(NumArgs); 488 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 489 Type *ArgTy = FT->getParamType(i); 490 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 491 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 492 } 493 } 494 495 // Clear the lazy arguments bit. 496 unsigned SDC = getSubclassDataFromValue(); 497 SDC &= ~(1 << 0); 498 const_cast<Function*>(this)->setValueSubclassData(SDC); 499 assert(!hasLazyArguments()); 500 } 501 502 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 503 return MutableArrayRef<Argument>(Args, Count); 504 } 505 506 bool Function::isConstrainedFPIntrinsic() const { 507 return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID()); 508 } 509 510 void Function::clearArguments() { 511 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 512 A.setName(""); 513 A.~Argument(); 514 } 515 std::allocator<Argument>().deallocate(Arguments, NumArgs); 516 Arguments = nullptr; 517 } 518 519 void Function::stealArgumentListFrom(Function &Src) { 520 assert(isDeclaration() && "Expected no references to current arguments"); 521 522 // Drop the current arguments, if any, and set the lazy argument bit. 523 if (!hasLazyArguments()) { 524 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 525 [](const Argument &A) { return A.use_empty(); }) && 526 "Expected arguments to be unused in declaration"); 527 clearArguments(); 528 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 529 } 530 531 // Nothing to steal if Src has lazy arguments. 532 if (Src.hasLazyArguments()) 533 return; 534 535 // Steal arguments from Src, and fix the lazy argument bits. 536 assert(arg_size() == Src.arg_size()); 537 Arguments = Src.Arguments; 538 Src.Arguments = nullptr; 539 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 540 // FIXME: This does the work of transferNodesFromList inefficiently. 541 SmallString<128> Name; 542 if (A.hasName()) 543 Name = A.getName(); 544 if (!Name.empty()) 545 A.setName(""); 546 A.setParent(this); 547 if (!Name.empty()) 548 A.setName(Name); 549 } 550 551 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 552 assert(!hasLazyArguments()); 553 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 554 } 555 556 void Function::deleteBodyImpl(bool ShouldDrop) { 557 setIsMaterializable(false); 558 559 for (BasicBlock &BB : *this) 560 BB.dropAllReferences(); 561 562 // Delete all basic blocks. They are now unused, except possibly by 563 // blockaddresses, but BasicBlock's destructor takes care of those. 564 while (!BasicBlocks.empty()) 565 BasicBlocks.begin()->eraseFromParent(); 566 567 if (getNumOperands()) { 568 if (ShouldDrop) { 569 // Drop uses of any optional data (real or placeholder). 570 User::dropAllReferences(); 571 setNumHungOffUseOperands(0); 572 } else { 573 // The code needs to match Function::allocHungoffUselist(). 574 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 575 Op<0>().set(CPN); 576 Op<1>().set(CPN); 577 Op<2>().set(CPN); 578 } 579 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 580 } 581 582 // Metadata is stored in a side-table. 583 clearMetadata(); 584 } 585 586 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 587 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 588 } 589 590 void Function::addFnAttr(Attribute::AttrKind Kind) { 591 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 592 } 593 594 void Function::addFnAttr(StringRef Kind, StringRef Val) { 595 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 596 } 597 598 void Function::addFnAttr(Attribute Attr) { 599 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 600 } 601 602 void Function::addFnAttrs(const AttrBuilder &Attrs) { 603 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 604 } 605 606 void Function::addRetAttr(Attribute::AttrKind Kind) { 607 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 608 } 609 610 void Function::addRetAttr(Attribute Attr) { 611 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 612 } 613 614 void Function::addRetAttrs(const AttrBuilder &Attrs) { 615 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 616 } 617 618 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 619 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 620 } 621 622 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 623 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 624 } 625 626 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 627 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 628 } 629 630 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 631 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 632 } 633 634 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 635 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 636 } 637 638 void Function::removeFnAttr(Attribute::AttrKind Kind) { 639 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 640 } 641 642 void Function::removeFnAttr(StringRef Kind) { 643 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 644 } 645 646 void Function::removeFnAttrs(const AttributeMask &AM) { 647 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 648 } 649 650 void Function::removeRetAttr(Attribute::AttrKind Kind) { 651 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 652 } 653 654 void Function::removeRetAttr(StringRef Kind) { 655 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 656 } 657 658 void Function::removeRetAttrs(const AttributeMask &Attrs) { 659 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 660 } 661 662 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 663 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 664 } 665 666 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 667 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 668 } 669 670 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 671 AttributeSets = 672 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 673 } 674 675 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 676 AttributeSets = 677 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 678 } 679 680 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 681 return AttributeSets.hasFnAttr(Kind); 682 } 683 684 bool Function::hasFnAttribute(StringRef Kind) const { 685 return AttributeSets.hasFnAttr(Kind); 686 } 687 688 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 689 return AttributeSets.hasRetAttr(Kind); 690 } 691 692 bool Function::hasParamAttribute(unsigned ArgNo, 693 Attribute::AttrKind Kind) const { 694 return AttributeSets.hasParamAttr(ArgNo, Kind); 695 } 696 697 Attribute Function::getAttributeAtIndex(unsigned i, 698 Attribute::AttrKind Kind) const { 699 return AttributeSets.getAttributeAtIndex(i, Kind); 700 } 701 702 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 703 return AttributeSets.getAttributeAtIndex(i, Kind); 704 } 705 706 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 707 return AttributeSets.getFnAttr(Kind); 708 } 709 710 Attribute Function::getFnAttribute(StringRef Kind) const { 711 return AttributeSets.getFnAttr(Kind); 712 } 713 714 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 715 return AttributeSets.getRetAttr(Kind); 716 } 717 718 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 719 uint64_t Default) const { 720 Attribute A = getFnAttribute(Name); 721 uint64_t Result = Default; 722 if (A.isStringAttribute()) { 723 StringRef Str = A.getValueAsString(); 724 if (Str.getAsInteger(0, Result)) 725 getContext().emitError("cannot parse integer attribute " + Name); 726 } 727 728 return Result; 729 } 730 731 /// gets the specified attribute from the list of attributes. 