1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsMips.h" 41 #include "llvm/IR/IntrinsicsNVPTX.h" 42 #include "llvm/IR/IntrinsicsPowerPC.h" 43 #include "llvm/IR/IntrinsicsR600.h" 44 #include "llvm/IR/IntrinsicsRISCV.h" 45 #include "llvm/IR/IntrinsicsS390.h" 46 #include "llvm/IR/IntrinsicsVE.h" 47 #include "llvm/IR/IntrinsicsWebAssembly.h" 48 #include "llvm/IR/IntrinsicsX86.h" 49 #include "llvm/IR/IntrinsicsXCore.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Operator.h" 55 #include "llvm/IR/SymbolTableListTraits.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/ValueSymbolTable.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include "llvm/Support/ModRef.h" 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 80 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 81 cl::desc("Maximum size for the name of non-global values.")); 82 83 //===----------------------------------------------------------------------===// 84 // Argument Implementation 85 //===----------------------------------------------------------------------===// 86 87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 88 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 89 setName(Name); 90 } 91 92 void Argument::setParent(Function *parent) { 93 Parent = parent; 94 } 95 96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 97 if (!getType()->isPointerTy()) return false; 98 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 99 (AllowUndefOrPoison || 100 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 101 return true; 102 else if (getDereferenceableBytes() > 0 && 103 !NullPointerIsDefined(getParent(), 104 getType()->getPointerAddressSpace())) 105 return true; 106 return false; 107 } 108 109 bool Argument::hasByValAttr() const { 110 if (!getType()->isPointerTy()) return false; 111 return hasAttribute(Attribute::ByVal); 112 } 113 114 bool Argument::hasByRefAttr() const { 115 if (!getType()->isPointerTy()) 116 return false; 117 return hasAttribute(Attribute::ByRef); 118 } 119 120 bool Argument::hasSwiftSelfAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 122 } 123 124 bool Argument::hasSwiftErrorAttr() const { 125 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 126 } 127 128 bool Argument::hasInAllocaAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::InAlloca); 131 } 132 133 bool Argument::hasPreallocatedAttr() const { 134 if (!getType()->isPointerTy()) 135 return false; 136 return hasAttribute(Attribute::Preallocated); 137 } 138 139 bool Argument::hasPassPointeeByValueCopyAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 AttributeList Attrs = getParent()->getAttributes(); 142 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 143 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 145 } 146 147 bool Argument::hasPointeeInMemoryValueAttr() const { 148 if (!getType()->isPointerTy()) 149 return false; 150 AttributeList Attrs = getParent()->getAttributes(); 151 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 152 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 156 } 157 158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 159 /// parameter type. 160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 161 // FIXME: All the type carrying attributes are mutually exclusive, so there 162 // should be a single query to get the stored type that handles any of them. 163 if (Type *ByValTy = ParamAttrs.getByValType()) 164 return ByValTy; 165 if (Type *ByRefTy = ParamAttrs.getByRefType()) 166 return ByRefTy; 167 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 168 return PreAllocTy; 169 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 170 return InAllocaTy; 171 if (Type *SRetTy = ParamAttrs.getStructRetType()) 172 return SRetTy; 173 174 return nullptr; 175 } 176 177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 178 AttributeSet ParamAttrs = 179 getParent()->getAttributes().getParamAttrs(getArgNo()); 180 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 181 return DL.getTypeAllocSize(MemTy); 182 return 0; 183 } 184 185 Type *Argument::getPointeeInMemoryValueType() const { 186 AttributeSet ParamAttrs = 187 getParent()->getAttributes().getParamAttrs(getArgNo()); 188 return getMemoryParamAllocType(ParamAttrs); 189 } 190 191 uint64_t Argument::getParamAlignment() const { 192 assert(getType()->isPointerTy() && "Only pointers have alignments"); 193 return getParent()->getParamAlignment(getArgNo()); 194 } 195 196 MaybeAlign Argument::getParamAlign() const { 197 assert(getType()->isPointerTy() && "Only pointers have alignments"); 198 return getParent()->getParamAlign(getArgNo()); 199 } 200 201 MaybeAlign Argument::getParamStackAlign() const { 202 return getParent()->getParamStackAlign(getArgNo()); 203 } 204 205 Type *Argument::getParamByValType() const { 206 assert(getType()->isPointerTy() && "Only pointers have byval types"); 207 return getParent()->getParamByValType(getArgNo()); 208 } 209 210 Type *Argument::getParamStructRetType() const { 211 assert(getType()->isPointerTy() && "Only pointers have sret types"); 212 return getParent()->getParamStructRetType(getArgNo()); 213 } 214 215 Type *Argument::getParamByRefType() const { 216 assert(getType()->isPointerTy() && "Only pointers have byref types"); 217 return getParent()->getParamByRefType(getArgNo()); 218 } 219 220 Type *Argument::getParamInAllocaType() const { 221 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 222 return getParent()->getParamInAllocaType(getArgNo()); 223 } 224 225 uint64_t Argument::getDereferenceableBytes() const { 226 assert(getType()->isPointerTy() && 227 "Only pointers have dereferenceable bytes"); 228 return getParent()->getParamDereferenceableBytes(getArgNo()); 229 } 230 231 uint64_t Argument::getDereferenceableOrNullBytes() const { 232 assert(getType()->isPointerTy() && 233 "Only pointers have dereferenceable bytes"); 234 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 235 } 236 237 bool Argument::hasNestAttr() const { 238 if (!getType()->isPointerTy()) return false; 239 return hasAttribute(Attribute::Nest); 240 } 241 242 bool Argument::hasNoAliasAttr() const { 243 if (!getType()->isPointerTy()) return false; 244 return hasAttribute(Attribute::NoAlias); 245 } 246 247 bool Argument::hasNoCaptureAttr() const { 248 if (!getType()->isPointerTy()) return false; 249 return hasAttribute(Attribute::NoCapture); 250 } 251 252 bool Argument::hasNoFreeAttr() const { 253 if (!getType()->isPointerTy()) return false; 254 return hasAttribute(Attribute::NoFree); 255 } 256 257 bool Argument::hasStructRetAttr() const { 258 if (!getType()->isPointerTy()) return false; 259 return hasAttribute(Attribute::StructRet); 260 } 261 262 bool Argument::hasInRegAttr() const { 263 return hasAttribute(Attribute::InReg); 264 } 265 266 bool Argument::hasReturnedAttr() const { 267 return hasAttribute(Attribute::Returned); 268 } 269 270 bool Argument::hasZExtAttr() const { 271 return hasAttribute(Attribute::ZExt); 272 } 273 274 bool Argument::hasSExtAttr() const { 275 return hasAttribute(Attribute::SExt); 276 } 277 278 bool Argument::onlyReadsMemory() const { 279 AttributeList Attrs = getParent()->getAttributes(); 280 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 281 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 282 } 283 284 void Argument::addAttrs(AttrBuilder &B) { 285 AttributeList AL = getParent()->getAttributes(); 286 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 287 getParent()->setAttributes(AL); 288 } 289 290 void Argument::addAttr(Attribute::AttrKind Kind) { 291 getParent()->addParamAttr(getArgNo(), Kind); 292 } 293 294 void Argument::addAttr(Attribute Attr) { 295 getParent()->addParamAttr(getArgNo(), Attr); 296 } 297 298 void Argument::removeAttr(Attribute::AttrKind Kind) { 299 getParent()->removeParamAttr(getArgNo(), Kind); 300 } 301 302 void Argument::removeAttrs(const AttributeMask &AM) { 303 AttributeList AL = getParent()->getAttributes(); 304 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 305 getParent()->setAttributes(AL); 306 } 307 308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 309 return getParent()->hasParamAttribute(getArgNo(), Kind); 310 } 311 312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 313 return getParent()->getParamAttribute(getArgNo(), Kind); 314 } 315 316 //===----------------------------------------------------------------------===// 317 // Helper Methods in Function 318 //===----------------------------------------------------------------------===// 319 320 LLVMContext &Function::getContext() const { 321 return getType()->getContext(); 322 } 323 324 unsigned Function::getInstructionCount() const { 325 unsigned NumInstrs = 0; 326 for (const BasicBlock &BB : BasicBlocks) 327 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 328 BB.instructionsWithoutDebug().end()); 329 return NumInstrs; 330 } 331 332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 333 const Twine &N, Module &M) { 334 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 335 } 336 337 Function *Function::createWithDefaultAttr(FunctionType *Ty, 338 LinkageTypes Linkage, 339 unsigned AddrSpace, const Twine &N, 340 Module *M) { 341 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 342 AttrBuilder B(F->getContext()); 343 UWTableKind UWTable = M->getUwtable(); 344 if (UWTable != UWTableKind::None) 345 B.addUWTableAttr(UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 if (M->getModuleFlag("function_return_thunk_extern")) 358 B.addAttribute(Attribute::FnRetThunkExtern); 359 F->addFnAttrs(B); 360 return F; 361 } 362 363 void Function::removeFromParent() { 364 getParent()->getFunctionList().remove(getIterator()); 365 } 366 367 void Function::eraseFromParent() { 368 getParent()->getFunctionList().erase(getIterator()); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // Function Implementation 373 //===----------------------------------------------------------------------===// 374 375 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 376 // If AS == -1 and we are passed a valid module pointer we place the function 377 // in the program address space. Otherwise we default to AS0. 