xref: /llvm-project/llvm/lib/IR/Function.cpp (revision c49f850d55221e84c675f03c68fec2801674a4d3)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 MaybeAlign Argument::getParamAlign() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlign(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamStackAlign() const {
197   return getParent()->getParamStackAlign(getArgNo());
198 }
199 
200 Type *Argument::getParamByValType() const {
201   assert(getType()->isPointerTy() && "Only pointers have byval types");
202   return getParent()->getParamByValType(getArgNo());
203 }
204 
205 Type *Argument::getParamStructRetType() const {
206   assert(getType()->isPointerTy() && "Only pointers have sret types");
207   return getParent()->getParamStructRetType(getArgNo());
208 }
209 
210 Type *Argument::getParamByRefType() const {
211   assert(getType()->isPointerTy() && "Only pointers have byref types");
212   return getParent()->getParamByRefType(getArgNo());
213 }
214 
215 Type *Argument::getParamInAllocaType() const {
216   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
217   return getParent()->getParamInAllocaType(getArgNo());
218 }
219 
220 uint64_t Argument::getDereferenceableBytes() const {
221   assert(getType()->isPointerTy() &&
222          "Only pointers have dereferenceable bytes");
223   return getParent()->getParamDereferenceableBytes(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableOrNullBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
230 }
231 
232 FPClassTest Argument::getNoFPClass() const {
233   return getParent()->getParamNoFPClass(getArgNo());
234 }
235 
236 bool Argument::hasNestAttr() const {
237   if (!getType()->isPointerTy()) return false;
238   return hasAttribute(Attribute::Nest);
239 }
240 
241 bool Argument::hasNoAliasAttr() const {
242   if (!getType()->isPointerTy()) return false;
243   return hasAttribute(Attribute::NoAlias);
244 }
245 
246 bool Argument::hasNoCaptureAttr() const {
247   if (!getType()->isPointerTy()) return false;
248   return hasAttribute(Attribute::NoCapture);
249 }
250 
251 bool Argument::hasNoFreeAttr() const {
252   if (!getType()->isPointerTy()) return false;
253   return hasAttribute(Attribute::NoFree);
254 }
255 
256 bool Argument::hasStructRetAttr() const {
257   if (!getType()->isPointerTy()) return false;
258   return hasAttribute(Attribute::StructRet);
259 }
260 
261 bool Argument::hasInRegAttr() const {
262   return hasAttribute(Attribute::InReg);
263 }
264 
265 bool Argument::hasReturnedAttr() const {
266   return hasAttribute(Attribute::Returned);
267 }
268 
269 bool Argument::hasZExtAttr() const {
270   return hasAttribute(Attribute::ZExt);
271 }
272 
273 bool Argument::hasSExtAttr() const {
274   return hasAttribute(Attribute::SExt);
275 }
276 
277 bool Argument::onlyReadsMemory() const {
278   AttributeList Attrs = getParent()->getAttributes();
279   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
280          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
281 }
282 
283 void Argument::addAttrs(AttrBuilder &B) {
284   AttributeList AL = getParent()->getAttributes();
285   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
286   getParent()->setAttributes(AL);
287 }
288 
289 void Argument::addAttr(Attribute::AttrKind Kind) {
290   getParent()->addParamAttr(getArgNo(), Kind);
291 }
292 
293 void Argument::addAttr(Attribute Attr) {
294   getParent()->addParamAttr(getArgNo(), Attr);
295 }
296 
297 void Argument::removeAttr(Attribute::AttrKind Kind) {
298   getParent()->removeParamAttr(getArgNo(), Kind);
299 }
300 
301 void Argument::removeAttrs(const AttributeMask &AM) {
302   AttributeList AL = getParent()->getAttributes();
303   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
304   getParent()->setAttributes(AL);
305 }
306 
307 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
308   return getParent()->hasParamAttribute(getArgNo(), Kind);
309 }
310 
311 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
312   return getParent()->getParamAttribute(getArgNo(), Kind);
313 }
314 
315 //===----------------------------------------------------------------------===//
316 // Helper Methods in Function
317 //===----------------------------------------------------------------------===//
318 
319 LLVMContext &Function::getContext() const {
320   return getType()->getContext();
321 }
322 
323 unsigned Function::getInstructionCount() const {
324   unsigned NumInstrs = 0;
325   for (const BasicBlock &BB : BasicBlocks)
326     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
327                                BB.instructionsWithoutDebug().end());
328   return NumInstrs;
329 }
330 
331 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
332                            const Twine &N, Module &M) {
333   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
334 }
335 
336 Function *Function::createWithDefaultAttr(FunctionType *Ty,
337                                           LinkageTypes Linkage,
338                                           unsigned AddrSpace, const Twine &N,
339                                           Module *M) {
340   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
341   AttrBuilder B(F->getContext());
342   UWTableKind UWTable = M->getUwtable();
343   if (UWTable != UWTableKind::None)
344     B.addUWTableAttr(UWTable);
345   switch (M->getFramePointer()) {
346   case FramePointerKind::None:
347     // 0 ("none") is the default.
348     break;
349   case FramePointerKind::NonLeaf:
350     B.addAttribute("frame-pointer", "non-leaf");
351     break;
352   case FramePointerKind::All:
353     B.addAttribute("frame-pointer", "all");
354     break;
355   }
356   if (M->getModuleFlag("function_return_thunk_extern"))
357     B.addAttribute(Attribute::FnRetThunkExtern);
358   F->addFnAttrs(B);
359   return F;
360 }
361 
362 void Function::removeFromParent() {
363   getParent()->getFunctionList().remove(getIterator());
364 }
365 
366 void Function::eraseFromParent() {
367   getParent()->getFunctionList().erase(getIterator());
368 }
369 
370 void Function::splice(Function::iterator ToIt, Function *FromF,
371                       Function::iterator FromBeginIt,
372                       Function::iterator FromEndIt) {
373 #ifdef EXPENSIVE_CHECKS
374   // Check that FromBeginIt is before FromEndIt.
375   auto FromFEnd = FromF->end();
376   for (auto It = FromBeginIt; It != FromEndIt; ++It)
377     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
378 #endif // EXPENSIVE_CHECKS
379   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
380 }
381 
382 Function::iterator Function::erase(Function::iterator FromIt,
383                                    Function::iterator ToIt) {
384   return BasicBlocks.erase(FromIt, ToIt);
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // Function Implementation
389 //===----------------------------------------------------------------------===//
390 
391 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
392   // If AS == -1 and we are passed a valid module pointer we place the function
393   // in the program address space. Otherwise we default to AS0.
394   if (AddrSpace == static_cast<unsigned>(-1))
395     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
396   return AddrSpace;
397 }
398 
399 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
400                    const Twine &name, Module *ParentModule)
401     : GlobalObject(Ty, Value::FunctionVal,
402                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
403                    computeAddrSpace(AddrSpace, ParentModule)),
404       NumArgs(Ty->getNumParams()) {
405   assert(FunctionType::isValidReturnType(getReturnType()) &&
406          "invalid return type");
407   setGlobalObjectSubClassData(0);
408 
409   // We only need a symbol table for a function if the context keeps value names
410   if (!getContext().shouldDiscardValueNames())
411     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
412 
413   // If the function has arguments, mark them as lazily built.
414   if (Ty->getNumParams())
415     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
416 
417   if (ParentModule)
418     ParentModule->getFunctionList().push_back(this);
419 
420   HasLLVMReservedName = getName().startswith("llvm.");
421   // Ensure intrinsics have the right parameter attributes.