732 Attribute Function::getParamAttribute(unsigned ArgNo, 733 Attribute::AttrKind Kind) const { 734 return AttributeSets.getParamAttr(ArgNo, Kind); 735 } 736 737 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 738 uint64_t Bytes) { 739 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 740 ArgNo, Bytes); 741 } 742 743 void Function::addRangeRetAttr(const ConstantRange &CR) { 744 AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR); 745 } 746 747 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 748 if (&FPType == &APFloat::IEEEsingle()) { 749 DenormalMode Mode = getDenormalModeF32Raw(); 750 // If the f32 variant of the attribute isn't specified, try to use the 751 // generic one. 752 if (Mode.isValid()) 753 return Mode; 754 } 755 756 return getDenormalModeRaw(); 757 } 758 759 DenormalMode Function::getDenormalModeRaw() const { 760 Attribute Attr = getFnAttribute("denormal-fp-math"); 761 StringRef Val = Attr.getValueAsString(); 762 return parseDenormalFPAttribute(Val); 763 } 764 765 DenormalMode Function::getDenormalModeF32Raw() const { 766 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 767 if (Attr.isValid()) { 768 StringRef Val = Attr.getValueAsString(); 769 return parseDenormalFPAttribute(Val); 770 } 771 772 return DenormalMode::getInvalid(); 773 } 774 775 const std::string &Function::getGC() const { 776 assert(hasGC() && "Function has no collector"); 777 return getContext().getGC(*this); 778 } 779 780 void Function::setGC(std::string Str) { 781 setValueSubclassDataBit(14, !Str.empty()); 782 getContext().setGC(*this, std::move(Str)); 783 } 784 785 void Function::clearGC() { 786 if (!hasGC()) 787 return; 788 getContext().deleteGC(*this); 789 setValueSubclassDataBit(14, false); 790 } 791 792 bool Function::hasStackProtectorFnAttr() const { 793 return hasFnAttribute(Attribute::StackProtect) || 794 hasFnAttribute(Attribute::StackProtectStrong) || 795 hasFnAttribute(Attribute::StackProtectReq); 796 } 797 798 /// Copy all additional attributes (those not needed to create a Function) from 799 /// the Function Src to this one. 800 void Function::copyAttributesFrom(const Function *Src) { 801 GlobalObject::copyAttributesFrom(Src); 802 setCallingConv(Src->getCallingConv()); 803 setAttributes(Src->getAttributes()); 804 if (Src->hasGC()) 805 setGC(Src->getGC()); 806 else 807 clearGC(); 808 if (Src->hasPersonalityFn()) 809 setPersonalityFn(Src->getPersonalityFn()); 810 if (Src->hasPrefixData()) 811 setPrefixData(Src->getPrefixData()); 812 if (Src->hasPrologueData()) 813 setPrologueData(Src->getPrologueData()); 814 } 815 816 MemoryEffects Function::getMemoryEffects() const { 817 return getAttributes().getMemoryEffects(); 818 } 819 void Function::setMemoryEffects(MemoryEffects ME) { 820 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 821 } 822 823 /// Determine if the function does not access memory. 824 bool Function::doesNotAccessMemory() const { 825 return getMemoryEffects().doesNotAccessMemory(); 826 } 827 void Function::setDoesNotAccessMemory() { 828 setMemoryEffects(MemoryEffects::none()); 829 } 830 831 /// Determine if the function does not access or only reads memory. 832 bool Function::onlyReadsMemory() const { 833 return getMemoryEffects().onlyReadsMemory(); 834 } 835 void Function::setOnlyReadsMemory() { 836 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 837 } 838 839 /// Determine if the function does not access or only writes memory. 840 bool Function::onlyWritesMemory() const { 841 return getMemoryEffects().onlyWritesMemory(); 842 } 843 void Function::setOnlyWritesMemory() { 844 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 845 } 846 847 /// Determine if the call can access memmory only using pointers based 848 /// on its arguments. 849 bool Function::onlyAccessesArgMemory() const { 850 return getMemoryEffects().onlyAccessesArgPointees(); 851 } 852 void Function::setOnlyAccessesArgMemory() { 853 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 854 } 855 856 /// Determine if the function may only access memory that is 857 /// inaccessible from the IR. 858 bool Function::onlyAccessesInaccessibleMemory() const { 859 return getMemoryEffects().onlyAccessesInaccessibleMem(); 860 } 861 void Function::setOnlyAccessesInaccessibleMemory() { 862 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 863 } 864 865 /// Determine if the function may only access memory that is 866 /// either inaccessible from the IR or pointed to by its arguments. 867 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 868 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 869 } 870 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 871 setMemoryEffects(getMemoryEffects() & 872 MemoryEffects::inaccessibleOrArgMemOnly()); 873 } 874 875 /// Table of string intrinsic names indexed by enum value. 876 static const char * const IntrinsicNameTable[] = { 877 "not_intrinsic", 878 #define GET_INTRINSIC_NAME_TABLE 879 #include "llvm/IR/IntrinsicImpl.inc" 880 #undef GET_INTRINSIC_NAME_TABLE 881 }; 882 883 /// Table of per-target intrinsic name tables. 884 #define GET_INTRINSIC_TARGET_DATA 885 #include "llvm/IR/IntrinsicImpl.inc" 886 #undef GET_INTRINSIC_TARGET_DATA 887 888 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 889 return IID > TargetInfos[0].Count; 890 } 891 892 bool Function::isTargetIntrinsic() const { 893 return isTargetIntrinsic(IntID); 894 } 895 896 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 897 /// target as \c Name, or the generic table if \c Name is not target specific. 898 /// 899 /// Returns the relevant slice of \c IntrinsicNameTable 900 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 901 assert(Name.starts_with("llvm.")); 902 903 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 904 // Drop "llvm." and take the first dotted component. That will be the target 905 // if this is target specific. 906 StringRef Target = Name.drop_front(5).split('.').first; 907 auto It = partition_point( 908 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 909 // We've either found the target or just fall back to the generic set, which 910 // is always first. 