378 if (AddrSpace == static_cast<unsigned>(-1)) 379 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 380 return AddrSpace; 381 } 382 383 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 384 const Twine &name, Module *ParentModule) 385 : GlobalObject(Ty, Value::FunctionVal, 386 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 387 computeAddrSpace(AddrSpace, ParentModule)), 388 NumArgs(Ty->getNumParams()) { 389 assert(FunctionType::isValidReturnType(getReturnType()) && 390 "invalid return type"); 391 setGlobalObjectSubClassData(0); 392 393 // We only need a symbol table for a function if the context keeps value names 394 if (!getContext().shouldDiscardValueNames()) 395 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 396 397 // If the function has arguments, mark them as lazily built. 398 if (Ty->getNumParams()) 399 setValueSubclassData(1); // Set the "has lazy arguments" bit. 400 401 if (ParentModule) 402 ParentModule->getFunctionList().push_back(this); 403 404 HasLLVMReservedName = getName().startswith("llvm."); 405 // Ensure intrinsics have the right parameter attributes. 406 // Note, the IntID field will have been set in Value::setName if this function 407 // name is a valid intrinsic ID. 408 if (IntID) 409 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 410 } 411 412 Function::~Function() { 413 dropAllReferences(); // After this it is safe to delete instructions. 414 415 // Delete all of the method arguments and unlink from symbol table... 416 if (Arguments) 417 clearArguments(); 418 419 // Remove the function from the on-the-side GC table. 420 clearGC(); 421 } 422 423 void Function::BuildLazyArguments() const { 424 // Create the arguments vector, all arguments start out unnamed. 425 auto *FT = getFunctionType(); 426 if (NumArgs > 0) { 427 Arguments = std::allocator<Argument>().allocate(NumArgs); 428 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 429 Type *ArgTy = FT->getParamType(i); 430 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 431 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 432 } 433 } 434 435 // Clear the lazy arguments bit. 436 unsigned SDC = getSubclassDataFromValue(); 437 SDC &= ~(1 << 0); 438 const_cast<Function*>(this)->setValueSubclassData(SDC); 439 assert(!hasLazyArguments()); 440 } 441 442 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 443 return MutableArrayRef<Argument>(Args, Count); 444 } 445 446 bool Function::isConstrainedFPIntrinsic() const { 447 switch (getIntrinsicID()) { 448 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 449 case Intrinsic::INTRINSIC: 450 #include "llvm/IR/ConstrainedOps.def" 451 return true; 452 #undef INSTRUCTION 453 default: 454 return false; 455 } 456 } 457 458 void Function::clearArguments() { 459 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 460 A.setName(""); 461 A.~Argument(); 462 } 463 std::allocator<Argument>().deallocate(Arguments, NumArgs); 464 Arguments = nullptr; 465 } 466 467 void Function::stealArgumentListFrom(Function &Src) { 468 assert(isDeclaration() && "Expected no references to current arguments"); 469 470 // Drop the current arguments, if any, and set the lazy argument bit. 471 if (!hasLazyArguments()) { 472 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 473 [](const Argument &A) { return A.use_empty(); }) && 474 "Expected arguments to be unused in declaration"); 475 clearArguments(); 476 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 477 } 478 479 // Nothing to steal if Src has lazy arguments. 480 if (Src.hasLazyArguments()) 481 return; 482 483 // Steal arguments from Src, and fix the lazy argument bits. 484 assert(arg_size() == Src.arg_size()); 485 Arguments = Src.Arguments; 486 Src.Arguments = nullptr; 487 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 488 // FIXME: This does the work of transferNodesFromList inefficiently. 489 SmallString<128> Name; 490 if (A.hasName()) 491 Name = A.getName(); 492 if (!Name.empty()) 493 A.setName(""); 494 A.setParent(this); 495 if (!Name.empty()) 496 A.setName(Name); 497 } 498 499 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 500 assert(!hasLazyArguments()); 501 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 502 } 503 504 // dropAllReferences() - This function causes all the subinstructions to "let 505 // go" of all references that they are maintaining. This allows one to 506 // 'delete' a whole class at a time, even though there may be circular 507 // references... first all references are dropped, and all use counts go to 508 // zero. Then everything is deleted for real. Note that no operations are 509 // valid on an object that has "dropped all references", except operator 510 // delete. 511 // 512 void Function::dropAllReferences() { 513 setIsMaterializable(false); 514 515 for (BasicBlock &BB : *this) 516 BB.dropAllReferences(); 517 518 // Delete all basic blocks. They are now unused, except possibly by 519 // blockaddresses, but BasicBlock's destructor takes care of those. 520 while (!BasicBlocks.empty()) 521 BasicBlocks.begin()->eraseFromParent(); 522 523 // Drop uses of any optional data (real or placeholder). 524 if (getNumOperands()) { 525 User::dropAllReferences(); 526 setNumHungOffUseOperands(0); 527 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 528 } 529 530 // Metadata is stored in a side-table. 531 clearMetadata(); 532 } 533 534 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 535 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 536 } 537 538 void Function::addFnAttr(Attribute::AttrKind Kind) { 539 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 540 } 541 542 void Function::addFnAttr(StringRef Kind, StringRef Val) { 543 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 544 } 545 546 void Function::addFnAttr(Attribute Attr) { 547 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 548 } 549 550 void Function::addFnAttrs(const AttrBuilder &Attrs) { 551 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 552 } 553 554 void Function::addRetAttr(Attribute::AttrKind Kind) { 555 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 556 } 557 558 void Function::addRetAttr(Attribute Attr) { 559 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 560 } 561 562 void Function::addRetAttrs(const AttrBuilder &Attrs) { 563 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 564 } 565 566 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 567 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 568 } 569 570 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 571 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 572 } 573 574 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 575 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 576 } 577 578 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 579 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 580 } 581 582 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 583 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 584 } 585 586 void Function::removeFnAttr(Attribute::AttrKind Kind) { 587 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 588 } 589 590 void Function::removeFnAttr(StringRef Kind) { 591 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 592 } 593 594 void Function::removeFnAttrs(const AttributeMask &AM) { 595 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 596 } 597 598 void Function::removeRetAttr(Attribute::AttrKind Kind) { 599 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 600 } 601 602 void Function::removeRetAttr(StringRef Kind) { 603 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 604 } 605 606 void Function::removeRetAttrs(const AttributeMask &Attrs) { 607 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 