xref: /llvm-project/llvm/lib/IR/Function.cpp (revision c5aeca732d1ff6769b0659efebd1cfb5f60487e4)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<int> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 extern cl::opt<bool> UseNewDbgInfoFormat;
87 
88 void Function::convertToNewDbgValues() {
89   IsNewDbgInfoFormat = true;
90   for (auto &BB : *this) {
91     BB.convertToNewDbgValues();
92   }
93 }
94 
95 void Function::convertFromNewDbgValues() {
96   IsNewDbgInfoFormat = false;
97   for (auto &BB : *this) {
98     BB.convertFromNewDbgValues();
99   }
100 }
101 
102 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
103   if (NewFlag && !IsNewDbgInfoFormat)
104     convertToNewDbgValues();
105   else if (!NewFlag && IsNewDbgInfoFormat)
106     convertFromNewDbgValues();
107 }
108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
109   for (auto &BB : *this) {
110     BB.setNewDbgInfoFormatFlag(NewFlag);
111   }
112   IsNewDbgInfoFormat = NewFlag;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Argument Implementation
117 //===----------------------------------------------------------------------===//
118 
119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
120     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
121   setName(Name);
122 }
123 
124 void Argument::setParent(Function *parent) {
125   Parent = parent;
126 }
127 
128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
129   if (!getType()->isPointerTy()) return false;
130   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
131       (AllowUndefOrPoison ||
132        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
133     return true;
134   else if (getDereferenceableBytes() > 0 &&
135            !NullPointerIsDefined(getParent(),
136                                  getType()->getPointerAddressSpace()))
137     return true;
138   return false;
139 }
140 
141 bool Argument::hasByValAttr() const {
142   if (!getType()->isPointerTy()) return false;
143   return hasAttribute(Attribute::ByVal);
144 }
145 
146 bool Argument::hasByRefAttr() const {
147   if (!getType()->isPointerTy())
148     return false;
149   return hasAttribute(Attribute::ByRef);
150 }
151 
152 bool Argument::hasSwiftSelfAttr() const {
153   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
154 }
155 
156 bool Argument::hasSwiftErrorAttr() const {
157   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
158 }
159 
160 bool Argument::hasInAllocaAttr() const {
161   if (!getType()->isPointerTy()) return false;
162   return hasAttribute(Attribute::InAlloca);
163 }
164 
165 bool Argument::hasPreallocatedAttr() const {
166   if (!getType()->isPointerTy())
167     return false;
168   return hasAttribute(Attribute::Preallocated);
169 }
170 
171 bool Argument::hasPassPointeeByValueCopyAttr() const {
172   if (!getType()->isPointerTy()) return false;
173   AttributeList Attrs = getParent()->getAttributes();
174   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
175          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
176          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
177 }
178 
179 bool Argument::hasPointeeInMemoryValueAttr() const {
180   if (!getType()->isPointerTy())
181     return false;
182   AttributeList Attrs = getParent()->getAttributes();
183   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
186          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
187          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
188 }
189 
190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
191 /// parameter type.
192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
193   // FIXME: All the type carrying attributes are mutually exclusive, so there
194   // should be a single query to get the stored type that handles any of them.
195   if (Type *ByValTy = ParamAttrs.getByValType())
196     return ByValTy;
197   if (Type *ByRefTy = ParamAttrs.getByRefType())
198     return ByRefTy;
199   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
200     return PreAllocTy;
201   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
202     return InAllocaTy;
203   if (Type *SRetTy = ParamAttrs.getStructRetType())
204     return SRetTy;
205 
206   return nullptr;
207 }
208 
209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
210   AttributeSet ParamAttrs =
211       getParent()->getAttributes().getParamAttrs(getArgNo());
212   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
213     return DL.getTypeAllocSize(MemTy);
214   return 0;
215 }
216 
217 Type *Argument::getPointeeInMemoryValueType() const {
218   AttributeSet ParamAttrs =
219       getParent()->getAttributes().getParamAttrs(getArgNo());
220   return getMemoryParamAllocType(ParamAttrs);
221 }
222 
223 MaybeAlign Argument::getParamAlign() const {
224   assert(getType()->isPointerTy() && "Only pointers have alignments");
225   return getParent()->getParamAlign(getArgNo());
226 }
227 
228 MaybeAlign Argument::getParamStackAlign() const {
229   return getParent()->getParamStackAlign(getArgNo());
230 }
231 
232 Type *Argument::getParamByValType() const {
233   assert(getType()->isPointerTy() && "Only pointers have byval types");
234   return getParent()->getParamByValType(getArgNo());
235 }
236 
237 Type *Argument::getParamStructRetType() const {
238   assert(getType()->isPointerTy() && "Only pointers have sret types");
239   return getParent()->getParamStructRetType(getArgNo());
240 }
241 
242 Type *Argument::getParamByRefType() const {
243   assert(getType()->isPointerTy() && "Only pointers have byref types");
244   return getParent()->getParamByRefType(getArgNo());
245 }
246 
247 Type *Argument::getParamInAllocaType() const {
248   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
249   return getParent()->getParamInAllocaType(getArgNo());
250 }
251 
252 uint64_t Argument::getDereferenceableBytes() const {
253   assert(getType()->isPointerTy() &&
254          "Only pointers have dereferenceable bytes");
255   return getParent()->getParamDereferenceableBytes(getArgNo());
256 }
257 
258 uint64_t Argument::getDereferenceableOrNullBytes() const {
259   assert(getType()->isPointerTy() &&
260          "Only pointers have dereferenceable bytes");
261   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
262 }
263 
264 FPClassTest Argument::getNoFPClass() const {
265   return getParent()->getParamNoFPClass(getArgNo());
266 }
267 
268 std::optional<ConstantRange> Argument::getRange() const {
269   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
270   if (RangeAttr.isValid())
271     return RangeAttr.getRange();
272   return std::nullopt;
273 }
274 
275 bool Argument::hasNestAttr() const {
276   if (!getType()->isPointerTy()) return false;
277   return hasAttribute(Attribute::Nest);
278 }
279 
280 bool Argument::hasNoAliasAttr() const {
281   if (!getType()->isPointerTy()) return false;
282   return hasAttribute(Attribute::NoAlias);
283 }
284 
285 bool Argument::hasNoCaptureAttr() const {
286   if (!getType()->isPointerTy()) return false;
287   return hasAttribute(Attribute::NoCapture);
288 }
289 
290 bool Argument::hasNoFreeAttr() const {
291   if (!getType()->isPointerTy()) return false;
292   return hasAttribute(Attribute::NoFree);
293 }
294 
295 bool Argument::hasStructRetAttr() const {
296   if (!getType()->isPointerTy()) return false;
297   return hasAttribute(Attribute::StructRet);
298 }
299 
300 bool Argument::hasInRegAttr() const {
301   return hasAttribute(Attribute::InReg);
302 }
303 
304 bool Argument::hasReturnedAttr() const {
305   return hasAttribute(Attribute::Returned);
306 }
307 
308 bool Argument::hasZExtAttr() const {
309   return hasAttribute(Attribute::ZExt);
310 }
311 
312 bool Argument::hasSExtAttr() const {
313   return hasAttribute(Attribute::SExt);
314 }
315 
316 bool Argument::onlyReadsMemory() const {
317   AttributeList Attrs = getParent()->getAttributes();
318   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
319          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
320 }
321 
322 void Argument::addAttrs(AttrBuilder &B) {
323   AttributeList AL = getParent()->getAttributes();
324   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
325   getParent()->setAttributes(AL);
326 }
327 
328 void Argument::addAttr(Attribute::AttrKind Kind) {
329   getParent()->addParamAttr(getArgNo(), Kind);
330 }
331 
332 void Argument::addAttr(Attribute Attr) {
333   getParent()->addParamAttr(getArgNo(), Attr);
334 }
335 
336 void Argument::removeAttr(Attribute::AttrKind Kind) {
337   getParent()->removeParamAttr(getArgNo(), Kind);
338 }
339 
340 void Argument::removeAttrs(const AttributeMask &AM) {
341   AttributeList AL = getParent()->getAttributes();
342   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
343   getParent()->setAttributes(AL);
344 }
345 
346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
347   return getParent()->hasParamAttribute(getArgNo(), Kind);
348 }
349 
350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
351   return getParent()->getParamAttribute(getArgNo(), Kind);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Helper Methods in Function
356 //===----------------------------------------------------------------------===//
357 
358 LLVMContext &Function::getContext() const {
359   return getType()->getContext();
360 }
361 
362 unsigned Function::getInstructionCount() const {
363   unsigned NumInstrs = 0;
364   for (const BasicBlock &BB : BasicBlocks)
365     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
366                                BB.instructionsWithoutDebug().end());
367   return NumInstrs;
368 }
369 
370 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
371                            const Twine &N, Module &M) {
372   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
373 }
374 
375 Function *Function::createWithDefaultAttr(FunctionType *Ty,
376                                           LinkageTypes Linkage,
377                                           unsigned AddrSpace, const Twine &N,
378                                           Module *M) {
379   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
380   AttrBuilder B(F->getContext());
381   UWTableKind UWTable = M->getUwtable();
382   if (UWTable != UWTableKind::None)
383     B.addUWTableAttr(UWTable);
384   switch (M->getFramePointer()) {
385   case FramePointerKind::None:
386     // 0 ("none") is the default.