422   // Note, the IntID field will have been set in Value::setName if this function
423   // name is a valid intrinsic ID.
424   if (IntID)
425     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
426 }
427 
428 Function::~Function() {
429   dropAllReferences();    // After this it is safe to delete instructions.
430 
431   // Delete all of the method arguments and unlink from symbol table...
432   if (Arguments)
433     clearArguments();
434 
435   // Remove the function from the on-the-side GC table.
436   clearGC();
437 }
438 
439 void Function::BuildLazyArguments() const {
440   // Create the arguments vector, all arguments start out unnamed.
441   auto *FT = getFunctionType();
442   if (NumArgs > 0) {
443     Arguments = std::allocator<Argument>().allocate(NumArgs);
444     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
445       Type *ArgTy = FT->getParamType(i);
446       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
447       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
448     }
449   }
450 
451   // Clear the lazy arguments bit.
452   unsigned SDC = getSubclassDataFromValue();
453   SDC &= ~(1 << 0);
454   const_cast<Function*>(this)->setValueSubclassData(SDC);
455   assert(!hasLazyArguments());
456 }
457 
458 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
459   return MutableArrayRef<Argument>(Args, Count);
460 }
461 
462 bool Function::isConstrainedFPIntrinsic() const {
463   switch (getIntrinsicID()) {
464 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
465   case Intrinsic::INTRINSIC:
466 #include "llvm/IR/ConstrainedOps.def"
467     return true;
468 #undef INSTRUCTION
469   default:
470     return false;
471   }
472 }
473 
474 void Function::clearArguments() {
475   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
476     A.setName("");
477     A.~Argument();
478   }
479   std::allocator<Argument>().deallocate(Arguments, NumArgs);
480   Arguments = nullptr;
481 }
482 
483 void Function::stealArgumentListFrom(Function &Src) {
484   assert(isDeclaration() && "Expected no references to current arguments");
485 
486   // Drop the current arguments, if any, and set the lazy argument bit.
487   if (!hasLazyArguments()) {
488     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
489                         [](const Argument &A) { return A.use_empty(); }) &&
490            "Expected arguments to be unused in declaration");
491     clearArguments();
492     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
493   }
494 
495   // Nothing to steal if Src has lazy arguments.
496   if (Src.hasLazyArguments())
497     return;
498 
499   // Steal arguments from Src, and fix the lazy argument bits.
500   assert(arg_size() == Src.arg_size());
501   Arguments = Src.Arguments;
502   Src.Arguments = nullptr;
503   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
504     // FIXME: This does the work of transferNodesFromList inefficiently.
505     SmallString<128> Name;
506     if (A.hasName())
507       Name = A.getName();
508     if (!Name.empty())
509       A.setName("");
510     A.setParent(this);
511     if (!Name.empty())
512       A.setName(Name);
513   }
514 
515   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
516   assert(!hasLazyArguments());
517   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
518 }
519 
520 // dropAllReferences() - This function causes all the subinstructions to "let
521 // go" of all references that they are maintaining.  This allows one to
522 // 'delete' a whole class at a time, even though there may be circular
523 // references... first all references are dropped, and all use counts go to
524 // zero.  Then everything is deleted for real.  Note that no operations are
525 // valid on an object that has "dropped all references", except operator
526 // delete.
527 //
528 void Function::dropAllReferences() {
529   setIsMaterializable(false);
530 
531   for (BasicBlock &BB : *this)
532     BB.dropAllReferences();
533 
534   // Delete all basic blocks. They are now unused, except possibly by
535   // blockaddresses, but BasicBlock's destructor takes care of those.
536   while (!BasicBlocks.empty())
537     BasicBlocks.begin()->eraseFromParent();
538 
539   // Drop uses of any optional data (real or placeholder).
540   if (getNumOperands()) {
541     User::dropAllReferences();
542     setNumHungOffUseOperands(0);
543     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
544   }
545 
546   // Metadata is stored in a side-table.
547   clearMetadata();
548 }
549 
550 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
551   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
552 }
553 
554 void Function::addFnAttr(Attribute::AttrKind Kind) {
555   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
556 }
557 
558 void Function::addFnAttr(StringRef Kind, StringRef Val) {
559   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
560 }
561 
562 void Function::addFnAttr(Attribute Attr) {
563   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
564 }
565 
566 void Function::addFnAttrs(const AttrBuilder &Attrs) {
567   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
568 }
569 
570 void Function::addRetAttr(Attribute::AttrKind Kind) {
571   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
572 }
573 
574 void Function::addRetAttr(Attribute Attr) {
575   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
576 }
577 
578 void Function::addRetAttrs(const AttrBuilder &Attrs) {
579   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
580 }
581 
582 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
583   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
584 }
585 
586 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
587   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
588 }
589 
590 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
591   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
592 }
593 
594 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
595   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
596 }
597 
598 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
599   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
600 }
601 
602 void Function::removeFnAttr(Attribute::AttrKind Kind) {
603   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
604 }
605 
606 void Function::removeFnAttr(StringRef Kind) {
607   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
608 }
609 
610 void Function::removeFnAttrs(const AttributeMask &AM) {
611   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
612 }
613 
614 void Function::removeRetAttr(Attribute::AttrKind Kind) {
615   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
616 }
617 
618 void Function::removeRetAttr(StringRef Kind) {
619   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
620 }
621 
622 void Function::removeRetAttrs(const AttributeMask &Attrs) {
623   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
624 }
625 
626 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
627   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
628 }
629 
630 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
631   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
632 }
633 
634 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
635   AttributeSets =
636       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
637 }
638 
639 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
640   AttributeSets =
641       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
642 }
643 
644 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
645   return AttributeSets.hasFnAttr(Kind);
646 }
647 
648 bool Function::hasFnAttribute(StringRef Kind) const {
649   return AttributeSets.hasFnAttr(Kind);
650 }
651 
652 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.hasRetAttr(Kind);
654 }
655 
656 bool Function::hasParamAttribute(unsigned ArgNo,
657                                  Attribute::AttrKind Kind) const {
658   return AttributeSets.hasParamAttr(ArgNo, Kind);
659 }
660 
661 Attribute Function::getAttributeAtIndex(unsigned i,
662                                         Attribute::AttrKind Kind) const {
663   return AttributeSets.getAttributeAtIndex(i, Kind);
664 }
665 
666 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
667   return AttributeSets.getAttributeAtIndex(i, Kind);
668 }
669 
670 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
671   return AttributeSets.getFnAttr(Kind);
672 }
673 
674 Attribute Function::getFnAttribute(StringRef Kind) const {
675   return AttributeSets.getFnAttr(Kind);
676 }
677 
678 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
679                                                  uint64_t Default) const {
680   Attribute A = getFnAttribute(Name);
681   uint64_t Result = Default;
682   if (A.isStringAttribute()) {
683     StringRef Str = A.getValueAsString();
684     if (Str.getAsInteger(0, Result))
685       getContext().emitError("cannot parse integer attribute " + Name);
686   }
687 
688   return Result;
689 }
690 
691 /// gets the specified attribute from the list of attributes.