608 } 609 610 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 611 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 612 } 613 614 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 615 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 616 } 617 618 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 619 AttributeSets = 620 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 621 } 622 623 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 624 AttributeSets = 625 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 626 } 627 628 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 629 return AttributeSets.hasFnAttr(Kind); 630 } 631 632 bool Function::hasFnAttribute(StringRef Kind) const { 633 return AttributeSets.hasFnAttr(Kind); 634 } 635 636 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 637 return AttributeSets.hasRetAttr(Kind); 638 } 639 640 bool Function::hasParamAttribute(unsigned ArgNo, 641 Attribute::AttrKind Kind) const { 642 return AttributeSets.hasParamAttr(ArgNo, Kind); 643 } 644 645 Attribute Function::getAttributeAtIndex(unsigned i, 646 Attribute::AttrKind Kind) const { 647 return AttributeSets.getAttributeAtIndex(i, Kind); 648 } 649 650 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 651 return AttributeSets.getAttributeAtIndex(i, Kind); 652 } 653 654 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 655 return AttributeSets.getFnAttr(Kind); 656 } 657 658 Attribute Function::getFnAttribute(StringRef Kind) const { 659 return AttributeSets.getFnAttr(Kind); 660 } 661 662 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 663 uint64_t Default) const { 664 Attribute A = getFnAttribute(Name); 665 uint64_t Result = Default; 666 if (A.isStringAttribute()) { 667 StringRef Str = A.getValueAsString(); 668 if (Str.getAsInteger(0, Result)) 669 getContext().emitError("cannot parse integer attribute " + Name); 670 } 671 672 return Result; 673 } 674 675 /// gets the specified attribute from the list of attributes. 676 Attribute Function::getParamAttribute(unsigned ArgNo, 677 Attribute::AttrKind Kind) const { 678 return AttributeSets.getParamAttr(ArgNo, Kind); 679 } 680 681 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 682 uint64_t Bytes) { 683 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 684 ArgNo, Bytes); 685 } 686 687 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 688 if (&FPType == &APFloat::IEEEsingle()) { 689 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 690 StringRef Val = Attr.getValueAsString(); 691 if (!Val.empty()) 692 return parseDenormalFPAttribute(Val); 693 694 // If the f32 variant of the attribute isn't specified, try to use the 695 // generic one. 696 } 697 698 Attribute Attr = getFnAttribute("denormal-fp-math"); 699 return parseDenormalFPAttribute(Attr.getValueAsString()); 700 } 701 702 const std::string &Function::getGC() const { 703 assert(hasGC() && "Function has no collector"); 704 return getContext().getGC(*this); 705 } 706 707 void Function::setGC(std::string Str) { 708 setValueSubclassDataBit(14, !Str.empty()); 709 getContext().setGC(*this, std::move(Str)); 710 } 711 712 void Function::clearGC() { 713 if (!hasGC()) 714 return; 715 getContext().deleteGC(*this); 716 setValueSubclassDataBit(14, false); 717 } 718 719 bool Function::hasStackProtectorFnAttr() const { 720 return hasFnAttribute(Attribute::StackProtect) || 721 hasFnAttribute(Attribute::StackProtectStrong) || 722 hasFnAttribute(Attribute::StackProtectReq); 723 } 724 725 /// Copy all additional attributes (those not needed to create a Function) from 726 /// the Function Src to this one. 727 void Function::copyAttributesFrom(const Function *Src) { 728 GlobalObject::copyAttributesFrom(Src); 729 setCallingConv(Src->getCallingConv()); 730 setAttributes(Src->getAttributes()); 731 if (Src->hasGC()) 732 setGC(Src->getGC()); 733 else 734 clearGC(); 735 if (Src->hasPersonalityFn()) 736 setPersonalityFn(Src->getPersonalityFn()); 737 if (Src->hasPrefixData()) 738 setPrefixData(Src->getPrefixData()); 739 if (Src->hasPrologueData()) 740 setPrologueData(Src->getPrologueData()); 741 } 742 743 MemoryEffects Function::getMemoryEffects() const { 744 return getAttributes().getMemoryEffects(); 745 } 746 void Function::setMemoryEffects(MemoryEffects ME) { 747 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 748 } 749 750 /// Determine if the function does not access memory. 751 bool Function::doesNotAccessMemory() const { 752 return getMemoryEffects().doesNotAccessMemory(); 753 } 754 void Function::setDoesNotAccessMemory() { 755 setMemoryEffects(MemoryEffects::none()); 756 } 757 758 /// Determine if the function does not access or only reads memory. 759 bool Function::onlyReadsMemory() const { 760 return getMemoryEffects().onlyReadsMemory(); 761 } 762 void Function::setOnlyReadsMemory() { 763 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 764 } 765 766 /// Determine if the function does not access or only writes memory. 767 bool Function::onlyWritesMemory() const { 768 return getMemoryEffects().onlyWritesMemory(); 769 } 770 void Function::setOnlyWritesMemory() { 771 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 772 } 773 774 /// Determine if the call can access memmory only using pointers based 775 /// on its arguments. 776 bool Function::onlyAccessesArgMemory() const { 777 return getMemoryEffects().onlyAccessesArgPointees(); 778 } 779 void Function::setOnlyAccessesArgMemory() { 780 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 781 } 782 783 /// Determine if the function may only access memory that is 784 /// inaccessible from the IR. 785 bool Function::onlyAccessesInaccessibleMemory() const { 786 return getMemoryEffects().onlyAccessesInaccessibleMem(); 787 } 788 void Function::setOnlyAccessesInaccessibleMemory() { 789 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 790 } 791 792 /// Determine if the function may only access memory that is 793 /// either inaccessible from the IR or pointed to by its arguments. 794 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 795 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 796 } 797 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 798 setMemoryEffects(getMemoryEffects() & 799 MemoryEffects::inaccessibleOrArgMemOnly()); 800 } 801 802 /// Table of string intrinsic names indexed by enum value. 803 static const char * const IntrinsicNameTable[] = { 804 "not_intrinsic", 805 #define GET_INTRINSIC_NAME_TABLE 806 #include "llvm/IR/IntrinsicImpl.inc" 807 #undef GET_INTRINSIC_NAME_TABLE 808 }; 809 810 /// Table of per-target intrinsic name tables. 811 #define GET_INTRINSIC_TARGET_DATA 812 #include "llvm/IR/IntrinsicImpl.inc" 813 #undef GET_INTRINSIC_TARGET_DATA 814 815 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 816 return IID > TargetInfos[0].Count; 817 } 818 819 bool Function::isTargetIntrinsic() const { 820 return isTargetIntrinsic(IntID); 821 } 822 823 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 824 /// target as \c Name, or the generic table if \c Name is not target specific. 825 /// 826 /// Returns the relevant slice of \c IntrinsicNameTable 827 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 828 assert(Name.startswith("llvm.")); 829 830 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 831 // Drop "llvm." and take the first dotted component. That will be the target 832 // if this is target specific. 833 StringRef Target = Name.drop_front(5).split('.').first; 834 auto It = partition_point( 835 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 836 // We've either found the target or just fall back to the generic set, which 837 // is always first. 838 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 839 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 840 } 841 842 /// This does the actual lookup of an intrinsic ID which 843 /// matches the given function name. 844 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 845 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 846 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 847 if (Idx == -1) 848 return Intrinsic::not_intrinsic; 849 850 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 851 // an index into a sub-table. 852 int Adjust = NameTable.data() - IntrinsicNameTable; 853 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 854 855 // If the intrinsic is not overloaded, require an exact match. If it is 856 // overloaded, require either exact or prefix match. 