387     break;
388   case FramePointerKind::Reserved:
389     B.addAttribute("frame-pointer", "reserved");
390     break;
391   case FramePointerKind::NonLeaf:
392     B.addAttribute("frame-pointer", "non-leaf");
393     break;
394   case FramePointerKind::All:
395     B.addAttribute("frame-pointer", "all");
396     break;
397   }
398   if (M->getModuleFlag("function_return_thunk_extern"))
399     B.addAttribute(Attribute::FnRetThunkExtern);
400   F->addFnAttrs(B);
401   return F;
402 }
403 
404 void Function::removeFromParent() {
405   getParent()->getFunctionList().remove(getIterator());
406 }
407 
408 void Function::eraseFromParent() {
409   getParent()->getFunctionList().erase(getIterator());
410 }
411 
412 void Function::splice(Function::iterator ToIt, Function *FromF,
413                       Function::iterator FromBeginIt,
414                       Function::iterator FromEndIt) {
415 #ifdef EXPENSIVE_CHECKS
416   // Check that FromBeginIt is before FromEndIt.
417   auto FromFEnd = FromF->end();
418   for (auto It = FromBeginIt; It != FromEndIt; ++It)
419     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
420 #endif // EXPENSIVE_CHECKS
421   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
422 }
423 
424 Function::iterator Function::erase(Function::iterator FromIt,
425                                    Function::iterator ToIt) {
426   return BasicBlocks.erase(FromIt, ToIt);
427 }
428 
429 //===----------------------------------------------------------------------===//
430 // Function Implementation
431 //===----------------------------------------------------------------------===//
432 
433 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
434   // If AS == -1 and we are passed a valid module pointer we place the function
435   // in the program address space. Otherwise we default to AS0.
436   if (AddrSpace == static_cast<unsigned>(-1))
437     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
438   return AddrSpace;
439 }
440 
441 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
442                    const Twine &name, Module *ParentModule)
443     : GlobalObject(Ty, Value::FunctionVal,
444                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
445                    computeAddrSpace(AddrSpace, ParentModule)),
446       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) {
447   assert(FunctionType::isValidReturnType(getReturnType()) &&
448          "invalid return type");
449   setGlobalObjectSubClassData(0);
450 
451   // We only need a symbol table for a function if the context keeps value names
452   if (!getContext().shouldDiscardValueNames())
453     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
454 
455   // If the function has arguments, mark them as lazily built.
456   if (Ty->getNumParams())
457     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
458 
459   if (ParentModule) {
460     ParentModule->getFunctionList().push_back(this);
461     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
462   }
463 
464   HasLLVMReservedName = getName().starts_with("llvm.");
465   // Ensure intrinsics have the right parameter attributes.
466   // Note, the IntID field will have been set in Value::setName if this function
467   // name is a valid intrinsic ID.
468   if (IntID)
469     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
470 }
471 
472 Function::~Function() {
473   dropAllReferences();    // After this it is safe to delete instructions.
474 
475   // Delete all of the method arguments and unlink from symbol table...
476   if (Arguments)
477     clearArguments();
478 
479   // Remove the function from the on-the-side GC table.
480   clearGC();
481 }
482 
483 void Function::BuildLazyArguments() const {
484   // Create the arguments vector, all arguments start out unnamed.
485   auto *FT = getFunctionType();
486   if (NumArgs > 0) {
487     Arguments = std::allocator<Argument>().allocate(NumArgs);
488     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
489       Type *ArgTy = FT->getParamType(i);
490       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
491       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
492     }
493   }
494 
495   // Clear the lazy arguments bit.
496   unsigned SDC = getSubclassDataFromValue();
497   SDC &= ~(1 << 0);
498   const_cast<Function*>(this)->setValueSubclassData(SDC);
499   assert(!hasLazyArguments());
500 }
501 
502 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
503   return MutableArrayRef<Argument>(Args, Count);
504 }
505 
506 bool Function::isConstrainedFPIntrinsic() const {
507   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
508 }
509 
510 void Function::clearArguments() {
511   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
512     A.setName("");
513     A.~Argument();
514   }
515   std::allocator<Argument>().deallocate(Arguments, NumArgs);
516   Arguments = nullptr;
517 }
518 
519 void Function::stealArgumentListFrom(Function &Src) {
520   assert(isDeclaration() && "Expected no references to current arguments");
521 
522   // Drop the current arguments, if any, and set the lazy argument bit.
523   if (!hasLazyArguments()) {
524     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
525                         [](const Argument &A) { return A.use_empty(); }) &&
526            "Expected arguments to be unused in declaration");
527     clearArguments();
528     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
529   }
530 
531   // Nothing to steal if Src has lazy arguments.
532   if (Src.hasLazyArguments())
533     return;
534 
535   // Steal arguments from Src, and fix the lazy argument bits.
536   assert(arg_size() == Src.arg_size());
537   Arguments = Src.Arguments;
538   Src.Arguments = nullptr;
539   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
540     // FIXME: This does the work of transferNodesFromList inefficiently.
541     SmallString<128> Name;
542     if (A.hasName())
543       Name = A.getName();
544     if (!Name.empty())
545       A.setName("");
546     A.setParent(this);
547     if (!Name.empty())
548       A.setName(Name);
549   }
550 
551   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
552   assert(!hasLazyArguments());
553   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
554 }
555 
556 void Function::deleteBodyImpl(bool ShouldDrop) {
557   setIsMaterializable(false);
558 
559   for (BasicBlock &BB : *this)
560     BB.dropAllReferences();
561 
562   // Delete all basic blocks. They are now unused, except possibly by
563   // blockaddresses, but BasicBlock's destructor takes care of those.
564   while (!BasicBlocks.empty())
565     BasicBlocks.begin()->eraseFromParent();
566 
567   if (getNumOperands()) {
568     if (ShouldDrop) {
569       // Drop uses of any optional data (real or placeholder).