692 Attribute Function::getParamAttribute(unsigned ArgNo,
693                                       Attribute::AttrKind Kind) const {
694   return AttributeSets.getParamAttr(ArgNo, Kind);
695 }
696 
697 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
698                                                  uint64_t Bytes) {
699   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
700                                                                   ArgNo, Bytes);
701 }
702 
703 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
704   if (&FPType == &APFloat::IEEEsingle()) {
705     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
706     StringRef Val = Attr.getValueAsString();
707     if (!Val.empty())
708       return parseDenormalFPAttribute(Val);
709 
710     // If the f32 variant of the attribute isn't specified, try to use the
711     // generic one.
712   }
713 
714   Attribute Attr = getFnAttribute("denormal-fp-math");
715   return parseDenormalFPAttribute(Attr.getValueAsString());
716 }
717 
718 const std::string &Function::getGC() const {
719   assert(hasGC() && "Function has no collector");
720   return getContext().getGC(*this);
721 }
722 
723 void Function::setGC(std::string Str) {
724   setValueSubclassDataBit(14, !Str.empty());
725   getContext().setGC(*this, std::move(Str));
726 }
727 
728 void Function::clearGC() {
729   if (!hasGC())
730     return;
731   getContext().deleteGC(*this);
732   setValueSubclassDataBit(14, false);
733 }
734 
735 bool Function::hasStackProtectorFnAttr() const {
736   return hasFnAttribute(Attribute::StackProtect) ||
737          hasFnAttribute(Attribute::StackProtectStrong) ||
738          hasFnAttribute(Attribute::StackProtectReq);
739 }
740 
741 /// Copy all additional attributes (those not needed to create a Function) from
742 /// the Function Src to this one.
743 void Function::copyAttributesFrom(const Function *Src) {
744   GlobalObject::copyAttributesFrom(Src);
745   setCallingConv(Src->getCallingConv());
746   setAttributes(Src->getAttributes());
747   if (Src->hasGC())
748     setGC(Src->getGC());
749   else
750     clearGC();
751   if (Src->hasPersonalityFn())
752     setPersonalityFn(Src->getPersonalityFn());
753   if (Src->hasPrefixData())
754     setPrefixData(Src->getPrefixData());
755   if (Src->hasPrologueData())
756     setPrologueData(Src->getPrologueData());
757 }
758 
759 MemoryEffects Function::getMemoryEffects() const {
760   return getAttributes().getMemoryEffects();
761 }
762 void Function::setMemoryEffects(MemoryEffects ME) {
763   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
764 }
765 
766 /// Determine if the function does not access memory.
767 bool Function::doesNotAccessMemory() const {
768   return getMemoryEffects().doesNotAccessMemory();
769 }
770 void Function::setDoesNotAccessMemory() {
771   setMemoryEffects(MemoryEffects::none());
772 }
773 
774 /// Determine if the function does not access or only reads memory.
775 bool Function::onlyReadsMemory() const {
776   return getMemoryEffects().onlyReadsMemory();
777 }
778 void Function::setOnlyReadsMemory() {
779   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
780 }
781 
782 /// Determine if the function does not access or only writes memory.
783 bool Function::onlyWritesMemory() const {
784   return getMemoryEffects().onlyWritesMemory();
785 }
786 void Function::setOnlyWritesMemory() {
787   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
788 }
789 
790 /// Determine if the call can access memmory only using pointers based
791 /// on its arguments.
792 bool Function::onlyAccessesArgMemory() const {
793   return getMemoryEffects().onlyAccessesArgPointees();
794 }
795 void Function::setOnlyAccessesArgMemory() {
796   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
797 }
798 
799 /// Determine if the function may only access memory that is
800 ///  inaccessible from the IR.
801 bool Function::onlyAccessesInaccessibleMemory() const {
802   return getMemoryEffects().onlyAccessesInaccessibleMem();
803 }
804 void Function::setOnlyAccessesInaccessibleMemory() {
805   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
806 }
807 
808 /// Determine if the function may only access memory that is
809 ///  either inaccessible from the IR or pointed to by its arguments.
810 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
811   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
812 }
813 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
814   setMemoryEffects(getMemoryEffects() &
815                    MemoryEffects::inaccessibleOrArgMemOnly());
816 }
817 
818 /// Table of string intrinsic names indexed by enum value.
819 static const char * const IntrinsicNameTable[] = {
820   "not_intrinsic",
821 #define GET_INTRINSIC_NAME_TABLE
822 #include "llvm/IR/IntrinsicImpl.inc"
823 #undef GET_INTRINSIC_NAME_TABLE
824 };
825 
826 /// Table of per-target intrinsic name tables.
827 #define GET_INTRINSIC_TARGET_DATA
828 #include "llvm/IR/IntrinsicImpl.inc"
829 #undef GET_INTRINSIC_TARGET_DATA
830 
831 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
832   return IID > TargetInfos[0].Count;
833 }
834 
835 bool Function::isTargetIntrinsic() const {
836   return isTargetIntrinsic(IntID);
837 }
838 
839 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
840 /// target as \c Name, or the generic table if \c Name is not target specific.
841 ///
842 /// Returns the relevant slice of \c IntrinsicNameTable
843 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
844   assert(Name.startswith("llvm."));
845 
846   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
847   // Drop "llvm." and take the first dotted component. That will be the target
848   // if this is target specific.
849   StringRef Target = Name.drop_front(5).split('.').first;
850   auto It = partition_point(
851       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
852   // We've either found the target or just fall back to the generic set, which
853   // is always first.
854   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
855   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
856 }
857 
858 /// This does the actual lookup of an intrinsic ID which
859 /// matches the given function name.
860 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
861   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
862   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
863   if (Idx == -1)
864     return Intrinsic::not_intrinsic;
865 
866   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
867   // an index into a sub-table.
868   int Adjust = NameTable.data() - IntrinsicNameTable;
869   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
870 
871   // If the intrinsic is not overloaded, require an exact match. If it is
872   // overloaded, require either exact or prefix match.
873   const auto MatchSize = strlen(NameTable[Idx]);
874   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
875   bool IsExactMatch = Name.size() == MatchSize;
876   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
877                                                      : Intrinsic::not_intrinsic;
878 }
879 
880 void Function::recalculateIntrinsicID() {
881   StringRef Name = getName();
882   if (!Name.startswith("llvm.")) {
883     HasLLVMReservedName = false;
884     IntID = Intrinsic::not_intrinsic;
885     return;
886   }
887   HasLLVMReservedName = true;
888   IntID = lookupIntrinsicID(Name);
889 }
890 
891 /// Returns a stable mangling for the type specified for use in the name
892 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
893 /// of named types is simply their name.  Manglings for unnamed types consist
894 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
895 /// combined with the mangling of their component types.  A vararg function
896 /// type will have a suffix of 'vararg'.  Since function types can contain
897 /// other function types, we close a function type mangling with suffix 'f'
898 /// which can't be confused with it's prefix.  This ensures we don't have
899 /// collisions between two unrelated function types. Otherwise, you might
900 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
901 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
902 /// indicating that extra care must be taken to ensure a unique name.
903 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
904   std::string Result;
905   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
906     Result += "p" + utostr(PTyp->getAddressSpace());
907     // Opaque pointer doesn't have pointee type information, so we just mangle
908     // address space for opaque pointer.
909     if (!PTyp->isOpaque())
910       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
911                                   HasUnnamedType);
912   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
913     Result += "a" + utostr(ATyp->getNumElements()) +
914               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
915   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
916     if (!STyp->isLiteral()) {
917       Result += "s_";
918       if (STyp->hasName())
919         Result += STyp->getName();
920       else
921         HasUnnamedType = true;
922     } else {
923       Result += "sl_";
924       for (auto *Elem : STyp->elements())
925         Result += getMangledTypeStr(Elem, HasUnnamedType);
926     }
927     // Ensure nested structs are distinguishable.