857 const auto MatchSize = strlen(NameTable[Idx]); 858 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 859 bool IsExactMatch = Name.size() == MatchSize; 860 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 861 : Intrinsic::not_intrinsic; 862 } 863 864 void Function::recalculateIntrinsicID() { 865 StringRef Name = getName(); 866 if (!Name.startswith("llvm.")) { 867 HasLLVMReservedName = false; 868 IntID = Intrinsic::not_intrinsic; 869 return; 870 } 871 HasLLVMReservedName = true; 872 IntID = lookupIntrinsicID(Name); 873 } 874 875 /// Returns a stable mangling for the type specified for use in the name 876 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 877 /// of named types is simply their name. Manglings for unnamed types consist 878 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 879 /// combined with the mangling of their component types. A vararg function 880 /// type will have a suffix of 'vararg'. Since function types can contain 881 /// other function types, we close a function type mangling with suffix 'f' 882 /// which can't be confused with it's prefix. This ensures we don't have 883 /// collisions between two unrelated function types. Otherwise, you might 884 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 885 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 886 /// indicating that extra care must be taken to ensure a unique name. 887 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 888 std::string Result; 889 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 890 Result += "p" + utostr(PTyp->getAddressSpace()); 891 // Opaque pointer doesn't have pointee type information, so we just mangle 892 // address space for opaque pointer. 893 if (!PTyp->isOpaque()) 894 Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(), 895 HasUnnamedType); 896 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 897 Result += "a" + utostr(ATyp->getNumElements()) + 898 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 899 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 900 if (!STyp->isLiteral()) { 901 Result += "s_"; 902 if (STyp->hasName()) 903 Result += STyp->getName(); 904 else 905 HasUnnamedType = true; 906 } else { 907 Result += "sl_"; 908 for (auto *Elem : STyp->elements()) 909 Result += getMangledTypeStr(Elem, HasUnnamedType); 910 } 911 // Ensure nested structs are distinguishable. 912 Result += "s"; 913 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 914 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 915 for (size_t i = 0; i < FT->getNumParams(); i++) 916 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 917 if (FT->isVarArg()) 918 Result += "vararg"; 919 // Ensure nested function types are distinguishable. 920 Result += "f"; 921 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 922 ElementCount EC = VTy->getElementCount(); 923 if (EC.isScalable()) 924 Result += "nx"; 925 Result += "v" + utostr(EC.getKnownMinValue()) + 926 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 927 } else if (Ty) { 928 switch (Ty->getTypeID()) { 929 default: llvm_unreachable("Unhandled type"); 930 case Type::VoidTyID: Result += "isVoid"; break; 931 case Type::MetadataTyID: Result += "Metadata"; break; 932 case Type::HalfTyID: Result += "f16"; break; 933 case Type::BFloatTyID: Result += "bf16"; break; 934 case Type::FloatTyID: Result += "f32"; break; 935 case Type::DoubleTyID: Result += "f64"; break; 936 case Type::X86_FP80TyID: Result += "f80"; break; 937 case Type::FP128TyID: Result += "f128"; break; 938 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 939 case Type::X86_MMXTyID: Result += "x86mmx"; break; 940 case Type::X86_AMXTyID: Result += "x86amx"; break; 941 case Type::IntegerTyID: 942 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 943 break; 944 } 945 } 946 return Result; 947 } 948 949 StringRef Intrinsic::getBaseName(ID id) { 950 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 951 return IntrinsicNameTable[id]; 952 } 953 954 StringRef Intrinsic::getName(ID id) { 955 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 956 assert(!Intrinsic::isOverloaded(id) && 957 "This version of getName does not support overloading"); 958 return getBaseName(id); 959 } 960 961 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 962 Module *M, FunctionType *FT, 963 bool EarlyModuleCheck) { 964 965 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 966 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 967 "This version of getName is for overloaded intrinsics only"); 968 (void)EarlyModuleCheck; 969 assert((!EarlyModuleCheck || M || 970 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 971 "Intrinsic overloading on pointer types need to provide a Module"); 972 bool HasUnnamedType = false; 973 std::string Result(Intrinsic::getBaseName(Id)); 974 for (Type *Ty : Tys) 975 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 976 if (HasUnnamedType) { 977 assert(M && "unnamed types need a module"); 978 if (!FT) 979 FT = Intrinsic::getType(M->getContext(), Id, Tys); 980 else 981 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 982 "Provided FunctionType must match arguments"); 983 return M->getUniqueIntrinsicName(Result, Id, FT); 984 } 985 return Result; 986 } 987 988 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 989 FunctionType *FT) { 990 assert(M && "We need to have a Module"); 991 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 992 } 993 994 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 995 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 996 } 997 998 /// IIT_Info - These are enumerators that describe the entries returned by the 999 /// getIntrinsicInfoTableEntries function. 1000 /// 1001 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 1002 enum IIT_Info { 1003 // Common values should be encoded with 0-15. 1004 IIT_Done = 0, 1005 IIT_I1 = 1, 1006 IIT_I8 = 2, 1007 IIT_I16 = 3, 1008 IIT_I32 = 4, 1009 IIT_I64 = 5, 1010 IIT_F16 = 6, 1011 IIT_F32 = 7, 1012 IIT_F64 = 8, 1013 IIT_V2 = 9, 1014 IIT_V4 = 10, 1015 IIT_V8 = 11, 1016 IIT_V16 = 12, 1017 IIT_V32 = 13, 1018 IIT_PTR = 14, 1019 IIT_ARG = 15, 1020 1021 // Values from 16+ are only encodable with the inefficient encoding. 1022 IIT_V64 = 16, 1023 IIT_MMX = 17, 1024 IIT_TOKEN = 18, 1025 IIT_METADATA = 19, 1026 IIT_EMPTYSTRUCT = 20, 1027 IIT_STRUCT2 = 21, 1028 IIT_STRUCT3 = 22, 1029 IIT_STRUCT4 = 23, 1030 IIT_STRUCT5 = 24, 1031 IIT_EXTEND_ARG = 25, 1032 IIT_TRUNC_ARG = 26, 1033 IIT_ANYPTR = 27, 1034 IIT_V1 = 28, 1035 IIT_VARARG = 29, 1036 IIT_HALF_VEC_ARG = 30, 1037 IIT_SAME_VEC_WIDTH_ARG = 31, 1038 IIT_PTR_TO_ARG = 32, 1039 IIT_PTR_TO_ELT = 33, 1040 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 1041 IIT_I128 = 35, 1042 IIT_V512 = 36, 1043 IIT_V1024 = 37, 1044 IIT_STRUCT6 = 38, 1045 IIT_STRUCT7 = 39, 1046 IIT_STRUCT8 = 40, 1047 IIT_F128 = 41, 1048 IIT_VEC_ELEMENT = 42, 1049 IIT_SCALABLE_VEC = 43, 1050 IIT_SUBDIVIDE2_ARG = 44, 1051 IIT_SUBDIVIDE4_ARG = 45, 1052 IIT_VEC_OF_BITCASTS_TO_INT = 46, 1053 IIT_V128 = 47, 1054 IIT_BF16 = 48, 1055 IIT_STRUCT9 = 49, 1056 IIT_V256 = 50, 1057 IIT_AMX = 51, 1058 IIT_PPCF128 = 52, 1059 IIT_V3 = 53, 1060 IIT_EXTERNREF = 54, 1061 IIT_FUNCREF = 55, 1062 IIT_ANYPTR_TO_ELT = 56, 1063 IIT_I2 = 57, 1064 IIT_I4 = 58, 1065 }; 1066 1067 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1068 IIT_Info LastInfo, 1069 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1070 using namespace Intrinsic; 1071 1072 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1073 1074 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1075 unsigned StructElts = 2; 1076 1077 switch (Info) { 1078 case IIT_Done: 1079 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1080 return; 1081 case IIT_VARARG: 1082 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1083 return; 1084 case IIT_MMX: 1085 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1086 return; 1087 case IIT_AMX: 1088 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1089 return; 1090 case IIT_TOKEN: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1092 return; 1093 case IIT_METADATA: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1095 return; 1096 case IIT_F16: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1098 return; 1099 case IIT_BF16: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1101 return; 1102 case IIT_F32: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1104 return; 1105 case IIT_F64: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1107 return; 1108 case IIT_F128: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1110 return; 1111 case IIT_PPCF128: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1113 return; 1114 case IIT_I1: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1116 return; 1117 case IIT_I2: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1119 return; 1120 case IIT_I4: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1122 return; 1123 case IIT_I8: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1125 return; 1126 case IIT_I16: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1128 return; 1129 case IIT_I32: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1131 return; 1132 case IIT_I64: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1134 return; 1135 case IIT_I128: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1137 return; 1138 case IIT_V1: 1139 