1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { 228 return cast<FunctionType>(getValueType()); 229 } 230 231 bool Function::isVarArg() const { 232 return getFunctionType()->isVarArg(); 233 } 234 235 Type *Function::getReturnType() const { 236 return getFunctionType()->getReturnType(); 237 } 238 239 void Function::removeFromParent() { 240 getParent()->getFunctionList().remove(getIterator()); 241 } 242 243 void Function::eraseFromParent() { 244 getParent()->getFunctionList().erase(getIterator()); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Function Implementation 249 //===----------------------------------------------------------------------===// 250 251 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 252 Module *ParentModule) 253 : GlobalObject(Ty, Value::FunctionVal, 254 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 255 assert(FunctionType::isValidReturnType(getReturnType()) && 256 "invalid return type"); 257 setGlobalObjectSubClassData(0); 258 SymTab = new ValueSymbolTable(); 259 260 // If the function has arguments, mark them as lazily built. 261 if (Ty->getNumParams()) 262 setValueSubclassData(1); // Set the "has lazy arguments" bit. 263 264 if (ParentModule) 265 ParentModule->getFunctionList().push_back(this); 266 267 // Ensure intrinsics have the right parameter attributes. 268 // Note, the IntID field will have been set in Value::setName if this function 269 // name is a valid intrinsic ID. 270 if (IntID) 271 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 272 } 273 274 Function::~Function() { 275 dropAllReferences(); // After this it is safe to delete instructions. 276 277 // Delete all of the method arguments and unlink from symbol table... 278 ArgumentList.clear(); 279 delete SymTab; 280 281 // Remove the function from the on-the-side GC table. 282 clearGC(); 283 } 284 285 void Function::BuildLazyArguments() const { 286 // Create the arguments vector, all arguments start out unnamed. 287 FunctionType *FT = getFunctionType(); 288 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 289 assert(!FT->getParamType(i)->isVoidTy() && 290 "Cannot have void typed arguments!"); 291 ArgumentList.push_back(new Argument(FT->getParamType(i))); 292 } 293 294 // Clear the lazy arguments bit. 295 unsigned SDC = getSubclassDataFromValue(); 296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 297 } 298 299 size_t Function::arg_size() const { 300 return getFunctionType()->getNumParams(); 301 } 302 bool Function::arg_empty() const { 303 return getFunctionType()->getNumParams() == 0; 304 } 305 306 void Function::setParent(Module *parent) { 307 Parent = parent; 308 } 309 310 // dropAllReferences() - This function causes all the subinstructions to "let 311 // go" of all references that they are maintaining. This allows one to 312 // 'delete' a whole class at a time, even though there may be circular 313 // references... first all references are dropped, and all use counts go to 314 // zero. Then everything is deleted for real. Note that no operations are 315 // valid on an object that has "dropped all references", except operator 316 // delete. 317 // 318 void Function::dropAllReferences() { 319 setIsMaterializable(false); 320 321 for (iterator I = begin(), E = end(); I != E; ++I) 322 I->dropAllReferences(); 323 324 // Delete all basic blocks. They are now unused, except possibly by 325 // blockaddresses, but BasicBlock's destructor takes care of those. 326 while (!BasicBlocks.empty()) 327 BasicBlocks.begin()->eraseFromParent(); 328 329 // Drop uses of any optional data (real or placeholder). 330 if (getNumOperands()) { 331 User::dropAllReferences(); 332 setNumHungOffUseOperands(0); 333 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 334 } 335 336 // Metadata is stored in a side-table. 