570       User::dropAllReferences();
571       setNumHungOffUseOperands(0);
572     } else {
573       // The code needs to match Function::allocHungoffUselist().
574       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
575       Op<0>().set(CPN);
576       Op<1>().set(CPN);
577       Op<2>().set(CPN);
578     }
579     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
580   }
581 
582   // Metadata is stored in a side-table.
583   clearMetadata();
584 }
585 
586 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
587   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
588 }
589 
590 void Function::addFnAttr(Attribute::AttrKind Kind) {
591   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
592 }
593 
594 void Function::addFnAttr(StringRef Kind, StringRef Val) {
595   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
596 }
597 
598 void Function::addFnAttr(Attribute Attr) {
599   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
600 }
601 
602 void Function::addFnAttrs(const AttrBuilder &Attrs) {
603   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
604 }
605 
606 void Function::addRetAttr(Attribute::AttrKind Kind) {
607   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
608 }
609 
610 void Function::addRetAttr(Attribute Attr) {
611   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
612 }
613 
614 void Function::addRetAttrs(const AttrBuilder &Attrs) {
615   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
616 }
617 
618 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
619   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
620 }
621 
622 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
623   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
624 }
625 
626 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
627   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
628 }
629 
630 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
631   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
632 }
633 
634 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
635   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
636 }
637 
638 void Function::removeFnAttr(Attribute::AttrKind Kind) {
639   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
640 }
641 
642 void Function::removeFnAttr(StringRef Kind) {
643   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
644 }
645 
646 void Function::removeFnAttrs(const AttributeMask &AM) {
647   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
648 }
649 
650 void Function::removeRetAttr(Attribute::AttrKind Kind) {
651   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
652 }
653 
654 void Function::removeRetAttr(StringRef Kind) {
655   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
656 }
657 
658 void Function::removeRetAttrs(const AttributeMask &Attrs) {
659   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
660 }
661 
662 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
663   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
664 }
665 
666 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
667   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
668 }
669 
670 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
671   AttributeSets =
672       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
673 }
674 
675 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
676   AttributeSets =
677       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
678 }
679 
680 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
681   return AttributeSets.hasFnAttr(Kind);
682 }
683 
684 bool Function::hasFnAttribute(StringRef Kind) const {
685   return AttributeSets.hasFnAttr(Kind);
686 }
687 
688 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
689   return AttributeSets.hasRetAttr(Kind);
690 }
691 
692 bool Function::hasParamAttribute(unsigned ArgNo,
693                                  Attribute::AttrKind Kind) const {
694   return AttributeSets.hasParamAttr(ArgNo, Kind);
695 }
696 
697 Attribute Function::getAttributeAtIndex(unsigned i,
698                                         Attribute::AttrKind Kind) const {
699   return AttributeSets.getAttributeAtIndex(i, Kind);
700 }
701 
702 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
703   return AttributeSets.getAttributeAtIndex(i, Kind);
704 }
705 
706 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
707   return AttributeSets.getFnAttr(Kind);
708 }
709 
710 Attribute Function::getFnAttribute(StringRef Kind) const {
711   return AttributeSets.getFnAttr(Kind);
712 }
713 
714 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
715   return AttributeSets.getRetAttr(Kind);
716 }
717 
718 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
719                                                  uint64_t Default) const {
720   Attribute A = getFnAttribute(Name);
721   uint64_t Result = Default;
722   if (A.isStringAttribute()) {
723     StringRef Str = A.getValueAsString();
724     if (Str.getAsInteger(0, Result))
725       getContext().emitError("cannot parse integer attribute " + Name);
726   }
727 
728   return Result;
729 }
730 
731 /// gets the specified attribute from the list of attributes.
732 Attribute Function::getParamAttribute(unsigned ArgNo,
733                                       Attribute::AttrKind Kind) const {
734   return AttributeSets.getParamAttr(ArgNo, Kind);
735 }
736 
737 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
738                                                  uint64_t Bytes) {
739   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
740                                                                   ArgNo, Bytes);
741 }
742 
743 void Function::addRangeRetAttr(const ConstantRange &CR) {
744   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
745 }
746 
747 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
748   if (&FPType == &APFloat::IEEEsingle()) {
749     DenormalMode Mode = getDenormalModeF32Raw();
750     // If the f32 variant of the attribute isn't specified, try to use the
751     // generic one.
752     if (Mode.isValid())
753       return Mode;
754   }
755 
756   return getDenormalModeRaw();
757 }
758 
759 DenormalMode Function::getDenormalModeRaw() const {
760   Attribute Attr = getFnAttribute("denormal-fp-math");
761   StringRef Val = Attr.getValueAsString();
762   return parseDenormalFPAttribute(Val);
763 }
764 
765 DenormalMode Function::getDenormalModeF32Raw() const {
766   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
767   if (Attr.isValid()) {
768     StringRef Val = Attr.getValueAsString();
769     return parseDenormalFPAttribute(Val);
770   }
771 
772   return DenormalMode::getInvalid();
773 }
774 
775 const std::string &Function::getGC() const {
776   assert(hasGC() && "Function has no collector");
777   return getContext().getGC(*this);
778 }
779 
780 void Function::setGC(std::string Str) {
781   setValueSubclassDataBit(14, !Str.empty());
782   getContext().setGC(*this, std::move(Str));
783 }
784 
785 void Function::clearGC() {
786   if (!hasGC())
787     return;
788   getContext().deleteGC(*this);
789   setValueSubclassDataBit(14, false);
790 }
791 
792 bool Function::hasStackProtectorFnAttr() const {
793   return hasFnAttribute(Attribute::StackProtect) ||
794          hasFnAttribute(Attribute::StackProtectStrong) ||
795          hasFnAttribute(Attribute::StackProtectReq);
796 }
797 
798 /// Copy all additional attributes (those not needed to create a Function) from
799 /// the Function Src to this one.
800 void Function::copyAttributesFrom(const Function *Src) {
801   GlobalObject::copyAttributesFrom(Src);
802   setCallingConv(Src->getCallingConv());
803   setAttributes(Src->getAttributes());
804   if (Src->hasGC())
805     setGC(Src->getGC());
806   else
807     clearGC();
808   if (Src->hasPersonalityFn())
809     setPersonalityFn(Src->getPersonalityFn());
810   if (Src->hasPrefixData())
811     setPrefixData(Src->getPrefixData());
812   if (Src->hasPrologueData())
813     setPrologueData(Src->getPrologueData());
814 }
815 
816 MemoryEffects Function::getMemoryEffects() const {
817   return getAttributes().getMemoryEffects();
818 }
819 void Function::setMemoryEffects(MemoryEffects ME) {
820   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
821 }
822 
823 /// Determine if the function does not access memory.
824 bool Function::doesNotAccessMemory() const {
825   return getMemoryEffects().doesNotAccessMemory();
826 }
827 void Function::setDoesNotAccessMemory() {
828   setMemoryEffects(MemoryEffects::none());
829 }
830 
831 /// Determine if the function does not access or only reads memory.
832 bool Function::onlyReadsMemory() const {
833   return getMemoryEffects().onlyReadsMemory();
834 }
835 void Function::setOnlyReadsMemory() {
836   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
837 }
838 
839 /// Determine if the function does not access or only writes memory.
840 bool Function::onlyWritesMemory() const {
841   return getMemoryEffects().onlyWritesMemory();
842 }
843 void Function::setOnlyWritesMemory() {
844   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
845 }
846 
847 /// Determine if the call can access memmory only using pointers based
848 /// on its arguments.
