xref: /llvm-project/llvm/lib/IR/Function.cpp (revision bc37be1855773c1dcf8c6bf577a096a81fd58652)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/SymbolTableListTraits.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/ValueSymbolTable.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/ModRef.h"
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
80     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
81     cl::desc("Maximum size for the name of non-global values."));
82 
83 //===----------------------------------------------------------------------===//
84 // Argument Implementation
85 //===----------------------------------------------------------------------===//
86 
87 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
88     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
89   setName(Name);
90 }
91 
92 void Argument::setParent(Function *parent) {
93   Parent = parent;
94 }
95 
96 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
97   if (!getType()->isPointerTy()) return false;
98   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
99       (AllowUndefOrPoison ||
100        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
101     return true;
102   else if (getDereferenceableBytes() > 0 &&
103            !NullPointerIsDefined(getParent(),
104                                  getType()->getPointerAddressSpace()))
105     return true;
106   return false;
107 }
108 
109 bool Argument::hasByValAttr() const {
110   if (!getType()->isPointerTy()) return false;
111   return hasAttribute(Attribute::ByVal);
112 }
113 
114 bool Argument::hasByRefAttr() const {
115   if (!getType()->isPointerTy())
116     return false;
117   return hasAttribute(Attribute::ByRef);
118 }
119 
120 bool Argument::hasSwiftSelfAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
122 }
123 
124 bool Argument::hasSwiftErrorAttr() const {
125   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
126 }
127 
128 bool Argument::hasInAllocaAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::InAlloca);
131 }
132 
133 bool Argument::hasPreallocatedAttr() const {
134   if (!getType()->isPointerTy())
135     return false;
136   return hasAttribute(Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPassPointeeByValueCopyAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
145 }
146 
147 bool Argument::hasPointeeInMemoryValueAttr() const {
148   if (!getType()->isPointerTy())
149     return false;
150   AttributeList Attrs = getParent()->getAttributes();
151   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
152          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
156 }
157 
158 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
159 /// parameter type.
160 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
161   // FIXME: All the type carrying attributes are mutually exclusive, so there
162   // should be a single query to get the stored type that handles any of them.
163   if (Type *ByValTy = ParamAttrs.getByValType())
164     return ByValTy;
165   if (Type *ByRefTy = ParamAttrs.getByRefType())
166     return ByRefTy;
167   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
168     return PreAllocTy;
169   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
170     return InAllocaTy;
171   if (Type *SRetTy = ParamAttrs.getStructRetType())
172     return SRetTy;
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttrs(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttrs(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs);
189 }
190 
191 MaybeAlign Argument::getParamAlign() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlign(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamStackAlign() const {
197   return getParent()->getParamStackAlign(getArgNo());
198 }
199 
200 Type *Argument::getParamByValType() const {
201   assert(getType()->isPointerTy() && "Only pointers have byval types");
202   return getParent()->getParamByValType(getArgNo());
203 }
204 
205 Type *Argument::getParamStructRetType() const {
206   assert(getType()->isPointerTy() && "Only pointers have sret types");
207   return getParent()->getParamStructRetType(getArgNo());
208 }
209 
210 Type *Argument::getParamByRefType() const {
211   assert(getType()->isPointerTy() && "Only pointers have byref types");
212   return getParent()->getParamByRefType(getArgNo());
213 }
214 
215 Type *Argument::getParamInAllocaType() const {
216   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
217   return getParent()->getParamInAllocaType(getArgNo());
218 }
219 
220 uint64_t Argument::getDereferenceableBytes() const {
221   assert(getType()->isPointerTy() &&
222          "Only pointers have dereferenceable bytes");
223   return getParent()->getParamDereferenceableBytes(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableOrNullBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
230 }
231 
232 FPClassTest Argument::getNoFPClass() const {
233   return getParent()->getParamNoFPClass(getArgNo());
234 }
235 
236 bool Argument::hasNestAttr() const {
237   if (!getType()->isPointerTy()) return false;
238   return hasAttribute(Attribute::Nest);
239 }
240 
241 bool Argument::hasNoAliasAttr() const {
242   if (!getType()->isPointerTy()) return false;
243   return hasAttribute(Attribute::NoAlias);
244 }
245 
246 bool Argument::hasNoCaptureAttr() const {
247   if (!getType()->isPointerTy()) return false;
248   return hasAttribute(Attribute::NoCapture);
249 }
250 
251 bool Argument::hasNoFreeAttr() const {
252   if (!getType()->isPointerTy()) return false;
253   return hasAttribute(Attribute::NoFree);
254 }
255 
256 bool Argument::hasStructRetAttr() const {
257   if (!getType()->isPointerTy()) return false;
258   return hasAttribute(Attribute::StructRet);