337 clearMetadata(); 338 } 339 340 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 341 AttributeSet PAL = getAttributes(); 342 PAL = PAL.addAttribute(getContext(), i, attr); 343 setAttributes(PAL); 344 } 345 346 void Function::addAttributes(unsigned i, AttributeSet attrs) { 347 AttributeSet PAL = getAttributes(); 348 PAL = PAL.addAttributes(getContext(), i, attrs); 349 setAttributes(PAL); 350 } 351 352 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 353 AttributeSet PAL = getAttributes(); 354 PAL = PAL.removeAttributes(getContext(), i, attrs); 355 setAttributes(PAL); 356 } 357 358 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 359 AttributeSet PAL = getAttributes(); 360 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 361 setAttributes(PAL); 362 } 363 364 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 365 AttributeSet PAL = getAttributes(); 366 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 367 setAttributes(PAL); 368 } 369 370 const std::string &Function::getGC() const { 371 assert(hasGC() && "Function has no collector"); 372 return getContext().getGC(*this); 373 } 374 375 void Function::setGC(const std::string Str) { 376 setValueSubclassDataBit(14, !Str.empty()); 377 getContext().setGC(*this, std::move(Str)); 378 } 379 380 void Function::clearGC() { 381 if (!hasGC()) 382 return; 383 getContext().deleteGC(*this); 384 setValueSubclassDataBit(14, false); 385 } 386 387 /// Copy all additional attributes (those not needed to create a Function) from 388 /// the Function Src to this one. 389 void Function::copyAttributesFrom(const GlobalValue *Src) { 390 GlobalObject::copyAttributesFrom(Src); 391 const Function *SrcF = dyn_cast<Function>(Src); 392 if (!SrcF) 393 return; 394 395 setCallingConv(SrcF->getCallingConv()); 396 setAttributes(SrcF->getAttributes()); 397 if (SrcF->hasGC()) 398 setGC(SrcF->getGC()); 399 else 400 clearGC(); 401 if (SrcF->hasPersonalityFn()) 402 setPersonalityFn(SrcF->getPersonalityFn()); 403 if (SrcF->hasPrefixData()) 404 setPrefixData(SrcF->getPrefixData()); 405 if (SrcF->hasPrologueData()) 406 setPrologueData(SrcF->getPrologueData()); 407 } 408 409 /// Table of string intrinsic names indexed by enum value. 410 static const char * const IntrinsicNameTable[] = { 411 "not_intrinsic", 412 #define GET_INTRINSIC_NAME_TABLE 413 #include "llvm/IR/Intrinsics.gen" 414 #undef GET_INTRINSIC_NAME_TABLE 415 }; 416 417 /// \brief This does the actual lookup of an intrinsic ID which 418 /// matches the given function name. 419 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 420 StringRef Name = ValName->getKey(); 421 422 ArrayRef<const char *> NameTable(&IntrinsicNameTable[1], 423 std::end(IntrinsicNameTable)); 424 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 425 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1); 426 if (ID == Intrinsic::not_intrinsic) 427 return ID; 428 429 // If the intrinsic is not overloaded, require an exact match. If it is 430 // overloaded, require a prefix match. 431 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 432 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 433 } 434 435 void Function::recalculateIntrinsicID() { 436 const ValueName *ValName = this->getValueName(); 437 if (!ValName || !isIntrinsic()) { 438 IntID = Intrinsic::not_intrinsic; 439 return; 440 } 441 IntID = lookupIntrinsicID(ValName); 442 } 443 444 /// Returns a stable mangling for the type specified for use in the name 445 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 446 /// of named types is simply their name. Manglings for unnamed types consist 447 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 448 /// combined with the mangling of their component types. A vararg function 449 /// type will have a suffix of 'vararg'. Since function types can contain 450 /// other function types, we close a function type mangling with suffix 'f' 451 /// which can't be confused with it's prefix. This ensures we don't have 452 /// collisions between two unrelated function types. Otherwise, you might 453 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 454 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 455 /// cases) fall back to the MVT codepath, where they could be mangled to 456 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 457 /// everything. 