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1140 DecodeIITType(NextElt, Infos, Info, OutputTable); 1141 return; 1142 case IIT_V2: 1143 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1144 DecodeIITType(NextElt, Infos, Info, OutputTable); 1145 return; 1146 case IIT_V3: 1147 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1148 DecodeIITType(NextElt, Infos, Info, OutputTable); 1149 return; 1150 case IIT_V4: 1151 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1152 DecodeIITType(NextElt, Infos, Info, OutputTable); 1153 return; 1154 case IIT_V8: 1155 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1156 DecodeIITType(NextElt, Infos, Info, OutputTable); 1157 return; 1158 case IIT_V16: 1159 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1160 DecodeIITType(NextElt, Infos, Info, OutputTable); 1161 return; 1162 case IIT_V32: 1163 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1164 DecodeIITType(NextElt, Infos, Info, OutputTable); 1165 return; 1166 case IIT_V64: 1167 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1168 DecodeIITType(NextElt, Infos, Info, OutputTable); 1169 return; 1170 case IIT_V128: 1171 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1172 DecodeIITType(NextElt, Infos, Info, OutputTable); 1173 return; 1174 case IIT_V256: 1175 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1176 DecodeIITType(NextElt, Infos, Info, OutputTable); 1177 return; 1178 case IIT_V512: 1179 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1180 DecodeIITType(NextElt, Infos, Info, OutputTable); 1181 return; 1182 case IIT_V1024: 1183 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1184 DecodeIITType(NextElt, Infos, Info, OutputTable); 1185 return; 1186 case IIT_EXTERNREF: 1187 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1188 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1189 return; 1190 case IIT_FUNCREF: 1191 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1192 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1193 return; 1194 case IIT_PTR: 1195 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1196 DecodeIITType(NextElt, Infos, Info, OutputTable); 1197 return; 1198 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1199 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1200 Infos[NextElt++])); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 } 1204 case IIT_ARG: { 1205 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1206 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1207 return; 1208 } 1209 case IIT_EXTEND_ARG: { 1210 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1211 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1212 ArgInfo)); 1213 return; 1214 } 1215 case IIT_TRUNC_ARG: { 1216 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1218 ArgInfo)); 1219 return; 1220 } 1221 case IIT_HALF_VEC_ARG: { 1222 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1223 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1224 ArgInfo)); 1225 return; 1226 } 1227 case IIT_SAME_VEC_WIDTH_ARG: { 1228 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1229 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1230 ArgInfo)); 1231 return; 1232 } 1233 case IIT_PTR_TO_ARG: { 1234 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1235 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1236 ArgInfo)); 1237 return; 1238 } 1239 case IIT_PTR_TO_ELT: { 1240 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1241 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1242 return; 1243 } 1244 case IIT_ANYPTR_TO_ELT: { 1245 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1246 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1247 OutputTable.push_back( 1248 IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo)); 1249 return; 1250 } 1251 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1252 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1253 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back( 1255 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1256 return; 1257 } 1258 case IIT_EMPTYSTRUCT: 1259 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1260 return; 1261 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1262 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1263 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1264 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1265 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1266 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1267 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1268 case IIT_STRUCT2: { 1269 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1270 1271 for (unsigned i = 0; i != StructElts; ++i) 1272 DecodeIITType(NextElt, Infos, Info, OutputTable); 1273 return; 1274 } 1275 case IIT_SUBDIVIDE2_ARG: { 1276 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1277 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1278 ArgInfo)); 1279 return; 1280 } 1281 case IIT_SUBDIVIDE4_ARG: { 1282 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1283 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1284 ArgInfo)); 1285 return; 1286 } 1287 case IIT_VEC_ELEMENT: { 1288 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1289 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1290 ArgInfo)); 1291 return; 1292 } 1293 case IIT_SCALABLE_VEC: { 1294 DecodeIITType(NextElt, Infos, Info, OutputTable); 1295 return; 1296 } 1297 case IIT_VEC_OF_BITCASTS_TO_INT: { 1298 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1299 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1300 ArgInfo)); 1301 return; 1302 } 1303 } 1304 llvm_unreachable("unhandled"); 1305 } 1306 1307 #define GET_INTRINSIC_GENERATOR_GLOBAL 1308 #include "llvm/IR/IntrinsicImpl.inc" 1309 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1310 1311 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1312 SmallVectorImpl<IITDescriptor> &T){ 1313 // Check to see if the intrinsic's type was expressible by the table. 1314 unsigned TableVal = IIT_Table[id-1]; 1315 1316 // Decode the TableVal into an array of IITValues. 1317 SmallVector<unsigned char, 8> IITValues; 1318 ArrayRef<unsigned char> IITEntries; 1319 unsigned NextElt = 0; 1320 if ((TableVal >> 31) != 0) { 1321 // This is an offset into the IIT_LongEncodingTable. 1322 IITEntries = IIT_LongEncodingTable; 1323 1324 // Strip sentinel bit. 1325 NextElt = (TableVal << 1) >> 1; 1326 } else { 1327 // Decode the TableVal into an array of IITValues. If the entry was encoded 1328 // into a single word in the table itself, decode it now. 1329 do { 1330 IITValues.push_back(TableVal & 0xF); 1331 TableVal >>= 4; 1332 } while (TableVal); 1333 1334 IITEntries = IITValues; 1335 NextElt = 0; 1336 } 1337 1338 // Okay, decode the table into the output vector of IITDescriptors. 1339 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1340 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1341 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1342 } 1343 1344 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1345 ArrayRef<Type*> Tys, LLVMContext &Context) { 1346 using namespace Intrinsic; 1347 1348 IITDescriptor D = Infos.front(); 1349 Infos = Infos.slice(1); 1350 1351 switch (D.Kind) { 1352 case IITDescriptor::Void: return Type::getVoidTy(Context); 1353 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1354 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1355 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1356 case IITDescriptor::Token: return Type::getTokenTy(Context); 1357 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1358 case IITDescriptor::Half: return Type::getHalfTy(Context); 1359 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1360 case IITDescriptor::Float: return Type::getFloatTy(Context); 1361 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1362 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1363 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1364 1365 case IITDescriptor::Integer: 1366 return IntegerType::get(Context, D.Integer_Width); 1367 case IITDescriptor::Vector: 1368 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1369 D.Vector_Width); 1370 case IITDescriptor::Pointer: 1371 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1372 D.Pointer_AddressSpace); 1373 case IITDescriptor::Struct: { 1374 SmallVector<Type *, 8> Elts; 1375 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1376 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1377 return StructType::get(Context, Elts); 1378 } 1379 case IITDescriptor::Argument: 1380 return Tys[D.getArgumentNumber()]; 1381 case IITDescriptor::ExtendArgument: { 1382 Type *Ty = Tys[D.getArgumentNumber()]; 1383 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1384 return VectorType::getExtendedElementVectorType(VTy); 1385 1386 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1387 } 1388 case IITDescriptor::TruncArgument: { 1389 Type *Ty = Tys[D.getArgumentNumber()]; 1390 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1391 return VectorType::getTruncatedElementVectorType(VTy); 1392 1393 IntegerType *ITy = cast<IntegerType>(Ty); 1394 assert(ITy->getBitWidth() % 2 == 0); 1395 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1396 } 1397 case IITDescriptor::Subdivide2Argument: 1398 case IITDescriptor::Subdivide4Argument: { 1399 Type *Ty = Tys[D.getArgumentNumber()]; 1400 VectorType *VTy = dyn_cast<VectorType>(Ty); 1401 assert(VTy && "Expected an argument of Vector Type"); 1402 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1403 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1404 } 1405 case IITDescriptor::HalfVecArgument: 1406 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1407 Tys[D.getArgumentNumber()])); 1408 case IITDescriptor::SameVecWidthArgument: { 1409 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1410 Type *Ty = Tys[D.getArgumentNumber()]; 1411 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1412 return VectorType::get(EltTy, VTy->getElementCount()); 1413 return EltTy; 1414 } 1415 case IITDescriptor::PtrToArgument: { 1416 Type *Ty = Tys[D.getArgumentNumber()]; 1417 return PointerType::getUnqual(Ty); 1418 } 1419 case IITDescriptor::PtrToElt: { 1420 Type *Ty = Tys[D.getArgumentNumber()]; 1421 VectorType *VTy = dyn_cast<VectorType>(Ty); 1422 if (!VTy) 1423 llvm_unreachable("Expected an argument of Vector Type"); 1424 Type *EltTy = VTy->getElementType(); 1425 return PointerType::getUnqual(EltTy); 1426 } 1427 case IITDescriptor::VecElementArgument: { 1428 Type *Ty = Tys[D.getArgumentNumber()]; 1429 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1430 return VTy->getElementType(); 1431 llvm_unreachable("Expected an argument of Vector Type"); 1432 } 1433 case IITDescriptor::VecOfBitcastsToInt: { 1434 Type *Ty = Tys[D.getArgumentNumber()]; 1435 VectorType *VTy = dyn_cast<VectorType>(Ty); 1436 assert(VTy && "Expected an argument of Vector Type"); 1437 return VectorType::getInteger(VTy); 1438 } 1439 case IITDescriptor::VecOfAnyPtrsToElt: 1440 // Return the overloaded type (which determines the pointers address space) 1441 return Tys[D.getOverloadArgNumber()]; 1442 case IITDescriptor::AnyPtrToElt: 1443 // Return the overloaded type (which determines the pointers address space) 1444 return Tys[D.getOverloadArgNumber()]; 1445 } 1446 llvm_unreachable("unhandled"); 1447 } 1448 1449 FunctionType *Intrinsic::getType(LLVMContext &Context, 1450 ID id, ArrayRef<Type*> Tys) { 1451 SmallVector<IITDescriptor, 8> Table; 1452 getIntrinsicInfoTableEntries(id, Table); 1453 1454 ArrayRef<IITDescriptor> TableRef = Table; 1455 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1456 1457 SmallVector<Type*, 8> ArgTys; 1458 while (!TableRef.empty()) 1459 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1460 1461 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1462 // If we see void type as the type of the last argument, it is vararg intrinsic 1463 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1464 ArgTys.pop_back(); 1465 return FunctionType::get(ResultTy, ArgTys, true); 1466 } 1467 return FunctionType::get(ResultTy, ArgTys, false); 1468 } 1469 1470 bool Intrinsic::isOverloaded(ID id) { 1471 #define GET_INTRINSIC_OVERLOAD_TABLE 1472 #include "llvm/IR/IntrinsicImpl.inc" 1473 #undef GET_INTRINSIC_OVERLOAD_TABLE 1474 } 1475 1476 bool Intrinsic::isLeaf(ID id) { 1477 switch (id) { 1478 default: 1479 return true; 1480 1481 case Intrinsic::experimental_gc_statepoint: 1482 case Intrinsic::experimental_patchpoint_void: 1483 case Intrinsic::experimental_patchpoint_i64: 1484 return false; 1485 } 1486 } 1487 1488 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1489 #define GET_INTRINSIC_ATTRIBUTES 1490 #include "llvm/IR/IntrinsicImpl.inc" 1491 #undef GET_INTRINSIC_ATTRIBUTES 1492 1493 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1494 // There can never be multiple globals with the same name of different types, 1495 // because intrinsics must be a specific type. 1496 auto *FT = getType(M->getContext(), id, Tys); 1497 return cast<Function>( 1498 M->getOrInsertFunction( 1499 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1500 .getCallee()); 1501 } 1502 1503 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1504 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1505 #include "llvm/IR/IntrinsicImpl.inc" 1506 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1507 1508 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1509 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1510 #include "llvm/IR/IntrinsicImpl.inc" 1511 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1512 1513 using DeferredIntrinsicMatchPair = 1514 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1515 1516 static bool matchIntrinsicType( 1517 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1518 SmallVectorImpl<Type *> &ArgTys, 1519 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1520 bool IsDeferredCheck) { 1521 using namespace Intrinsic; 1522 1523 // If we ran out of descriptors, there are too many arguments. 1524 if (Infos.empty()) return true; 1525 1526 // Do this before slicing off the 'front' part 1527 auto InfosRef = Infos; 1528 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1529 DeferredChecks.emplace_back(T, InfosRef); 1530 return false; 1531 }; 1532 1533 IITDescriptor D = Infos.front(); 1534 Infos = Infos.slice(1); 1535 1536 switch (D.Kind) { 1537 case IITDescriptor::Void: return !Ty->isVoidTy(); 1538 case IITDescriptor::VarArg: return true; 1539 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1540 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1541 case IITDescriptor::Token: return !Ty->isTokenTy(); 1542 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1543 case IITDescriptor::Half: return !Ty->isHalfTy(); 1544 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1545 case IITDescriptor::Float: return !Ty->isFloatTy(); 1546 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1547 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1548 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1549 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1550 case IITDescriptor::Vector: { 1551 VectorType *VT = dyn_cast<VectorType>(Ty); 1552 return !VT || VT->getElementCount() != D.Vector_Width || 1553 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1554 DeferredChecks, IsDeferredCheck); 1555 } 1556 case IITDescriptor::Pointer: { 1557 PointerType *PT = dyn_cast<PointerType>(Ty); 1558 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1559 return true; 1560 if (!PT->isOpaque()) { 1561 /* Manually consume a pointer to empty struct descriptor, which is 1562 * used for externref. We don't want to enforce that the struct is 1563 * anonymous in this case. (This renders externref intrinsics 1564 * non-unique, but this will go away with opaque pointers anyway.) */ 1565 if (Infos.front().Kind == IITDescriptor::Struct && 1566 Infos.front().Struct_NumElements == 0) { 1567 Infos = Infos.slice(1); 1568 return false; 1569 } 1570 return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos, 1571 ArgTys, DeferredChecks, IsDeferredCheck); 1572 } 1573 // Consume IIT descriptors relating to the pointer element type. 1574 // FIXME: Intrinsic type matching of nested single value types or even 1575 // aggregates doesn't work properly with opaque pointers but hopefully 1576 // doesn't happen in practice. 1577 while (Infos.front().Kind == IITDescriptor::Pointer || 1578 Infos.front().Kind == IITDescriptor::Vector) 1579 Infos = Infos.slice(1); 1580 assert((Infos.front().Kind != IITDescriptor::Argument || 1581 Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) && 1582 "Unsupported polymorphic pointer type with opaque pointer"); 1583 Infos = Infos.slice(1); 1584 return false; 1585 } 1586 1587 case IITDescriptor::Struct: { 1588 StructType *ST = dyn_cast<StructType>(Ty); 1589 if (!ST || !ST->isLiteral() || ST->isPacked() || 1590 ST->getNumElements() != D.Struct_NumElements) 1591 return true; 1592 1593 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1594 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1595 DeferredChecks, IsDeferredCheck)) 1596 return true; 1597 return false; 1598 } 1599 1600 case IITDescriptor::Argument: 1601 // If this is the second occurrence of an argument, 1602 // verify that the later instance matches the previous instance. 1603 if (D.getArgumentNumber() < ArgTys.size()) 1604 return Ty != ArgTys[D.getArgumentNumber()]; 1605 1606 if (D.getArgumentNumber() > ArgTys.size() || 1607 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1608 return IsDeferredCheck || DeferCheck(Ty); 1609 1610 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1611 "Table consistency error"); 1612 ArgTys.push_back(Ty); 1613 1614 switch (D.getArgumentKind()) { 1615 case IITDescriptor::AK_Any: return false; // Success 1616 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1617 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1618 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1619 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1620 default: break; 1621 } 1622 llvm_unreachable("all argument kinds not covered"); 1623 1624 case IITDescriptor::ExtendArgument: { 1625 // If this is a forward reference, defer the check for later. 