1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsLoongArch.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ModRef.h" 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 void Function::convertToNewDbgValues() { 85 IsNewDbgInfoFormat = true; 86 bool HasNoDebugInfo = getSubprogram() == nullptr; 87 for (auto &BB : *this) { 88 BB.convertToNewDbgValues(HasNoDebugInfo); 89 } 90 } 91 92 void Function::convertFromNewDbgValues() { 93 IsNewDbgInfoFormat = false; 94 bool HasNoDebugInfo = getSubprogram() == nullptr; 95 for (auto &BB : *this) { 96 BB.convertFromNewDbgValues(HasNoDebugInfo); 97 } 98 } 99 100 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 101 if (NewFlag && !IsNewDbgInfoFormat) 102 convertToNewDbgValues(); 103 else if (!NewFlag && IsNewDbgInfoFormat) 104 convertFromNewDbgValues(); 105 } 106 107 //===----------------------------------------------------------------------===// 108 // Argument Implementation 109 //===----------------------------------------------------------------------===// 110 111 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 112 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 113 setName(Name); 114 } 115 116 void Argument::setParent(Function *parent) { 117 Parent = parent; 118 } 119 120 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 121 if (!getType()->isPointerTy()) return false; 122 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 123 (AllowUndefOrPoison || 124 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 125 return true; 126 else if (getDereferenceableBytes() > 0 && 127 !NullPointerIsDefined(getParent(), 128 getType()->getPointerAddressSpace())) 129 return true; 130 return false; 131 } 132 133 bool Argument::hasByValAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::ByVal); 136 } 137 138 bool Argument::hasByRefAttr() const { 139 if (!getType()->isPointerTy()) 140 return false; 141 return hasAttribute(Attribute::ByRef); 142 } 143 144 bool Argument::hasSwiftSelfAttr() const { 145 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 146 } 147 148 bool Argument::hasSwiftErrorAttr() const { 149 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 150 } 151 152 bool Argument::hasInAllocaAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::InAlloca); 155 } 156 157 bool Argument::hasPreallocatedAttr() const { 158 if (!getType()->isPointerTy()) 159 return false; 160 return hasAttribute(Attribute::Preallocated); 161 } 162 163 bool Argument::hasPassPointeeByValueCopyAttr() const { 164 if (!getType()->isPointerTy()) return false; 165 AttributeList Attrs = getParent()->getAttributes(); 166 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 167 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 168 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 169 } 170 171 bool Argument::hasPointeeInMemoryValueAttr() const { 172 if (!getType()->isPointerTy()) 173 return false; 174 AttributeList Attrs = getParent()->getAttributes(); 175 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 177 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 178 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 179 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 180 } 181 182 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 183 /// parameter type. 184 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 185 // FIXME: All the type carrying attributes are mutually exclusive, so there 186 // should be a single query to get the stored type that handles any of them. 187 if (Type *ByValTy = ParamAttrs.getByValType()) 188 return ByValTy; 189 if (Type *ByRefTy = ParamAttrs.getByRefType()) 190 return ByRefTy; 191 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 192 return PreAllocTy; 193 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 194 return InAllocaTy; 195 if (Type *SRetTy = ParamAttrs.getStructRetType()) 196 return SRetTy; 197 198 return nullptr; 199 } 200 201 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 202 AttributeSet ParamAttrs = 203 getParent()->getAttributes().getParamAttrs(getArgNo()); 204 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 205 return DL.getTypeAllocSize(MemTy); 206 return 0; 207 } 208 209 Type *Argument::getPointeeInMemoryValueType() const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 return getMemoryParamAllocType(ParamAttrs); 213 } 214 215 MaybeAlign Argument::getParamAlign() const { 216 assert(getType()->isPointerTy() && "Only pointers have alignments"); 217 return getParent()->getParamAlign(getArgNo()); 218 } 219 220 MaybeAlign Argument::getParamStackAlign() const { 221 return getParent()->getParamStackAlign(getArgNo()); 222 } 223 224 Type *Argument::getParamByValType() const { 225 assert(getType()->isPointerTy() && "Only pointers have byval types"); 226 return getParent()->getParamByValType(getArgNo()); 227 } 228 229 Type *Argument::getParamStructRetType() const { 230 assert(getType()->isPointerTy() && "Only pointers have sret types"); 231 return getParent()->getParamStructRetType(getArgNo()); 232 } 233 234 Type *Argument::getParamByRefType() const { 235 assert(getType()->isPointerTy() && "Only pointers have byref types"); 236 return getParent()->getParamByRefType(getArgNo()); 237 } 238 239 Type *Argument::getParamInAllocaType() const { 240 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 241 return getParent()->getParamInAllocaType(getArgNo()); 242 } 243 244 uint64_t Argument::getDereferenceableBytes() const { 245 assert(getType()->isPointerTy() && 246 "Only pointers have dereferenceable bytes"); 247 return getParent()->getParamDereferenceableBytes(getArgNo()); 248 } 249 250 uint64_t Argument::getDereferenceableOrNullBytes() const { 251 assert(getType()->isPointerTy() && 252 "Only pointers have dereferenceable bytes"); 253 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 254 } 255 256 FPClassTest Argument::getNoFPClass() const { 257 return getParent()->getParamNoFPClass(getArgNo()); 258 } 259 260 bool Argument::hasNestAttr() const { 261 if (!getType()->isPointerTy()) return false; 262 return hasAttribute(Attribute::Nest); 263 } 264 265 bool Argument::hasNoAliasAttr() const { 266 if (!getType()->isPointerTy()) return false; 267 return hasAttribute(Attribute::NoAlias); 268 } 269 270 bool Argument::hasNoCaptureAttr() const { 271 if (!getType()->isPointerTy()) return false; 272 return hasAttribute(Attribute::NoCapture); 273 } 274 275 bool Argument::hasNoFreeAttr() const { 276 if (!getType()->isPointerTy()) return false; 277 return hasAttribute(Attribute::NoFree); 278 } 279 280 bool Argument::hasStructRetAttr() const { 281 if (!getType()->isPointerTy()) return false; 282 return hasAttribute(Attribute::StructRet); 283 } 284 285 bool Argument::hasInRegAttr() const { 286 return hasAttribute(Attribute::InReg); 287 } 288 289 bool Argument::hasReturnedAttr() const { 290 return hasAttribute(Attribute::Returned); 291 } 292 293 bool Argument::hasZExtAttr() const { 294 return hasAttribute(Attribute::ZExt); 295 } 296 297 bool Argument::hasSExtAttr() const { 298 return hasAttribute(Attribute::SExt); 299 } 300 301 bool Argument::onlyReadsMemory() const { 302 AttributeList Attrs = getParent()->getAttributes(); 303 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 304 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 305 } 306 307 void Argument::addAttrs(AttrBuilder &B) { 308 AttributeList AL = getParent()->getAttributes(); 309 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 310 getParent()->setAttributes(AL); 311 } 312 313 void Argument::addAttr(Attribute::AttrKind Kind) { 314 getParent()->addParamAttr(getArgNo(), Kind); 315 } 316 317 void Argument::addAttr(Attribute Attr) { 318 getParent()->addParamAttr(getArgNo(), Attr); 319 } 320 321 void Argument::removeAttr(Attribute::AttrKind Kind) { 322 getParent()->removeParamAttr(getArgNo(), Kind); 323 } 324 325 void Argument::removeAttrs(const AttributeMask &AM) { 326 AttributeList AL = getParent()->getAttributes(); 327 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 328 getParent()->setAttributes(AL); 329 } 330 331 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 332 return getParent()->hasParamAttribute(getArgNo(), Kind); 333 } 334 335 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 336 return getParent()->getParamAttribute(getArgNo(), Kind); 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Helper Methods in Function 341 //===----------------------------------------------------------------------===// 342 343 LLVMContext &Function::getContext() const { 344 return getType()->getContext(); 345 } 346 347 unsigned Function::getInstructionCount() const { 348 unsigned NumInstrs = 0; 349 for (const BasicBlock &BB : BasicBlocks) 350 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 351 BB.instructionsWithoutDebug().end()); 352 return NumInstrs; 353 } 354 355 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 356 const Twine &N, Module &M) { 357 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 358 } 359 360 Function *Function::createWithDefaultAttr(FunctionType *Ty, 361 LinkageTypes Linkage, 362 unsigned AddrSpace, const Twine &N, 363 Module *M) { 364 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 365 AttrBuilder B(F->getContext()); 366 UWTableKind UWTable = M->getUwtable(); 367 if (UWTable != UWTableKind::None) 368 B.addUWTableAttr(UWTable); 369 switch (M->getFramePointer()) { 370 case FramePointerKind::None: 371 // 0 ("none") is the default. 