1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return hasAttribute(Attribute::ByVal); 93 } 94 95 bool Argument::hasSwiftSelfAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 98 } 99 100 bool Argument::hasSwiftErrorAttr() const { 101 return getParent()->getAttributes(). 102 hasAttribute(getArgNo()+1, Attribute::SwiftError); 103 } 104 105 /// \brief Return true if this argument has the inalloca attribute on it in 106 /// its containing function. 107 bool Argument::hasInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 return hasAttribute(Attribute::InAlloca); 110 } 111 112 bool Argument::hasByValOrInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 AttributeSet Attrs = getParent()->getAttributes(); 115 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 116 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 117 } 118 119 unsigned Argument::getParamAlignment() const { 120 assert(getType()->isPointerTy() && "Only pointers have alignments"); 121 return getParent()->getParamAlignment(getArgNo()+1); 122 123 } 124 125 uint64_t Argument::getDereferenceableBytes() const { 126 assert(getType()->isPointerTy() && 127 "Only pointers have dereferenceable bytes"); 128 return getParent()->getDereferenceableBytes(getArgNo()+1); 129 } 130 131 uint64_t Argument::getDereferenceableOrNullBytes() const { 132 assert(getType()->isPointerTy() && 133 "Only pointers have dereferenceable bytes"); 134 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 135 } 136 137 /// hasNestAttr - Return true if this argument has the nest attribute on 138 /// it in its containing function. 139 bool Argument::hasNestAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::Nest); 142 } 143 144 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 145 /// it in its containing function. 146 bool Argument::hasNoAliasAttr() const { 147 if (!getType()->isPointerTy()) return false; 148 return hasAttribute(Attribute::NoAlias); 149 } 150 151 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 152 /// on it in its containing function. 153 bool Argument::hasNoCaptureAttr() const { 154 if (!getType()->isPointerTy()) return false; 155 return hasAttribute(Attribute::NoCapture); 156 } 157 158 /// hasSRetAttr - Return true if this argument has the sret attribute on 159 /// it in its containing function. 160 bool Argument::hasStructRetAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::StructRet); 163 } 164 165 /// hasReturnedAttr - Return true if this argument has the returned attribute on 166 /// it in its containing function. 167 bool Argument::hasReturnedAttr() const { 168 return hasAttribute(Attribute::Returned); 169 } 170 171 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 172 /// its containing function. 173 bool Argument::hasZExtAttr() const { 174 return hasAttribute(Attribute::ZExt); 175 } 176 177 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 178 /// containing function. 179 bool Argument::hasSExtAttr() const { 180 return hasAttribute(Attribute::SExt); 181 } 182 183 /// Return true if this argument has the readonly or readnone attribute on it 184 /// in its containing function. 185 bool Argument::onlyReadsMemory() const { 186 return getParent()->getAttributes(). 187 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 188 getParent()->getAttributes(). 189 hasAttribute(getArgNo()+1, Attribute::ReadNone); 190 } 191 192 /// addAttr - Add attributes to an argument. 193 void Argument::addAttr(AttributeSet AS) { 194 assert(AS.getNumSlots() <= 1 && 195 "Trying to add more than one attribute set to an argument!"); 196 AttrBuilder B(AS, AS.getSlotIndex(0)); 197 getParent()->addAttributes(getArgNo() + 1, 198 AttributeSet::get(Parent->getContext(), 199 getArgNo() + 1, B)); 200 } 201 202 /// removeAttr - Remove attributes from an argument. 203 void Argument::removeAttr(AttributeSet AS) { 204 assert(AS.getNumSlots() <= 1 && 205 "Trying to remove more than one attribute set from an argument!"); 206 AttrBuilder B(AS, AS.getSlotIndex(0)); 207 getParent()->removeAttributes(getArgNo() + 1, 208 AttributeSet::get(Parent->getContext(), 209 getArgNo() + 1, B)); 210 } 211 212 /// hasAttribute - Checks if an argument has a given attribute. 