458 static std::string getMangledTypeStr(Type* Ty) { 459 std::string Result; 460 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 461 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 462 getMangledTypeStr(PTyp->getElementType()); 463 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 464 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 465 getMangledTypeStr(ATyp->getElementType()); 466 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 467 assert(!STyp->isLiteral() && "TODO: implement literal types"); 468 Result += STyp->getName(); 469 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 470 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 471 for (size_t i = 0; i < FT->getNumParams(); i++) 472 Result += getMangledTypeStr(FT->getParamType(i)); 473 if (FT->isVarArg()) 474 Result += "vararg"; 475 // Ensure nested function types are distinguishable. 476 Result += "f"; 477 } else if (isa<VectorType>(Ty)) 478 Result += "v" + utostr(Ty->getVectorNumElements()) + 479 getMangledTypeStr(Ty->getVectorElementType()); 480 else if (Ty) 481 Result += EVT::getEVT(Ty).getEVTString(); 482 return Result; 483 } 484 485 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 486 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 487 if (Tys.empty()) 488 return IntrinsicNameTable[id]; 489 std::string Result(IntrinsicNameTable[id]); 490 for (unsigned i = 0; i < Tys.size(); ++i) { 491 Result += "." + getMangledTypeStr(Tys[i]); 492 } 493 return Result; 494 } 495 496 497 /// IIT_Info - These are enumerators that describe the entries returned by the 498 /// getIntrinsicInfoTableEntries function. 499 /// 500 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 501 enum IIT_Info { 502 // Common values should be encoded with 0-15. 503 IIT_Done = 0, 504 IIT_I1 = 1, 505 IIT_I8 = 2, 506 IIT_I16 = 3, 507 IIT_I32 = 4, 508 IIT_I64 = 5, 509 IIT_F16 = 6, 510 IIT_F32 = 7, 511 IIT_F64 = 8, 512 IIT_V2 = 9, 513 IIT_V4 = 10, 514 IIT_V8 = 11, 515 IIT_V16 = 12, 516 IIT_V32 = 13, 517 IIT_PTR = 14, 518 IIT_ARG = 15, 519 520 // Values from 16+ are only encodable with the inefficient encoding. 521 IIT_V64 = 16, 522 IIT_MMX = 17, 523 IIT_TOKEN = 18, 524 IIT_METADATA = 19, 525 IIT_EMPTYSTRUCT = 20, 526 IIT_STRUCT2 = 21, 527 IIT_STRUCT3 = 22, 528 IIT_STRUCT4 = 23, 529 IIT_STRUCT5 = 24, 530 IIT_EXTEND_ARG = 25, 531 IIT_TRUNC_ARG = 26, 532 IIT_ANYPTR = 27, 533 IIT_V1 = 28, 534 IIT_VARARG = 29, 535 IIT_HALF_VEC_ARG = 30, 536 IIT_SAME_VEC_WIDTH_ARG = 31, 537 IIT_PTR_TO_ARG = 32, 538 IIT_VEC_OF_PTRS_TO_ELT = 33, 539 IIT_I128 = 34, 540 IIT_V512 = 35, 541 IIT_V1024 = 36 542 }; 543 544 545 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 546 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 547 IIT_Info Info = IIT_Info(Infos[NextElt++]); 548 unsigned StructElts = 2; 549 using namespace Intrinsic; 550 551 switch (Info) { 552 case IIT_Done: 553 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 554 return; 555 case IIT_VARARG: 556 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 557 return; 558 case IIT_MMX: 559 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 560 return; 561 case IIT_TOKEN: 562 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 563 return; 564 case IIT_METADATA: 565 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 566 return; 567 case IIT_F16: 568 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 569 return; 570 case IIT_F32: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 572 return; 573 case IIT_F64: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 575 return; 576 case IIT_I1: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 578 return; 579 case IIT_I8: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 581 return; 582 case IIT_I16: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 584 return; 585 case IIT_I32: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 587 return; 588 case IIT_I64: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 590 return; 591 case IIT_I128: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 593 return; 594 case IIT_V1: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 596 DecodeIITType(NextElt, Infos, OutputTable); 597 return; 598 case IIT_V2: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 600 DecodeIITType(NextElt, Infos, OutputTable); 601 return; 602 case IIT_V4: 603 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 