372 break; 373 case FramePointerKind::NonLeaf: 374 B.addAttribute("frame-pointer", "non-leaf"); 375 break; 376 case FramePointerKind::All: 377 B.addAttribute("frame-pointer", "all"); 378 break; 379 } 380 if (M->getModuleFlag("function_return_thunk_extern")) 381 B.addAttribute(Attribute::FnRetThunkExtern); 382 F->addFnAttrs(B); 383 return F; 384 } 385 386 void Function::removeFromParent() { 387 getParent()->getFunctionList().remove(getIterator()); 388 } 389 390 void Function::eraseFromParent() { 391 getParent()->getFunctionList().erase(getIterator()); 392 } 393 394 void Function::splice(Function::iterator ToIt, Function *FromF, 395 Function::iterator FromBeginIt, 396 Function::iterator FromEndIt) { 397 #ifdef EXPENSIVE_CHECKS 398 // Check that FromBeginIt is before FromEndIt. 399 auto FromFEnd = FromF->end(); 400 for (auto It = FromBeginIt; It != FromEndIt; ++It) 401 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 402 #endif // EXPENSIVE_CHECKS 403 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 404 } 405 406 Function::iterator Function::erase(Function::iterator FromIt, 407 Function::iterator ToIt) { 408 return BasicBlocks.erase(FromIt, ToIt); 409 } 410 411 //===----------------------------------------------------------------------===// 412 // Function Implementation 413 //===----------------------------------------------------------------------===// 414 415 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 416 // If AS == -1 and we are passed a valid module pointer we place the function 417 // in the program address space. Otherwise we default to AS0. 418 if (AddrSpace == static_cast<unsigned>(-1)) 419 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 420 return AddrSpace; 421 } 422 423 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 424 const Twine &name, Module *ParentModule) 425 : GlobalObject(Ty, Value::FunctionVal, 426 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 427 computeAddrSpace(AddrSpace, ParentModule)), 428 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 429 assert(FunctionType::isValidReturnType(getReturnType()) && 430 "invalid return type"); 431 setGlobalObjectSubClassData(0); 432 433 // We only need a symbol table for a function if the context keeps value names 434 if (!getContext().shouldDiscardValueNames()) 435 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 436 437 // If the function has arguments, mark them as lazily built. 438 if (Ty->getNumParams()) 439 setValueSubclassData(1); // Set the "has lazy arguments" bit. 440 441 if (ParentModule) 442 ParentModule->getFunctionList().push_back(this); 443 444 HasLLVMReservedName = getName().starts_with("llvm."); 445 // Ensure intrinsics have the right parameter attributes. 446 // Note, the IntID field will have been set in Value::setName if this function 447 // name is a valid intrinsic ID. 448 if (IntID) 449 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 450 } 451 452 Function::~Function() { 453 dropAllReferences(); // After this it is safe to delete instructions. 454 455 // Delete all of the method arguments and unlink from symbol table... 456 if (Arguments) 457 clearArguments(); 458 459 // Remove the function from the on-the-side GC table. 460 clearGC(); 461 } 462 463 void Function::BuildLazyArguments() const { 464 // Create the arguments vector, all arguments start out unnamed. 465 auto *FT = getFunctionType(); 466 if (NumArgs > 0) { 467 Arguments = std::allocator<Argument>().allocate(NumArgs); 468 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 469 Type *ArgTy = FT->getParamType(i); 470 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 471 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 472 } 473 } 474 475 // Clear the lazy arguments bit. 476 unsigned SDC = getSubclassDataFromValue(); 477 SDC &= ~(1 << 0); 478 const_cast<Function*>(this)->setValueSubclassData(SDC); 479 assert(!hasLazyArguments()); 480 } 481 482 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 483 return MutableArrayRef<Argument>(Args, Count); 484 } 485 486 bool Function::isConstrainedFPIntrinsic() const { 487 switch (getIntrinsicID()) { 488 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 489 case Intrinsic::INTRINSIC: 490 #include "llvm/IR/ConstrainedOps.def" 491 return true; 492 #undef INSTRUCTION 493 default: 494 return false; 495 } 496 } 497 498 void Function::clearArguments() { 499 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 500 A.setName(""); 501 A.~Argument(); 502 } 503 std::allocator<Argument>().deallocate(Arguments, NumArgs); 504 Arguments = nullptr; 505 } 506 507 void Function::stealArgumentListFrom(Function &Src) { 508 assert(isDeclaration() && "Expected no references to current arguments"); 509 510 // Drop the current arguments, if any, and set the lazy argument bit. 511 if (!hasLazyArguments()) { 512 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 513 [](const Argument &A) { return A.use_empty(); }) && 514 "Expected arguments to be unused in declaration"); 515 clearArguments(); 516 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 517 } 518 519 // Nothing to steal if Src has lazy arguments. 520 if (Src.hasLazyArguments()) 521 return; 522 523 // Steal arguments from Src, and fix the lazy argument bits. 524 assert(arg_size() == Src.arg_size()); 525 Arguments = Src.Arguments; 526 Src.Arguments = nullptr; 527 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 528 // FIXME: This does the work of transferNodesFromList inefficiently. 529 SmallString<128> Name; 530 if (A.hasName()) 531 Name = A.getName(); 532 if (!Name.empty()) 533 A.setName(""); 534 A.setParent(this); 535 if (!Name.empty()) 536 A.setName(Name); 537 } 538 539 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 540 assert(!hasLazyArguments()); 541 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 542 } 543 544 void Function::deleteBodyImpl(bool ShouldDrop) { 545 setIsMaterializable(false); 546 547 for (BasicBlock &BB : *this) 548 BB.dropAllReferences(); 549 550 // Delete all basic blocks. They are now unused, except possibly by 551 // blockaddresses, but BasicBlock's destructor takes care of those. 552 while (!BasicBlocks.empty()) 553 BasicBlocks.begin()->eraseFromParent(); 554 555 if (getNumOperands()) { 556 if (ShouldDrop) { 557 // Drop uses of any optional data (real or placeholder). 558 User::dropAllReferences(); 559 setNumHungOffUseOperands(0); 560 } else { 561 // The code needs to match Function::allocHungoffUselist(). 562 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 563 Op<0>().set(CPN); 564 Op<1>().set(CPN); 565 Op<2>().set(CPN); 566 } 567 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 568 } 569 570 // Metadata is stored in a side-table. 