213 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 214 return getParent()->hasAttribute(getArgNo() + 1, Kind); 215 } 216 217 //===----------------------------------------------------------------------===// 218 // Helper Methods in Function 219 //===----------------------------------------------------------------------===// 220 221 bool Function::isMaterializable() const { 222 return getGlobalObjectSubClassData() & IsMaterializableBit; 223 } 224 225 void Function::setIsMaterializable(bool V) { 226 setGlobalObjectBit(IsMaterializableBit, V); 227 } 228 229 LLVMContext &Function::getContext() const { 230 return getType()->getContext(); 231 } 232 233 FunctionType *Function::getFunctionType() const { 234 return cast<FunctionType>(getValueType()); 235 } 236 237 bool Function::isVarArg() const { 238 return getFunctionType()->isVarArg(); 239 } 240 241 Type *Function::getReturnType() const { 242 return getFunctionType()->getReturnType(); 243 } 244 245 void Function::removeFromParent() { 246 getParent()->getFunctionList().remove(getIterator()); 247 } 248 249 void Function::eraseFromParent() { 250 getParent()->getFunctionList().erase(getIterator()); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // Function Implementation 255 //===----------------------------------------------------------------------===// 256 257 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 258 Module *ParentModule) 259 : GlobalObject(Ty, Value::FunctionVal, 260 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 261 assert(FunctionType::isValidReturnType(getReturnType()) && 262 "invalid return type"); 263 setGlobalObjectSubClassData(0); 264 SymTab = new ValueSymbolTable(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 // Ensure intrinsics have the right parameter attributes. 274 // Note, the IntID field will have been set in Value::setName if this function 275 // name is a valid intrinsic ID. 276 if (IntID) 277 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 278 } 279 280 Function::~Function() { 281 dropAllReferences(); // After this it is safe to delete instructions. 282 283 // Delete all of the method arguments and unlink from symbol table... 284 ArgumentList.clear(); 285 delete SymTab; 286 287 // Remove the function from the on-the-side GC table. 288 clearGC(); 289 } 290 291 void Function::BuildLazyArguments() const { 292 // Create the arguments vector, all arguments start out unnamed. 293 FunctionType *FT = getFunctionType(); 294 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 295 assert(!FT->getParamType(i)->isVoidTy() && 296 "Cannot have void typed arguments!"); 297 ArgumentList.push_back(new Argument(FT->getParamType(i))); 298 } 299 300 // Clear the lazy arguments bit. 301 unsigned SDC = getSubclassDataFromValue(); 302 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 303 } 304 305 void Function::stealArgumentListFrom(Function &Src) { 306 assert(isDeclaration() && "Expected no references to current arguments"); 307 308 // Drop the current arguments, if any, and set the lazy argument bit. 309 if (!hasLazyArguments()) { 310 assert(llvm::all_of(ArgumentList, 311 [](const Argument &A) { return A.use_empty(); }) && 312 "Expected arguments to be unused in declaration"); 313 ArgumentList.clear(); 314 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 315 } 316 317 // Nothing to steal if Src has lazy arguments. 318 if (Src.hasLazyArguments()) 319 return; 320 321 // Steal arguments from Src, and fix the lazy argument bits. 322 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 323 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 324 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 325 } 326 327 size_t Function::arg_size() const { 328 return getFunctionType()->getNumParams(); 329 } 330 bool Function::arg_empty() const { 331 return getFunctionType()->getNumParams() == 0; 332 } 333 334 void Function::setParent(Module *parent) { 335 Parent = parent; 336 } 337 338 // dropAllReferences() - This function causes all the subinstructions to "let 339 // go" of all references that they are maintaining. This allows one to 340 // 'delete' a whole class at a time, even though there may be circular 341 // references... first all references are dropped, and all use counts go to 342 // zero. Then everything is deleted for real. Note that no operations are 343 // valid on an object that has "dropped all references", except operator 344 // delete. 345 // 346 void Function::dropAllReferences() { 347 setIsMaterializable(false); 348 349 for (iterator I = begin(), E = end(); I != E; ++I) 350 I->dropAllReferences(); 351 352 // Delete all basic blocks. They are now unused, except possibly by 353 // blockaddresses, but BasicBlock's destructor takes care of those. 