604 DecodeIITType(NextElt, Infos, OutputTable); 605 return; 606 case IIT_V8: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 608 DecodeIITType(NextElt, Infos, OutputTable); 609 return; 610 case IIT_V16: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 612 DecodeIITType(NextElt, Infos, OutputTable); 613 return; 614 case IIT_V32: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 616 DecodeIITType(NextElt, Infos, OutputTable); 617 return; 618 case IIT_V64: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V512: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_V1024: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_PTR: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 632 DecodeIITType(NextElt, Infos, OutputTable); 633 return; 634 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 636 Infos[NextElt++])); 637 DecodeIITType(NextElt, Infos, OutputTable); 638 return; 639 } 640 case IIT_ARG: { 641 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 643 return; 644 } 645 case IIT_EXTEND_ARG: { 646 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 648 ArgInfo)); 649 return; 650 } 651 case IIT_TRUNC_ARG: { 652 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 654 ArgInfo)); 655 return; 656 } 657 case IIT_HALF_VEC_ARG: { 658 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 660 ArgInfo)); 661 return; 662 } 663 case IIT_SAME_VEC_WIDTH_ARG: { 664 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 666 ArgInfo)); 667 return; 668 } 669 case IIT_PTR_TO_ARG: { 670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 672 ArgInfo)); 673 return; 674 } 675 case IIT_VEC_OF_PTRS_TO_ELT: { 676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 678 ArgInfo)); 679 return; 680 } 681 case IIT_EMPTYSTRUCT: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 683 return; 684 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 685 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 686 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 687 case IIT_STRUCT2: { 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 689 690 for (unsigned i = 0; i != StructElts; ++i) 691 DecodeIITType(NextElt, Infos, OutputTable); 692 return; 693 } 694 } 695 llvm_unreachable("unhandled"); 696 } 697 698 699 #define GET_INTRINSIC_GENERATOR_GLOBAL 700 #include "llvm/IR/Intrinsics.gen" 701 #undef GET_INTRINSIC_GENERATOR_GLOBAL 702 703 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 704 SmallVectorImpl<IITDescriptor> &T){ 705 // Check to see if the intrinsic's type was expressible by the table. 706 unsigned TableVal = IIT_Table[id-1]; 707 708 // Decode the TableVal into an array of IITValues. 709 SmallVector<unsigned char, 8> IITValues; 710 ArrayRef<unsigned char> IITEntries; 711 unsigned NextElt = 0; 712 if ((TableVal >> 31) != 0) { 713 // This is an offset into the IIT_LongEncodingTable. 714 IITEntries = IIT_LongEncodingTable; 715 716 // Strip sentinel bit. 717 NextElt = (TableVal << 1) >> 1; 718 } else { 719 // Decode the TableVal into an array of IITValues. If the entry was encoded 720 // into a single word in the table itself, decode it now. 721 do { 722 IITValues.push_back(TableVal & 0xF); 723 TableVal >>= 4; 724 } while (TableVal); 725 726 IITEntries = IITValues; 727 NextElt = 0; 728 } 729 730 // Okay, decode the table into the output vector of IITDescriptors. 731 DecodeIITType(NextElt, IITEntries, T); 732 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 733 DecodeIITType(NextElt, IITEntries, T); 734 } 735 736 737 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 738 ArrayRef<Type*> Tys, LLVMContext &Context) { 739 using namespace Intrinsic; 740 IITDescriptor D = Infos.front(); 741 Infos = Infos.slice(1); 742 743 switch (D.Kind) { 744 case IITDescriptor::Void: return Type::getVoidTy(Context); 745 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 746 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 747 case IITDescriptor::Token: return Type::getTokenTy(Context); 748 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 749 case IITDescriptor::Half: return Type::getHalfTy(Context); 750 case IITDescriptor::Float: return