849 bool Function::onlyAccessesArgMemory() const {
850   return getMemoryEffects().onlyAccessesArgPointees();
851 }
852 void Function::setOnlyAccessesArgMemory() {
853   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
854 }
855 
856 /// Determine if the function may only access memory that is
857 ///  inaccessible from the IR.
858 bool Function::onlyAccessesInaccessibleMemory() const {
859   return getMemoryEffects().onlyAccessesInaccessibleMem();
860 }
861 void Function::setOnlyAccessesInaccessibleMemory() {
862   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
863 }
864 
865 /// Determine if the function may only access memory that is
866 ///  either inaccessible from the IR or pointed to by its arguments.
867 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
868   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
869 }
870 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
871   setMemoryEffects(getMemoryEffects() &
872                    MemoryEffects::inaccessibleOrArgMemOnly());
873 }
874 
875 /// Table of string intrinsic names indexed by enum value.
876 static const char * const IntrinsicNameTable[] = {
877   "not_intrinsic",
878 #define GET_INTRINSIC_NAME_TABLE
879 #include "llvm/IR/IntrinsicImpl.inc"
880 #undef GET_INTRINSIC_NAME_TABLE
881 };
882 
883 /// Table of per-target intrinsic name tables.
884 #define GET_INTRINSIC_TARGET_DATA
885 #include "llvm/IR/IntrinsicImpl.inc"
886 #undef GET_INTRINSIC_TARGET_DATA
887 
888 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
889   return IID > TargetInfos[0].Count;
890 }
891 
892 bool Function::isTargetIntrinsic() const {
893   return isTargetIntrinsic(IntID);
894 }
895 
896 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
897 /// target as \c Name, or the generic table if \c Name is not target specific.
898 ///
899 /// Returns the relevant slice of \c IntrinsicNameTable
900 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
901   assert(Name.starts_with("llvm."));
902 
903   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
904   // Drop "llvm." and take the first dotted component. That will be the target
905   // if this is target specific.
906   StringRef Target = Name.drop_front(5).split('.').first;
907   auto It = partition_point(
908       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
909   // We've either found the target or just fall back to the generic set, which
910   // is always first.
911   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
912   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
913 }
914 
915 /// This does the actual lookup of an intrinsic ID which
916 /// matches the given function name.
917 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
918   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
919   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
920   if (Idx == -1)
921     return Intrinsic::not_intrinsic;
922 
923   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
924   // an index into a sub-table.
925   int Adjust = NameTable.data() - IntrinsicNameTable;
926   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
927 
928   // If the intrinsic is not overloaded, require an exact match. If it is
929   // overloaded, require either exact or prefix match.
930   const auto MatchSize = strlen(NameTable[Idx]);
931   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
932   bool IsExactMatch = Name.size() == MatchSize;
933   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
934                                                      : Intrinsic::not_intrinsic;
935 }
936 
937 void Function::updateAfterNameChange() {
938   LibFuncCache = UnknownLibFunc;
939   StringRef Name = getName();
940   if (!Name.starts_with("llvm.")) {
941     HasLLVMReservedName = false;
942     IntID = Intrinsic::not_intrinsic;
943     return;
944   }
945   HasLLVMReservedName = true;
946   IntID = lookupIntrinsicID(Name);
947 }
948 
949 /// Returns a stable mangling for the type specified for use in the name
950 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
951 /// of named types is simply their name.  Manglings for unnamed types consist
952 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
953 /// combined with the mangling of their component types.  A vararg function
954 /// type will have a suffix of 'vararg'.  Since function types can contain
955 /// other function types, we close a function type mangling with suffix 'f'
956 /// which can't be confused with it's prefix.  This ensures we don't have
957 /// collisions between two unrelated function types. Otherwise, you might
958 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
959 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
960 /// indicating that extra care must be taken to ensure a unique name.
961 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
962   std::string Result;
963   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
964     Result += "p" + utostr(PTyp->getAddressSpace());
965   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
966     Result += "a" + utostr(ATyp->getNumElements()) +
967               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
968   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
969     if (!STyp->isLiteral()) {
970       Result += "s_";
971       if (STyp->hasName())
972         Result += STyp->getName();
973       else
974         HasUnnamedType = true;
975     } else {
976       Result += "sl_";
977       for (auto *Elem : STyp->elements())
978         Result += getMangledTypeStr(Elem, HasUnnamedType);
979     }
980     // Ensure nested structs are distinguishable.
981     Result += "s";
982   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
983     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
984     for (size_t i = 0; i < FT->getNumParams(); i++)
985       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
986     if (FT->isVarArg())
987       Result += "vararg";
988     // Ensure nested function types are distinguishable.
989     Result += "f";
990   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
991     ElementCount EC = VTy->getElementCount();
992     if (EC.isScalable())
993       Result += "nx";
994     Result += "v" + utostr(EC.getKnownMinValue()) +
995               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
996   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
997     Result += "t";
998     Result += TETy->getName();
999     for (Type *ParamTy : TETy->type_params())
1000       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
1001     for (unsigned IntParam : TETy->int_params())
1002       Result += "_" + utostr(IntParam);
1003     // Ensure nested target extension types are distinguishable.
1004     Result += "t";
1005   } else if (Ty) {
1006     switch (Ty->getTypeID()) {
1007     default: llvm_unreachable("Unhandled type");
1008     case Type::VoidTyID:      Result += "isVoid";   break;
1009     case Type::MetadataTyID:  Result += "Metadata"; break;
1010     case Type::HalfTyID:      Result += "f16";      break;
1011     case Type::BFloatTyID:    Result += "bf16";     break;
1012     case Type::FloatTyID:     Result += "f32";      break;
1013     case Type::DoubleTyID:    Result += "f64";      break;
1014     case Type::X86_FP80TyID:  Result += "f80";      break;
1015     case Type::FP128TyID:     Result += "f128";     break;
1016     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
1017     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
1018     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1019     case Type::IntegerTyID:
1020       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1021       break;
1022     }
1023   }
1024   return Result;
1025 }
1026 
1027 StringRef Intrinsic::getBaseName(ID id) {
1028   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1029   return IntrinsicNameTable[id];
1030 }
1031 
1032 StringRef Intrinsic::getName(ID id) {
1033   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1034   assert(!Intrinsic::isOverloaded(id) &&
1035          "This version of getName does not support overloading");
1036   return getBaseName(id);
1037 }
1038 
1039 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1040                                         Module *M, FunctionType *FT,
1041                                         bool EarlyModuleCheck) {
1042 
1043   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1044   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1045          "This version of getName is for overloaded intrinsics only");
1046   (void)EarlyModuleCheck;
1047   assert((!EarlyModuleCheck || M ||
1048           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1049          "Intrinsic overloading on pointer types need to provide a Module");
1050   bool HasUnnamedType = false;
1051   std::string Result(Intrinsic::getBaseName(Id));
1052   for (Type *Ty : Tys)
1053     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1054   if (HasUnnamedType) {
1055     assert(M && "unnamed types need a module");
1056     if (!FT)
1057       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1058     else
1059       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1060              "Provided FunctionType must match arguments");
1061     return M->getUniqueIntrinsicName(Result, Id, FT);
1062   }
1063   return Result;
1064 }
1065 
1066 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1067                                FunctionType *FT) {
1068   assert(M && "We need to have a Module");
1069   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1070 }
1071 
1072 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1073   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1074 }
1075 
1076 /// IIT_Info - These are enumerators that describe the entries returned by the
1077 /// getIntrinsicInfoTableEntries function.
1078 ///
1079 /// Defined in Intrinsics.td.