354 while (!BasicBlocks.empty()) 355 BasicBlocks.begin()->eraseFromParent(); 356 357 // Drop uses of any optional data (real or placeholder). 358 if (getNumOperands()) { 359 User::dropAllReferences(); 360 setNumHungOffUseOperands(0); 361 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 362 } 363 364 // Metadata is stored in a side-table. 365 clearMetadata(); 366 } 367 368 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 369 AttributeSet PAL = getAttributes(); 370 PAL = PAL.addAttribute(getContext(), i, attr); 371 setAttributes(PAL); 372 } 373 374 void Function::addAttributes(unsigned i, AttributeSet attrs) { 375 AttributeSet PAL = getAttributes(); 376 PAL = PAL.addAttributes(getContext(), i, attrs); 377 setAttributes(PAL); 378 } 379 380 void Function::removeAttribute(unsigned i, Attribute::AttrKind attr) { 381 AttributeSet PAL = getAttributes(); 382 PAL = PAL.removeAttribute(getContext(), i, attr); 383 setAttributes(PAL); 384 } 385 386 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 387 AttributeSet PAL = getAttributes(); 388 PAL = PAL.removeAttributes(getContext(), i, attrs); 389 setAttributes(PAL); 390 } 391 392 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 393 AttributeSet PAL = getAttributes(); 394 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 395 setAttributes(PAL); 396 } 397 398 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 399 AttributeSet PAL = getAttributes(); 400 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 401 setAttributes(PAL); 402 } 403 404 const std::string &Function::getGC() const { 405 assert(hasGC() && "Function has no collector"); 406 return getContext().getGC(*this); 407 } 408 409 void Function::setGC(const std::string Str) { 410 setValueSubclassDataBit(14, !Str.empty()); 411 getContext().setGC(*this, std::move(Str)); 412 } 413 414 void Function::clearGC() { 415 if (!hasGC()) 416 return; 417 getContext().deleteGC(*this); 418 setValueSubclassDataBit(14, false); 419 } 420 421 /// Copy all additional attributes (those not needed to create a Function) from 422 /// the Function Src to this one. 423 void Function::copyAttributesFrom(const GlobalValue *Src) { 424 GlobalObject::copyAttributesFrom(Src); 425 const Function *SrcF = dyn_cast<Function>(Src); 426 if (!SrcF) 427 return; 428 429 setCallingConv(SrcF->getCallingConv()); 430 setAttributes(SrcF->getAttributes()); 431 if (SrcF->hasGC()) 432 setGC(SrcF->getGC()); 433 else 434 clearGC(); 435 if (SrcF->hasPersonalityFn()) 436 setPersonalityFn(SrcF->getPersonalityFn()); 437 if (SrcF->hasPrefixData()) 438 setPrefixData(SrcF->getPrefixData()); 439 if (SrcF->hasPrologueData()) 440 setPrologueData(SrcF->getPrologueData()); 441 } 442 443 /// Table of string intrinsic names indexed by enum value. 444 static const char * const IntrinsicNameTable[] = { 445 "not_intrinsic", 446 #define GET_INTRINSIC_NAME_TABLE 447 #include "llvm/IR/Intrinsics.gen" 448 #undef GET_INTRINSIC_NAME_TABLE 449 }; 450 451 /// \brief This does the actual lookup of an intrinsic ID which 452 /// matches the given function name. 453 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 454 StringRef Name = ValName->getKey(); 455 456 ArrayRef<const char *> NameTable(&IntrinsicNameTable[1], 457 std::end(IntrinsicNameTable)); 458 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 459 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1); 460 if (ID == Intrinsic::not_intrinsic) 461 return ID; 462 463 // If the intrinsic is not overloaded, require an exact match. If it is 464 // overloaded, require a prefix match. 465 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 466 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 467 } 468 469 void Function::recalculateIntrinsicID() { 470 const ValueName *ValName = this->getValueName(); 471 if (!ValName || !isIntrinsic()) { 472 IntID = Intrinsic::not_intrinsic; 473 return; 474 } 475 IntID = lookupIntrinsicID(ValName); 476 } 477 478 /// Returns a stable mangling for the type specified for use in the name 479 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 480 /// of named types is simply their name. Manglings for unnamed types consist 481 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 482 /// combined with the mangling of their component types. A vararg function 483 /// type will have a suffix of 'vararg'. Since function types can contain 484 /// other function types, we close a function type mangling with suffix 'f' 485 /// which can't be confused with it's prefix. This ensures we don't have 486 /// collisions between two unrelated function types. Otherwise, you might 487 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 488 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 489 /// cases) fall back to the MVT codepath, where they could be mangled to 490 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 491 /// everything. 