911 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 912 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 913 } 914 915 /// This does the actual lookup of an intrinsic ID which 916 /// matches the given function name. 917 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 918 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 919 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 920 if (Idx == -1) 921 return Intrinsic::not_intrinsic; 922 923 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 924 // an index into a sub-table. 925 int Adjust = NameTable.data() - IntrinsicNameTable; 926 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 927 928 // If the intrinsic is not overloaded, require an exact match. If it is 929 // overloaded, require either exact or prefix match. 930 const auto MatchSize = strlen(NameTable[Idx]); 931 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 932 bool IsExactMatch = Name.size() == MatchSize; 933 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 934 : Intrinsic::not_intrinsic; 935 } 936 937 void Function::updateAfterNameChange() { 938 LibFuncCache = UnknownLibFunc; 939 StringRef Name = getName(); 940 if (!Name.starts_with("llvm.")) { 941 HasLLVMReservedName = false; 942 IntID = Intrinsic::not_intrinsic; 943 return; 944 } 945 HasLLVMReservedName = true; 946 IntID = lookupIntrinsicID(Name); 947 } 948 949 /// Returns a stable mangling for the type specified for use in the name 950 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 951 /// of named types is simply their name. Manglings for unnamed types consist 952 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 953 /// combined with the mangling of their component types. A vararg function 954 /// type will have a suffix of 'vararg'. Since function types can contain 955 /// other function types, we close a function type mangling with suffix 'f' 956 /// which can't be confused with it's prefix. This ensures we don't have 957 /// collisions between two unrelated function types. Otherwise, you might 958 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 959 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 960 /// indicating that extra care must be taken to ensure a unique name. 961 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 962 std::string Result; 963 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 964 Result += "p" + utostr(PTyp->getAddressSpace()); 965 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 966 Result += "a" + utostr(ATyp->getNumElements()) + 967 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 968 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 969 if (!STyp->isLiteral()) { 970 Result += "s_"; 971 if (STyp->hasName()) 972 Result += STyp->getName(); 973 else 974 HasUnnamedType = true; 975 } else { 976 Result += "sl_"; 977 for (auto *Elem : STyp->elements()) 978 Result += getMangledTypeStr(Elem, HasUnnamedType); 979 } 980 // Ensure nested structs are distinguishable. 981 Result += "s"; 982 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 983 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 984 for (size_t i = 0; i < FT->getNumParams(); i++) 985 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 986 if (FT->isVarArg()) 987 Result += "vararg"; 988 // Ensure nested function types are distinguishable. 989 Result += "f"; 990 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 991 ElementCount EC = VTy->getElementCount(); 992 if (EC.isScalable()) 993 Result += "nx"; 994 Result += "v" + utostr(EC.getKnownMinValue()) + 995 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 996 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 997 Result += "t"; 998 Result += TETy->getName(); 999 for (Type *ParamTy : TETy->type_params()) 1000 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 1001 for (unsigned IntParam : TETy->int_params()) 1002 Result += "_" + utostr(IntParam); 1003 // Ensure nested target extension types are distinguishable. 1004 Result += "t"; 1005 } else if (Ty) { 1006 switch (Ty->getTypeID()) { 1007 default: llvm_unreachable("Unhandled type"); 1008 case Type::VoidTyID: Result += "isVoid"; break; 1009 case Type::MetadataTyID: Result += "Metadata"; break; 1010 case Type::HalfTyID: Result += "f16"; break; 1011 case Type::BFloatTyID: Result += "bf16"; break; 1012 case Type::FloatTyID: Result += "f32"; break; 1013 case Type::DoubleTyID: Result += "f64"; break; 1014 case Type::X86_FP80TyID: Result += "f80"; break; 1015 case Type::FP128TyID: Result += "f128"; break; 1016 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1017 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1018 case Type::X86_AMXTyID: Result += "x86amx"; break; 1019 case Type::IntegerTyID: 1020 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1021 break; 1022 } 1023 } 1024 return Result; 1025 } 1026 1027 StringRef Intrinsic::getBaseName(ID id) { 1028 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1029 return IntrinsicNameTable[id]; 1030 } 1031 1032 StringRef Intrinsic::getName(ID id) { 1033 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1034 assert(!Intrinsic::isOverloaded(id) && 1035 "This version of getName does not support overloading"); 1036 return getBaseName(id); 1037 } 1038 1039 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1040 Module *M, FunctionType *FT, 1041 bool EarlyModuleCheck) { 1042 1043 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1044 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1045 "This version of getName is for overloaded intrinsics only"); 1046 (void)EarlyModuleCheck; 1047 assert((!EarlyModuleCheck || M || 1048 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1049 "Intrinsic overloading on pointer types need to provide a Module"); 1050 bool HasUnnamedType = false; 1051 std::string Result(Intrinsic::getBaseName(Id)); 1052 for (Type *Ty : Tys) 1053 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1054 if (HasUnnamedType) { 1055 assert(M && "unnamed types need a module"); 1056 if (!FT) 1057 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1058 else 1059 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1060 "Provided FunctionType must match arguments"); 1061 return M->getUniqueIntrinsicName(Result, Id, FT); 1062 } 1063 return Result; 1064 } 1065 1066 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1067 FunctionType *FT) { 1068 assert(M && "We need to have a Module"); 1069 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1070 } 1071 1072 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1073 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1074 } 1075 1076 /// IIT_Info - These are enumerators that describe the entries returned by the 1077 /// getIntrinsicInfoTableEntries function. 