571 clearMetadata(); 572 } 573 574 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 575 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 576 } 577 578 void Function::addFnAttr(Attribute::AttrKind Kind) { 579 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 580 } 581 582 void Function::addFnAttr(StringRef Kind, StringRef Val) { 583 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 584 } 585 586 void Function::addFnAttr(Attribute Attr) { 587 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 588 } 589 590 void Function::addFnAttrs(const AttrBuilder &Attrs) { 591 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 592 } 593 594 void Function::addRetAttr(Attribute::AttrKind Kind) { 595 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 596 } 597 598 void Function::addRetAttr(Attribute Attr) { 599 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 600 } 601 602 void Function::addRetAttrs(const AttrBuilder &Attrs) { 603 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 604 } 605 606 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 607 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 608 } 609 610 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 611 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 612 } 613 614 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 615 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 616 } 617 618 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 619 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 620 } 621 622 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 623 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 624 } 625 626 void Function::removeFnAttr(Attribute::AttrKind Kind) { 627 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 628 } 629 630 void Function::removeFnAttr(StringRef Kind) { 631 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 632 } 633 634 void Function::removeFnAttrs(const AttributeMask &AM) { 635 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 636 } 637 638 void Function::removeRetAttr(Attribute::AttrKind Kind) { 639 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 640 } 641 642 void Function::removeRetAttr(StringRef Kind) { 643 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 644 } 645 646 void Function::removeRetAttrs(const AttributeMask &Attrs) { 647 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 648 } 649 650 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 651 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 652 } 653 654 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 655 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 656 } 657 658 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 659 AttributeSets = 660 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 661 } 662 663 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 664 AttributeSets = 665 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 666 } 667 668 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 669 return AttributeSets.hasFnAttr(Kind); 670 } 671 672 bool Function::hasFnAttribute(StringRef Kind) const { 673 return AttributeSets.hasFnAttr(Kind); 674 } 675 676 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 677 return AttributeSets.hasRetAttr(Kind); 678 } 679 680 bool Function::hasParamAttribute(unsigned ArgNo, 681 Attribute::AttrKind Kind) const { 682 return AttributeSets.hasParamAttr(ArgNo, Kind); 683 } 684 685 Attribute Function::getAttributeAtIndex(unsigned i, 686 Attribute::AttrKind Kind) const { 687 return AttributeSets.getAttributeAtIndex(i, Kind); 688 } 689 690 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 691 return AttributeSets.getAttributeAtIndex(i, Kind); 692 } 693 694 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 695 return AttributeSets.getFnAttr(Kind); 696 } 697 698 Attribute Function::getFnAttribute(StringRef Kind) const { 699 return AttributeSets.getFnAttr(Kind); 700 } 701 702 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 703 uint64_t Default) const { 704 Attribute A = getFnAttribute(Name); 705 uint64_t Result = Default; 706 if (A.isStringAttribute()) { 707 StringRef Str = A.getValueAsString(); 708 if (Str.getAsInteger(0, Result)) 709 getContext().emitError("cannot parse integer attribute " + Name); 710 } 711 712 return Result; 713 } 714 715 /// gets the specified attribute from the list of attributes. 716 Attribute Function::getParamAttribute(unsigned ArgNo, 717 Attribute::AttrKind Kind) const { 718 return AttributeSets.getParamAttr(ArgNo, Kind); 719 } 720 721 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 722 uint64_t Bytes) { 723 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 724 ArgNo, Bytes); 725 } 726 727 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 728 if (&FPType == &APFloat::IEEEsingle()) { 729 DenormalMode Mode = getDenormalModeF32Raw(); 730 // If the f32 variant of the attribute isn't specified, try to use the 731 // generic one. 732 if (Mode.isValid()) 733 return Mode; 734 } 735 736 return getDenormalModeRaw(); 737 } 738 739 DenormalMode Function::getDenormalModeRaw() const { 740 Attribute Attr = getFnAttribute("denormal-fp-math"); 741 StringRef Val = Attr.getValueAsString(); 742 return parseDenormalFPAttribute(Val); 743 } 744 745 DenormalMode Function::getDenormalModeF32Raw() const { 746 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 747 if (Attr.isValid()) { 748 StringRef Val = Attr.getValueAsString(); 749 return parseDenormalFPAttribute(Val); 750 } 751 752 return DenormalMode::getInvalid(); 753 } 754 755 const std::string &Function::getGC() const { 756 assert(hasGC() && "Function has no collector"); 757 return getContext().getGC(*this); 758 } 759 760 void Function::setGC(std::string Str) { 761 setValueSubclassDataBit(14, !Str.empty()); 762 getContext().setGC(*this, std::move(Str)); 763 } 764 765 void Function::clearGC() { 766 if (!hasGC()) 767 return; 768 getContext().deleteGC(*this); 769 setValueSubclassDataBit(14, false); 770 } 771 772 bool Function::hasStackProtectorFnAttr() const { 773 return hasFnAttribute(Attribute::StackProtect) || 774 hasFnAttribute(Attribute::StackProtectStrong) || 775 hasFnAttribute(Attribute::StackProtectReq); 776 } 777 778 /// Copy all additional attributes (those not needed to create a Function) from 779 /// the Function Src to this one. 780 void Function::copyAttributesFrom(const Function *Src) { 781 GlobalObject::copyAttributesFrom(Src); 782 setCallingConv(Src->getCallingConv()); 783 setAttributes(Src->getAttributes()); 784 if (Src->hasGC()) 785 setGC(Src->getGC()); 786 else 787 clearGC(); 788 if (Src->hasPersonalityFn()) 789 setPersonalityFn(Src->getPersonalityFn()); 790 if (Src->hasPrefixData()) 791 setPrefixData(Src->getPrefixData()); 792 if (Src->hasPrologueData()) 793 setPrologueData(Src->getPrologueData()); 794 } 795 796 MemoryEffects Function::getMemoryEffects() const { 797 return getAttributes().getMemoryEffects(); 798 } 799 void Function::setMemoryEffects(MemoryEffects ME) { 800 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 801 } 802 803 /// Determine if the function does not access memory. 804 bool Function::doesNotAccessMemory() const { 805 return getMemoryEffects().doesNotAccessMemory(); 806 } 807 void Function::setDoesNotAccessMemory() { 808 setMemoryEffects(MemoryEffects::none()); 809 } 810 811 /// Determine if the function does not access or only reads memory. 812 bool Function::onlyReadsMemory() const { 813 return getMemoryEffects().onlyReadsMemory(); 814 } 815 void Function::setOnlyReadsMemory() { 816 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 817 } 818 819 /// Determine if the function does not access or only writes memory. 820 bool Function::onlyWritesMemory() const { 821 return getMemoryEffects().onlyWritesMemory(); 822 } 823 void Function::setOnlyWritesMemory() { 824 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 825 } 826 827 /// Determine if the call can access memmory only using pointers based 828 /// on its arguments. 829 bool Function::onlyAccessesArgMemory() const { 830 return getMemoryEffects().onlyAccessesArgPointees(); 831 } 832 void Function::setOnlyAccessesArgMemory() { 833 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 834 } 835 836 /// Determine if the function may only access memory that is 837 /// inaccessible from the IR. 838 bool Function::onlyAccessesInaccessibleMemory() const { 839 return getMemoryEffects().onlyAccessesInaccessibleMem(); 840 } 841 void Function::setOnlyAccessesInaccessibleMemory() { 842 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 843 } 844 845 /// Determine if the function may only access memory that is 846 /// either inaccessible from the IR or pointed to by its arguments. 847 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 848 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 849 } 850 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 851 setMemoryEffects(getMemoryEffects() & 852 MemoryEffects::inaccessibleOrArgMemOnly()); 853 } 854 855 /// Table of string intrinsic names indexed by enum value. 