492 static std::string getMangledTypeStr(Type* Ty) { 493 std::string Result; 494 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 495 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 496 getMangledTypeStr(PTyp->getElementType()); 497 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 498 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 499 getMangledTypeStr(ATyp->getElementType()); 500 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 501 assert(!STyp->isLiteral() && "TODO: implement literal types"); 502 Result += STyp->getName(); 503 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 504 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 505 for (size_t i = 0; i < FT->getNumParams(); i++) 506 Result += getMangledTypeStr(FT->getParamType(i)); 507 if (FT->isVarArg()) 508 Result += "vararg"; 509 // Ensure nested function types are distinguishable. 510 Result += "f"; 511 } else if (isa<VectorType>(Ty)) 512 Result += "v" + utostr(Ty->getVectorNumElements()) + 513 getMangledTypeStr(Ty->getVectorElementType()); 514 else if (Ty) 515 Result += EVT::getEVT(Ty).getEVTString(); 516 return Result; 517 } 518 519 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 520 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 521 if (Tys.empty()) 522 return IntrinsicNameTable[id]; 523 std::string Result(IntrinsicNameTable[id]); 524 for (unsigned i = 0; i < Tys.size(); ++i) { 525 Result += "." + getMangledTypeStr(Tys[i]); 526 } 527 return Result; 528 } 529 530 531 /// IIT_Info - These are enumerators that describe the entries returned by the 532 /// getIntrinsicInfoTableEntries function. 533 /// 534 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 535 enum IIT_Info { 536 // Common values should be encoded with 0-15. 537 IIT_Done = 0, 538 IIT_I1 = 1, 539 IIT_I8 = 2, 540 IIT_I16 = 3, 541 IIT_I32 = 4, 542 IIT_I64 = 5, 543 IIT_F16 = 6, 544 IIT_F32 = 7, 545 IIT_F64 = 8, 546 IIT_V2 = 9, 547 IIT_V4 = 10, 548 IIT_V8 = 11, 549 IIT_V16 = 12, 550 IIT_V32 = 13, 551 IIT_PTR = 14, 552 IIT_ARG = 15, 553 554 // Values from 16+ are only encodable with the inefficient encoding. 555 IIT_V64 = 16, 556 IIT_MMX = 17, 557 IIT_TOKEN = 18, 558 IIT_METADATA = 19, 559 IIT_EMPTYSTRUCT = 20, 560 IIT_STRUCT2 = 21, 561 IIT_STRUCT3 = 22, 562 IIT_STRUCT4 = 23, 563 IIT_STRUCT5 = 24, 564 IIT_EXTEND_ARG = 25, 565 IIT_TRUNC_ARG = 26, 566 IIT_ANYPTR = 27, 567 IIT_V1 = 28, 568 IIT_VARARG = 29, 569 IIT_HALF_VEC_ARG = 30, 570 IIT_SAME_VEC_WIDTH_ARG = 31, 571 IIT_PTR_TO_ARG = 32, 572 IIT_VEC_OF_PTRS_TO_ELT = 33, 573 IIT_I128 = 34, 574 IIT_V512 = 35, 575 IIT_V1024 = 36 576 }; 577 578 579 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 580 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 581 IIT_Info Info = IIT_Info(Infos[NextElt++]); 582 unsigned StructElts = 2; 583 using namespace Intrinsic; 584 585 switch (Info) { 586 case IIT_Done: 587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 588 return; 589 case IIT_VARARG: 590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 591 return; 592 case IIT_MMX: 593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 594 return; 595 case IIT_TOKEN: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 597 return; 598 case IIT_METADATA: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 600 return; 601 case IIT_F16: 602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 603 return; 604 case IIT_F32: 605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 606 return; 607 case IIT_F64: 608 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 609 return; 610 case IIT_I1: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 612 return; 613 case IIT_I8: 614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 615 return; 616 case IIT_I16: 617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 618 return; 619 case