1078 /// 1079 /// Defined in Intrinsics.td. 1080 enum IIT_Info { 1081 #define GET_INTRINSIC_IITINFO 1082 #include "llvm/IR/IntrinsicImpl.inc" 1083 #undef GET_INTRINSIC_IITINFO 1084 }; 1085 1086 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1087 IIT_Info LastInfo, 1088 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1089 using namespace Intrinsic; 1090 1091 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1092 1093 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1094 unsigned StructElts = 2; 1095 1096 switch (Info) { 1097 case IIT_Done: 1098 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1099 return; 1100 case IIT_VARARG: 1101 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1102 return; 1103 case IIT_MMX: 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1105 return; 1106 case IIT_AMX: 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1108 return; 1109 case IIT_TOKEN: 1110 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1111 return; 1112 case IIT_METADATA: 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1114 return; 1115 case IIT_F16: 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1117 return; 1118 case IIT_BF16: 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1120 return; 1121 case IIT_F32: 1122 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1123 return; 1124 case IIT_F64: 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1126 return; 1127 case IIT_F128: 1128 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1129 return; 1130 case IIT_PPCF128: 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1132 return; 1133 case IIT_I1: 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1135 return; 1136 case IIT_I2: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1138 return; 1139 case IIT_I4: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1141 return; 1142 case IIT_AARCH64_SVCOUNT: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1144 return; 1145 case IIT_I8: 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1147 return; 1148 case IIT_I16: 1149 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1150 return; 1151 case IIT_I32: 1152 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1153 return; 1154 case IIT_I64: 1155 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1156 return; 1157 case IIT_I128: 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1159 return; 1160 case IIT_V1: 1161 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1162 DecodeIITType(NextElt, Infos, Info, OutputTable); 1163 return; 1164 case IIT_V2: 1165 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1166 DecodeIITType(NextElt, Infos, Info, OutputTable); 1167 return; 1168 case IIT_V3: 1169 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1170 DecodeIITType(NextElt, Infos, Info, OutputTable); 1171 return; 1172 case IIT_V4: 1173 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1174 DecodeIITType(NextElt, Infos, Info, OutputTable); 1175 return; 1176 case IIT_V6: 1177 OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector)); 1178 DecodeIITType(NextElt, Infos, Info, OutputTable); 1179 return; 1180 case IIT_V8: 1181 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1182 DecodeIITType(NextElt, Infos, Info, OutputTable); 1183 return; 1184 case IIT_V10: 1185 OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector)); 1186 DecodeIITType(NextElt, Infos, Info, OutputTable); 1187 return; 1188 case IIT_V16: 1189 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1190 DecodeIITType(NextElt, Infos, Info, OutputTable); 1191 return; 1192 case IIT_V32: 1193 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1194 DecodeIITType(NextElt, Infos, Info, OutputTable); 1195 return; 1196 case IIT_V64: 1197 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1198 DecodeIITType(NextElt, Infos, Info, OutputTable); 1199 return; 1200 case IIT_V128: 1201 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1202 DecodeIITType(NextElt, Infos, Info, OutputTable); 1203 return; 1204 case IIT_V256: 1205 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1206 DecodeIITType(NextElt, Infos, Info, OutputTable); 1207 return; 1208 case IIT_V512: 1209 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1210 DecodeIITType(NextElt, Infos, Info, OutputTable); 1211 return; 1212 case IIT_V1024: 1213 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1214 DecodeIITType(NextElt, Infos, Info, OutputTable); 1215 return; 1216 case IIT_EXTERNREF: 1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1218 return; 1219 case IIT_FUNCREF: 1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1221 return; 1222 case IIT_PTR: 1223 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1224 return; 1225 case IIT_ANYPTR: // [ANYPTR addrspace] 1226 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1227 Infos[NextElt++])); 1228 return; 1229 case IIT_ARG: { 1230 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1231 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1232 return; 1233 } 1234 case IIT_EXTEND_ARG: { 1235 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1236 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1237 ArgInfo)); 1238 return; 1239 } 1240 case IIT_TRUNC_ARG: { 1241 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1242 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1243 ArgInfo)); 1244 return; 1245 } 1246 case IIT_HALF_VEC_ARG: { 1247 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1248 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1249 ArgInfo)); 1250 return; 1251 } 1252 case IIT_SAME_VEC_WIDTH_ARG: { 1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1255 ArgInfo)); 1256 return; 1257 } 1258 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1259 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1260 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1261 OutputTable.push_back( 1262 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1263 return; 1264 } 1265 case IIT_EMPTYSTRUCT: 1266 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1267 return; 1268 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1269 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1270 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1271 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1272 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1273 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1274 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1275 case IIT_STRUCT2: { 1276 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1277 1278 for (unsigned i = 0; i != StructElts; ++i) 1279 DecodeIITType(NextElt, Infos, Info, OutputTable); 1280 return; 1281 } 1282 case IIT_SUBDIVIDE2_ARG: { 1283 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1284 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1285 ArgInfo)); 1286 return; 1287 } 1288 case IIT_SUBDIVIDE4_ARG: { 1289 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1290 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1291 ArgInfo)); 1292 return; 1293 } 1294 case IIT_VEC_ELEMENT: { 1295 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1296 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1297 ArgInfo)); 1298 return; 1299 } 1300 case IIT_SCALABLE_VEC: { 1301 DecodeIITType(NextElt, Infos, Info, OutputTable); 1302 return; 1303 } 1304 case IIT_VEC_OF_BITCASTS_TO_INT: { 1305 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1306 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1307 ArgInfo)); 1308 return; 1309 } 1310 } 1311 llvm_unreachable("unhandled"); 1312 } 1313 1314 #define GET_INTRINSIC_GENERATOR_GLOBAL 1315 #include "llvm/IR/IntrinsicImpl.inc" 1316 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1317 1318 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1319 SmallVectorImpl<IITDescriptor> &T){ 1320 // Check to see if the intrinsic's type was expressible by the table. 