856 static const char * const IntrinsicNameTable[] = { 857 "not_intrinsic", 858 #define GET_INTRINSIC_NAME_TABLE 859 #include "llvm/IR/IntrinsicImpl.inc" 860 #undef GET_INTRINSIC_NAME_TABLE 861 }; 862 863 /// Table of per-target intrinsic name tables. 864 #define GET_INTRINSIC_TARGET_DATA 865 #include "llvm/IR/IntrinsicImpl.inc" 866 #undef GET_INTRINSIC_TARGET_DATA 867 868 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 869 return IID > TargetInfos[0].Count; 870 } 871 872 bool Function::isTargetIntrinsic() const { 873 return isTargetIntrinsic(IntID); 874 } 875 876 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 877 /// target as \c Name, or the generic table if \c Name is not target specific. 878 /// 879 /// Returns the relevant slice of \c IntrinsicNameTable 880 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 881 assert(Name.starts_with("llvm.")); 882 883 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 884 // Drop "llvm." and take the first dotted component. That will be the target 885 // if this is target specific. 886 StringRef Target = Name.drop_front(5).split('.').first; 887 auto It = partition_point( 888 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 889 // We've either found the target or just fall back to the generic set, which 890 // is always first. 891 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 892 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 893 } 894 895 /// This does the actual lookup of an intrinsic ID which 896 /// matches the given function name. 897 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 898 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 899 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 900 if (Idx == -1) 901 return Intrinsic::not_intrinsic; 902 903 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 904 // an index into a sub-table. 905 int Adjust = NameTable.data() - IntrinsicNameTable; 906 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 907 908 // If the intrinsic is not overloaded, require an exact match. If it is 909 // overloaded, require either exact or prefix match. 910 const auto MatchSize = strlen(NameTable[Idx]); 911 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 912 bool IsExactMatch = Name.size() == MatchSize; 913 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 914 : Intrinsic::not_intrinsic; 915 } 916 917 void Function::updateAfterNameChange() { 918 LibFuncCache = UnknownLibFunc; 919 StringRef Name = getName(); 920 if (!Name.starts_with("llvm.")) { 921 HasLLVMReservedName = false; 922 IntID = Intrinsic::not_intrinsic; 923 return; 924 } 925 HasLLVMReservedName = true; 926 IntID = lookupIntrinsicID(Name); 927 } 928 929 /// Returns a stable mangling for the type specified for use in the name 930 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 931 /// of named types is simply their name. Manglings for unnamed types consist 932 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 933 /// combined with the mangling of their component types. A vararg function 934 /// type will have a suffix of 'vararg'. Since function types can contain 935 /// other function types, we close a function type mangling with suffix 'f' 936 /// which can't be confused with it's prefix. This ensures we don't have 937 /// collisions between two unrelated function types. Otherwise, you might 938 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 939 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 940 /// indicating that extra care must be taken to ensure a unique name. 941 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 942 std::string Result; 943 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 944 Result += "p" + utostr(PTyp->getAddressSpace()); 945 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 946 Result += "a" + utostr(ATyp->getNumElements()) + 947 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 948 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 949 if (!STyp->isLiteral()) { 950 Result += "s_"; 951 if (STyp->hasName()) 952 Result += STyp->getName(); 953 else 954 HasUnnamedType = true; 955 } else { 956 Result += "sl_"; 957 for (auto *Elem : STyp->elements()) 958 Result += getMangledTypeStr(Elem, HasUnnamedType); 959 } 960 // Ensure nested structs are distinguishable. 961 Result += "s"; 962 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 963 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 964 for (size_t i = 0; i < FT->getNumParams(); i++) 965 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 966 if (FT->isVarArg()) 967 Result += "vararg"; 968 // Ensure nested function types are distinguishable. 969 Result += "f"; 970 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 971 ElementCount EC = VTy->getElementCount(); 972 if (EC.isScalable()) 973 Result += "nx"; 974 Result += "v" + utostr(EC.getKnownMinValue()) + 975 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 976 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 977 Result += "t"; 978 Result += TETy->getName(); 979 for (Type *ParamTy : TETy->type_params()) 980 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 981 for (unsigned IntParam : TETy->int_params()) 982 Result += "_" + utostr(IntParam); 983 // Ensure nested target extension types are distinguishable. 984 Result += "t"; 985 } else if (Ty) { 986 switch (Ty->getTypeID()) { 987 default: llvm_unreachable("Unhandled type"); 988 case Type::VoidTyID: Result += "isVoid"; break; 989 case Type::MetadataTyID: Result += "Metadata"; break; 990 case Type::HalfTyID: Result += "f16"; break; 991 case Type::BFloatTyID: Result += "bf16"; break; 992 case Type::FloatTyID: Result += "f32"; break; 993 case Type::DoubleTyID: Result += "f64"; break; 994 case Type::X86_FP80TyID: Result += "f80"; break; 995 case Type::FP128TyID: Result += "f128"; break; 996 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 997 case Type::X86_MMXTyID: Result += "x86mmx"; break; 998 case Type::X86_AMXTyID: Result += "x86amx"; break; 999 case Type::IntegerTyID: 1000 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1001 break; 1002 } 1003 } 1004 return Result; 1005 } 1006 1007 StringRef Intrinsic::getBaseName(ID id) { 1008 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1009 return IntrinsicNameTable[id]; 1010 } 1011 1012 StringRef Intrinsic::getName(ID id) { 1013 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1014 assert(!Intrinsic::isOverloaded(id) && 1015 "This version of getName does not support overloading"); 1016 return getBaseName(id); 1017 } 1018 1019 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1020 Module *M, FunctionType *FT, 1021 bool EarlyModuleCheck) { 1022 1023 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1024 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1025 "This version of getName is for overloaded intrinsics only"); 1026 (void)EarlyModuleCheck; 1027 assert((!EarlyModuleCheck || M || 1028 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1029 "Intrinsic overloading on pointer types need to provide a Module"); 1030 bool HasUnnamedType = false; 1031 std::string Result(Intrinsic::getBaseName(Id)); 1032 for (Type *Ty : Tys) 1033 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1034 if (HasUnnamedType) { 1035 assert(M && "unnamed types need a module"); 1036 if (!FT) 1037 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1038 else 1039 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1040 "Provided FunctionType must match arguments"); 1041 return M->getUniqueIntrinsicName(Result, Id, FT); 1042 } 1043 return Result; 1044 } 1045 1046 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1047 FunctionType *FT) { 1048 assert(M && "We need to have a Module"); 1049 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1050 } 1051 1052 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1053 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1054 } 1055 1056 /// IIT_Info - These are enumerators that describe the entries returned by the 1057 /// getIntrinsicInfoTableEntries function. 