928     Result += "s";
929   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
930     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
931     for (size_t i = 0; i < FT->getNumParams(); i++)
932       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
933     if (FT->isVarArg())
934       Result += "vararg";
935     // Ensure nested function types are distinguishable.
936     Result += "f";
937   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
938     ElementCount EC = VTy->getElementCount();
939     if (EC.isScalable())
940       Result += "nx";
941     Result += "v" + utostr(EC.getKnownMinValue()) +
942               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
943   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
944     Result += "t";
945     Result += TETy->getName();
946     for (Type *ParamTy : TETy->type_params())
947       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
948     for (unsigned IntParam : TETy->int_params())
949       Result += "_" + utostr(IntParam);
950     // Ensure nested target extension types are distinguishable.
951     Result += "t";
952   } else if (Ty) {
953     switch (Ty->getTypeID()) {
954     default: llvm_unreachable("Unhandled type");
955     case Type::VoidTyID:      Result += "isVoid";   break;
956     case Type::MetadataTyID:  Result += "Metadata"; break;
957     case Type::HalfTyID:      Result += "f16";      break;
958     case Type::BFloatTyID:    Result += "bf16";     break;
959     case Type::FloatTyID:     Result += "f32";      break;
960     case Type::DoubleTyID:    Result += "f64";      break;
961     case Type::X86_FP80TyID:  Result += "f80";      break;
962     case Type::FP128TyID:     Result += "f128";     break;
963     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
964     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
965     case Type::X86_AMXTyID:   Result += "x86amx";   break;
966     case Type::IntegerTyID:
967       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
968       break;
969     }
970   }
971   return Result;
972 }
973 
974 StringRef Intrinsic::getBaseName(ID id) {
975   assert(id < num_intrinsics && "Invalid intrinsic ID!");
976   return IntrinsicNameTable[id];
977 }
978 
979 StringRef Intrinsic::getName(ID id) {
980   assert(id < num_intrinsics && "Invalid intrinsic ID!");
981   assert(!Intrinsic::isOverloaded(id) &&
982          "This version of getName does not support overloading");
983   return getBaseName(id);
984 }
985 
986 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
987                                         Module *M, FunctionType *FT,
988                                         bool EarlyModuleCheck) {
989 
990   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
991   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
992          "This version of getName is for overloaded intrinsics only");
993   (void)EarlyModuleCheck;
994   assert((!EarlyModuleCheck || M ||
995           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
996          "Intrinsic overloading on pointer types need to provide a Module");
997   bool HasUnnamedType = false;
998   std::string Result(Intrinsic::getBaseName(Id));
999   for (Type *Ty : Tys)
1000     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1001   if (HasUnnamedType) {
1002     assert(M && "unnamed types need a module");
1003     if (!FT)
1004       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1005     else
1006       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1007              "Provided FunctionType must match arguments");
1008     return M->getUniqueIntrinsicName(Result, Id, FT);
1009   }
1010   return Result;
1011 }
1012 
1013 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1014                                FunctionType *FT) {
1015   assert(M && "We need to have a Module");
1016   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1017 }
1018 
1019 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1020   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1021 }
1022 
1023 /// IIT_Info - These are enumerators that describe the entries returned by the
1024 /// getIntrinsicInfoTableEntries function.
1025 ///
1026 /// Defined in Intrinsics.td.
1027 enum IIT_Info {
1028 #define GET_INTRINSIC_IITINFO
1029 #include "llvm/IR/IntrinsicImpl.inc"
1030 #undef GET_INTRINSIC_IITINFO
1031 };
1032 
1033 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1034                       IIT_Info LastInfo,
1035                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1036   using namespace Intrinsic;
1037 
1038   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1039 
1040   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1041   unsigned StructElts = 2;
1042 
1043   switch (Info) {
1044   case IIT_Done:
1045     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1046     return;
1047   case IIT_VARARG:
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1049     return;
1050   case IIT_MMX:
1051     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1052     return;
1053   case IIT_AMX:
1054     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1055     return;
1056   case IIT_TOKEN:
1057     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1058     return;
1059   case IIT_METADATA:
1060     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1061     return;
1062   case IIT_F16:
1063     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1064     return;
1065   case IIT_BF16:
1066     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1067     return;
1068   case IIT_F32:
1069     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1070     return;
1071   case IIT_F64:
1072     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1073     return;
1074   case IIT_F128:
1075     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1076     return;
1077   case IIT_PPCF128:
1078     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1079     return;
1080   case IIT_I1:
1081     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1082     return;
1083   case IIT_I2:
1084     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1085     return;
1086   case IIT_I4:
1087     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1088     return;
1089   case IIT_I8:
1090     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1091     return;
1092   case IIT_I16:
1093     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1094     return;
1095   case IIT_I32:
1096     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1097     return;
1098   case IIT_I64:
1099     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1100     return;
1101   case IIT_I128:
1102     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1103     return;
1104   case IIT_V1:
1105     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1106     DecodeIITType(NextElt, Infos, Info, OutputTable);
1107     return;
1108   case IIT_V2:
1109     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1110     DecodeIITType(NextElt, Infos, Info, OutputTable);
1111     return;
1112   case IIT_V3:
1113     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1114     DecodeIITType(NextElt, Infos, Info, OutputTable);
1115     return;
1116   case IIT_V4:
1117     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1118     DecodeIITType(NextElt, Infos, Info, OutputTable);
1119     return;
1120   case IIT_V8:
1121     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1122     DecodeIITType(NextElt, Infos, Info, OutputTable);
1123     return;
1124   case IIT_V16:
1125     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1126     DecodeIITType(NextElt, Infos, Info, OutputTable);
1127     return;
1128   case IIT_V32:
1129     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1130     DecodeIITType(NextElt, Infos, Info, OutputTable);
1131     return;
1132   case IIT_V64:
1133     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1134     DecodeIITType(NextElt, Infos, Info, OutputTable);
1135     return;
1136   case IIT_V128:
1137     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1138     DecodeIITType(NextElt, Infos, Info, OutputTable);
1139     return;
1140   case IIT_V256:
1141     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1142     DecodeIITType(NextElt, Infos, Info, OutputTable);
1143     return;
1144   case IIT_V512:
1145     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1146     DecodeIITType(NextElt, Infos, Info, OutputTable);
1147     return;
1148   case IIT_V1024:
1149     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1150     DecodeIITType(NextElt, Infos, Info, OutputTable);
1151     return;
1152   case IIT_EXTERNREF:
1153     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1154     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1155     return;
1156   case IIT_FUNCREF:
1157     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1158     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1159     return;
1160   case IIT_PTR:
1161     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1162     DecodeIITType(NextElt, Infos, Info, OutputTable);
1163     return;
1164   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1165     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1166                                              Infos[NextElt++]));
1167     DecodeIITType(NextElt, Infos, Info, OutputTable);
1168     return;
1169   }
1170   case IIT_ARG: {
1171     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1172     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1173     return;
1174   }
1175   case IIT_EXTEND_ARG: {
1176     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1177     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1178                                              ArgInfo));
1179     return;
1180   }
1181   case IIT_TRUNC_ARG: {
1182     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1183     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1184                                              ArgInfo));
1185     return;
1186   }
1187   case IIT_HALF_VEC_ARG: {
1188     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1189     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1190                                              ArgInfo));
1191     return;
1192   }
1193   case IIT_SAME_VEC_WIDTH_ARG: {
1194     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1195     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1196                                              ArgInfo));