1321 unsigned TableVal = IIT_Table[id-1]; 1322 1323 // Decode the TableVal into an array of IITValues. 1324 SmallVector<unsigned char, 8> IITValues; 1325 ArrayRef<unsigned char> IITEntries; 1326 unsigned NextElt = 0; 1327 if ((TableVal >> 31) != 0) { 1328 // This is an offset into the IIT_LongEncodingTable. 1329 IITEntries = IIT_LongEncodingTable; 1330 1331 // Strip sentinel bit. 1332 NextElt = (TableVal << 1) >> 1; 1333 } else { 1334 // Decode the TableVal into an array of IITValues. If the entry was encoded 1335 // into a single word in the table itself, decode it now. 1336 do { 1337 IITValues.push_back(TableVal & 0xF); 1338 TableVal >>= 4; 1339 } while (TableVal); 1340 1341 IITEntries = IITValues; 1342 NextElt = 0; 1343 } 1344 1345 // Okay, decode the table into the output vector of IITDescriptors. 1346 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1347 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1348 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1349 } 1350 1351 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1352 ArrayRef<Type*> Tys, LLVMContext &Context) { 1353 using namespace Intrinsic; 1354 1355 IITDescriptor D = Infos.front(); 1356 Infos = Infos.slice(1); 1357 1358 switch (D.Kind) { 1359 case IITDescriptor::Void: return Type::getVoidTy(Context); 1360 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1361 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1362 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1363 case IITDescriptor::Token: return Type::getTokenTy(Context); 1364 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1365 case IITDescriptor::Half: return Type::getHalfTy(Context); 1366 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1367 case IITDescriptor::Float: return Type::getFloatTy(Context); 1368 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1369 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1370 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1371 case IITDescriptor::AArch64Svcount: 1372 return TargetExtType::get(Context, "aarch64.svcount"); 1373 1374 case IITDescriptor::Integer: 1375 return IntegerType::get(Context, D.Integer_Width); 1376 case IITDescriptor::Vector: 1377 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1378 D.Vector_Width); 1379 case IITDescriptor::Pointer: 1380 return PointerType::get(Context, D.Pointer_AddressSpace); 1381 case IITDescriptor::Struct: { 1382 SmallVector<Type *, 8> Elts; 1383 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1384 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1385 return StructType::get(Context, Elts); 1386 } 1387 case IITDescriptor::Argument: 1388 return Tys[D.getArgumentNumber()]; 1389 case IITDescriptor::ExtendArgument: { 1390 Type *Ty = Tys[D.getArgumentNumber()]; 1391 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1392 return VectorType::getExtendedElementVectorType(VTy); 1393 1394 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1395 } 1396 case IITDescriptor::TruncArgument: { 1397 Type *Ty = Tys[D.getArgumentNumber()]; 1398 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1399 return VectorType::getTruncatedElementVectorType(VTy); 1400 1401 IntegerType *ITy = cast<IntegerType>(Ty); 1402 assert(ITy->getBitWidth() % 2 == 0); 1403 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1404 } 1405 case IITDescriptor::Subdivide2Argument: 1406 case IITDescriptor::Subdivide4Argument: { 1407 Type *Ty = Tys[D.getArgumentNumber()]; 1408 VectorType *VTy = dyn_cast<VectorType>(Ty); 1409 assert(VTy && "Expected an argument of Vector Type"); 1410 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1411 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1412 } 1413 case IITDescriptor::HalfVecArgument: 1414 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1415 Tys[D.getArgumentNumber()])); 1416 case IITDescriptor::SameVecWidthArgument: { 1417 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1418 Type *Ty = Tys[D.getArgumentNumber()]; 1419 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1420 return VectorType::get(EltTy, VTy->getElementCount()); 1421 return EltTy; 1422 } 1423 case IITDescriptor::VecElementArgument: { 1424 Type *Ty = Tys[D.getArgumentNumber()]; 1425 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1426 return VTy->getElementType(); 1427 llvm_unreachable("Expected an argument of Vector Type"); 1428 } 1429 case IITDescriptor::VecOfBitcastsToInt: { 1430 Type *Ty = Tys[D.getArgumentNumber()]; 1431 VectorType *VTy = dyn_cast<VectorType>(Ty); 1432 assert(VTy && "Expected an argument of Vector Type"); 1433 return VectorType::getInteger(VTy); 1434 } 1435 case IITDescriptor::VecOfAnyPtrsToElt: 1436 // Return the overloaded type (which determines the pointers address space) 1437 return Tys[D.getOverloadArgNumber()]; 1438 } 1439 llvm_unreachable("unhandled"); 1440 } 1441 1442 FunctionType *Intrinsic::getType(LLVMContext &Context, 1443 ID id, ArrayRef<Type*> Tys) { 1444 SmallVector<IITDescriptor, 8> Table; 1445 getIntrinsicInfoTableEntries(id, Table); 1446 1447 ArrayRef<IITDescriptor> TableRef = Table; 1448 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1449 1450 SmallVector<Type*, 8> ArgTys; 1451 while (!TableRef.empty()) 1452 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1453 1454 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1455 // If we see void type as the type of the last argument, it is vararg intrinsic 1456 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1457 ArgTys.pop_back(); 1458 return FunctionType::get(ResultTy, ArgTys, true); 1459 } 1460 return FunctionType::get(ResultTy, ArgTys, false); 1461 } 1462 1463 bool Intrinsic::isOverloaded(ID id) { 1464 #define GET_INTRINSIC_OVERLOAD_TABLE 1465 #include "llvm/IR/IntrinsicImpl.inc" 1466 #undef GET_INTRINSIC_OVERLOAD_TABLE 1467 } 1468 1469 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1470 #define GET_INTRINSIC_ATTRIBUTES 1471 #include "llvm/IR/IntrinsicImpl.inc" 1472 #undef GET_INTRINSIC_ATTRIBUTES 1473 1474 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1475 // There can never be multiple