259 }
260 
261 bool Argument::hasInRegAttr() const {
262   return hasAttribute(Attribute::InReg);
263 }
264 
265 bool Argument::hasReturnedAttr() const {
266   return hasAttribute(Attribute::Returned);
267 }
268 
269 bool Argument::hasZExtAttr() const {
270   return hasAttribute(Attribute::ZExt);
271 }
272 
273 bool Argument::hasSExtAttr() const {
274   return hasAttribute(Attribute::SExt);
275 }
276 
277 bool Argument::onlyReadsMemory() const {
278   AttributeList Attrs = getParent()->getAttributes();
279   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
280          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
281 }
282 
283 void Argument::addAttrs(AttrBuilder &B) {
284   AttributeList AL = getParent()->getAttributes();
285   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
286   getParent()->setAttributes(AL);
287 }
288 
289 void Argument::addAttr(Attribute::AttrKind Kind) {
290   getParent()->addParamAttr(getArgNo(), Kind);
291 }
292 
293 void Argument::addAttr(Attribute Attr) {
294   getParent()->addParamAttr(getArgNo(), Attr);
295 }
296 
297 void Argument::removeAttr(Attribute::AttrKind Kind) {
298   getParent()->removeParamAttr(getArgNo(), Kind);
299 }
300 
301 void Argument::removeAttrs(const AttributeMask &AM) {
302   AttributeList AL = getParent()->getAttributes();
303   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
304   getParent()->setAttributes(AL);
305 }
306 
307 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
308   return getParent()->hasParamAttribute(getArgNo(), Kind);
309 }
310 
311 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
312   return getParent()->getParamAttribute(getArgNo(), Kind);
313 }
314 
315 //===----------------------------------------------------------------------===//
316 // Helper Methods in Function
317 //===----------------------------------------------------------------------===//
318 
319 LLVMContext &Function::getContext() const {
320   return getType()->getContext();
321 }
322 
323 unsigned Function::getInstructionCount() const {
324   unsigned NumInstrs = 0;
325   for (const BasicBlock &BB : BasicBlocks)
326     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
327                                BB.instructionsWithoutDebug().end());
328   return NumInstrs;
329 }
330 
331 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
332                            const Twine &N, Module &M) {
333   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
334 }
335 
336 Function *Function::createWithDefaultAttr(FunctionType *Ty,
337                                           LinkageTypes Linkage,
338                                           unsigned AddrSpace, const Twine &N,
339                                           Module *M) {
340   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
341   AttrBuilder B(F->getContext());
342   UWTableKind UWTable = M->getUwtable();
343   if (UWTable != UWTableKind::None)
344     B.addUWTableAttr(UWTable);
345   switch (M->getFramePointer()) {
346   case FramePointerKind::None:
347     // 0 ("none") is the default.
348     break;
349   case FramePointerKind::NonLeaf:
350     B.addAttribute("frame-pointer", "non-leaf");
351     break;
352   case FramePointerKind::All:
353     B.addAttribute("frame-pointer", "all");
354     break;
355   }
356   if (M->getModuleFlag("function_return_thunk_extern"))
357     B.addAttribute(Attribute::FnRetThunkExtern);
358   F->addFnAttrs(B);
359   return F;
360 }
361 
362 void Function::removeFromParent() {
363   getParent()->getFunctionList().remove(getIterator());
364 }
365 
366 void Function::eraseFromParent() {
367   getParent()->getFunctionList().erase(getIterator());
368 }
369 
370 void Function::splice(Function::iterator ToIt, Function *FromF,
371                       Function::iterator FromBeginIt,
372                       Function::iterator FromEndIt) {
373 #ifdef EXPENSIVE_CHECKS
374   // Check that FromBeginIt is before FromEndIt.
375   auto FromFEnd = FromF->end();
376   for (auto It = FromBeginIt; It != FromEndIt; ++It)
377     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
378 #endif // EXPENSIVE_CHECKS
379   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
380 }
381 
382 Function::iterator Function::erase(Function::iterator FromIt,
383                                    Function::iterator ToIt) {
384   return BasicBlocks.erase(FromIt, ToIt);
385 }
386 
387 //===----------------------------------------------------------------------===//
388 // Function Implementation
389 //===----------------------------------------------------------------------===//
390 
391 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
392   // If AS == -1 and we are passed a valid module pointer we place the function
393   // in the program address space. Otherwise we default to AS0.
394   if (AddrSpace == static_cast<unsigned>(-1))
395     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
396   return AddrSpace;
397 }
398 
399 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
400                    const Twine &name, Module *ParentModule)
401     : GlobalObject(Ty, Value::FunctionVal,
402                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
403                    computeAddrSpace(AddrSpace, ParentModule)),
404       NumArgs(Ty->getNumParams()) {
405   assert(FunctionType::isValidReturnType(getReturnType()) &&
406          "invalid return type");
407   setGlobalObjectSubClassData(0);
408 
409   // We only need a symbol table for a function if the context keeps value names
410   if (!getContext().shouldDiscardValueNames())
411     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
412 
413   // If the function has arguments, mark them as lazily built.