1080 enum IIT_Info {
1081 #define GET_INTRINSIC_IITINFO
1082 #include "llvm/IR/IntrinsicImpl.inc"
1083 #undef GET_INTRINSIC_IITINFO
1084 };
1085 
1086 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1087                       IIT_Info LastInfo,
1088                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1089   using namespace Intrinsic;
1090 
1091   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1092 
1093   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1094   unsigned StructElts = 2;
1095 
1096   switch (Info) {
1097   case IIT_Done:
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1099     return;
1100   case IIT_VARARG:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1102     return;
1103   case IIT_MMX:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1105     return;
1106   case IIT_AMX:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1108     return;
1109   case IIT_TOKEN:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1111     return;
1112   case IIT_METADATA:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1114     return;
1115   case IIT_F16:
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1117     return;
1118   case IIT_BF16:
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1120     return;
1121   case IIT_F32:
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1123     return;
1124   case IIT_F64:
1125     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1126     return;
1127   case IIT_F128:
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1129     return;
1130   case IIT_PPCF128:
1131     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1132     return;
1133   case IIT_I1:
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1135     return;
1136   case IIT_I2:
1137     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1138     return;
1139   case IIT_I4:
1140     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1141     return;
1142   case IIT_AARCH64_SVCOUNT:
1143     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1144     return;
1145   case IIT_I8:
1146     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1147     return;
1148   case IIT_I16:
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1150     return;
1151   case IIT_I32:
1152     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1153     return;
1154   case IIT_I64:
1155     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1156     return;
1157   case IIT_I128:
1158     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1159     return;
1160   case IIT_V1:
1161     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1162     DecodeIITType(NextElt, Infos, Info, OutputTable);
1163     return;
1164   case IIT_V2:
1165     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1166     DecodeIITType(NextElt, Infos, Info, OutputTable);
1167     return;
1168   case IIT_V3:
1169     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1170     DecodeIITType(NextElt, Infos, Info, OutputTable);
1171     return;
1172   case IIT_V4:
1173     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1174     DecodeIITType(NextElt, Infos, Info, OutputTable);
1175     return;
1176   case IIT_V6:
1177     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1178     DecodeIITType(NextElt, Infos, Info, OutputTable);
1179     return;
1180   case IIT_V8:
1181     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1182     DecodeIITType(NextElt, Infos, Info, OutputTable);
1183     return;
1184   case IIT_V10:
1185     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1186     DecodeIITType(NextElt, Infos, Info, OutputTable);
1187     return;
1188   case IIT_V16:
1189     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1190     DecodeIITType(NextElt, Infos, Info, OutputTable);
1191     return;
1192   case IIT_V32:
1193     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1194     DecodeIITType(NextElt, Infos, Info, OutputTable);
1195     return;
1196   case IIT_V64:
1197     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1198     DecodeIITType(NextElt, Infos, Info, OutputTable);
1199     return;
1200   case IIT_V128:
1201     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1202     DecodeIITType(NextElt, Infos, Info, OutputTable);
1203     return;
1204   case IIT_V256:
1205     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1206     DecodeIITType(NextElt, Infos, Info, OutputTable);
1207     return;
1208   case IIT_V512:
1209     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1210     DecodeIITType(NextElt, Infos, Info, OutputTable);
1211     return;
1212   case IIT_V1024:
1213     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1214     DecodeIITType(NextElt, Infos, Info, OutputTable);
1215     return;
1216   case IIT_EXTERNREF:
1217     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1218     return;
1219   case IIT_FUNCREF:
1220     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1221     return;
1222   case IIT_PTR:
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1224     return;
1225   case IIT_ANYPTR: // [ANYPTR addrspace]
1226     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1227                                              Infos[NextElt++]));
1228     return;
1229   case IIT_ARG: {
1230     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1231     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1232     return;
1233   }
1234   case IIT_EXTEND_ARG: {
1235     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1236     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1237                                              ArgInfo));
1238     return;
1239   }
1240   case IIT_TRUNC_ARG: {
1241     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1242     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1243                                              ArgInfo));
1244     return;
1245   }
1246   case IIT_HALF_VEC_ARG: {
1247     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1248     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1249                                              ArgInfo));
1250     return;
1251   }
1252   case IIT_SAME_VEC_WIDTH_ARG: {
1253     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1254     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1255                                              ArgInfo));
1256     return;
1257   }
1258   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1259     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1260     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1261     OutputTable.push_back(
1262         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1263     return;
1264   }
1265   case IIT_EMPTYSTRUCT:
1266     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1267     return;
1268   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1269   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1270   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1271   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1272   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1273   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1274   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1275   case IIT_STRUCT2: {
1276     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1277 
1278     for (unsigned i = 0; i != StructElts; ++i)
1279       DecodeIITType(NextElt, Infos, Info, OutputTable);
1280     return;
1281   }
1282   case IIT_SUBDIVIDE2_ARG: {
1283     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1284     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1285                                              ArgInfo));
1286     return;
1287   }
1288   case IIT_SUBDIVIDE4_ARG: {
1289     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1290     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1291                                              ArgInfo));
1292     return;
1293   }
1294   case IIT_VEC_ELEMENT: {
1295     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1296     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1297                                              ArgInfo));
1298     return;
1299   }
1300   case IIT_SCALABLE_VEC: {
1301     DecodeIITType(NextElt, Infos, Info, OutputTable);
1302     return;
1303   }
1304   case IIT_VEC_OF_BITCASTS_TO_INT: {
1305     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1306     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1307                                              ArgInfo));
1308     return;
1309   }
1310   }
1311   llvm_unreachable("unhandled");
1312 }
1313 
1314 #define GET_INTRINSIC_GENERATOR_GLOBAL
1315 #include "llvm/IR/IntrinsicImpl.inc"
1316 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1317 
1318 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1319                                              SmallVectorImpl<IITDescriptor> &T){
1320   // Check to see if the intrinsic's type was expressible by the table.
1321   unsigned TableVal = IIT_Table[id-1];
1322 
1323   // Decode the TableVal into an array of IITValues.
1324   SmallVector<unsigned char, 8> IITValues;
1325   ArrayRef<unsigned char> IITEntries;
1326   unsigned NextElt = 0;
1327   if ((TableVal >> 31) != 0) {
1328     // This is an offset into the IIT_LongEncodingTable.
1329     IITEntries = IIT_LongEncodingTable;
1330 
1331     // Strip sentinel bit.
1332     NextElt = (TableVal << 1) >> 1;
1333   } else {
1334     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1335     // into a single word in the table itself, decode it now.
1336     do {
1337       IITValues.push_back(TableVal & 0xF);
1338       TableVal >>= 4;
1339     } while (TableVal);
1340 
1341     IITEntries = IITValues;
1342     NextElt = 0;
1343   }
1344 
1345   // Okay, decode the table into the output vector of IITDescriptors.