Type::getFloatTy(Context); 751 case IITDescriptor::Double: return Type::getDoubleTy(Context); 752 753 case IITDescriptor::Integer: 754 return IntegerType::get(Context, D.Integer_Width); 755 case IITDescriptor::Vector: 756 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 757 case IITDescriptor::Pointer: 758 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 759 D.Pointer_AddressSpace); 760 case IITDescriptor::Struct: { 761 Type *Elts[5]; 762 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 763 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 764 Elts[i] = DecodeFixedType(Infos, Tys, Context); 765 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 766 } 767 768 case IITDescriptor::Argument: 769 return Tys[D.getArgumentNumber()]; 770 case IITDescriptor::ExtendArgument: { 771 Type *Ty = Tys[D.getArgumentNumber()]; 772 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 773 return VectorType::getExtendedElementVectorType(VTy); 774 775 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 776 } 777 case IITDescriptor::TruncArgument: { 778 Type *Ty = Tys[D.getArgumentNumber()]; 779 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 780 return VectorType::getTruncatedElementVectorType(VTy); 781 782 IntegerType *ITy = cast<IntegerType>(Ty); 783 assert(ITy->getBitWidth() % 2 == 0); 784 return IntegerType::get(Context, ITy->getBitWidth() / 2); 785 } 786 case IITDescriptor::HalfVecArgument: 787 return VectorType::getHalfElementsVectorType(cast<VectorType>( 788 Tys[D.getArgumentNumber()])); 789 case IITDescriptor::SameVecWidthArgument: { 790 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 791 Type *Ty = Tys[D.getArgumentNumber()]; 792 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 793 return VectorType::get(EltTy, VTy->getNumElements()); 794 } 795 llvm_unreachable("unhandled"); 796 } 797 case IITDescriptor::PtrToArgument: { 798 Type *Ty = Tys[D.getArgumentNumber()]; 799 return PointerType::getUnqual(Ty); 800 } 801 case IITDescriptor::VecOfPtrsToElt: { 802 Type *Ty = Tys[D.getArgumentNumber()]; 803 VectorType *VTy = dyn_cast<VectorType>(Ty); 804 if (!VTy) 805 llvm_unreachable("Expected an argument of Vector Type"); 806 Type *EltTy = VTy->getVectorElementType(); 807 return VectorType::get(PointerType::getUnqual(EltTy), 808 VTy->getNumElements()); 809 } 810 } 811 llvm_unreachable("unhandled"); 812 } 813 814 815 816 FunctionType *Intrinsic::getType(LLVMContext &Context, 817 ID id, ArrayRef<Type*> Tys) { 818 SmallVector<IITDescriptor, 8> Table; 819 getIntrinsicInfoTableEntries(id, Table); 820 821 ArrayRef<IITDescriptor> TableRef = Table; 822 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 823 824 SmallVector<Type*, 8> ArgTys; 825 while (!TableRef.empty()) 826 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 827 828 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 829 // If we see void type as the type of the last argument, it is vararg intrinsic 830 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 831 ArgTys.pop_back(); 832 return FunctionType::get(ResultTy, ArgTys, true); 833 } 834 return FunctionType::get(ResultTy, ArgTys, false); 835 } 836 837 bool Intrinsic::isOverloaded(ID id) { 838 #define GET_INTRINSIC_OVERLOAD_TABLE 839 #include "llvm/IR/Intrinsics.gen" 840 #undef GET_INTRINSIC_OVERLOAD_TABLE 841 } 842 843 bool Intrinsic::isLeaf(ID id) { 844 switch (id) { 845 default: 846 return true; 847 848 case Intrinsic::experimental_gc_statepoint: 849 case Intrinsic::experimental_patchpoint_void: 850 case Intrinsic::experimental_patchpoint_i64: 851 return false; 852 } 853 } 854 855 /// This defines the "Intrinsic::getAttributes(ID id)" method. 