globals with the same name of different types, 1476 // because intrinsics must be a specific type. 1477 auto *FT = getType(M->getContext(), id, Tys); 1478 return cast<Function>( 1479 M->getOrInsertFunction( 1480 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1481 .getCallee()); 1482 } 1483 1484 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1485 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1486 #include "llvm/IR/IntrinsicImpl.inc" 1487 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1488 1489 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1490 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1491 #include "llvm/IR/IntrinsicImpl.inc" 1492 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1493 1494 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) { 1495 switch (QID) { 1496 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1497 case Intrinsic::INTRINSIC: 1498 #include "llvm/IR/ConstrainedOps.def" 1499 #undef INSTRUCTION 1500 return true; 1501 default: 1502 return false; 1503 } 1504 } 1505 1506 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) { 1507 switch (QID) { 1508 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1509 case Intrinsic::INTRINSIC: \ 1510 return ROUND_MODE == 1; 1511 #include "llvm/IR/ConstrainedOps.def" 1512 #undef INSTRUCTION 1513 default: 1514 return false; 1515 } 1516 } 1517 1518 using DeferredIntrinsicMatchPair = 1519 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1520 1521 static bool matchIntrinsicType( 1522 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1523 SmallVectorImpl<Type *> &ArgTys, 1524 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1525 bool IsDeferredCheck) { 1526 using namespace Intrinsic; 1527 1528 // If we ran out of descriptors, there are too many arguments. 1529 if (Infos.empty()) return true; 1530 1531 // Do this before slicing off the 'front' part 1532 auto InfosRef = Infos; 1533 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1534 DeferredChecks.emplace_back(T, InfosRef); 1535 return false; 1536 }; 1537 1538 IITDescriptor D = Infos.front(); 1539 Infos = Infos.slice(1); 1540 1541 switch (D.Kind) { 1542 case IITDescriptor::Void: return !Ty->isVoidTy(); 1543 case IITDescriptor::VarArg: return true; 1544 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1545 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1546 case IITDescriptor::Token: return !Ty->isTokenTy(); 1547 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1548 case IITDescriptor::Half: return !Ty->isHalfTy(); 1549 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1550 case IITDescriptor::Float: return !Ty->isFloatTy(); 1551 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1552 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1553 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1554 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1555 case IITDescriptor::AArch64Svcount: 1556 return !isa<TargetExtType>(Ty) || 1557 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1558 case IITDescriptor::Vector: { 1559 VectorType *VT = dyn_cast<VectorType>(Ty); 1560 return !VT || VT->getElementCount() != D.Vector_Width || 1561 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1562 DeferredChecks, IsDeferredCheck); 1563 } 1564 case IITDescriptor::Pointer: { 1565 PointerType *PT = dyn_cast<PointerType>(Ty); 1566 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1567 } 1568 1569 case IITDescriptor::Struct: { 1570 StructType *ST = dyn_cast<StructType>(Ty); 1571 if (!ST || !ST->isLiteral() || ST->isPacked() || 1572 ST->getNumElements() != D.Struct_NumElements) 1573 return true; 1574 1575 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1576 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1577 DeferredChecks, IsDeferredCheck)) 1578 return true; 1579 return false; 1580 } 1581 1582 case IITDescriptor::Argument: 1583 // If this is the second occurrence of an argument, 1584 // verify that the later instance matches the previous instance. 1585 if (D.getArgumentNumber() < ArgTys.size()) 1586 return Ty != ArgTys[D.getArgumentNumber()]; 1587 1588 if (D.getArgumentNumber() > ArgTys.size() || 1589 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1590 return IsDeferredCheck || DeferCheck(Ty); 1591 1592 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1593 "Table consistency error"); 1594 ArgTys.push_back(Ty); 1595 1596 switch (D.getArgumentKind()) { 1597 case IITDescriptor::AK_Any: return false; // Success 1598 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1599 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1600 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1601 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1602 default: break; 1603 } 1604 llvm_unreachable("all argument kinds not covered"); 1605 1606 case IITDescriptor::ExtendArgument: { 1607 // If this is a forward reference, defer the check for later. 1608 if (D.getArgumentNumber() >= ArgTys.size()) 1609 return IsDeferredCheck || DeferCheck(Ty); 1610 1611 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1612 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1613 NewTy = VectorType::getExtendedElementVectorType(VTy); 1614 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1615 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1616 else 1617 return true; 1618 1619 return Ty != NewTy; 1620 } 1621 case IITDescriptor::TruncArgument: { 1622 // If this is a forward reference, defer the check for later. 1623 if (D.getArgumentNumber() >= ArgTys.size()) 1624 return IsDeferredCheck || DeferCheck(Ty); 1625 1626 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1627 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1628 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1629 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1630 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1631 else 1632 return true; 1633 1634 return Ty != NewTy; 1635 } 1636 case IITDescriptor::HalfVecArgument: 1637 // If this is a forward reference, defer the check for later. 1638 if (D.getArgumentNumber() >= ArgTys.size()) 1639 return IsDeferredCheck || DeferCheck(Ty); 1640 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1641 VectorType::getHalfElementsVectorType( 1642 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1643 case IITDescriptor::SameVecWidthArgument: { 1644 if (D.getArgumentNumber() >= ArgTys.size()) { 1645 // Defer check and subsequent check for the vector element type. 1646 Infos = Infos.slice(1); 1647 return IsDeferredCheck || DeferCheck(Ty); 1648 } 1649 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1650 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1651 // Both must be vectors of the same number of elements or neither. 