1346   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1347   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1348     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1349 }
1350 
1351 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1352                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1353   using namespace Intrinsic;
1354 
1355   IITDescriptor D = Infos.front();
1356   Infos = Infos.slice(1);
1357 
1358   switch (D.Kind) {
1359   case IITDescriptor::Void: return Type::getVoidTy(Context);
1360   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1361   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1362   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1363   case IITDescriptor::Token: return Type::getTokenTy(Context);
1364   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1365   case IITDescriptor::Half: return Type::getHalfTy(Context);
1366   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1367   case IITDescriptor::Float: return Type::getFloatTy(Context);
1368   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1369   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1370   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1371   case IITDescriptor::AArch64Svcount:
1372     return TargetExtType::get(Context, "aarch64.svcount");
1373 
1374   case IITDescriptor::Integer:
1375     return IntegerType::get(Context, D.Integer_Width);
1376   case IITDescriptor::Vector:
1377     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1378                            D.Vector_Width);
1379   case IITDescriptor::Pointer:
1380     return PointerType::get(Context, D.Pointer_AddressSpace);
1381   case IITDescriptor::Struct: {
1382     SmallVector<Type *, 8> Elts;
1383     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1384       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1385     return StructType::get(Context, Elts);
1386   }
1387   case IITDescriptor::Argument:
1388     return Tys[D.getArgumentNumber()];
1389   case IITDescriptor::ExtendArgument: {
1390     Type *Ty = Tys[D.getArgumentNumber()];
1391     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1392       return VectorType::getExtendedElementVectorType(VTy);
1393 
1394     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1395   }
1396   case IITDescriptor::TruncArgument: {
1397     Type *Ty = Tys[D.getArgumentNumber()];
1398     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1399       return VectorType::getTruncatedElementVectorType(VTy);
1400 
1401     IntegerType *ITy = cast<IntegerType>(Ty);
1402     assert(ITy->getBitWidth() % 2 == 0);
1403     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1404   }
1405   case IITDescriptor::Subdivide2Argument:
1406   case IITDescriptor::Subdivide4Argument: {
1407     Type *Ty = Tys[D.getArgumentNumber()];
1408     VectorType *VTy = dyn_cast<VectorType>(Ty);
1409     assert(VTy && "Expected an argument of Vector Type");
1410     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1411     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1412   }
1413   case IITDescriptor::HalfVecArgument:
1414     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1415                                                   Tys[D.getArgumentNumber()]));
1416   case IITDescriptor::SameVecWidthArgument: {
1417     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1418     Type *Ty = Tys[D.getArgumentNumber()];
1419     if (auto *VTy = dyn_cast<VectorType>(Ty))
1420       return VectorType::get(EltTy, VTy->getElementCount());
1421     return EltTy;
1422   }
1423   case IITDescriptor::VecElementArgument: {
1424     Type *Ty = Tys[D.getArgumentNumber()];
1425     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1426       return VTy->getElementType();
1427     llvm_unreachable("Expected an argument of Vector Type");
1428   }
1429   case IITDescriptor::VecOfBitcastsToInt: {
1430     Type *Ty = Tys[D.getArgumentNumber()];
1431     VectorType *VTy = dyn_cast<VectorType>(Ty);
1432     assert(VTy && "Expected an argument of Vector Type");
1433     return VectorType::getInteger(VTy);
1434   }
1435   case IITDescriptor::VecOfAnyPtrsToElt:
1436     // Return the overloaded type (which determines the pointers address space)
1437     return Tys[D.getOverloadArgNumber()];
1438   }
1439   llvm_unreachable("unhandled");
1440 }
1441 
1442 FunctionType *Intrinsic::getType(LLVMContext &Context,
1443                                  ID id, ArrayRef<Type*> Tys) {
1444   SmallVector<IITDescriptor, 8> Table;
1445   getIntrinsicInfoTableEntries(id, Table);
1446 
1447   ArrayRef<IITDescriptor> TableRef = Table;
1448   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1449 
1450   SmallVector<Type*, 8> ArgTys;
1451   while (!TableRef.empty())
1452     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1453 
1454   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1455   // If we see void type as the type of the last argument, it is vararg intrinsic
1456   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1457     ArgTys.pop_back();
1458     return FunctionType::get(ResultTy, ArgTys, true);
1459   }
1460   return FunctionType::get(ResultTy, ArgTys, false);
1461 }
1462 
1463 bool Intrinsic::isOverloaded(ID id) {
1464 #define GET_INTRINSIC_OVERLOAD_TABLE
1465 #include "llvm/IR/IntrinsicImpl.inc"
1466 #undef GET_INTRINSIC_OVERLOAD_TABLE
1467 }
1468 
1469 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1470 #define GET_INTRINSIC_ATTRIBUTES
1471 #include "llvm/IR/IntrinsicImpl.inc"
1472 #undef GET_INTRINSIC_ATTRIBUTES
1473 
1474 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1475   // There can never be multiple globals with the same name of different types,
1476   // because intrinsics must be a specific type.
1477   auto *FT = getType(M->getContext(), id, Tys);
1478   return cast<Function>(
1479       M->getOrInsertFunction(
1480            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1481           .getCallee());
1482 }
1483 
1484 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1485 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1486 #include "llvm/IR/IntrinsicImpl.inc"
1487 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1488 
1489 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1490 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1491 #include "llvm/IR/IntrinsicImpl.inc"
1492 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1493 
1494 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1495   switch (QID) {
1496 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1497   case Intrinsic::INTRINSIC:
1498 #include "llvm/IR/ConstrainedOps.def"
1499 #undef INSTRUCTION
1500     return true;
1501   default:
1502     return false;
1503   }
1504 }
1505 
1506 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
1507   switch (QID) {
1508 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1509   case Intrinsic::INTRINSIC:                                                   \
1510     return ROUND_MODE == 1;
1511 #include "llvm/IR/ConstrainedOps.def"
1512 #undef INSTRUCTION
1513   default:
1514     return false;
1515   }
1516 }
1517 
1518 using DeferredIntrinsicMatchPair =
1519     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1520 
1521 static bool matchIntrinsicType(
1522     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1523     SmallVectorImpl<Type *> &ArgTys,
1524     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1525     bool IsDeferredCheck) {
1526   using namespace Intrinsic;
1527 
1528   // If we ran out of descriptors, there are too many arguments.
1529   if (Infos.empty()) return true;
1530 
1531   // Do this before slicing off the 'front' part
1532   auto InfosRef = Infos;
1533   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1534     DeferredChecks.emplace_back(T, InfosRef);
1535     return false;
1536   };
1537 
1538   IITDescriptor D = Infos.front();
1539   Infos = Infos.slice(1);
1540 
1541   switch (D.Kind) {
1542     case IITDescriptor::Void: return !Ty->isVoidTy();
1543     case IITDescriptor::VarArg: return true;
1544     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1545     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1546     case IITDescriptor::Token: return !Ty->isTokenTy();
1547     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1548     case IITDescriptor::Half: return !Ty->isHalfTy();
1549     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1550     case IITDescriptor::Float: return !Ty->isFloatTy();
1551     case IITDescriptor::Double: return !Ty->isDoubleTy();
1552     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1553     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1554     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1555     case IITDescriptor::AArch64Svcount:
1556       return !isa<TargetExtType>(Ty) ||
1557              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1558     case IITDescriptor::Vector: {
1559       VectorType *VT = dyn_cast<VectorType>(Ty);
1560       return !VT || VT->getElementCount() != D.Vector_Width ||
1561              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1562                                 DeferredChecks, IsDeferredCheck);
1563     }
1564     case IITDescriptor::Pointer: {
1565       PointerType *PT = dyn_cast<PointerType>(Ty);
1566       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1567     }
1568 
1569     case IITDescriptor::Struct: {
1570       StructType *ST = dyn_cast<StructType>(Ty);
1571       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1572           ST->getNumElements() != D.Struct_NumElements)
1573         return true;
1574 
1575       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1576         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1577                                DeferredChecks, IsDeferredCheck))
1578           return true;
1579       return false;
1580     }
1581 
1582     case IITDescriptor::Argument:
1583       // If this is the second occurrence of an argument,
1584       // verify that the later instance matches the previous instance.