1197     return;
1198   }
1199   case IIT_PTR_TO_ARG: {
1200     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1201     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1202                                              ArgInfo));
1203     return;
1204   }
1205   case IIT_PTR_TO_ELT: {
1206     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1208     return;
1209   }
1210   case IIT_ANYPTR_TO_ELT: {
1211     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1212     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1213     OutputTable.push_back(
1214         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1215     return;
1216   }
1217   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1218     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1219     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1220     OutputTable.push_back(
1221         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1222     return;
1223   }
1224   case IIT_EMPTYSTRUCT:
1225     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1226     return;
1227   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1228   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1229   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1230   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1231   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1232   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1233   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1234   case IIT_STRUCT2: {
1235     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1236 
1237     for (unsigned i = 0; i != StructElts; ++i)
1238       DecodeIITType(NextElt, Infos, Info, OutputTable);
1239     return;
1240   }
1241   case IIT_SUBDIVIDE2_ARG: {
1242     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1243     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1244                                              ArgInfo));
1245     return;
1246   }
1247   case IIT_SUBDIVIDE4_ARG: {
1248     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1249     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1250                                              ArgInfo));
1251     return;
1252   }
1253   case IIT_VEC_ELEMENT: {
1254     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1255     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1256                                              ArgInfo));
1257     return;
1258   }
1259   case IIT_SCALABLE_VEC: {
1260     DecodeIITType(NextElt, Infos, Info, OutputTable);
1261     return;
1262   }
1263   case IIT_VEC_OF_BITCASTS_TO_INT: {
1264     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1265     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1266                                              ArgInfo));
1267     return;
1268   }
1269   }
1270   llvm_unreachable("unhandled");
1271 }
1272 
1273 #define GET_INTRINSIC_GENERATOR_GLOBAL
1274 #include "llvm/IR/IntrinsicImpl.inc"
1275 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1276 
1277 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1278                                              SmallVectorImpl<IITDescriptor> &T){
1279   // Check to see if the intrinsic's type was expressible by the table.
1280   unsigned TableVal = IIT_Table[id-1];
1281 
1282   // Decode the TableVal into an array of IITValues.
1283   SmallVector<unsigned char, 8> IITValues;
1284   ArrayRef<unsigned char> IITEntries;
1285   unsigned NextElt = 0;
1286   if ((TableVal >> 31) != 0) {
1287     // This is an offset into the IIT_LongEncodingTable.
1288     IITEntries = IIT_LongEncodingTable;
1289 
1290     // Strip sentinel bit.
1291     NextElt = (TableVal << 1) >> 1;
1292   } else {
1293     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1294     // into a single word in the table itself, decode it now.
1295     do {
1296       IITValues.push_back(TableVal & 0xF);
1297       TableVal >>= 4;
1298     } while (TableVal);
1299 
1300     IITEntries = IITValues;
1301     NextElt = 0;
1302   }
1303 
1304   // Okay, decode the table into the output vector of IITDescriptors.
1305   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1306   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1307     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1308 }
1309 
1310 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1311                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1312   using namespace Intrinsic;
1313 
1314   IITDescriptor D = Infos.front();
1315   Infos = Infos.slice(1);
1316 
1317   switch (D.Kind) {
1318   case IITDescriptor::Void: return Type::getVoidTy(Context);
1319   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1320   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1321   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1322   case IITDescriptor::Token: return Type::getTokenTy(Context);
1323   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1324   case IITDescriptor::Half: return Type::getHalfTy(Context);
1325   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1326   case IITDescriptor::Float: return Type::getFloatTy(Context);
1327   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1328   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1329   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1330 
1331   case IITDescriptor::Integer:
1332     return IntegerType::get(Context, D.Integer_Width);
1333   case IITDescriptor::Vector:
1334     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1335                            D.Vector_Width);
1336   case IITDescriptor::Pointer:
1337     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1338                             D.Pointer_AddressSpace);
1339   case IITDescriptor::Struct: {
1340     SmallVector<Type *, 8> Elts;
1341     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1342       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1343     return StructType::get(Context, Elts);
1344   }
1345   case IITDescriptor::Argument:
1346     return Tys[D.getArgumentNumber()];
1347   case IITDescriptor::ExtendArgument: {
1348     Type *Ty = Tys[D.getArgumentNumber()];
1349     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1350       return VectorType::getExtendedElementVectorType(VTy);
1351 
1352     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1353   }
1354   case IITDescriptor::TruncArgument: {
1355     Type *Ty = Tys[D.getArgumentNumber()];
1356     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1357       return VectorType::getTruncatedElementVectorType(VTy);
1358 
1359     IntegerType *ITy = cast<IntegerType>(Ty);
1360     assert(ITy->getBitWidth() % 2 == 0);
1361     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1362   }
1363   case IITDescriptor::Subdivide2Argument:
1364   case IITDescriptor::Subdivide4Argument: {
1365     Type *Ty = Tys[D.getArgumentNumber()];
1366     VectorType *VTy = dyn_cast<VectorType>(Ty);
1367     assert(VTy && "Expected an argument of Vector Type");
1368     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1369     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1370   }
1371   case IITDescriptor::HalfVecArgument:
1372     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1373                                                   Tys[D.getArgumentNumber()]));
1374   case IITDescriptor::SameVecWidthArgument: {
1375     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1376     Type *Ty = Tys[D.getArgumentNumber()];
1377     if (auto *VTy = dyn_cast<VectorType>(Ty))
1378       return VectorType::get(EltTy, VTy->getElementCount());
1379     return EltTy;
1380   }
1381   case IITDescriptor::PtrToArgument: {
1382     Type *Ty = Tys[D.getArgumentNumber()];
1383     return PointerType::getUnqual(Ty);
1384   }
1385   case IITDescriptor::PtrToElt: {
1386     Type *Ty = Tys[D.getArgumentNumber()];
1387     VectorType *VTy = dyn_cast<VectorType>(Ty);
1388     if (!VTy)
1389       llvm_unreachable("Expected an argument of Vector Type");
1390     Type *EltTy = VTy->getElementType();
1391     return PointerType::getUnqual(EltTy);
1392   }
1393   case IITDescriptor::VecElementArgument: {
1394     Type *Ty = Tys[D.getArgumentNumber()];
1395     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1396       return VTy->getElementType();
1397     llvm_unreachable("Expected an argument of Vector Type");
1398   }
1399   case IITDescriptor::VecOfBitcastsToInt: {
1400     Type *Ty = Tys[D.getArgumentNumber()];
1401     VectorType *VTy = dyn_cast<VectorType>(Ty);
1402     assert(VTy && "Expected an argument of Vector Type");
1403     return VectorType::getInteger(VTy);
1404   }
1405   case IITDescriptor::VecOfAnyPtrsToElt:
1406     // Return the overloaded type (which determines the pointers address space)
1407     return Tys[D.getOverloadArgNumber()];
1408   case IITDescriptor::AnyPtrToElt:
1409     // Return the overloaded type (which determines the pointers address space)
1410     return Tys[D.getOverloadArgNumber()];
1411   }
1412   llvm_unreachable("unhandled");
1413 }
1414 
1415 FunctionType *Intrinsic::getType(LLVMContext &Context,
1416                                  ID id, ArrayRef<Type*> Tys) {
1417   SmallVector<IITDescriptor, 8> Table;
1418   getIntrinsicInfoTableEntries(id, Table);
1419 
1420   ArrayRef<IITDescriptor> TableRef = Table;
1421   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1422 
1423   SmallVector<Type*, 8> ArgTys;
1424   while (!TableRef.empty())
1425     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1426 
1427   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1428   // If we see void type as the type of the last argument, it is vararg intrinsic
1429   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1430     ArgTys.pop_back();
1431     return FunctionType::get(ResultTy, ArgTys, true);
1432   }
1433   return FunctionType::get(ResultTy, ArgTys, false);
1434 }
1435 
1436 bool Intrinsic::isOverloaded(ID id) {
1437 #define GET_INTRINSIC_OVERLOAD_TABLE
1438 #include "llvm/IR/IntrinsicImpl.inc"
1439 #undef GET_INTRINSIC_OVERLOAD_TABLE
1440 }
1441 
1442 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1443 #define GET_INTRINSIC_ATTRIBUTES
1444 #include "llvm/IR/IntrinsicImpl.inc"
1445 #undef GET_INTRINSIC_ATTRIBUTES
1446 
1447 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1448   // There can never be multiple globals with the same name of different types,
1449   // because intrinsics must be a specific type.