IIT_I32: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 621 return; 622 case IIT_I64: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 624 return; 625 case IIT_I128: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 627 return; 628 case IIT_V1: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 case IIT_V2: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 634 DecodeIITType(NextElt, Infos, OutputTable); 635 return; 636 case IIT_V4: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 638 DecodeIITType(NextElt, Infos, OutputTable); 639 return; 640 case IIT_V8: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 642 DecodeIITType(NextElt, Infos, OutputTable); 643 return; 644 case IIT_V16: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 646 DecodeIITType(NextElt, Infos, OutputTable); 647 return; 648 case IIT_V32: 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 650 DecodeIITType(NextElt, Infos, OutputTable); 651 return; 652 case IIT_V64: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 654 DecodeIITType(NextElt, Infos, OutputTable); 655 return; 656 case IIT_V512: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 658 DecodeIITType(NextElt, Infos, OutputTable); 659 return; 660 case IIT_V1024: 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 662 DecodeIITType(NextElt, Infos, OutputTable); 663 return; 664 case IIT_PTR: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 666 DecodeIITType(NextElt, Infos, OutputTable); 667 return; 668 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 670 Infos[NextElt++])); 671 DecodeIITType(NextElt, Infos, OutputTable); 672 return; 673 } 674 case IIT_ARG: { 675 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 677 return; 678 } 679 case IIT_EXTEND_ARG: { 680 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 682 ArgInfo)); 683 return; 684 } 685 case IIT_TRUNC_ARG: { 686 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 688 ArgInfo)); 689 return; 690 } 691 case IIT_HALF_VEC_ARG: { 692 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 694 ArgInfo)); 695 return; 696 } 697 case IIT_SAME_VEC_WIDTH_ARG: { 698 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 700 ArgInfo)); 701 return; 702 } 703 case IIT_PTR_TO_ARG: { 704 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 706 ArgInfo)); 707 return; 708 } 709 case IIT_VEC_OF_PTRS_TO_ELT: { 710 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 712 ArgInfo)); 713 return; 714 } 715 case IIT_EMPTYSTRUCT: 716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 717 return; 718 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 719 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 720 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 721 case IIT_STRUCT2: { 722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 723 724 for (unsigned i = 0; i != StructElts; ++i) 725 DecodeIITType(NextElt, Infos, OutputTable); 726 return; 727 } 728 } 729 llvm_unreachable("unhandled"); 730 } 731 732 733 #define GET_INTRINSIC_GENERATOR_GLOBAL 734 #include "llvm/IR/Intrinsics.gen" 735 #undef GET_INTRINSIC_GENERATOR_GLOBAL 736 737 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 738 SmallVectorImpl<IITDescriptor> &T){ 739 // Check to see if the intrinsic's type was expressible by the table. 740 unsigned TableVal = IIT_Table[id-1]; 741 742 // Decode the TableVal into an array of IITValues. 743 SmallVector<unsigned char, 8> IITValues; 744 ArrayRef<unsigned char> IITEntries; 745 unsigned NextElt = 0; 746 if ((TableVal >> 31) != 0) { 747 // This is an offset into the IIT_LongEncodingTable. 748 IITEntries = IIT_LongEncodingTable; 749 750 // Strip sentinel bit. 751 NextElt = (TableVal << 1) >> 1; 752 } else { 753 // Decode the TableVal into an array of IITValues. If the entry was encoded 754 // into a single word in the table itself, decode it now. 755 do { 756 IITValues.push_back(TableVal & 0xF); 757 TableVal >>= 4; 758 } while (TableVal); 759 760 IITEntries = IITValues; 761 NextElt = 0; 762 } 763 764 // Okay, decode the table into the output vector of IITDescriptors. 