1585       if (D.getArgumentNumber() < ArgTys.size())
1586         return Ty != ArgTys[D.getArgumentNumber()];
1587 
1588       if (D.getArgumentNumber() > ArgTys.size() ||
1589           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1590         return IsDeferredCheck || DeferCheck(Ty);
1591 
1592       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1593              "Table consistency error");
1594       ArgTys.push_back(Ty);
1595 
1596       switch (D.getArgumentKind()) {
1597         case IITDescriptor::AK_Any:        return false; // Success
1598         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1599         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1600         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1601         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1602         default:                           break;
1603       }
1604       llvm_unreachable("all argument kinds not covered");
1605 
1606     case IITDescriptor::ExtendArgument: {
1607       // If this is a forward reference, defer the check for later.
1608       if (D.getArgumentNumber() >= ArgTys.size())
1609         return IsDeferredCheck || DeferCheck(Ty);
1610 
1611       Type *NewTy = ArgTys[D.getArgumentNumber()];
1612       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1613         NewTy = VectorType::getExtendedElementVectorType(VTy);
1614       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1615         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1616       else
1617         return true;
1618 
1619       return Ty != NewTy;
1620     }
1621     case IITDescriptor::TruncArgument: {
1622       // If this is a forward reference, defer the check for later.
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck || DeferCheck(Ty);
1625 
1626       Type *NewTy = ArgTys[D.getArgumentNumber()];
1627       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1628         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1629       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1630         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1631       else
1632         return true;
1633 
1634       return Ty != NewTy;
1635     }
1636     case IITDescriptor::HalfVecArgument:
1637       // If this is a forward reference, defer the check for later.
1638       if (D.getArgumentNumber() >= ArgTys.size())
1639         return IsDeferredCheck || DeferCheck(Ty);
1640       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1641              VectorType::getHalfElementsVectorType(
1642                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1643     case IITDescriptor::SameVecWidthArgument: {
1644       if (D.getArgumentNumber() >= ArgTys.size()) {
1645         // Defer check and subsequent check for the vector element type.
1646         Infos = Infos.slice(1);
1647         return IsDeferredCheck || DeferCheck(Ty);
1648       }
1649       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1650       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1651       // Both must be vectors of the same number of elements or neither.
1652       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1653         return true;
1654       Type *EltTy = Ty;
1655       if (ThisArgType) {
1656         if (ReferenceType->getElementCount() !=
1657             ThisArgType->getElementCount())
1658           return true;
1659         EltTy = ThisArgType->getElementType();
1660       }
1661       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1662                                 IsDeferredCheck);
1663     }
1664     case IITDescriptor::VecOfAnyPtrsToElt: {
1665       unsigned RefArgNumber = D.getRefArgNumber();
1666       if (RefArgNumber >= ArgTys.size()) {
1667         if (IsDeferredCheck)
1668           return true;
1669         // If forward referencing, already add the pointer-vector type and
1670         // defer the checks for later.
1671         ArgTys.push_back(Ty);
1672         return DeferCheck(Ty);
1673       }
1674 
1675       if (!IsDeferredCheck){
1676         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1677                "Table consistency error");
1678         ArgTys.push_back(Ty);
1679       }
1680 
1681       // Verify the overloaded type "matches" the Ref type.
1682       // i.e. Ty is a vector with the same width as Ref.
1683       // Composed of pointers to the same element type as Ref.
1684       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1685       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1686       if (!ThisArgVecTy || !ReferenceType ||
1687           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1688         return true;
1689       return !ThisArgVecTy->getElementType()->isPointerTy();
1690     }
1691     case IITDescriptor::VecElementArgument: {
1692       if (D.getArgumentNumber() >= ArgTys.size())
1693         return IsDeferredCheck ? true : DeferCheck(Ty);
1694       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1695       return !ReferenceType || Ty != ReferenceType->getElementType();
1696     }
1697     case IITDescriptor::Subdivide2Argument:
1698     case IITDescriptor::Subdivide4Argument: {
1699       // If this is a forward reference, defer the check for later.
1700       if (D.getArgumentNumber() >= ArgTys.size())
1701         return IsDeferredCheck || DeferCheck(Ty);
1702 
1703       Type *NewTy = ArgTys[D.getArgumentNumber()];
1704       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1705         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1706         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1707         return Ty != NewTy;
1708       }
1709       return true;
1710     }
1711     case IITDescriptor::VecOfBitcastsToInt: {
1712       if (D.getArgumentNumber() >= ArgTys.size())
1713         return IsDeferredCheck || DeferCheck(Ty);
1714       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1715       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1716       if (!ThisArgVecTy || !ReferenceType)
1717         return true;
1718       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1719     }
1720   }
1721   llvm_unreachable("unhandled");
1722 }
1723 
1724 Intrinsic::MatchIntrinsicTypesResult
1725 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1726                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1727                                    SmallVectorImpl<Type *> &ArgTys) {
1728   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1729   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1730                          false))
1731     return MatchIntrinsicTypes_NoMatchRet;
1732 
1733   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1734 
1735   for (auto *Ty : FTy->params())
1736     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1737       return MatchIntrinsicTypes_NoMatchArg;
1738 
1739   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1740     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1741     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1742                            true))
1743       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1744                                          : MatchIntrinsicTypes_NoMatchArg;
1745   }
1746 
1747   return MatchIntrinsicTypes_Match;
1748 }
1749 
1750 bool
1751 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1752                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1753   // If there are no descriptors left, then it can't be a vararg.
1754   if (Infos.empty())
1755     return isVarArg;
1756 
1757   // There should be only one descriptor remaining at this point.
1758   if (Infos.size() != 1)
1759     return true;
1760 
1761   // Check and verify the descriptor.
1762   IITDescriptor D = Infos.front();
1763   Infos = Infos.slice(1);
1764   if (D.Kind == IITDescriptor::VarArg)
1765     return !isVarArg;
1766 
1767   return true;
1768 }
1769 
1770 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1771                                       SmallVectorImpl<Type *> &ArgTys) {
1772   if (!ID)
1773     return false;
1774 
1775   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1776   getIntrinsicInfoTableEntries(ID, Table);
1777   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1778 
1779   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1780       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1781     return false;
1782   }
1783   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1784     return false;
1785   return true;
1786 }
1787 
1788 bool Intrinsic::getIntrinsicSignature(Function *F,
1789                                       SmallVectorImpl<Type *> &ArgTys) {
1790   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1791                                ArgTys);
1792 }
1793 
1794 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1795   SmallVector<Type *, 4> ArgTys;
1796   if (!getIntrinsicSignature(F, ArgTys))
1797     return std::nullopt;
1798 
1799   Intrinsic::ID ID = F->getIntrinsicID();
1800   StringRef Name = F->getName();
1801   std::string WantedName =
1802       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1803   if (Name == WantedName)
1804     return std::nullopt;
1805 
1806   Function *NewDecl = [&] {
1807     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1808       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1809         if (ExistingF->getFunctionType() == F->getFunctionType())
1810           return ExistingF;
1811 
1812       // The name already exists, but is not a function or has the wrong
1813       // prototype. Make place for the new one by renaming the old version.
1814       // Either this old version will be removed later on or the module is
1815       // invalid and we'll get an error.
1816       ExistingGV->setName(WantedName + ".renamed");
1817     }
1818     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1819   }();
1820 
1821   NewDecl->setCallingConv(F->getCallingConv());
1822   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1823          "Shouldn't change the signature");
1824   return NewDecl;
1825 }
1826 
1827 /// hasAddressTaken - returns true if there are any uses of this function
1828 /// other than direct calls or invokes to it. Optionally ignores callback
1829 /// uses, assume like pointer annotation calls, and references in llvm.used
1830 /// and llvm.compiler.used variables.