1450   auto *FT = getType(M->getContext(), id, Tys);
1451   return cast<Function>(
1452       M->getOrInsertFunction(
1453            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1454           .getCallee());
1455 }
1456 
1457 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1458 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1459 #include "llvm/IR/IntrinsicImpl.inc"
1460 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1461 
1462 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1463 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1464 #include "llvm/IR/IntrinsicImpl.inc"
1465 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1466 
1467 using DeferredIntrinsicMatchPair =
1468     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1469 
1470 static bool matchIntrinsicType(
1471     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1472     SmallVectorImpl<Type *> &ArgTys,
1473     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1474     bool IsDeferredCheck) {
1475   using namespace Intrinsic;
1476 
1477   // If we ran out of descriptors, there are too many arguments.
1478   if (Infos.empty()) return true;
1479 
1480   // Do this before slicing off the 'front' part
1481   auto InfosRef = Infos;
1482   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1483     DeferredChecks.emplace_back(T, InfosRef);
1484     return false;
1485   };
1486 
1487   IITDescriptor D = Infos.front();
1488   Infos = Infos.slice(1);
1489 
1490   switch (D.Kind) {
1491     case IITDescriptor::Void: return !Ty->isVoidTy();
1492     case IITDescriptor::VarArg: return true;
1493     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1494     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1495     case IITDescriptor::Token: return !Ty->isTokenTy();
1496     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1497     case IITDescriptor::Half: return !Ty->isHalfTy();
1498     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1499     case IITDescriptor::Float: return !Ty->isFloatTy();
1500     case IITDescriptor::Double: return !Ty->isDoubleTy();
1501     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1502     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1503     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1504     case IITDescriptor::Vector: {
1505       VectorType *VT = dyn_cast<VectorType>(Ty);
1506       return !VT || VT->getElementCount() != D.Vector_Width ||
1507              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1508                                 DeferredChecks, IsDeferredCheck);
1509     }
1510     case IITDescriptor::Pointer: {
1511       PointerType *PT = dyn_cast<PointerType>(Ty);
1512       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1513         return true;
1514       if (!PT->isOpaque()) {
1515         /* Manually consume a pointer to empty struct descriptor, which is
1516          * used for externref. We don't want to enforce that the struct is
1517          * anonymous in this case. (This renders externref intrinsics
1518          * non-unique, but this will go away with opaque pointers anyway.) */
1519         if (Infos.front().Kind == IITDescriptor::Struct &&
1520             Infos.front().Struct_NumElements == 0) {
1521           Infos = Infos.slice(1);
1522           return false;
1523         }
1524         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1525                                   ArgTys, DeferredChecks, IsDeferredCheck);
1526       }
1527       // Consume IIT descriptors relating to the pointer element type.
1528       // FIXME: Intrinsic type matching of nested single value types or even
1529       // aggregates doesn't work properly with opaque pointers but hopefully
1530       // doesn't happen in practice.
1531       while (Infos.front().Kind == IITDescriptor::Pointer ||
1532              Infos.front().Kind == IITDescriptor::Vector)
1533         Infos = Infos.slice(1);
1534       assert((Infos.front().Kind != IITDescriptor::Argument ||
1535               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1536              "Unsupported polymorphic pointer type with opaque pointer");
1537       Infos = Infos.slice(1);
1538       return false;
1539     }
1540 
1541     case IITDescriptor::Struct: {
1542       StructType *ST = dyn_cast<StructType>(Ty);
1543       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1544           ST->getNumElements() != D.Struct_NumElements)
1545         return true;
1546 
1547       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1548         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1549                                DeferredChecks, IsDeferredCheck))
1550           return true;
1551       return false;
1552     }
1553 
1554     case IITDescriptor::Argument:
1555       // If this is the second occurrence of an argument,
1556       // verify that the later instance matches the previous instance.
1557       if (D.getArgumentNumber() < ArgTys.size())
1558         return Ty != ArgTys[D.getArgumentNumber()];
1559 
1560       if (D.getArgumentNumber() > ArgTys.size() ||
1561           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1562         return IsDeferredCheck || DeferCheck(Ty);
1563 
1564       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1565              "Table consistency error");
1566       ArgTys.push_back(Ty);
1567 
1568       switch (D.getArgumentKind()) {
1569         case IITDescriptor::AK_Any:        return false; // Success
1570         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1571         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1572         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1573         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1574         default:                           break;
1575       }
1576       llvm_unreachable("all argument kinds not covered");
1577 
1578     case IITDescriptor::ExtendArgument: {
1579       // If this is a forward reference, defer the check for later.
1580       if (D.getArgumentNumber() >= ArgTys.size())
1581         return IsDeferredCheck || DeferCheck(Ty);
1582 
1583       Type *NewTy = ArgTys[D.getArgumentNumber()];
1584       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1585         NewTy = VectorType::getExtendedElementVectorType(VTy);
1586       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1587         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1588       else
1589         return true;
1590 
1591       return Ty != NewTy;
1592     }
1593     case IITDescriptor::TruncArgument: {
1594       // If this is a forward reference, defer the check for later.
1595       if (D.getArgumentNumber() >= ArgTys.size())
1596         return IsDeferredCheck || DeferCheck(Ty);
1597 
1598       Type *NewTy = ArgTys[D.getArgumentNumber()];
1599       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1600         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1601       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1602         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1603       else
1604         return true;
1605 
1606       return Ty != NewTy;
1607     }
1608     case IITDescriptor::HalfVecArgument:
1609       // If this is a forward reference, defer the check for later.
1610       if (D.getArgumentNumber() >= ArgTys.size())
1611         return IsDeferredCheck || DeferCheck(Ty);
1612       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1613              VectorType::getHalfElementsVectorType(
1614                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1615     case IITDescriptor::SameVecWidthArgument: {
1616       if (D.getArgumentNumber() >= ArgTys.size()) {
1617         // Defer check and subsequent check for the vector element type.