414   if (Ty->getNumParams())
415     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
416 
417   if (ParentModule)
418     ParentModule->getFunctionList().push_back(this);
419 
420   HasLLVMReservedName = getName().startswith("llvm.");
421   // Ensure intrinsics have the right parameter attributes.
422   // Note, the IntID field will have been set in Value::setName if this function
423   // name is a valid intrinsic ID.
424   if (IntID)
425     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
426 }
427 
428 Function::~Function() {
429   dropAllReferences();    // After this it is safe to delete instructions.
430 
431   // Delete all of the method arguments and unlink from symbol table...
432   if (Arguments)
433     clearArguments();
434 
435   // Remove the function from the on-the-side GC table.
436   clearGC();
437 }
438 
439 void Function::BuildLazyArguments() const {
440   // Create the arguments vector, all arguments start out unnamed.
441   auto *FT = getFunctionType();
442   if (NumArgs > 0) {
443     Arguments = std::allocator<Argument>().allocate(NumArgs);
444     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
445       Type *ArgTy = FT->getParamType(i);
446       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
447       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
448     }
449   }
450 
451   // Clear the lazy arguments bit.
452   unsigned SDC = getSubclassDataFromValue();
453   SDC &= ~(1 << 0);
454   const_cast<Function*>(this)->setValueSubclassData(SDC);
455   assert(!hasLazyArguments());
456 }
457 
458 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
459   return MutableArrayRef<Argument>(Args, Count);
460 }
461 
462 bool Function::isConstrainedFPIntrinsic() const {
463   switch (getIntrinsicID()) {
464 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
465   case Intrinsic::INTRINSIC:
466 #include "llvm/IR/ConstrainedOps.def"
467     return true;
468 #undef INSTRUCTION
469   default:
470     return false;
471   }
472 }
473 
474 void Function::clearArguments() {
475   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
476     A.setName("");
477     A.~Argument();
478   }
479   std::allocator<Argument>().deallocate(Arguments, NumArgs);
480   Arguments = nullptr;
481 }
482 
483 void Function::stealArgumentListFrom(Function &Src) {
484   assert(isDeclaration() && "Expected no references to current arguments");
485 
486   // Drop the current arguments, if any, and set the lazy argument bit.
487   if (!hasLazyArguments()) {
488     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
489                         [](const Argument &A) { return A.use_empty(); }) &&
490            "Expected arguments to be unused in declaration");
491     clearArguments();
492     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
493   }
494 
495   // Nothing to steal if Src has lazy arguments.
496   if (Src.hasLazyArguments())
497     return;
498 
499   // Steal arguments from Src, and fix the lazy argument bits.
500   assert(arg_size() == Src.arg_size());
501   Arguments = Src.Arguments;
502   Src.Arguments = nullptr;
503   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
504     // FIXME: This does the work of transferNodesFromList inefficiently.
505     SmallString<128> Name;
506     if (A.hasName())
507       Name = A.getName();
508     if (!Name.empty())
509       A.setName("");
510     A.setParent(this);
511     if (!Name.empty())
512       A.setName(Name);
513   }
514 
515   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
516   assert(!hasLazyArguments());
517   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
518 }
519 
520 // dropAllReferences() - This function causes all the subinstructions to "let
521 // go" of all references that they are maintaining.  This allows one to
522 // 'delete' a whole class at a time, even though there may be circular
523 // references... first all references are dropped, and all use counts go to
524 // zero.  Then everything is deleted for real.  Note that no operations are
525 // valid on an object that has "dropped all references", except operator
526 // delete.
527 //
528 void Function::dropAllReferences() {
529   setIsMaterializable(false);
530 
531   for (BasicBlock &BB : *this)
532     BB.dropAllReferences();
533 
534   // Delete all basic blocks. They are now unused, except possibly by
535   // blockaddresses, but BasicBlock's destructor takes care of those.
536   while (!BasicBlocks.empty())
537     BasicBlocks.begin()->eraseFromParent();
538 
539   // Drop uses of any optional data (real or placeholder).
540   if (getNumOperands()) {
541     User::dropAllReferences();
542     setNumHungOffUseOperands(0);
543     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
544   }
545 
546   // Metadata is stored in a side-table.