1626 if (D.getArgumentNumber() >= ArgTys.size()) 1627 return IsDeferredCheck || DeferCheck(Ty); 1628 1629 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1630 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1631 NewTy = VectorType::getExtendedElementVectorType(VTy); 1632 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1633 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1634 else 1635 return true; 1636 1637 return Ty != NewTy; 1638 } 1639 case IITDescriptor::TruncArgument: { 1640 // If this is a forward reference, defer the check for later. 1641 if (D.getArgumentNumber() >= ArgTys.size()) 1642 return IsDeferredCheck || DeferCheck(Ty); 1643 1644 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1645 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1646 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1647 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1648 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1649 else 1650 return true; 1651 1652 return Ty != NewTy; 1653 } 1654 case IITDescriptor::HalfVecArgument: 1655 // If this is a forward reference, defer the check for later. 1656 if (D.getArgumentNumber() >= ArgTys.size()) 1657 return IsDeferredCheck || DeferCheck(Ty); 1658 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1659 VectorType::getHalfElementsVectorType( 1660 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1661 case IITDescriptor::SameVecWidthArgument: { 1662 if (D.getArgumentNumber() >= ArgTys.size()) { 1663 // Defer check and subsequent check for the vector element type. 1664 Infos = Infos.slice(1); 1665 return IsDeferredCheck || DeferCheck(Ty); 1666 } 1667 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1668 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1669 // Both must be vectors of the same number of elements or neither. 1670 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1671 return true; 1672 Type *EltTy = Ty; 1673 if (ThisArgType) { 1674 if (ReferenceType->getElementCount() != 1675 ThisArgType->getElementCount()) 1676 return true; 1677 EltTy = ThisArgType->getElementType(); 1678 } 1679 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1680 IsDeferredCheck); 1681 } 1682 case IITDescriptor::PtrToArgument: { 1683 if (D.getArgumentNumber() >= ArgTys.size()) 1684 return IsDeferredCheck || DeferCheck(Ty); 1685 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1686 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1687 return (!ThisArgType || 1688 !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType)); 1689 } 1690 case IITDescriptor::PtrToElt: { 1691 if (D.getArgumentNumber() >= ArgTys.size()) 1692 return IsDeferredCheck || DeferCheck(Ty); 1693 VectorType * ReferenceType = 1694 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1695 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1696 1697 if (!ThisArgType || !ReferenceType) 1698 return true; 1699 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1700 ReferenceType->getElementType()); 1701 } 1702 case IITDescriptor::AnyPtrToElt: { 1703 unsigned RefArgNumber = D.getRefArgNumber(); 1704 if (RefArgNumber >= ArgTys.size()) { 1705 if (IsDeferredCheck) 1706 return true; 1707 // If forward referencing, already add the pointer type and 1708 // defer the checks for later. 1709 ArgTys.push_back(Ty); 1710 return DeferCheck(Ty); 1711 } 1712 1713 if (!IsDeferredCheck) { 1714 assert(D.getOverloadArgNumber() == ArgTys.size() && 1715 "Table consistency error"); 1716 ArgTys.push_back(Ty); 1717 } 1718 1719 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1720 auto *ThisArgType = dyn_cast<PointerType>(Ty); 1721 if (!ThisArgType || !ReferenceType) 1722 return true; 1723 return !ThisArgType->isOpaqueOrPointeeTypeMatches( 1724 ReferenceType->getElementType()); 1725 } 1726 case IITDescriptor::VecOfAnyPtrsToElt: { 1727 unsigned RefArgNumber = D.getRefArgNumber(); 1728 if (RefArgNumber >= ArgTys.size()) { 1729 if (IsDeferredCheck) 1730 return true; 1731 // If forward referencing, already add the pointer-vector type and 1732 // defer the checks for later. 1733 ArgTys.push_back(Ty); 1734 return DeferCheck(Ty); 1735 } 1736 1737 if (!IsDeferredCheck){ 1738 assert(D.getOverloadArgNumber() == ArgTys.size() && 1739 "Table consistency error"); 1740 ArgTys.push_back(Ty); 1741 } 1742 1743 // Verify the overloaded type "matches" the Ref type. 1744 // i.e. Ty is a vector with the same width as Ref. 1745 // Composed of pointers to the same element type as Ref. 1746 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1747 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1748 if (!ThisArgVecTy || !ReferenceType || 1749 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1750 return true; 1751 PointerType *ThisArgEltTy = 1752 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1753 if (!ThisArgEltTy) 1754 return true; 1755 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1756 ReferenceType->getElementType()); 1757 } 1758 case IITDescriptor::VecElementArgument: { 1759 if (D.getArgumentNumber() >= ArgTys.size()) 1760 return IsDeferredCheck ? true : DeferCheck(Ty); 1761 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1762 return !ReferenceType || Ty != ReferenceType->getElementType(); 1763 } 1764 case IITDescriptor::Subdivide2Argument: 1765 case IITDescriptor::Subdivide4Argument: { 1766 // If this is a forward reference, defer the check for later. 1767 if (D.getArgumentNumber() >= ArgTys.size()) 1768 return IsDeferredCheck || DeferCheck(Ty); 1769 1770 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1771 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1772 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1773 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1774 return Ty != NewTy; 1775 } 1776 return true; 1777 } 1778 case IITDescriptor::VecOfBitcastsToInt: { 1779 if (D.getArgumentNumber() >= ArgTys.size()) 1780 return IsDeferredCheck || DeferCheck(Ty); 1781 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1782 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1783 if (!ThisArgVecTy || !ReferenceType) 1784 return true; 1785 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1786 } 1787 } 1788 llvm_unreachable("unhandled"); 1789 } 1790 1791 Intrinsic::MatchIntrinsicTypesResult 1792 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1793 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1794 SmallVectorImpl<Type *> &ArgTys) { 1795 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1796 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1797 false)) 1798 return MatchIntrinsicTypes_NoMatchRet; 1799 1800 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1801 1802 for (auto *Ty : FTy->params()) 1803 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1804 return MatchIntrinsicTypes_NoMatchArg; 1805 1806 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1807 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1808 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1809 true)) 1810 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1811 : MatchIntrinsicTypes_NoMatchArg; 1812 } 1813 1814 return MatchIntrinsicTypes_Match; 1815 } 1816 1817 bool 1818 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1819 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1820 // If there are no descriptors left, then it can't be a vararg. 1821 if (Infos.empty()) 1822 return isVarArg; 1823 1824 // There should be only one descriptor remaining at this point. 1825 if (Infos.size() != 1) 1826 return true; 1827 1828 // Check and verify the descriptor. 1829 IITDescriptor D = Infos.front(); 1830 Infos = Infos.slice(1); 1831 if (D.Kind == IITDescriptor::VarArg) 1832 return !isVarArg; 1833 1834 return true; 1835 } 1836 1837 bool Intrinsic::getIntrinsicSignature(Function *F, 1838 SmallVectorImpl<Type *> &ArgTys) { 1839 Intrinsic::ID ID = F->getIntrinsicID(); 1840 if (!ID) 1841 return false; 1842 1843 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1844 getIntrinsicInfoTableEntries(ID, Table); 1845 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1846 1847 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1848 ArgTys) != 1849 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1850 return false; 1851 } 1852 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1853 TableRef)) 1854 return false; 1855 return true; 1856 } 1857 1858 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1859 SmallVector<Type *, 4> ArgTys; 1860 if (!getIntrinsicSignature(F, ArgTys)) 1861 return std::nullopt; 1862 1863 Intrinsic::ID ID = F->getIntrinsicID(); 1864 StringRef Name = F->getName(); 1865 std::string WantedName = 1866 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1867 if (Name == WantedName) 1868 return std::nullopt; 1869 1870 Function *NewDecl = [&] { 1871 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1872 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1873 if (ExistingF->getFunctionType() == F->getFunctionType()) 1874 return ExistingF; 1875 1876 // The name already exists, but is not a function or has the wrong 1877 // prototype. Make place for the new one by renaming the old version. 