1058 /// 1059 /// Defined in Intrinsics.td. 1060 enum IIT_Info { 1061 #define GET_INTRINSIC_IITINFO 1062 #include "llvm/IR/IntrinsicImpl.inc" 1063 #undef GET_INTRINSIC_IITINFO 1064 }; 1065 1066 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1067 IIT_Info LastInfo, 1068 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1069 using namespace Intrinsic; 1070 1071 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1072 1073 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1074 unsigned StructElts = 2; 1075 1076 switch (Info) { 1077 case IIT_Done: 1078 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1079 return; 1080 case IIT_VARARG: 1081 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1082 return; 1083 case IIT_MMX: 1084 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1085 return; 1086 case IIT_AMX: 1087 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1088 return; 1089 case IIT_TOKEN: 1090 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1091 return; 1092 case IIT_METADATA: 1093 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1094 return; 1095 case IIT_F16: 1096 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1097 return; 1098 case IIT_BF16: 1099 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1100 return; 1101 case IIT_F32: 1102 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1103 return; 1104 case IIT_F64: 1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1106 return; 1107 case IIT_F128: 1108 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1109 return; 1110 case IIT_PPCF128: 1111 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1112 return; 1113 case IIT_I1: 1114 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1115 return; 1116 case IIT_I2: 1117 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1118 return; 1119 case IIT_I4: 1120 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1121 return; 1122 case IIT_AARCH64_SVCOUNT: 1123 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1124 return; 1125 case IIT_I8: 1126 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1127 return; 1128 case IIT_I16: 1129 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1130 return; 1131 case IIT_I32: 1132 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1133 return; 1134 case IIT_I64: 1135 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1136 return; 1137 case IIT_I128: 1138 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1139 return; 1140 case IIT_V1: 1141 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1142 DecodeIITType(NextElt, Infos, Info, OutputTable); 1143 return; 1144 case IIT_V2: 1145 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1146 DecodeIITType(NextElt, Infos, Info, OutputTable); 1147 return; 1148 case IIT_V3: 1149 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1150 DecodeIITType(NextElt, Infos, Info, OutputTable); 1151 return; 1152 case IIT_V4: 1153 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1154 DecodeIITType(NextElt, Infos, Info, OutputTable); 1155 return; 1156 case IIT_V8: 1157 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1158 DecodeIITType(NextElt, Infos, Info, OutputTable); 1159 return; 1160 case IIT_V16: 1161 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1162 DecodeIITType(NextElt, Infos, Info, OutputTable); 1163 return; 1164 case IIT_V32: 1165 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1166 DecodeIITType(NextElt, Infos, Info, OutputTable); 1167 return; 1168 case IIT_V64: 1169 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1170 DecodeIITType(NextElt, Infos, Info, OutputTable); 1171 return; 1172 case IIT_V128: 1173 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1174 DecodeIITType(NextElt, Infos, Info, OutputTable); 1175 return; 1176 case IIT_V256: 1177 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1178 DecodeIITType(NextElt, Infos, Info, OutputTable); 1179 return; 1180 case IIT_V512: 1181 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1182 DecodeIITType(NextElt, Infos, Info, OutputTable); 1183 return; 1184 case IIT_V1024: 1185 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1186 DecodeIITType(NextElt, Infos, Info, OutputTable); 1187 return; 1188 case IIT_EXTERNREF: 1189 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1190 return; 1191 case IIT_FUNCREF: 1192 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1193 return; 1194 case IIT_PTR: 1195 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1196 return; 1197 case IIT_ANYPTR: // [ANYPTR addrspace] 1198 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1199 Infos[NextElt++])); 1200 return; 1201 case IIT_ARG: { 1202 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1203 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1204 return; 1205 } 1206 case IIT_EXTEND_ARG: { 1207 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1209 ArgInfo)); 1210 return; 1211 } 1212 case IIT_TRUNC_ARG: { 1213 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1214 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1215 ArgInfo)); 1216 return; 1217 } 1218 case IIT_HALF_VEC_ARG: { 1219 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1221 ArgInfo)); 1222 return; 1223 } 1224 case IIT_SAME_VEC_WIDTH_ARG: { 1225 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1226 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1227 ArgInfo)); 1228 return; 1229 } 1230 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1231 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1232 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1233 OutputTable.push_back( 1234 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1235 return; 1236 } 1237 case IIT_EMPTYSTRUCT: 1238 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1239 return; 1240 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1241 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1242 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1243 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1244 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1245 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1246 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1247 case IIT_STRUCT2: { 1248 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1249 1250 for (unsigned i = 0; i != StructElts; ++i) 1251 DecodeIITType(NextElt, Infos, Info, OutputTable); 1252 return; 1253 } 1254 case IIT_SUBDIVIDE2_ARG: { 1255 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1256 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1257 ArgInfo)); 1258 return; 1259 } 1260 case IIT_SUBDIVIDE4_ARG: { 1261 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1262 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1263 ArgInfo)); 1264 return; 1265 } 1266 case IIT_VEC_ELEMENT: { 1267 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1268 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1269 ArgInfo)); 1270 return; 1271 } 1272 case IIT_SCALABLE_VEC: { 1273 DecodeIITType(NextElt, Infos, Info, OutputTable); 1274 return; 1275 } 1276 case IIT_VEC_OF_BITCASTS_TO_INT: { 1277 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1278 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1279 ArgInfo)); 1280 return; 1281 } 1282 } 1283 llvm_unreachable("unhandled"); 1284 } 1285 1286 #define GET_INTRINSIC_GENERATOR_GLOBAL 1287 #include "llvm/IR/IntrinsicImpl.inc" 1288 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1289 1290 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1291 SmallVectorImpl<IITDescriptor> &T){ 1292 // Check to see if the intrinsic's type was expressible by the table. 1293 unsigned TableVal = IIT_Table[id-1]; 1294 1295 // Decode the TableVal into an array of IITValues. 1296 SmallVector<unsigned char, 8> IITValues; 1297 ArrayRef<unsigned char> IITEntries; 1298 unsigned NextElt = 0; 1299 if ((TableVal >> 31) != 0) { 1300 // This is an offset into the IIT_LongEncodingTable. 1301 IITEntries = IIT_LongEncodingTable; 1302 1303 // Strip sentinel bit. 1304 NextElt = (TableVal << 1) >> 1; 1305 } else { 1306 // Decode the TableVal into an array of IITValues. If the entry was encoded 1307 // into a single word in the table itself, decode it now. 1308 do { 1309 IITValues.push_back(TableVal & 0xF); 1310 TableVal >>= 4; 1311 } while (TableVal); 1312 1313 IITEntries = IITValues; 1314 NextElt = 0; 1315 } 1316 1317 // Okay, decode the table into the output vector of IITDescriptors. 