856 #define GET_INTRINSIC_ATTRIBUTES 857 #include "llvm/IR/Intrinsics.gen" 858 #undef GET_INTRINSIC_ATTRIBUTES 859 860 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 861 // There can never be multiple globals with the same name of different types, 862 // because intrinsics must be a specific type. 863 return 864 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 865 getType(M->getContext(), id, Tys))); 866 } 867 868 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 869 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 870 #include "llvm/IR/Intrinsics.gen" 871 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 872 873 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 874 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 875 #include "llvm/IR/Intrinsics.gen" 876 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 877 878 /// hasAddressTaken - returns true if there are any uses of this function 879 /// other than direct calls or invokes to it. 880 bool Function::hasAddressTaken(const User* *PutOffender) const { 881 for (const Use &U : uses()) { 882 const User *FU = U.getUser(); 883 if (isa<BlockAddress>(FU)) 884 continue; 885 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 886 return PutOffender ? (*PutOffender = FU, true) : true; 887 ImmutableCallSite CS(cast<Instruction>(FU)); 888 if (!CS.isCallee(&U)) 889 return PutOffender ? (*PutOffender = FU, true) : true; 890 } 891 return false; 892 } 893 894 bool Function::isDefTriviallyDead() const { 895 // Check the linkage 896 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 897 !hasAvailableExternallyLinkage()) 898 return false; 899 900 // Check if the function is used by anything other than a blockaddress. 901 for (const User *U : users()) 902 if (!isa<BlockAddress>(U)) 903 return false; 904 905 return true; 906 } 907 908 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 909 /// setjmp or other function that gcc recognizes as "returning twice". 910 bool Function::callsFunctionThatReturnsTwice() const { 911 for (const_inst_iterator 912 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 913 ImmutableCallSite CS(&*I); 914 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 915 return true; 916 } 917 918 return false; 919 } 920 921 Constant *Function::getPersonalityFn() const { 922 assert(hasPersonalityFn() && getNumOperands()); 923 return cast<Constant>(Op<0>()); 924 } 925 926 void Function::setPersonalityFn(Constant *Fn) { 927 setHungoffOperand<0>(Fn); 928 setValueSubclassDataBit(3, Fn != nullptr); 929 } 930 931 Constant *Function::getPrefixData() const { 932 assert(hasPrefixData() && getNumOperands()); 933 return cast<Constant>(Op<1>()); 934 } 935 936 void Function::setPrefixData(Constant *PrefixData) { 937 setHungoffOperand<1>(PrefixData); 938 setValueSubclassDataBit(1, PrefixData != nullptr); 939 } 940 941 Constant *Function::getPrologueData() const { 942 assert(hasPrologueData() && getNumOperands()); 943 return cast<Constant>(Op<2>()); 944 } 945 946 void Function::setPrologueData(Constant *PrologueData) { 947 setHungoffOperand<2>(PrologueData); 948 setValueSubclassDataBit(2, PrologueData != nullptr); 949 } 950 951 void Function::allocHungoffUselist() { 952 // If we've already allocated a uselist, stop here. 953 if (getNumOperands()) 954 return; 955 956 allocHungoffUses(3, /*IsPhi=*/ false); 957 setNumHungOffUseOperands(3); 958 959 // Initialize the uselist with placeholder operands to allow traversal. 960 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 961 Op<0>().set(CPN); 962 Op<1>().set(CPN); 963 Op<2>().set(CPN); 964 } 965 966 template <int Idx> 967 void Function::setHungoffOperand(Constant *C) { 968 if (C) { 969 allocHungoffUselist(); 970 Op<Idx>().set(C); 971 } else if (getNumOperands()) { 972 Op<Idx>().set( 973 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 974 } 975 } 976 977 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 978 assert(Bit < 16 && "SubclassData contains only 16 bits"); 979 if (On) 980 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 981 else 982 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 983 } 984 985 void Function::setEntryCount(uint64_t Count) { 986 MDBuilder MDB(getContext()); 987 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 988 } 989 990 Optional<uint64_t> Function::getEntryCount() const { 991 MDNode *MD = getMetadata(LLVMContext::MD_prof); 992 if (MD && MD->getOperand(0)) 993 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 994 if (MDS->getString().equals("function_entry_count")) { 995 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 996 return CI->getValue().getZExtValue(); 997 } 998 return None; 999 } 1000