1618         Infos = Infos.slice(1);
1619         return IsDeferredCheck || DeferCheck(Ty);
1620       }
1621       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1622       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1623       // Both must be vectors of the same number of elements or neither.
1624       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1625         return true;
1626       Type *EltTy = Ty;
1627       if (ThisArgType) {
1628         if (ReferenceType->getElementCount() !=
1629             ThisArgType->getElementCount())
1630           return true;
1631         EltTy = ThisArgType->getElementType();
1632       }
1633       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1634                                 IsDeferredCheck);
1635     }
1636     case IITDescriptor::PtrToArgument: {
1637       if (D.getArgumentNumber() >= ArgTys.size())
1638         return IsDeferredCheck || DeferCheck(Ty);
1639       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1640       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1641       return (!ThisArgType ||
1642               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1643     }
1644     case IITDescriptor::PtrToElt: {
1645       if (D.getArgumentNumber() >= ArgTys.size())
1646         return IsDeferredCheck || DeferCheck(Ty);
1647       VectorType * ReferenceType =
1648         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1649       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1650 
1651       if (!ThisArgType || !ReferenceType)
1652         return true;
1653       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1654           ReferenceType->getElementType());
1655     }
1656     case IITDescriptor::AnyPtrToElt: {
1657       unsigned RefArgNumber = D.getRefArgNumber();
1658       if (RefArgNumber >= ArgTys.size()) {
1659         if (IsDeferredCheck)
1660           return true;
1661         // If forward referencing, already add the pointer type and
1662         // defer the checks for later.
1663         ArgTys.push_back(Ty);
1664         return DeferCheck(Ty);
1665       }
1666 
1667       if (!IsDeferredCheck) {
1668         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1669                "Table consistency error");
1670         ArgTys.push_back(Ty);
1671       }
1672 
1673       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1674       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1675       if (!ThisArgType || !ReferenceType)
1676         return true;
1677       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1678           ReferenceType->getElementType());
1679     }
1680     case IITDescriptor::VecOfAnyPtrsToElt: {
1681       unsigned RefArgNumber = D.getRefArgNumber();
1682       if (RefArgNumber >= ArgTys.size()) {
1683         if (IsDeferredCheck)
1684           return true;
1685         // If forward referencing, already add the pointer-vector type and
1686         // defer the checks for later.
1687         ArgTys.push_back(Ty);
1688         return DeferCheck(Ty);
1689       }
1690 
1691       if (!IsDeferredCheck){
1692         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1693                "Table consistency error");
1694         ArgTys.push_back(Ty);
1695       }
1696 
1697       // Verify the overloaded type "matches" the Ref type.
1698       // i.e. Ty is a vector with the same width as Ref.
1699       // Composed of pointers to the same element type as Ref.
1700       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1701       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1702       if (!ThisArgVecTy || !ReferenceType ||
1703           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1704         return true;
1705       PointerType *ThisArgEltTy =
1706           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1707       if (!ThisArgEltTy)
1708         return true;
1709       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1710           ReferenceType->getElementType());
1711     }
1712     case IITDescriptor::VecElementArgument: {
1713       if (D.getArgumentNumber() >= ArgTys.size())
1714         return IsDeferredCheck ? true : DeferCheck(Ty);
1715       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1716       return !ReferenceType || Ty != ReferenceType->getElementType();
1717     }
1718     case IITDescriptor::Subdivide2Argument:
1719     case IITDescriptor::Subdivide4Argument: {
1720       // If this is a forward reference, defer the check for later.
1721       if (D.getArgumentNumber() >= ArgTys.size())
1722         return IsDeferredCheck || DeferCheck(Ty);
1723 
1724       Type *NewTy = ArgTys[D.getArgumentNumber()];
1725       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1726         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1727         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1728         return Ty != NewTy;
1729       }
1730       return true;
1731     }
1732     case IITDescriptor::VecOfBitcastsToInt: {
1733       if (D.getArgumentNumber() >= ArgTys.size())
1734         return IsDeferredCheck || DeferCheck(Ty);
1735       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1736       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1737       if (!ThisArgVecTy || !ReferenceType)
1738         return true;
1739       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1740     }
1741   }
1742   llvm_unreachable("unhandled");
1743 }
1744 
1745 Intrinsic::MatchIntrinsicTypesResult
1746 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1747                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1748                                    SmallVectorImpl<Type *> &ArgTys) {
1749   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1750   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1751                          false))
1752     return MatchIntrinsicTypes_NoMatchRet;
1753 
1754   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1755 
1756   for (auto *Ty : FTy->params())
1757     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1758       return MatchIntrinsicTypes_NoMatchArg;
1759 
1760   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1761     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1762     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1763                            true))
1764       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1765                                          : MatchIntrinsicTypes_NoMatchArg;
1766   }
1767 
1768   return MatchIntrinsicTypes_Match;
1769 }
1770 
1771 bool
1772 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1773                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1774   // If there are no descriptors left, then it can't be a vararg.
1775   if (Infos.empty())
1776     return isVarArg;
1777 
1778   // There should be only one descriptor remaining at this point.
1779   if (Infos.size() != 1)
1780     return true;
1781 
1782   // Check and verify the descriptor.
1783   IITDescriptor D = Infos.front();
1784   Infos = Infos.slice(1);
1785   if (D.Kind == IITDescriptor::VarArg)
1786     return !isVarArg;
1787 
1788   return true;
1789 }
1790 
1791 bool Intrinsic::getIntrinsicSignature(Function *F,
1792                                       SmallVectorImpl<Type *> &ArgTys) {
1793   Intrinsic::ID ID = F->getIntrinsicID();
1794   if (!ID)
1795     return false;
1796 
1797   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1798   getIntrinsicInfoTableEntries(ID, Table);
1799   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1800 
1801   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1802                                          ArgTys) !=
1803       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1804     return false;
1805   }
1806   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1807                                       TableRef))
1808     return false;
1809   return true;
1810 }
1811 
1812 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1813   SmallVector<Type *, 4> ArgTys;
1814   if (!getIntrinsicSignature(F, ArgTys))
1815     return std::nullopt;
1816 
1817   Intrinsic::ID ID = F->getIntrinsicID();
1818   StringRef Name = F->getName();
1819   std::string WantedName =
1820       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1821   if (Name == WantedName)
1822     return std::nullopt;
1823 
1824   Function *NewDecl = [&] {
1825     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1826       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1827         if (ExistingF->getFunctionType() == F->getFunctionType())
1828           return ExistingF;
1829 
1830       // The name already exists, but is not a function or has the wrong
1831       // prototype. Make place for the new one by renaming the old version.
1832       // Either this old version will be removed later on or the module is
1833       // invalid and we'll get an error.
1834       ExistingGV->setName(WantedName + ".renamed");
1835     }
1836     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1837   }();
1838 
1839   NewDecl->setCallingConv(F->getCallingConv());
1840   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1841          "Shouldn't change the signature");
1842   return NewDecl;
1843 }
1844 
1845 /// hasAddressTaken - returns true if there are any uses of this function
1846 /// other than direct calls or invokes to it. Optionally ignores callback
1847 /// uses, assume like pointer annotation calls, and references in llvm.used
1848 /// and llvm.compiler.used variables.