1318 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1319 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1320 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1321 } 1322 1323 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1324 ArrayRef<Type*> Tys, LLVMContext &Context) { 1325 using namespace Intrinsic; 1326 1327 IITDescriptor D = Infos.front(); 1328 Infos = Infos.slice(1); 1329 1330 switch (D.Kind) { 1331 case IITDescriptor::Void: return Type::getVoidTy(Context); 1332 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1333 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1334 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1335 case IITDescriptor::Token: return Type::getTokenTy(Context); 1336 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1337 case IITDescriptor::Half: return Type::getHalfTy(Context); 1338 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1339 case IITDescriptor::Float: return Type::getFloatTy(Context); 1340 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1341 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1342 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1343 case IITDescriptor::AArch64Svcount: 1344 return TargetExtType::get(Context, "aarch64.svcount"); 1345 1346 case IITDescriptor::Integer: 1347 return IntegerType::get(Context, D.Integer_Width); 1348 case IITDescriptor::Vector: 1349 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1350 D.Vector_Width); 1351 case IITDescriptor::Pointer: 1352 return PointerType::get(Context, D.Pointer_AddressSpace); 1353 case IITDescriptor::Struct: { 1354 SmallVector<Type *, 8> Elts; 1355 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1356 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1357 return StructType::get(Context, Elts); 1358 } 1359 case IITDescriptor::Argument: 1360 return Tys[D.getArgumentNumber()]; 1361 case IITDescriptor::ExtendArgument: { 1362 Type *Ty = Tys[D.getArgumentNumber()]; 1363 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1364 return VectorType::getExtendedElementVectorType(VTy); 1365 1366 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1367 } 1368 case IITDescriptor::TruncArgument: { 1369 Type *Ty = Tys[D.getArgumentNumber()]; 1370 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1371 return VectorType::getTruncatedElementVectorType(VTy); 1372 1373 IntegerType *ITy = cast<IntegerType>(Ty); 1374 assert(ITy->getBitWidth() % 2 == 0); 1375 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1376 } 1377 case IITDescriptor::Subdivide2Argument: 1378 case IITDescriptor::Subdivide4Argument: { 1379 Type *Ty = Tys[D.getArgumentNumber()]; 1380 VectorType *VTy = dyn_cast<VectorType>(Ty); 1381 assert(VTy && "Expected an argument of Vector Type"); 1382 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1383 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1384 } 1385 case IITDescriptor::HalfVecArgument: 1386 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1387 Tys[D.getArgumentNumber()])); 1388 case IITDescriptor::SameVecWidthArgument: { 1389 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1390 Type *Ty = Tys[D.getArgumentNumber()]; 1391 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1392 return VectorType::get(EltTy, VTy->getElementCount()); 1393 return EltTy; 1394 } 1395 case IITDescriptor::VecElementArgument: { 1396 Type *Ty = Tys[D.getArgumentNumber()]; 1397 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1398 return VTy->getElementType(); 1399 llvm_unreachable("Expected an argument of Vector Type"); 1400 } 1401 case IITDescriptor::VecOfBitcastsToInt: { 1402 Type *Ty = Tys[D.getArgumentNumber()]; 1403 VectorType *VTy = dyn_cast<VectorType>(Ty); 1404 assert(VTy && "Expected an argument of Vector Type"); 1405 return VectorType::getInteger(VTy); 1406 } 1407 case IITDescriptor::VecOfAnyPtrsToElt: 1408 // Return the overloaded type (which determines the pointers address space) 1409 return Tys[D.getOverloadArgNumber()]; 1410 } 1411 llvm_unreachable("unhandled"); 1412 } 1413 1414 FunctionType *Intrinsic::getType(LLVMContext &Context, 1415 ID id, ArrayRef<Type*> Tys) { 1416 SmallVector<IITDescriptor, 8> Table; 1417 getIntrinsicInfoTableEntries(id, Table); 1418 1419 ArrayRef<IITDescriptor> TableRef = Table; 1420 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1421 1422 SmallVector<Type*, 8> ArgTys; 1423 while (!TableRef.empty()) 1424 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1425 1426 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1427 // If we see void type as the type of the last argument, it is vararg intrinsic 1428 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1429 ArgTys.pop_back(); 1430 return FunctionType::get(ResultTy, ArgTys, true); 1431 } 1432 return FunctionType::get(ResultTy, ArgTys, false); 1433 } 1434 1435 bool Intrinsic::isOverloaded(ID id) { 1436 #define GET_INTRINSIC_OVERLOAD_TABLE 1437 #include "llvm/IR/IntrinsicImpl.inc" 1438 #undef GET_INTRINSIC_OVERLOAD_TABLE 1439 } 1440 1441 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1442 #define GET_INTRINSIC_ATTRIBUTES 1443 #include "llvm/IR/IntrinsicImpl.inc" 1444 #undef GET_INTRINSIC_ATTRIBUTES 1445 1446 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1447 // There can never be multiple globals with the same name of different types, 1448 // because intrinsics must be a specific type. 1449 auto *FT = getType(M->getContext(), id, Tys); 1450 return cast<Function>( 1451 M->getOrInsertFunction( 1452 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1453 .getCallee()); 1454 } 1455 1456 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1457 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1458 #include "llvm/IR/IntrinsicImpl.inc" 1459 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1460 1461 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1462 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1463 #include "llvm/IR/IntrinsicImpl.inc" 1464 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1465 1466 using DeferredIntrinsicMatchPair = 1467 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1468 1469 static bool matchIntrinsicType( 1470 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1471 SmallVectorImpl<Type *> &ArgTys, 1472 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1473 bool IsDeferredCheck) { 1474 using namespace Intrinsic; 1475 1476 // If we ran out of descriptors, there are too many arguments. 1477 if (Infos.empty()) return true; 1478 1479 // Do this before slicing off the 'front' part 1480 auto InfosRef = Infos; 1481 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1482 DeferredChecks.emplace_back(T, InfosRef); 1483 return false; 1484 }; 1485 1486 IITDescriptor D = Infos.front(); 1487 Infos = Infos.slice(1); 1488 1489 switch (D.Kind) { 1490 case IITDescriptor::Void: return !Ty->isVoidTy(); 1491 case IITDescriptor::VarArg: return true; 1492 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1493 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1494 case IITDescriptor::Token: return !Ty->isTokenTy(); 1495 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1496 case IITDescriptor::Half: return !Ty->isHalfTy(); 1497 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1498 case IITDescriptor::Float: return !Ty->isFloatTy(); 1499 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1500 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1501 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1502 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1503 case IITDescriptor::AArch64Svcount: 1504 return !isa<TargetExtType>(Ty) || 1505 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1506 case IITDescriptor::Vector: { 1507 VectorType *VT = dyn_cast<VectorType>(Ty); 1508 return !VT || VT->getElementCount() != D.Vector_Width || 1509 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1510 DeferredChecks, IsDeferredCheck); 1511 } 1512 case IITDescriptor::Pointer: { 1513 PointerType *PT = dyn_cast<PointerType>(Ty); 1514 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1515 } 1516 1517 case IITDescriptor::Struct: { 1518 StructType *ST = dyn_cast<StructType>(Ty); 1519 if (!ST || !ST->isLiteral() || ST->isPacked() || 1520 ST->getNumElements() != D.Struct_NumElements) 1521 return true; 1522 1523 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1524 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1525 DeferredChecks, IsDeferredCheck)) 1526 return true; 1527 return false; 1528 } 1529 1530 case IITDescriptor::Argument: 1531 // If this is the second occurrence of an argument, 1532 // verify that the later instance matches the previous instance. 