1652 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1653 return true; 1654 Type *EltTy = Ty; 1655 if (ThisArgType) { 1656 if (ReferenceType->getElementCount() != 1657 ThisArgType->getElementCount()) 1658 return true; 1659 EltTy = ThisArgType->getElementType(); 1660 } 1661 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1662 IsDeferredCheck); 1663 } 1664 case IITDescriptor::VecOfAnyPtrsToElt: { 1665 unsigned RefArgNumber = D.getRefArgNumber(); 1666 if (RefArgNumber >= ArgTys.size()) { 1667 if (IsDeferredCheck) 1668 return true; 1669 // If forward referencing, already add the pointer-vector type and 1670 // defer the checks for later. 1671 ArgTys.push_back(Ty); 1672 return DeferCheck(Ty); 1673 } 1674 1675 if (!IsDeferredCheck){ 1676 assert(D.getOverloadArgNumber() == ArgTys.size() && 1677 "Table consistency error"); 1678 ArgTys.push_back(Ty); 1679 } 1680 1681 // Verify the overloaded type "matches" the Ref type. 1682 // i.e. Ty is a vector with the same width as Ref. 1683 // Composed of pointers to the same element type as Ref. 1684 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1685 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1686 if (!ThisArgVecTy || !ReferenceType || 1687 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1688 return true; 1689 return !ThisArgVecTy->getElementType()->isPointerTy(); 1690 } 1691 case IITDescriptor::VecElementArgument: { 1692 if (D.getArgumentNumber() >= ArgTys.size()) 1693 return IsDeferredCheck ? true : DeferCheck(Ty); 1694 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1695 return !ReferenceType || Ty != ReferenceType->getElementType(); 1696 } 1697 case IITDescriptor::Subdivide2Argument: 1698 case IITDescriptor::Subdivide4Argument: { 1699 // If this is a forward reference, defer the check for later. 1700 if (D.getArgumentNumber() >= ArgTys.size()) 1701 return IsDeferredCheck || DeferCheck(Ty); 1702 1703 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1704 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1705 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1706 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1707 return Ty != NewTy; 1708 } 1709 return true; 1710 } 1711 case IITDescriptor::VecOfBitcastsToInt: { 1712 if (D.getArgumentNumber() >= ArgTys.size()) 1713 return IsDeferredCheck || DeferCheck(Ty); 1714 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1715 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1716 if (!ThisArgVecTy || !ReferenceType) 1717 return true; 1718 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1719 } 1720 } 1721 llvm_unreachable("unhandled"); 1722 } 1723 1724 Intrinsic::MatchIntrinsicTypesResult 1725 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1726 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1727 SmallVectorImpl<Type *> &ArgTys) { 1728 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1729 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1730 false)) 1731 return MatchIntrinsicTypes_NoMatchRet; 1732 1733 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1734 1735 for (auto *Ty : FTy->params()) 1736 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1737 return MatchIntrinsicTypes_NoMatchArg; 1738 1739 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1740 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1741 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1742 true)) 1743 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1744 : MatchIntrinsicTypes_NoMatchArg; 1745 } 1746 1747 return MatchIntrinsicTypes_Match; 1748 } 1749 1750 bool 1751 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1752 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1753 // If there are no descriptors left, then it can't be a vararg. 1754 if (Infos.empty()) 1755 return isVarArg; 1756 1757 // There should be only one descriptor remaining at this point. 1758 if (Infos.size() != 1) 1759 return true; 1760 1761 // Check and verify the descriptor. 1762 IITDescriptor D = Infos.front(); 1763 Infos = Infos.slice(1); 1764 if (D.Kind == IITDescriptor::VarArg) 1765 return !isVarArg; 1766 1767 return true; 1768 } 1769 1770 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT, 1771 SmallVectorImpl<Type *> &ArgTys) { 1772 if (!ID) 1773 return false; 1774 1775 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1776 getIntrinsicInfoTableEntries(ID, Table); 1777 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1778 1779 if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) != 1780 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1781 return false; 1782 } 1783 if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef)) 1784 return false; 1785 return true; 1786 } 1787 1788 bool Intrinsic::getIntrinsicSignature(Function *F, 1789 SmallVectorImpl<Type *> &ArgTys) { 1790 return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(), 1791 ArgTys); 1792 } 1793 1794 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1795 SmallVector<Type *, 4> ArgTys; 1796 if (!getIntrinsicSignature(F, ArgTys)) 1797 return std::nullopt; 1798 1799 Intrinsic::ID ID = F->getIntrinsicID(); 1800 StringRef Name = F->getName(); 1801 std::string WantedName = 1802 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1803 if (Name == WantedName) 1804 return std::nullopt; 1805 1806 Function *NewDecl = [&] { 1807 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1808 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1809 if (ExistingF->getFunctionType() == F->getFunctionType()) 1810 return ExistingF; 1811 1812 // The name already exists, but is not a function or has the wrong 1813 // prototype. Make place for the new one by renaming the old version. 1814 // Either this old version will be removed later on or the module is 1815 // invalid and we'll get an error. 1816 ExistingGV->setName(WantedName + ".renamed"); 1817 } 1818 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1819 }(); 1820 1821 NewDecl->setCallingConv(F->getCallingConv()); 1822 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1823 "Shouldn't change the signature"); 1824 return NewDecl; 1825 } 1826 1827 /// hasAddressTaken - returns true if there are any uses of this function 1828 /// other than direct calls or invokes to it. Optionally ignores callback 1829 /// uses, assume like pointer annotation calls, and references in llvm.used 1830 /// and llvm.compiler.used variables. 