547   clearMetadata();
548 }
549 
550 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
551   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
552 }
553 
554 void Function::addFnAttr(Attribute::AttrKind Kind) {
555   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
556 }
557 
558 void Function::addFnAttr(StringRef Kind, StringRef Val) {
559   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
560 }
561 
562 void Function::addFnAttr(Attribute Attr) {
563   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
564 }
565 
566 void Function::addFnAttrs(const AttrBuilder &Attrs) {
567   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
568 }
569 
570 void Function::addRetAttr(Attribute::AttrKind Kind) {
571   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
572 }
573 
574 void Function::addRetAttr(Attribute Attr) {
575   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
576 }
577 
578 void Function::addRetAttrs(const AttrBuilder &Attrs) {
579   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
580 }
581 
582 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
583   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
584 }
585 
586 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
587   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
588 }
589 
590 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
591   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
592 }
593 
594 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
595   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
596 }
597 
598 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
599   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
600 }
601 
602 void Function::removeFnAttr(Attribute::AttrKind Kind) {
603   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
604 }
605 
606 void Function::removeFnAttr(StringRef Kind) {
607   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
608 }
609 
610 void Function::removeFnAttrs(const AttributeMask &AM) {
611   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
612 }
613 
614 void Function::removeRetAttr(Attribute::AttrKind Kind) {
615   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
616 }
617 
618 void Function::removeRetAttr(StringRef Kind) {
619   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
620 }
621 
622 void Function::removeRetAttrs(const AttributeMask &Attrs) {
623   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
624 }
625 
626 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
627   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
628 }
629 
630 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
631   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
632 }
633 
634 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
635   AttributeSets =
636       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
637 }
638 
639 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
640   AttributeSets =
641       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
642 }
643 
644 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
645   return AttributeSets.hasFnAttr(Kind);
646 }
647 
648 bool Function::hasFnAttribute(StringRef Kind) const {
649   return AttributeSets.hasFnAttr(Kind);
650 }
651 
652 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.hasRetAttr(Kind);
654 }
655 
656 bool Function::hasParamAttribute(unsigned ArgNo,
657                                  Attribute::AttrKind Kind) const {
658   return AttributeSets.hasParamAttr(ArgNo, Kind);
659 }
660 
661 Attribute Function::getAttributeAtIndex(unsigned i,
662                                         Attribute::AttrKind Kind) const {
663   return AttributeSets.getAttributeAtIndex(i, Kind);
664 }
665 
666 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
667   return AttributeSets.getAttributeAtIndex(i, Kind);
668 }
669 
670 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
671   return AttributeSets.getFnAttr(Kind);
672 }
673 
674 Attribute Function::getFnAttribute(StringRef Kind) const {
675   return AttributeSets.getFnAttr(Kind);
676 }
677 
678 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
679                                                  uint64_t Default) const {
680   Attribute A = getFnAttribute(Name);
681   uint64_t Result = Default;
682   if (A.isStringAttribute()) {
683     StringRef Str = A.getValueAsString();
684     if (Str.getAsInteger(0, Result))
685       getContext().emitError("cannot parse integer attribute " + Name);
686   }
687 
688   return Result;
689 }
690 
691 /// gets the specified attribute from the list of attributes.
692 Attribute Function::getParamAttribute(unsigned ArgNo,
693                                       Attribute::AttrKind Kind) const {
694   return AttributeSets.getParamAttr(ArgNo, Kind);
695 }
696 
697 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
698                                                  uint64_t Bytes) {
699   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
700                                                                   ArgNo, Bytes);
701 }
702 
703 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
704   if (&FPType == &APFloat::IEEEsingle()) {
705     DenormalMode Mode = getDenormalModeF32Raw();
706     // If the f32 variant of the attribute isn't specified, try to use the
707     // generic one.
708     if (Mode.isValid())
709       return Mode;
710   }
711 
712   return getDenormalModeRaw();
713 }
714 
715 DenormalMode Function::getDenormalModeRaw() const {
716   Attribute Attr = getFnAttribute("denormal-fp-math");
717   StringRef Val = Attr.getValueAsString();
718   return parseDenormalFPAttribute(Val);
719 }
720 
721 DenormalMode Function::getDenormalModeF32Raw() const {
722   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
723   if (Attr.isValid()) {
724     StringRef Val = Attr.getValueAsString();
725     return parseDenormalFPAttribute(Val);
726   }
727 
728   return DenormalMode::getInvalid();
729 }
730 
731 const std::string &Function::getGC() const {
732   assert(hasGC() && "Function has no collector");
733   return getContext().getGC(*this);
734 }
735 
736 void Function::setGC(std::string Str) {
737   setValueSubclassDataBit(14, !Str.empty());
738   getContext().setGC(*this, std::move(Str));
739 }
740 
741 void Function::clearGC() {
742   if (!hasGC())
743     return;
744   getContext().deleteGC(*this);
745   setValueSubclassDataBit(14, false);
746 }
747 
748 bool Function::hasStackProtectorFnAttr() const {
749   return hasFnAttribute(Attribute::StackProtect) ||
750          hasFnAttribute(Attribute::StackProtectStrong) ||
751          hasFnAttribute(Attribute::StackProtectReq);
752 }
753 
754 /// Copy all additional attributes (those not needed to create a Function) from
755 /// the Function Src to this one.