1533 if (D.getArgumentNumber() < ArgTys.size()) 1534 return Ty != ArgTys[D.getArgumentNumber()]; 1535 1536 if (D.getArgumentNumber() > ArgTys.size() || 1537 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1538 return IsDeferredCheck || DeferCheck(Ty); 1539 1540 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1541 "Table consistency error"); 1542 ArgTys.push_back(Ty); 1543 1544 switch (D.getArgumentKind()) { 1545 case IITDescriptor::AK_Any: return false; // Success 1546 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1547 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1548 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1549 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1550 default: break; 1551 } 1552 llvm_unreachable("all argument kinds not covered"); 1553 1554 case IITDescriptor::ExtendArgument: { 1555 // If this is a forward reference, defer the check for later. 1556 if (D.getArgumentNumber() >= ArgTys.size()) 1557 return IsDeferredCheck || DeferCheck(Ty); 1558 1559 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1560 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1561 NewTy = VectorType::getExtendedElementVectorType(VTy); 1562 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1563 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1564 else 1565 return true; 1566 1567 return Ty != NewTy; 1568 } 1569 case IITDescriptor::TruncArgument: { 1570 // If this is a forward reference, defer the check for later. 1571 if (D.getArgumentNumber() >= ArgTys.size()) 1572 return IsDeferredCheck || DeferCheck(Ty); 1573 1574 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1575 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1576 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1577 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1578 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1579 else 1580 return true; 1581 1582 return Ty != NewTy; 1583 } 1584 case IITDescriptor::HalfVecArgument: 1585 // If this is a forward reference, defer the check for later. 1586 if (D.getArgumentNumber() >= ArgTys.size()) 1587 return IsDeferredCheck || DeferCheck(Ty); 1588 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1589 VectorType::getHalfElementsVectorType( 1590 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1591 case IITDescriptor::SameVecWidthArgument: { 1592 if (D.getArgumentNumber() >= ArgTys.size()) { 1593 // Defer check and subsequent check for the vector element type. 1594 Infos = Infos.slice(1); 1595 return IsDeferredCheck || DeferCheck(Ty); 1596 } 1597 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1598 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1599 // Both must be vectors of the same number of elements or neither. 1600 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1601 return true; 1602 Type *EltTy = Ty; 1603 if (ThisArgType) { 1604 if (ReferenceType->getElementCount() != 1605 ThisArgType->getElementCount()) 1606 return true; 1607 EltTy = ThisArgType->getElementType(); 1608 } 1609 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1610 IsDeferredCheck); 1611 } 1612 case IITDescriptor::VecOfAnyPtrsToElt: { 1613 unsigned RefArgNumber = D.getRefArgNumber(); 1614 if (RefArgNumber >= ArgTys.size()) { 1615 if (IsDeferredCheck) 1616 return true; 1617 // If forward referencing, already add the pointer-vector type and 1618 // defer the checks for later. 1619 ArgTys.push_back(Ty); 1620 return DeferCheck(Ty); 1621 } 1622 1623 if (!IsDeferredCheck){ 1624 assert(D.getOverloadArgNumber() == ArgTys.size() && 1625 "Table consistency error"); 1626 ArgTys.push_back(Ty); 1627 } 1628 1629 // Verify the overloaded type "matches" the Ref type. 1630 // i.e. Ty is a vector with the same width as Ref. 1631 // Composed of pointers to the same element type as Ref. 1632 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1633 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1634 if (!ThisArgVecTy || !ReferenceType || 1635 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1636 return true; 1637 return !ThisArgVecTy->getElementType()->isPointerTy(); 1638 } 1639 case IITDescriptor::VecElementArgument: { 1640 if (D.getArgumentNumber() >= ArgTys.size()) 1641 return IsDeferredCheck ? true : DeferCheck(Ty); 1642 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1643 return !ReferenceType || Ty != ReferenceType->getElementType(); 1644 } 1645 case IITDescriptor::Subdivide2Argument: 1646 case IITDescriptor::Subdivide4Argument: { 1647 // If this is a forward reference, defer the check for later. 1648 if (D.getArgumentNumber() >= ArgTys.size()) 1649 return IsDeferredCheck || DeferCheck(Ty); 1650 1651 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1652 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1653 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1654 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1655 return Ty != NewTy; 1656 } 1657 return true; 1658 } 1659 case IITDescriptor::VecOfBitcastsToInt: { 1660 if (D.getArgumentNumber() >= ArgTys.size()) 1661 return IsDeferredCheck || DeferCheck(Ty); 1662 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1663 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1664 if (!ThisArgVecTy || !ReferenceType) 1665 return true; 1666 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1667 } 1668 } 1669 llvm_unreachable("unhandled"); 1670 } 1671 1672 Intrinsic::MatchIntrinsicTypesResult 1673 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1674 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1675 SmallVectorImpl<Type *> &ArgTys) { 1676 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1677 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1678 false)) 1679 return MatchIntrinsicTypes_NoMatchRet; 1680 1681 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1682 1683 for (auto *Ty : FTy->params()) 1684 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1685 return MatchIntrinsicTypes_NoMatchArg; 1686 1687 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1688 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1689 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1690 true)) 1691 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1692 : MatchIntrinsicTypes_NoMatchArg; 1693 } 1694 1695 return MatchIntrinsicTypes_Match; 1696 } 1697 1698 bool 1699 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1700 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1701 // If there are no descriptors left, then it can't be a vararg. 1702 if (Infos.empty()) 1703 return isVarArg; 1704 1705 // There should be only one descriptor remaining at this point. 1706 if (Infos.size() != 1) 1707 return true; 1708 1709 // Check and verify the descriptor. 1710 IITDescriptor D = Infos.front(); 1711 Infos = Infos.slice(1); 1712 if (D.Kind == IITDescriptor::VarArg) 1713 return !isVarArg; 1714 1715 return true; 1716 } 1717 1718 bool Intrinsic::getIntrinsicSignature(Function *F, 1719 SmallVectorImpl<Type *> &ArgTys) { 1720 Intrinsic::ID ID = F->getIntrinsicID(); 1721 if (!ID) 1722 return false; 1723 1724 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1725 getIntrinsicInfoTableEntries(ID, Table); 1726 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1727 1728 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1729 ArgTys) != 1730 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1731 return false; 1732 } 1733 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1734 TableRef)) 1735 return false; 1736 return true; 1737 } 1738 1739 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1740 SmallVector<Type *, 4> ArgTys; 1741 if (!getIntrinsicSignature(F, ArgTys)) 1742 return std::nullopt; 1743 1744 Intrinsic::ID ID = F->getIntrinsicID(); 1745 StringRef Name = F->getName(); 1746 std::string WantedName = 1747 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1748 if (Name == WantedName) 1749 return std::nullopt; 1750 1751 Function *NewDecl = [&] { 1752 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1753 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1754 if (ExistingF->getFunctionType() == F->getFunctionType()) 1755 return ExistingF; 1756 1757 // The name already exists, but is not a function or has the wrong 1758 // prototype. Make place for the new one by renaming the old version. 