765 DecodeIITType(NextElt, IITEntries, T); 766 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 767 DecodeIITType(NextElt, IITEntries, T); 768 } 769 770 771 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 772 ArrayRef<Type*> Tys, LLVMContext &Context) { 773 using namespace Intrinsic; 774 IITDescriptor D = Infos.front(); 775 Infos = Infos.slice(1); 776 777 switch (D.Kind) { 778 case IITDescriptor::Void: return Type::getVoidTy(Context); 779 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 780 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 781 case IITDescriptor::Token: return Type::getTokenTy(Context); 782 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 783 case IITDescriptor::Half: return Type::getHalfTy(Context); 784 case IITDescriptor::Float: return Type::getFloatTy(Context); 785 case IITDescriptor::Double: return Type::getDoubleTy(Context); 786 787 case IITDescriptor::Integer: 788 return IntegerType::get(Context, D.Integer_Width); 789 case IITDescriptor::Vector: 790 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 791 case IITDescriptor::Pointer: 792 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 793 D.Pointer_AddressSpace); 794 case IITDescriptor::Struct: { 795 Type *Elts[5]; 796 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 797 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 798 Elts[i] = DecodeFixedType(Infos, Tys, Context); 799 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 800 } 801 802 case IITDescriptor::Argument: 803 return Tys[D.getArgumentNumber()]; 804 case IITDescriptor::ExtendArgument: { 805 Type *Ty = Tys[D.getArgumentNumber()]; 806 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 807 return VectorType::getExtendedElementVectorType(VTy); 808 809 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 810 } 811 case IITDescriptor::TruncArgument: { 812 Type *Ty = Tys[D.getArgumentNumber()]; 813 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 814 return VectorType::getTruncatedElementVectorType(VTy); 815 816 IntegerType *ITy = cast<IntegerType>(Ty); 817 assert(ITy->getBitWidth() % 2 == 0); 818 return IntegerType::get(Context, ITy->getBitWidth() / 2); 819 } 820 case IITDescriptor::HalfVecArgument: 821 return VectorType::getHalfElementsVectorType(cast<VectorType>( 822 Tys[D.getArgumentNumber()])); 823 case IITDescriptor::SameVecWidthArgument: { 824 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 825 Type *Ty = Tys[D.getArgumentNumber()]; 826 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 827 return VectorType::get(EltTy, VTy->getNumElements()); 828 } 829 llvm_unreachable("unhandled"); 830 } 831 case IITDescriptor::PtrToArgument: { 832 Type *Ty = Tys[D.getArgumentNumber()]; 833 return PointerType::getUnqual(Ty); 834 } 835 case IITDescriptor::VecOfPtrsToElt: { 836 Type *Ty = Tys[D.getArgumentNumber()]; 837 VectorType *VTy = dyn_cast<VectorType>(Ty); 838 if (!VTy) 839 llvm_unreachable("Expected an argument of Vector Type"); 840 Type *EltTy = VTy->getVectorElementType(); 841 return VectorType::get(PointerType::getUnqual(EltTy), 842 VTy->getNumElements()); 843 } 844 } 845 llvm_unreachable("unhandled"); 846 } 847 848 849 850 FunctionType *Intrinsic::getType(LLVMContext &Context, 851 ID id, ArrayRef<Type*> Tys) { 852 SmallVector<IITDescriptor, 8> Table; 853 getIntrinsicInfoTableEntries(id, Table); 854 855 ArrayRef<IITDescriptor> TableRef = Table; 856 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 857 858 SmallVector<Type*, 8> ArgTys; 859 while (!TableRef.empty()) 860 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 861 862 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 863 // If we see void type as the type of the last argument, it is vararg intrinsic 864 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 865 ArgTys.pop_back(); 866 return FunctionType::get(ResultTy, ArgTys, true); 867 } 868 return FunctionType::get(ResultTy, ArgTys, false); 869 } 870 871 bool Intrinsic::isOverloaded(ID id) { 872 #define GET_INTRINSIC_OVERLOAD_TABLE 873 #include "llvm/IR/Intrinsics.gen" 874 #undef GET_INTRINSIC_OVERLOAD_TABLE 875 } 876 877 bool Intrinsic::isLeaf(ID id) { 878 switch (id) { 879 default: 880 return true; 881 882 case Intrinsic::experimental_gc_statepoint: 883 case Intrinsic::experimental_patchpoint_void: 884 case Intrinsic::experimental_patchpoint_i64: 885 return false; 886 } 887 } 888 889 /// This defines the "Intrinsic::getAttributes(ID id)" method. 