1831 bool Function::hasAddressTaken(const User **PutOffender,
1832                                bool IgnoreCallbackUses,
1833                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1834                                bool IgnoreARCAttachedCall,
1835                                bool IgnoreCastedDirectCall) const {
1836   for (const Use &U : uses()) {
1837     const User *FU = U.getUser();
1838     if (isa<BlockAddress>(FU))
1839       continue;
1840 
1841     if (IgnoreCallbackUses) {
1842       AbstractCallSite ACS(&U);
1843       if (ACS && ACS.isCallbackCall())
1844         continue;
1845     }
1846 
1847     const auto *Call = dyn_cast<CallBase>(FU);
1848     if (!Call) {
1849       if (IgnoreAssumeLikeCalls &&
1850           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1851           all_of(FU->users(), [](const User *U) {
1852             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1853               return I->isAssumeLikeIntrinsic();
1854             return false;
1855           })) {
1856         continue;
1857       }
1858 
1859       if (IgnoreLLVMUsed && !FU->user_empty()) {
1860         const User *FUU = FU;
1861         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1862             FU->hasOneUse() && !FU->user_begin()->user_empty())
1863           FUU = *FU->user_begin();
1864         if (llvm::all_of(FUU->users(), [](const User *U) {
1865               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1866                 return GV->hasName() &&
1867                        (GV->getName() == "llvm.compiler.used" ||
1868                         GV->getName() == "llvm.used");
1869               return false;
1870             }))
1871           continue;
1872       }
1873       if (PutOffender)
1874         *PutOffender = FU;
1875       return true;
1876     }
1877 
1878     if (IgnoreAssumeLikeCalls) {
1879       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1880         if (I->isAssumeLikeIntrinsic())
1881           continue;
1882     }
1883 
1884     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1885                                 Call->getFunctionType() != getFunctionType())) {
1886       if (IgnoreARCAttachedCall &&
1887           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1888                                       U.getOperandNo()))
1889         continue;
1890 
1891       if (PutOffender)
1892         *PutOffender = FU;
1893       return true;
1894     }
1895   }
1896   return false;
1897 }
1898 
1899 bool Function::isDefTriviallyDead() const {
1900   // Check the linkage
1901   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1902       !hasAvailableExternallyLinkage())
1903     return false;
1904 
1905   // Check if the function is used by anything other than a blockaddress.
1906   for (const User *U : users())
1907     if (!isa<BlockAddress>(U))
1908       return false;
1909 
1910   return true;
1911 }
1912 
1913 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1914 /// setjmp or other function that gcc recognizes as "returning twice".
1915 bool Function::callsFunctionThatReturnsTwice() const {
1916   for (const Instruction &I : instructions(this))
1917     if (const auto *Call = dyn_cast<CallBase>(&I))
1918       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1919         return true;
1920 
1921   return false;
1922 }
1923 
1924 Constant *Function::getPersonalityFn() const {
1925   assert(hasPersonalityFn() && getNumOperands());
1926   return cast<Constant>(Op<0>());
1927 }
1928 
1929 void Function::setPersonalityFn(Constant *Fn) {
1930   setHungoffOperand<0>(Fn);
1931   setValueSubclassDataBit(3, Fn != nullptr);
1932 }
1933 
1934 Constant *Function::getPrefixData() const {
1935   assert(hasPrefixData() && getNumOperands());
1936   return cast<Constant>(Op<1>());
1937 }
1938 
1939 void Function::setPrefixData(Constant *PrefixData) {
1940   setHungoffOperand<1>(PrefixData);
1941   setValueSubclassDataBit(1, PrefixData != nullptr);
1942 }
1943 
1944 Constant *Function::getPrologueData() const {
1945   assert(hasPrologueData() && getNumOperands());
1946   return cast<Constant>(Op<2>());
1947 }
1948 
1949 void Function::setPrologueData(Constant *PrologueData) {
1950   setHungoffOperand<2>(PrologueData);
1951   setValueSubclassDataBit(2, PrologueData != nullptr);
1952 }
1953 
1954 void Function::allocHungoffUselist() {
1955   // If we've already allocated a uselist, stop here.
1956   if (getNumOperands())
1957     return;
1958 
1959   allocHungoffUses(3, /*IsPhi=*/ false);
1960   setNumHungOffUseOperands(3);
1961 
1962   // Initialize the uselist with placeholder operands to allow traversal.
1963   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1964   Op<0>().set(CPN);
1965   Op<1>().set(CPN);
1966   Op<2>().set(CPN);
1967 }
1968 
1969 template <int Idx>
1970 void Function::setHungoffOperand(Constant *C) {
1971   if (C) {
1972     allocHungoffUselist();
1973     Op<Idx>().set(C);
1974   } else if (getNumOperands()) {
1975     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1976   }
1977 }
1978 
1979 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1980   assert(Bit < 16 && "SubclassData contains only 16 bits");
1981   if (On)
1982     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1983   else
1984     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1985 }
1986 
1987 void Function::setEntryCount(ProfileCount Count,
1988                              const DenseSet<GlobalValue::GUID> *S) {
1989 #if !defined(NDEBUG)
1990   auto PrevCount = getEntryCount();
1991   assert(!PrevCount || PrevCount->getType() == Count.getType());
1992 #endif
1993 
1994   auto ImportGUIDs = getImportGUIDs();
1995   if (S == nullptr && ImportGUIDs.size())
1996     S = &ImportGUIDs;
1997 
1998   MDBuilder MDB(getContext());
1999   setMetadata(
2000       LLVMContext::MD_prof,
2001       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2002 }
2003 
2004 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2005                              const DenseSet<GlobalValue::GUID> *Imports) {
2006   setEntryCount(ProfileCount(Count, Type), Imports);
2007 }
2008 
2009 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2010   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2011   if (MD && MD->getOperand(0))
2012     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2013       if (MDS->getString() == "function_entry_count") {
2014         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2015         uint64_t Count = CI->getValue().getZExtValue();
2016         // A value of -1 is used for SamplePGO when there were no samples.
2017         // Treat this the same as unknown.
2018         if (Count == (uint64_t)-1)
2019           return std::nullopt;
2020         return ProfileCount(Count, PCT_Real);
2021       } else if (AllowSynthetic &&
2022                  MDS->getString() == "synthetic_function_entry_count") {
2023         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2024         uint64_t Count = CI->getValue().getZExtValue();
2025         return ProfileCount(Count, PCT_Synthetic);
2026       }
2027     }
2028   return std::nullopt;
2029 }
2030 
2031 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2032   DenseSet<GlobalValue::GUID> R;
2033   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2034     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2035       if (MDS->getString() == "function_entry_count")
2036         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2037           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2038                        ->getValue()
2039                        .getZExtValue());
2040   return R;
2041 }
2042 
2043 void Function::setSectionPrefix(StringRef Prefix) {
2044   MDBuilder MDB(getContext());
2045   setMetadata(LLVMContext::MD_section_prefix,
2046               MDB.createFunctionSectionPrefix(Prefix));
2047 }
2048 
2049 std::optional<StringRef> Function::getSectionPrefix() const {
2050   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2051     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2052                "function_section_prefix" &&
2053            "Metadata not match");
2054     return cast<MDString>(MD->getOperand(1))->getString();
2055   }
2056   return std::nullopt;
2057 }
2058 
2059 bool Function::nullPointerIsDefined() const {
2060   return hasFnAttribute(Attribute::NullPointerIsValid);
2061 }
2062 
2063 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2064   if (F && F->nullPointerIsDefined())
2065     return true;
2066 
2067   if (AS != 0)
2068     return true;
2069 
2070   return false;
2071 }
2072