1759 // Either this old version will be removed later on or the module is 1760 // invalid and we'll get an error. 1761 ExistingGV->setName(WantedName + ".renamed"); 1762 } 1763 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1764 }(); 1765 1766 NewDecl->setCallingConv(F->getCallingConv()); 1767 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1768 "Shouldn't change the signature"); 1769 return NewDecl; 1770 } 1771 1772 /// hasAddressTaken - returns true if there are any uses of this function 1773 /// other than direct calls or invokes to it. Optionally ignores callback 1774 /// uses, assume like pointer annotation calls, and references in llvm.used 1775 /// and llvm.compiler.used variables. 1776 bool Function::hasAddressTaken(const User **PutOffender, 1777 bool IgnoreCallbackUses, 1778 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1779 bool IgnoreARCAttachedCall, 1780 bool IgnoreCastedDirectCall) const { 1781 for (const Use &U : uses()) { 1782 const User *FU = U.getUser(); 1783 if (isa<BlockAddress>(FU)) 1784 continue; 1785 1786 if (IgnoreCallbackUses) { 1787 AbstractCallSite ACS(&U); 1788 if (ACS && ACS.isCallbackCall()) 1789 continue; 1790 } 1791 1792 const auto *Call = dyn_cast<CallBase>(FU); 1793 if (!Call) { 1794 if (IgnoreAssumeLikeCalls && 1795 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1796 all_of(FU->users(), [](const User *U) { 1797 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1798 return I->isAssumeLikeIntrinsic(); 1799 return false; 1800 })) { 1801 continue; 1802 } 1803 1804 if (IgnoreLLVMUsed && !FU->user_empty()) { 1805 const User *FUU = FU; 1806 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1807 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1808 FUU = *FU->user_begin(); 1809 if (llvm::all_of(FUU->users(), [](const User *U) { 1810 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1811 return GV->hasName() && 1812 (GV->getName().equals("llvm.compiler.used") || 1813 GV->getName().equals("llvm.used")); 1814 return false; 1815 })) 1816 continue; 1817 } 1818 if (PutOffender) 1819 *PutOffender = FU; 1820 return true; 1821 } 1822 1823 if (IgnoreAssumeLikeCalls) { 1824 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1825 if (I->isAssumeLikeIntrinsic()) 1826 continue; 1827 } 1828 1829 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1830 Call->getFunctionType() != getFunctionType())) { 1831 if (IgnoreARCAttachedCall && 1832 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1833 U.getOperandNo())) 1834 continue; 1835 1836 if (PutOffender) 1837 *PutOffender = FU; 1838 return true; 1839 } 1840 } 1841 return false; 1842 } 1843 1844 bool Function::isDefTriviallyDead() const { 1845 // Check the linkage 1846 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1847 !hasAvailableExternallyLinkage()) 1848 return false; 1849 1850 // Check if the function is used by anything other than a blockaddress. 1851 for (const User *U : users()) 1852 if (!isa<BlockAddress>(U)) 1853 return false; 1854 1855 return true; 1856 } 1857 1858 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1859 /// setjmp or other function that gcc recognizes as "returning twice". 1860 bool Function::callsFunctionThatReturnsTwice() const { 1861 for (const Instruction &I : instructions(this)) 1862 if (const auto *Call = dyn_cast<CallBase>(&I)) 1863 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1864 return true; 1865 1866 return false; 1867 } 1868 1869 Constant *Function::getPersonalityFn() const { 1870 assert(hasPersonalityFn() && getNumOperands()); 1871 return cast<Constant>(Op<0>()); 1872 } 1873 1874 void Function::setPersonalityFn(Constant *Fn) { 1875 setHungoffOperand<0>(Fn); 1876 setValueSubclassDataBit(3, Fn != nullptr); 1877 } 1878 1879 Constant *Function::getPrefixData() const { 1880 assert(hasPrefixData() && getNumOperands()); 1881 return cast<Constant>(Op<1>()); 1882 } 1883 1884 void Function::setPrefixData(Constant *PrefixData) { 1885 setHungoffOperand<1>(PrefixData); 1886 setValueSubclassDataBit(1, PrefixData != nullptr); 1887 } 1888 1889 Constant *Function::getPrologueData() const { 1890 assert(hasPrologueData() && getNumOperands()); 1891 return cast<Constant>(Op<2>()); 1892 } 1893 1894 void Function::setPrologueData(Constant *PrologueData) { 1895 setHungoffOperand<2>(PrologueData); 1896 setValueSubclassDataBit(2, PrologueData != nullptr); 1897 } 1898 1899 void Function::allocHungoffUselist() { 1900 // If we've already allocated a uselist, stop here. 1901 if (getNumOperands()) 1902 return; 1903 1904 allocHungoffUses(3, /*IsPhi=*/ false); 1905 setNumHungOffUseOperands(3); 1906 1907 // Initialize the uselist with placeholder operands to allow traversal. 1908 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1909 Op<0>().set(CPN); 1910 Op<1>().set(CPN); 1911 Op<2>().set(CPN); 1912 } 1913 1914 template <int Idx> 1915 void Function::setHungoffOperand(Constant *C) { 1916 if (C) { 1917 allocHungoffUselist(); 1918 Op<Idx>().set(C); 1919 } else if (getNumOperands()) { 1920 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1921 } 1922 } 1923 1924 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1925 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1926 if (On) 1927 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1928 else 1929 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1930 } 1931 1932 void Function::setEntryCount(ProfileCount Count, 1933 const DenseSet<GlobalValue::GUID> *S) { 1934 #if !defined(NDEBUG) 1935 auto PrevCount = getEntryCount(); 1936 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1937 #endif 1938 1939 auto ImportGUIDs = getImportGUIDs(); 1940 if (S == nullptr && ImportGUIDs.size()) 1941 S = &ImportGUIDs; 1942 1943 MDBuilder MDB(getContext()); 1944 setMetadata( 1945 LLVMContext::MD_prof, 1946 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1947 } 1948 1949 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1950 const DenseSet<GlobalValue::GUID> *Imports) { 1951 setEntryCount(ProfileCount(Count, Type), Imports); 1952 } 1953 1954 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1955 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1956 if (MD && MD->getOperand(0)) 1957 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1958 if (MDS->getString().equals("function_entry_count")) { 1959 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1960 uint64_t Count = CI->getValue().getZExtValue(); 1961 // A value of -1 is used for SamplePGO when there were no samples. 1962 // Treat this the same as unknown. 1963 if (Count == (uint64_t)-1) 1964 return std::nullopt; 1965 return ProfileCount(Count, PCT_Real); 1966 } else if (AllowSynthetic && 1967 MDS->getString().equals("synthetic_function_entry_count")) { 1968 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1969 uint64_t Count = CI->getValue().getZExtValue(); 1970 return ProfileCount(Count, PCT_Synthetic); 1971 } 1972 } 1973 return std::nullopt; 1974 } 1975 1976 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1977 DenseSet<GlobalValue::GUID> R; 1978 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1979 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1980 if (MDS->getString().equals("function_entry_count")) 1981 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1982 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1983 ->getValue() 1984 .getZExtValue()); 1985 return R; 1986 } 1987 1988 void Function::setSectionPrefix(StringRef Prefix) { 1989 MDBuilder MDB(getContext()); 1990 setMetadata(LLVMContext::MD_section_prefix, 1991 MDB.createFunctionSectionPrefix(Prefix)); 1992 } 1993 1994 std::optional<StringRef> Function::getSectionPrefix() const { 1995 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1996 assert(cast<MDString>(MD->getOperand(0)) 1997 ->getString() 1998 .equals("function_section_prefix") && 1999 "Metadata not match"); 2000 return cast<MDString>(MD->getOperand(1))->getString(); 2001 } 2002 return std::nullopt; 2003 } 2004 2005 bool Function::nullPointerIsDefined() const { 2006 return hasFnAttribute(Attribute::NullPointerIsValid); 2007 } 2008 2009 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2010 if (F && F->nullPointerIsDefined()) 2011 return true; 2012 2013 if (AS != 0) 2014 return true; 2015 2016 return false; 2017 } 2018