1831 bool Function::hasAddressTaken(const User **PutOffender, 1832 bool IgnoreCallbackUses, 1833 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1834 bool IgnoreARCAttachedCall, 1835 bool IgnoreCastedDirectCall) const { 1836 for (const Use &U : uses()) { 1837 const User *FU = U.getUser(); 1838 if (isa<BlockAddress>(FU)) 1839 continue; 1840 1841 if (IgnoreCallbackUses) { 1842 AbstractCallSite ACS(&U); 1843 if (ACS && ACS.isCallbackCall()) 1844 continue; 1845 } 1846 1847 const auto *Call = dyn_cast<CallBase>(FU); 1848 if (!Call) { 1849 if (IgnoreAssumeLikeCalls && 1850 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1851 all_of(FU->users(), [](const User *U) { 1852 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1853 return I->isAssumeLikeIntrinsic(); 1854 return false; 1855 })) { 1856 continue; 1857 } 1858 1859 if (IgnoreLLVMUsed && !FU->user_empty()) { 1860 const User *FUU = FU; 1861 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1862 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1863 FUU = *FU->user_begin(); 1864 if (llvm::all_of(FUU->users(), [](const User *U) { 1865 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1866 return GV->hasName() && 1867 (GV->getName() == "llvm.compiler.used" || 1868 GV->getName() == "llvm.used"); 1869 return false; 1870 })) 1871 continue; 1872 } 1873 if (PutOffender) 1874 *PutOffender = FU; 1875 return true; 1876 } 1877 1878 if (IgnoreAssumeLikeCalls) { 1879 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1880 if (I->isAssumeLikeIntrinsic()) 1881 continue; 1882 } 1883 1884 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1885 Call->getFunctionType() != getFunctionType())) { 1886 if (IgnoreARCAttachedCall && 1887 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1888 U.getOperandNo())) 1889 continue; 1890 1891 if (PutOffender) 1892 *PutOffender = FU; 1893 return true; 1894 } 1895 } 1896 return false; 1897 } 1898 1899 bool Function::isDefTriviallyDead() const { 1900 // Check the linkage 1901 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1902 !hasAvailableExternallyLinkage()) 1903 return false; 1904 1905 // Check if the function is used by anything other than a blockaddress. 1906 for (const User *U : users()) 1907 if (!isa<BlockAddress>(U)) 1908 return false; 1909 1910 return true; 1911 } 1912 1913 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1914 /// setjmp or other function that gcc recognizes as "returning twice". 1915 bool Function::callsFunctionThatReturnsTwice() const { 1916 for (const Instruction &I : instructions(this)) 1917 if (const auto *Call = dyn_cast<CallBase>(&I)) 1918 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1919 return true; 1920 1921 return false; 1922 } 1923 1924 Constant *Function::getPersonalityFn() const { 1925 assert(hasPersonalityFn() && getNumOperands()); 1926 return cast<Constant>(Op<0>()); 1927 } 1928 1929 void Function::setPersonalityFn(Constant *Fn) { 1930 setHungoffOperand<0>(Fn); 1931 setValueSubclassDataBit(3, Fn != nullptr); 1932 } 1933 1934 Constant *Function::getPrefixData() const { 1935 assert(hasPrefixData() && getNumOperands()); 1936 return cast<Constant>(Op<1>()); 1937 } 1938 1939 void Function::setPrefixData(Constant *PrefixData) { 1940 setHungoffOperand<1>(PrefixData); 1941 setValueSubclassDataBit(1, PrefixData != nullptr); 1942 } 1943 1944 Constant *Function::getPrologueData() const { 1945 assert(hasPrologueData() && getNumOperands()); 1946 return cast<Constant>(Op<2>()); 1947 } 1948 1949 void Function::setPrologueData(Constant *PrologueData) { 1950 setHungoffOperand<2>(PrologueData); 1951 setValueSubclassDataBit(2, PrologueData != nullptr); 1952 } 1953 1954 void Function::allocHungoffUselist() { 1955 // If we've already allocated a uselist, stop here. 1956 if (getNumOperands()) 1957 return; 1958 1959 allocHungoffUses(3, /*IsPhi=*/ false); 1960 setNumHungOffUseOperands(3); 1961 1962 // Initialize the uselist with placeholder operands to allow traversal. 1963 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1964 Op<0>().set(CPN); 1965 Op<1>().set(CPN); 1966 Op<2>().set(CPN); 1967 } 1968 1969 template <int Idx> 1970 void Function::setHungoffOperand(Constant *C) { 1971 if (C) { 1972 allocHungoffUselist(); 1973 Op<Idx>().set(C); 1974 } else if (getNumOperands()) { 1975 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1976 } 1977 } 1978 1979 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1980 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1981 if (On) 1982 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1983 else 1984 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1985 } 1986 1987 void Function::setEntryCount(ProfileCount Count, 1988 const DenseSet<GlobalValue::GUID> *S) { 1989 #if !defined(NDEBUG) 1990 auto PrevCount = getEntryCount(); 1991 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1992 #endif 1993 1994 auto ImportGUIDs = getImportGUIDs(); 1995 if (S == nullptr && ImportGUIDs.size()) 1996 S = &ImportGUIDs; 1997 1998 MDBuilder MDB(getContext()); 1999 setMetadata( 2000 LLVMContext::MD_prof, 2001 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2002 } 2003 2004 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2005 const DenseSet<GlobalValue::GUID> *Imports) { 2006 setEntryCount(ProfileCount(Count, Type), Imports); 2007 } 2008 2009 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2010 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2011 if (MD && MD->getOperand(0)) 2012 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2013 if (MDS->getString() == "function_entry_count") { 2014 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2015 uint64_t Count = CI->getValue().getZExtValue(); 2016 // A value of -1 is used for SamplePGO when there were no samples. 2017 // Treat this the same as unknown. 2018 if (Count == (uint64_t)-1) 2019 return std::nullopt; 2020 return ProfileCount(Count, PCT_Real); 2021 } else if (AllowSynthetic && 2022 MDS->getString() == "synthetic_function_entry_count") { 2023 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2024 uint64_t Count = CI->getValue().getZExtValue(); 2025 return ProfileCount(Count, PCT_Synthetic); 2026 } 2027 } 2028 return std::nullopt; 2029 } 2030 2031 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2032 DenseSet<GlobalValue::GUID> R; 2033 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2034 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2035 if (MDS->getString() == "function_entry_count") 2036 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2037 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2038 ->getValue() 2039 .getZExtValue()); 2040 return R; 2041 } 2042 2043 void Function::setSectionPrefix(StringRef Prefix) { 2044 MDBuilder MDB(getContext()); 2045 setMetadata(LLVMContext::MD_section_prefix, 2046 MDB.createFunctionSectionPrefix(Prefix)); 2047 } 2048 2049 std::optional<StringRef> Function::getSectionPrefix() const { 2050 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2051 assert(cast<MDString>(MD->getOperand(0))->getString() == 2052 "function_section_prefix" && 2053 "Metadata not match"); 2054 return cast<MDString>(MD->getOperand(1))->getString(); 2055 } 2056 return std::nullopt; 2057 } 2058 2059 bool Function::nullPointerIsDefined() const { 2060 return hasFnAttribute(Attribute::NullPointerIsValid); 2061 } 2062 2063 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2064 if (F && F->nullPointerIsDefined()) 2065 return true; 2066 2067 if (AS != 0) 2068 return true; 2069 2070 return false; 2071 } 2072