756 void Function::copyAttributesFrom(const Function *Src) {
757   GlobalObject::copyAttributesFrom(Src);
758   setCallingConv(Src->getCallingConv());
759   setAttributes(Src->getAttributes());
760   if (Src->hasGC())
761     setGC(Src->getGC());
762   else
763     clearGC();
764   if (Src->hasPersonalityFn())
765     setPersonalityFn(Src->getPersonalityFn());
766   if (Src->hasPrefixData())
767     setPrefixData(Src->getPrefixData());
768   if (Src->hasPrologueData())
769     setPrologueData(Src->getPrologueData());
770 }
771 
772 MemoryEffects Function::getMemoryEffects() const {
773   return getAttributes().getMemoryEffects();
774 }
775 void Function::setMemoryEffects(MemoryEffects ME) {
776   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
777 }
778 
779 /// Determine if the function does not access memory.
780 bool Function::doesNotAccessMemory() const {
781   return getMemoryEffects().doesNotAccessMemory();
782 }
783 void Function::setDoesNotAccessMemory() {
784   setMemoryEffects(MemoryEffects::none());
785 }
786 
787 /// Determine if the function does not access or only reads memory.
788 bool Function::onlyReadsMemory() const {
789   return getMemoryEffects().onlyReadsMemory();
790 }
791 void Function::setOnlyReadsMemory() {
792   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
793 }
794 
795 /// Determine if the function does not access or only writes memory.
796 bool Function::onlyWritesMemory() const {
797   return getMemoryEffects().onlyWritesMemory();
798 }
799 void Function::setOnlyWritesMemory() {
800   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
801 }
802 
803 /// Determine if the call can access memmory only using pointers based
804 /// on its arguments.
805 bool Function::onlyAccessesArgMemory() const {
806   return getMemoryEffects().onlyAccessesArgPointees();
807 }
808 void Function::setOnlyAccessesArgMemory() {
809   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
810 }
811 
812 /// Determine if the function may only access memory that is
813 ///  inaccessible from the IR.
814 bool Function::onlyAccessesInaccessibleMemory() const {
815   return getMemoryEffects().onlyAccessesInaccessibleMem();
816 }
817 void Function::setOnlyAccessesInaccessibleMemory() {
818   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
819 }
820 
821 /// Determine if the function may only access memory that is
822 ///  either inaccessible from the IR or pointed to by its arguments.
823 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
824   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
825 }
826 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
827   setMemoryEffects(getMemoryEffects() &
828                    MemoryEffects::inaccessibleOrArgMemOnly());
829 }
830 
831 /// Table of string intrinsic names indexed by enum value.
832 static const char * const IntrinsicNameTable[] = {
833   "not_intrinsic",
834 #define GET_INTRINSIC_NAME_TABLE
835 #include "llvm/IR/IntrinsicImpl.inc"
836 #undef GET_INTRINSIC_NAME_TABLE
837 };
838 
839 /// Table of per-target intrinsic name tables.
840 #define GET_INTRINSIC_TARGET_DATA
841 #include "llvm/IR/IntrinsicImpl.inc"
842 #undef GET_INTRINSIC_TARGET_DATA
843 
844 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
845   return IID > TargetInfos[0].Count;
846 }
847 
848 bool Function::isTargetIntrinsic() const {
849   return isTargetIntrinsic(IntID);
850 }
851 
852 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
853 /// target as \c Name, or the generic table if \c Name is not target specific.
854 ///
855 /// Returns the relevant slice of \c IntrinsicNameTable
856 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
857   assert(Name.startswith("llvm."));
858 
859   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
860   // Drop "llvm." and take the first dotted component. That will be the target
861   // if this is target specific.
862   StringRef Target = Name.drop_front(5).split('.').first;
863   auto It = partition_point(
864       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
865   // We've either found the target or just fall back to the generic set, which
866   // is always first.
867   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
868   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
869 }
870 
871 /// This does the actual lookup of an intrinsic ID which
872 /// matches the given function name.
873 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
874   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
875   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
876   if (Idx == -1)
877     return Intrinsic::not_intrinsic;
878 
879   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
880   // an index into a sub-table.
881   int Adjust = NameTable.data() - IntrinsicNameTable;
882   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
883 
884   // If the intrinsic is not overloaded, require an exact match. If it is
885   // overloaded, require either exact or prefix match.
886   const auto MatchSize = strlen(NameTable[Idx]);
887   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
888   bool IsExactMatch = Name.size() == MatchSize;
889   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
890                                                      : Intrinsic::not_intrinsic;
891 }
892 
893 void Function::recalculateIntrinsicID() {
894   StringRef Name = getName();
895   if (!Name.startswith("llvm.")) {
896     HasLLVMReservedName = false;
897     IntID = Intrinsic::not_intrinsic;
898     return;
899   }
900   HasLLVMReservedName = true;
901   IntID = lookupIntrinsicID(Name);
902 }
903 
904 /// Returns a stable mangling for the type specified for use in the name
905 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
906 /// of named types is simply their name.  Manglings for unnamed types consist
907 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
908 /// combined with the mangling of their component types.  A vararg function
909 /// type will have a suffix of 'vararg'.  Since function types can contain
910 /// other function types, we close a function type mangling with suffix 'f'
911 /// which can't be confused with it's prefix.  This ensures we don't have
912 /// collisions between two unrelated function types. Otherwise, you might
913 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
914 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
915 /// indicating that extra care must be taken to ensure a unique name.