1849 bool Function::hasAddressTaken(const User **PutOffender,
1850                                bool IgnoreCallbackUses,
1851                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1852                                bool IgnoreARCAttachedCall) const {
1853   for (const Use &U : uses()) {
1854     const User *FU = U.getUser();
1855     if (isa<BlockAddress>(FU))
1856       continue;
1857 
1858     if (IgnoreCallbackUses) {
1859       AbstractCallSite ACS(&U);
1860       if (ACS && ACS.isCallbackCall())
1861         continue;
1862     }
1863 
1864     const auto *Call = dyn_cast<CallBase>(FU);
1865     if (!Call) {
1866       if (IgnoreAssumeLikeCalls &&
1867           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1868           all_of(FU->users(), [](const User *U) {
1869             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1870               return I->isAssumeLikeIntrinsic();
1871             return false;
1872           })) {
1873         continue;
1874       }
1875 
1876       if (IgnoreLLVMUsed && !FU->user_empty()) {
1877         const User *FUU = FU;
1878         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1879             FU->hasOneUse() && !FU->user_begin()->user_empty())
1880           FUU = *FU->user_begin();
1881         if (llvm::all_of(FUU->users(), [](const User *U) {
1882               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1883                 return GV->hasName() &&
1884                        (GV->getName().equals("llvm.compiler.used") ||
1885                         GV->getName().equals("llvm.used"));
1886               return false;
1887             }))
1888           continue;
1889       }
1890       if (PutOffender)
1891         *PutOffender = FU;
1892       return true;
1893     }
1894 
1895     if (IgnoreAssumeLikeCalls) {
1896       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1897         if (I->isAssumeLikeIntrinsic())
1898           continue;
1899     }
1900 
1901     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1902       if (IgnoreARCAttachedCall &&
1903           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1904                                       U.getOperandNo()))
1905         continue;
1906 
1907       if (PutOffender)
1908         *PutOffender = FU;
1909       return true;
1910     }
1911   }
1912   return false;
1913 }
1914 
1915 bool Function::isDefTriviallyDead() const {
1916   // Check the linkage
1917   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1918       !hasAvailableExternallyLinkage())
1919     return false;
1920 
1921   // Check if the function is used by anything other than a blockaddress.
1922   for (const User *U : users())
1923     if (!isa<BlockAddress>(U))
1924       return false;
1925 
1926   return true;
1927 }
1928 
1929 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1930 /// setjmp or other function that gcc recognizes as "returning twice".
1931 bool Function::callsFunctionThatReturnsTwice() const {
1932   for (const Instruction &I : instructions(this))
1933     if (const auto *Call = dyn_cast<CallBase>(&I))
1934       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1935         return true;
1936 
1937   return false;
1938 }
1939 
1940 Constant *Function::getPersonalityFn() const {
1941   assert(hasPersonalityFn() && getNumOperands());
1942   return cast<Constant>(Op<0>());
1943 }
1944 
1945 void Function::setPersonalityFn(Constant *Fn) {
1946   setHungoffOperand<0>(Fn);
1947   setValueSubclassDataBit(3, Fn != nullptr);
1948 }
1949 
1950 Constant *Function::getPrefixData() const {
1951   assert(hasPrefixData() && getNumOperands());
1952   return cast<Constant>(Op<1>());
1953 }
1954 
1955 void Function::setPrefixData(Constant *PrefixData) {
1956   setHungoffOperand<1>(PrefixData);
1957   setValueSubclassDataBit(1, PrefixData != nullptr);
1958 }
1959 
1960 Constant *Function::getPrologueData() const {
1961   assert(hasPrologueData() && getNumOperands());
1962   return cast<Constant>(Op<2>());
1963 }
1964 
1965 void Function::setPrologueData(Constant *PrologueData) {
1966   setHungoffOperand<2>(PrologueData);
1967   setValueSubclassDataBit(2, PrologueData != nullptr);
1968 }
1969 
1970 void Function::allocHungoffUselist() {
1971   // If we've already allocated a uselist, stop here.
1972   if (getNumOperands())
1973     return;
1974 
1975   allocHungoffUses(3, /*IsPhi=*/ false);
1976   setNumHungOffUseOperands(3);
1977 
1978   // Initialize the uselist with placeholder operands to allow traversal.
1979   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1980   Op<0>().set(CPN);
1981   Op<1>().set(CPN);
1982   Op<2>().set(CPN);
1983 }
1984 
1985 template <int Idx>
1986 void Function::setHungoffOperand(Constant *C) {
1987   if (C) {
1988     allocHungoffUselist();
1989     Op<Idx>().set(C);
1990   } else if (getNumOperands()) {
1991     Op<Idx>().set(
1992         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1993   }
1994 }
1995 
1996 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1997   assert(Bit < 16 && "SubclassData contains only 16 bits");
1998   if (On)
1999     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2000   else
2001     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2002 }
2003 
2004 void Function::setEntryCount(ProfileCount Count,
2005                              const DenseSet<GlobalValue::GUID> *S) {
2006 #if !defined(NDEBUG)
2007   auto PrevCount = getEntryCount();
2008   assert(!PrevCount || PrevCount->getType() == Count.getType());
2009 #endif
2010 
2011   auto ImportGUIDs = getImportGUIDs();
2012   if (S == nullptr && ImportGUIDs.size())
2013     S = &ImportGUIDs;
2014 
2015   MDBuilder MDB(getContext());
2016   setMetadata(
2017       LLVMContext::MD_prof,
2018       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2019 }
2020 
2021 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2022                              const DenseSet<GlobalValue::GUID> *Imports) {
2023   setEntryCount(ProfileCount(Count, Type), Imports);
2024 }
2025 
2026 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2027   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2028   if (MD && MD->getOperand(0))
2029     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2030       if (MDS->getString().equals("function_entry_count")) {
2031         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2032         uint64_t Count = CI->getValue().getZExtValue();
2033         // A value of -1 is used for SamplePGO when there were no samples.
2034         // Treat this the same as unknown.
2035         if (Count == (uint64_t)-1)
2036           return std::nullopt;
2037         return ProfileCount(Count, PCT_Real);
2038       } else if (AllowSynthetic &&
2039                  MDS->getString().equals("synthetic_function_entry_count")) {
2040         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2041         uint64_t Count = CI->getValue().getZExtValue();
2042         return ProfileCount(Count, PCT_Synthetic);
2043       }
2044     }
2045   return std::nullopt;
2046 }
2047 
2048 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2049   DenseSet<GlobalValue::GUID> R;
2050   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2051     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2052       if (MDS->getString().equals("function_entry_count"))
2053         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2054           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2055                        ->getValue()
2056                        .getZExtValue());
2057   return R;
2058 }
2059 
2060 void Function::setSectionPrefix(StringRef Prefix) {
2061   MDBuilder MDB(getContext());
2062   setMetadata(LLVMContext::MD_section_prefix,
2063               MDB.createFunctionSectionPrefix(Prefix));
2064 }
2065 
2066 std::optional<StringRef> Function::getSectionPrefix() const {
2067   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2068     assert(cast<MDString>(MD->getOperand(0))
2069                ->getString()
2070                .equals("function_section_prefix") &&
2071            "Metadata not match");
2072     return cast<MDString>(MD->getOperand(1))->getString();
2073   }
2074   return std::nullopt;
2075 }
2076 
2077 bool Function::nullPointerIsDefined() const {
2078   return hasFnAttribute(Attribute::NullPointerIsValid);
2079 }
2080 
2081 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2082   if (F && F->nullPointerIsDefined())
2083     return true;
2084 
2085   if (AS != 0)
2086     return true;
2087 
2088   return false;
2089 }
2090