890 #define GET_INTRINSIC_ATTRIBUTES 891 #include "llvm/IR/Intrinsics.gen" 892 #undef GET_INTRINSIC_ATTRIBUTES 893 894 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 895 // There can never be multiple globals with the same name of different types, 896 // because intrinsics must be a specific type. 897 return 898 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 899 getType(M->getContext(), id, Tys))); 900 } 901 902 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 903 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 904 #include "llvm/IR/Intrinsics.gen" 905 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 906 907 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 908 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 909 #include "llvm/IR/Intrinsics.gen" 910 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 911 912 /// hasAddressTaken - returns true if there are any uses of this function 913 /// other than direct calls or invokes to it. 914 bool Function::hasAddressTaken(const User* *PutOffender) const { 915 for (const Use &U : uses()) { 916 const User *FU = U.getUser(); 917 if (isa<BlockAddress>(FU)) 918 continue; 919 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 920 if (PutOffender) 921 *PutOffender = FU; 922 return true; 923 } 924 ImmutableCallSite CS(cast<Instruction>(FU)); 925 if (!CS.isCallee(&U)) { 926 if (PutOffender) 927 *PutOffender = FU; 928 return true; 929 } 930 } 931 return false; 932 } 933 934 bool Function::isDefTriviallyDead() const { 935 // Check the linkage 936 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 937 !hasAvailableExternallyLinkage()) 938 return false; 939 940 // Check if the function is used by anything other than a blockaddress. 941 for (const User *U : users()) 942 if (!isa<BlockAddress>(U)) 943 return false; 944 945 return true; 946 } 947 948 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 949 /// setjmp or other function that gcc recognizes as "returning twice". 950 bool Function::callsFunctionThatReturnsTwice() const { 951 for (const_inst_iterator 952 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 953 ImmutableCallSite CS(&*I); 954 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 955 return true; 956 } 957 958 return false; 959 } 960 961 Constant *Function::getPersonalityFn() const { 962 assert(hasPersonalityFn() && getNumOperands()); 963 return cast<Constant>(Op<0>()); 964 } 965 966 void Function::setPersonalityFn(Constant *Fn) { 967 setHungoffOperand<0>(Fn); 968 setValueSubclassDataBit(3, Fn != nullptr); 969 } 970 971 Constant *Function::getPrefixData() const { 972 assert(hasPrefixData() && getNumOperands()); 973 return cast<Constant>(Op<1>()); 974 } 975 976 void Function::setPrefixData(Constant *PrefixData) { 977 setHungoffOperand<1>(PrefixData); 978 setValueSubclassDataBit(1, PrefixData != nullptr); 979 } 980 981 Constant *Function::getPrologueData() const { 982 assert(hasPrologueData() && getNumOperands()); 983 return cast<Constant>(Op<2>()); 984 } 985 986 void Function::setPrologueData(Constant *PrologueData) { 987 setHungoffOperand<2>(PrologueData); 988 setValueSubclassDataBit(2, PrologueData != nullptr); 989 } 990 991 void Function::allocHungoffUselist() { 992 // If we've already allocated a uselist, stop here. 993 if (getNumOperands()) 994 return; 995 996 allocHungoffUses(3, /*IsPhi=*/ false); 997 setNumHungOffUseOperands(3); 998 999 // Initialize the uselist with placeholder operands to allow traversal. 1000 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1001 Op<0>().set(CPN); 1002 Op<1>().set(CPN); 1003 Op<2>().set(CPN); 1004 } 1005 1006 template <int Idx> 1007 void Function::setHungoffOperand(Constant *C) { 1008 if (C) { 1009 allocHungoffUselist(); 1010 Op<Idx>().set(C); 1011 } else if (getNumOperands()) { 1012 Op<Idx>().set( 1013 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1014 } 1015 } 1016 1017 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1018 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1019 if (On) 1020 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1021 else 1022 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1023 } 1024 1025 void Function::setEntryCount(uint64_t Count) { 1026 MDBuilder MDB(getContext()); 1027 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1028 } 1029 1030 Optional<uint64_t> Function::getEntryCount() const { 1031 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1032 if (MD && MD->getOperand(0)) 1033 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1034 if (MDS->getString().equals("function_entry_count")) { 1035 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1036 return CI->getValue().getZExtValue(); 1037 } 1038 return None; 1039 } 1040