916 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
917   std::string Result;
918   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
919     Result += "p" + utostr(PTyp->getAddressSpace());
920     // Opaque pointer doesn't have pointee type information, so we just mangle
921     // address space for opaque pointer.
922     if (!PTyp->isOpaque())
923       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
924                                   HasUnnamedType);
925   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
926     Result += "a" + utostr(ATyp->getNumElements()) +
927               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
928   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
929     if (!STyp->isLiteral()) {
930       Result += "s_";
931       if (STyp->hasName())
932         Result += STyp->getName();
933       else
934         HasUnnamedType = true;
935     } else {
936       Result += "sl_";
937       for (auto *Elem : STyp->elements())
938         Result += getMangledTypeStr(Elem, HasUnnamedType);
939     }
940     // Ensure nested structs are distinguishable.
941     Result += "s";
942   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
943     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
944     for (size_t i = 0; i < FT->getNumParams(); i++)
945       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
946     if (FT->isVarArg())
947       Result += "vararg";
948     // Ensure nested function types are distinguishable.
949     Result += "f";
950   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
951     ElementCount EC = VTy->getElementCount();
952     if (EC.isScalable())
953       Result += "nx";
954     Result += "v" + utostr(EC.getKnownMinValue()) +
955               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
956   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
957     Result += "t";
958     Result += TETy->getName();
959     for (Type *ParamTy : TETy->type_params())
960       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
961     for (unsigned IntParam : TETy->int_params())
962       Result += "_" + utostr(IntParam);
963     // Ensure nested target extension types are distinguishable.
964     Result += "t";
965   } else if (Ty) {
966     switch (Ty->getTypeID()) {
967     default: llvm_unreachable("Unhandled type");
968     case Type::VoidTyID:      Result += "isVoid";   break;
969     case Type::MetadataTyID:  Result += "Metadata"; break;
970     case Type::HalfTyID:      Result += "f16";      break;
971     case Type::BFloatTyID:    Result += "bf16";     break;
972     case Type::FloatTyID:     Result += "f32";      break;
973     case Type::DoubleTyID:    Result += "f64";      break;
974     case Type::X86_FP80TyID:  Result += "f80";      break;
975     case Type::FP128TyID:     Result += "f128";     break;
976     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
977     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
978     case Type::X86_AMXTyID:   Result += "x86amx";   break;
979     case Type::IntegerTyID:
980       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
981       break;
982     }
983   }
984   return Result;
985 }
986 
987 StringRef Intrinsic::getBaseName(ID id) {
988   assert(id < num_intrinsics && "Invalid intrinsic ID!");
989   return IntrinsicNameTable[id];
990 }
991 
992 StringRef Intrinsic::getName(ID id) {
993   assert(id < num_intrinsics && "Invalid intrinsic ID!");
994   assert(!Intrinsic::isOverloaded(id) &&
995          "This version of getName does not support overloading");
996   return getBaseName(id);
997 }
998 
999 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1000                                         Module *M, FunctionType *FT,
1001                                         bool EarlyModuleCheck) {
1002 
1003   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1004   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1005          "This version of getName is for overloaded intrinsics only");
1006   (void)EarlyModuleCheck;
1007   assert((!EarlyModuleCheck || M ||
1008           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1009          "Intrinsic overloading on pointer types need to provide a Module");
1010   bool HasUnnamedType = false;
1011   std::string Result(Intrinsic::getBaseName(Id));
1012   for (Type *Ty : Tys)
1013     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1014   if (HasUnnamedType) {
1015     assert(M && "unnamed types need a module");
1016     if (!FT)
1017       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1018     else
1019       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1020              "Provided FunctionType must match arguments");
1021     return M->getUniqueIntrinsicName(Result, Id, FT);
1022   }
1023   return Result;
1024 }
1025 
1026 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1027                                FunctionType *FT) {
1028   assert(M && "We need to have a Module");
1029   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1030 }
1031 
1032 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1033   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1034 }
1035 
1036 /// IIT_Info - These are enumerators that describe the entries returned by the
1037 /// getIntrinsicInfoTableEntries function.
1038 ///
1039 /// Defined in Intrinsics.td.