1878 // Either this old version will be removed later on or the module is 1879 // invalid and we'll get an error. 1880 ExistingGV->setName(WantedName + ".renamed"); 1881 } 1882 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1883 }(); 1884 1885 NewDecl->setCallingConv(F->getCallingConv()); 1886 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1887 "Shouldn't change the signature"); 1888 return NewDecl; 1889 } 1890 1891 static bool isPointerCastOperator(const User *U) { 1892 return isa<AddrSpaceCastOperator>(U) || isa<BitCastOperator>(U); 1893 } 1894 1895 /// hasAddressTaken - returns true if there are any uses of this function 1896 /// other than direct calls or invokes to it. Optionally ignores callback 1897 /// uses, assume like pointer annotation calls, and references in llvm.used 1898 /// and llvm.compiler.used variables. 1899 bool Function::hasAddressTaken(const User **PutOffender, 1900 bool IgnoreCallbackUses, 1901 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1902 bool IgnoreARCAttachedCall) const { 1903 for (const Use &U : uses()) { 1904 const User *FU = U.getUser(); 1905 if (isa<BlockAddress>(FU)) 1906 continue; 1907 1908 if (IgnoreCallbackUses) { 1909 AbstractCallSite ACS(&U); 1910 if (ACS && ACS.isCallbackCall()) 1911 continue; 1912 } 1913 1914 const auto *Call = dyn_cast<CallBase>(FU); 1915 if (!Call) { 1916 if (IgnoreAssumeLikeCalls && isPointerCastOperator(FU) && 1917 all_of(FU->users(), [](const User *U) { 1918 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1919 return I->isAssumeLikeIntrinsic(); 1920 return false; 1921 })) { 1922 continue; 1923 } 1924 1925 if (IgnoreLLVMUsed && !FU->user_empty()) { 1926 const User *FUU = FU; 1927 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1928 !FU->user_begin()->user_empty()) 1929 FUU = *FU->user_begin(); 1930 if (llvm::all_of(FUU->users(), [](const User *U) { 1931 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1932 return GV->hasName() && 1933 (GV->getName().equals("llvm.compiler.used") || 1934 GV->getName().equals("llvm.used")); 1935 return false; 1936 })) 1937 continue; 1938 } 1939 if (PutOffender) 1940 *PutOffender = FU; 1941 return true; 1942 } 1943 1944 if (IgnoreAssumeLikeCalls) { 1945 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1946 if (I->isAssumeLikeIntrinsic()) 1947 continue; 1948 } 1949 1950 if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) { 1951 if (IgnoreARCAttachedCall && 1952 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1953 U.getOperandNo())) 1954 continue; 1955 1956 if (PutOffender) 1957 *PutOffender = FU; 1958 return true; 1959 } 1960 } 1961 return false; 1962 } 1963 1964 bool Function::isDefTriviallyDead() const { 1965 // Check the linkage 1966 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1967 !hasAvailableExternallyLinkage()) 1968 return false; 1969 1970 // Check if the function is used by anything other than a blockaddress. 1971 for (const User *U : users()) 1972 if (!isa<BlockAddress>(U)) 1973 return false; 1974 1975 return true; 1976 } 1977 1978 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1979 /// setjmp or other function that gcc recognizes as "returning twice". 1980 bool Function::callsFunctionThatReturnsTwice() const { 1981 for (const Instruction &I : instructions(this)) 1982 if (const auto *Call = dyn_cast<CallBase>(&I)) 1983 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1984 return true; 1985 1986 return false; 1987 } 1988 1989 Constant *Function::getPersonalityFn() const { 1990 assert(hasPersonalityFn() && getNumOperands()); 1991 return cast<Constant>(Op<0>()); 1992 } 1993 1994 void Function::setPersonalityFn(Constant *Fn) { 1995 setHungoffOperand<0>(Fn); 1996 setValueSubclassDataBit(3, Fn != nullptr); 1997 } 1998 1999 Constant *Function::getPrefixData() const { 2000 assert(hasPrefixData() && getNumOperands()); 2001 return cast<Constant>(Op<1>()); 2002 } 2003 2004 void Function::setPrefixData(Constant *PrefixData) { 2005 setHungoffOperand<1>(PrefixData); 2006 setValueSubclassDataBit(1, PrefixData != nullptr); 2007 } 2008 2009 Constant *Function::getPrologueData() const { 2010 assert(hasPrologueData() && getNumOperands()); 2011 return cast<Constant>(Op<2>()); 2012 } 2013 2014 void Function::setPrologueData(Constant *PrologueData) { 2015 setHungoffOperand<2>(PrologueData); 2016 setValueSubclassDataBit(2, PrologueData != nullptr); 2017 } 2018 2019 void Function::allocHungoffUselist() { 2020 // If we've already allocated a uselist, stop here. 2021 if (getNumOperands()) 2022 return; 2023 2024 allocHungoffUses(3, /*IsPhi=*/ false); 2025 setNumHungOffUseOperands(3); 2026 2027 // Initialize the uselist with placeholder operands to allow traversal. 2028 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 2029 Op<0>().set(CPN); 2030 Op<1>().set(CPN); 2031 Op<2>().set(CPN); 2032 } 2033 2034 template <int Idx> 2035 void Function::setHungoffOperand(Constant *C) { 2036 if (C) { 2037 allocHungoffUselist(); 2038 Op<Idx>().set(C); 2039 } else if (getNumOperands()) { 2040 Op<Idx>().set( 2041 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 2042 } 2043 } 2044 2045 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 2046 assert(Bit < 16 && "SubclassData contains only 16 bits"); 2047 if (On) 2048 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 2049 else 2050 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 2051 } 2052 2053 void Function::setEntryCount(ProfileCount Count, 2054 const DenseSet<GlobalValue::GUID> *S) { 2055 #if !defined(NDEBUG) 2056 auto PrevCount = getEntryCount(); 2057 assert(!PrevCount || PrevCount->getType() == Count.getType()); 2058 #endif 2059 2060 auto ImportGUIDs = getImportGUIDs(); 2061 if (S == nullptr && ImportGUIDs.size()) 2062 S = &ImportGUIDs; 2063 2064 MDBuilder MDB(getContext()); 2065 setMetadata( 2066 LLVMContext::MD_prof, 2067 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2068 } 2069 2070 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2071 const DenseSet<GlobalValue::GUID> *Imports) { 2072 setEntryCount(ProfileCount(Count, Type), Imports); 2073 } 2074 2075 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2076 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2077 if (MD && MD->getOperand(0)) 2078 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2079 if (MDS->getString().equals("function_entry_count")) { 2080 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2081 uint64_t Count = CI->getValue().getZExtValue(); 2082 // A value of -1 is used for SamplePGO when there were no samples. 2083 // Treat this the same as unknown. 2084 if (Count == (uint64_t)-1) 2085 return std::nullopt; 2086 return ProfileCount(Count, PCT_Real); 2087 } else if (AllowSynthetic && 2088 MDS->getString().equals("synthetic_function_entry_count")) { 2089 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2090 uint64_t Count = CI->getValue().getZExtValue(); 2091 return ProfileCount(Count, PCT_Synthetic); 2092 } 2093 } 2094 return std::nullopt; 2095 } 2096 2097 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2098 DenseSet<GlobalValue::GUID> R; 2099 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2100 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2101 if (MDS->getString().equals("function_entry_count")) 2102 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2103 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2104 ->getValue() 2105 .getZExtValue()); 2106 return R; 2107 } 2108 2109 void Function::setSectionPrefix(StringRef Prefix) { 2110 MDBuilder MDB(getContext()); 2111 setMetadata(LLVMContext::MD_section_prefix, 2112 MDB.createFunctionSectionPrefix(Prefix)); 2113 } 2114 2115 std::optional<StringRef> Function::getSectionPrefix() const { 2116 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2117 assert(cast<MDString>(MD->getOperand(0)) 2118 ->getString() 2119 .equals("function_section_prefix") && 2120 "Metadata not match"); 2121 return cast<MDString>(MD->getOperand(1))->getString(); 2122 } 2123 return std::nullopt; 2124 } 2125 2126 bool Function::nullPointerIsDefined() const { 2127 return hasFnAttribute(Attribute::NullPointerIsValid); 2128 } 2129 2130 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2131 if (F && F->nullPointerIsDefined()) 2132 return true; 2133 2134 if (AS != 0) 2135 return true; 2136 2137 return false; 2138 } 2139