1040 enum IIT_Info {
1041 #define GET_INTRINSIC_IITINFO
1042 #include "llvm/IR/IntrinsicImpl.inc"
1043 #undef GET_INTRINSIC_IITINFO
1044 };
1045 
1046 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1047                       IIT_Info LastInfo,
1048                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1049   using namespace Intrinsic;
1050 
1051   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1052 
1053   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1054   unsigned StructElts = 2;
1055 
1056   switch (Info) {
1057   case IIT_Done:
1058     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1059     return;
1060   case IIT_VARARG:
1061     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1062     return;
1063   case IIT_MMX:
1064     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1065     return;
1066   case IIT_AMX:
1067     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1068     return;
1069   case IIT_TOKEN:
1070     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1071     return;
1072   case IIT_METADATA:
1073     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1074     return;
1075   case IIT_F16:
1076     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1077     return;
1078   case IIT_BF16:
1079     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1080     return;
1081   case IIT_F32:
1082     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1083     return;
1084   case IIT_F64:
1085     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1086     return;
1087   case IIT_F128:
1088     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1089     return;
1090   case IIT_PPCF128:
1091     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1092     return;
1093   case IIT_I1:
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1095     return;
1096   case IIT_I2:
1097     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1098     return;
1099   case IIT_I4:
1100     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1101     return;
1102   case IIT_I8:
1103     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1104     return;
1105   case IIT_I16:
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1107     return;
1108   case IIT_I32:
1109     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1110     return;
1111   case IIT_I64:
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1113     return;
1114   case IIT_I128:
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1116     return;
1117   case IIT_V1:
1118     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1119     DecodeIITType(NextElt, Infos, Info, OutputTable);
1120     return;
1121   case IIT_V2:
1122     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1123     DecodeIITType(NextElt, Infos, Info, OutputTable);
1124     return;
1125   case IIT_V3:
1126     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1127     DecodeIITType(NextElt, Infos, Info, OutputTable);
1128     return;
1129   case IIT_V4:
1130     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1131     DecodeIITType(NextElt, Infos, Info, OutputTable);
1132     return;
1133   case IIT_V8:
1134     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1135     DecodeIITType(NextElt, Infos, Info, OutputTable);
1136     return;
1137   case IIT_V16:
1138     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1139     DecodeIITType(NextElt, Infos, Info, OutputTable);
1140     return;
1141   case IIT_V32:
1142     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1143     DecodeIITType(NextElt, Infos, Info, OutputTable);
1144     return;
1145   case IIT_V64:
1146     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1147     DecodeIITType(NextElt, Infos, Info, OutputTable);
1148     return;
1149   case IIT_V128:
1150     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1151     DecodeIITType(NextElt, Infos, Info, OutputTable);
1152     return;
1153   case IIT_V256:
1154     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1155     DecodeIITType(NextElt, Infos, Info, OutputTable);
1156     return;
1157   case IIT_V512:
1158     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1159     DecodeIITType(NextElt, Infos, Info, OutputTable);
1160     return;
1161   case IIT_V1024:
1162     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1163     DecodeIITType(NextElt, Infos, Info, OutputTable);
1164     return;
1165   case IIT_EXTERNREF:
1166     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1167     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1168     return;
1169   case IIT_FUNCREF:
1170     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1171     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1172     return;
1173   case IIT_PTR:
1174     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1175     DecodeIITType(NextElt, Infos, Info, OutputTable);
1176     return;
1177   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1178     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1179                                              Infos[NextElt++]));
1180     DecodeIITType(NextElt, Infos, Info, OutputTable);
1181     return;
1182   }
1183   case IIT_ARG: {
1184     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1185     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1186     return;
1187   }
1188   case IIT_EXTEND_ARG: {
1189     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1190     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1191                                              ArgInfo));
1192     return;
1193   }
1194   case IIT_TRUNC_ARG: {
1195     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1196     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1197                                              ArgInfo));
1198     return;
1199   }
1200   case IIT_HALF_VEC_ARG: {
1201     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1202     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1203                                              ArgInfo));
1204     return;
1205   }
1206   case IIT_SAME_VEC_WIDTH_ARG: {
1207     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1208     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1209                                              ArgInfo));
1210     return;
1211   }
1212   case IIT_PTR_TO_ARG: {
1213     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1214     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1215                                              ArgInfo));
1216     return;
1217   }
1218   case IIT_PTR_TO_ELT: {
1219     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1220     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1221     return;
1222   }
1223   case IIT_ANYPTR_TO_ELT: {
1224     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1225     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1226     OutputTable.push_back(
1227         IITDescriptor::get(IITDescriptor::AnyPtrToElt, ArgNo, RefNo));
1228     return;
1229   }
1230   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1231     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1232     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1233     OutputTable.push_back(
1234         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1235     return;
1236   }
1237   case IIT_EMPTYSTRUCT:
1238     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1239     return;
1240   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1241   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1242   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1243   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1244   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1245   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1246   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1247   case IIT_STRUCT2: {
1248     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1249 
1250     for (unsigned i = 0; i != StructElts; ++i)
1251       DecodeIITType(NextElt, Infos, Info, OutputTable);
1252     return;
1253   }
1254   case IIT_SUBDIVIDE2_ARG: {
1255     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1256     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1257                                              ArgInfo));
1258     return;
1259   }
1260   case IIT_SUBDIVIDE4_ARG: {
1261     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1262     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1263                                              ArgInfo));
1264     return;
1265   }
1266   case IIT_VEC_ELEMENT: {
1267     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1268     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1269                                              ArgInfo));
1270     return;
1271   }
1272   case IIT_SCALABLE_VEC: {
1273     DecodeIITType(NextElt, Infos, Info, OutputTable);
1274     return;
1275   }
1276   case IIT_VEC_OF_BITCASTS_TO_INT: {
1277     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1278     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1279                                              ArgInfo));
1280     return;
1281   }
1282   }
1283   llvm_unreachable("unhandled");
1284 }
1285 
1286 #define GET_INTRINSIC_GENERATOR_GLOBAL
1287 #include "llvm/IR/IntrinsicImpl.inc"
1288 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1289 
1290 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1291                                              SmallVectorImpl<IITDescriptor> &T){
1292   // Check to see if the intrinsic's type was expressible by the table.
1293   unsigned TableVal = IIT_Table[id-1];
1294 
1295   // Decode the TableVal into an array of IITValues.
1296   SmallVector<unsigned char, 8> IITValues;
1297   ArrayRef<unsigned char> IITEntries;
1298   unsigned NextElt = 0;
1299   if ((TableVal >> 31) != 0) {
1300     // This is an offset into the IIT_LongEncodingTable.
1301     IITEntries = IIT_LongEncodingTable;
1302 
1303     // Strip sentinel bit.
1304     NextElt = (TableVal << 1) >> 1;
1305   } else {
1306     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1307     // into a single word in the table itself, decode it now.
1308     do {
1309       IITValues.push_back(TableVal & 0xF);
1310       TableVal >>= 4;
1311     } while (TableVal);
1312 
1313     IITEntries = IITValues;
1314     NextElt = 0;
1315   }
1316 
1317   // Okay, decode the table into the output vector of IITDescriptors.
1318   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1319   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1320     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1321 }
1322 
1323 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1324                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1325   using namespace Intrinsic;
1326 
1327   IITDescriptor D = Infos.front();
1328   Infos = Infos.slice(1);
1329 
1330   switch (D.Kind) {
1331   case IITDescriptor::Void: return Type::getVoidTy(Context);
1332   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1333   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1334   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1335   case IITDescriptor::Token: return Type::getTokenTy(Context);
1336   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1337   case IITDescriptor::Half: return Type::getHalfTy(Context);
1338   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1339   case IITDescriptor::Float: return Type::getFloatTy(Context);
1340   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1341   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1342   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1343 
1344   case IITDescriptor::Integer:
1345     return IntegerType::get(Context, D.Integer_Width);
1346   case IITDescriptor::Vector:
1347     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1348                            D.Vector_Width);
1349   case IITDescriptor::Pointer:
1350     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1351                             D.Pointer_AddressSpace);
1352   case IITDescriptor::Struct: {
1353     SmallVector<Type *, 8> Elts;
1354     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1355       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1356     return StructType::get(Context, Elts);
1357   }
1358   case IITDescriptor::Argument:
1359     return Tys[D.getArgumentNumber()];
1360   case IITDescriptor::ExtendArgument: {
1361     Type *Ty = Tys[D.getArgumentNumber()];
1362     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1363       return VectorType::getExtendedElementVectorType(VTy);
1364 
1365     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1366   }
1367   case IITDescriptor::TruncArgument: {
1368     Type *Ty = Tys[D.getArgumentNumber()];
1369     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1370       return VectorType::getTruncatedElementVectorType(VTy);
1371 
1372     IntegerType *ITy = cast<IntegerType>(Ty);
1373     assert(ITy->getBitWidth() % 2 == 0);
1374     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1375   }
1376   case IITDescriptor::Subdivide2Argument:
1377   case IITDescriptor::Subdivide4Argument: {
1378     Type *Ty = Tys[D.getArgumentNumber()];
1379     VectorType *VTy = dyn_cast<VectorType>(Ty);
1380     assert(VTy && "Expected an argument of Vector Type");
1381     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1382     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1383   }
1384   case IITDescriptor::HalfVecArgument:
1385     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1386                                                   Tys[D.getArgumentNumber()]));
1387   case IITDescriptor::SameVecWidthArgument: {
1388     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1389     Type *Ty = Tys[D.getArgumentNumber()];
1390     if (auto *VTy = dyn_cast<VectorType>(Ty))
1391       return VectorType::get(EltTy, VTy->getElementCount());
1392     return EltTy;
1393   }
1394   case IITDescriptor::PtrToArgument: {
1395     Type *Ty = Tys[D.getArgumentNumber()];
1396     return PointerType::getUnqual(Ty);
1397   }
1398   case IITDescriptor::PtrToElt: {
1399     Type *Ty = Tys[D.getArgumentNumber()];
1400     VectorType *VTy = dyn_cast<VectorType>(Ty);
1401     if (!VTy)
1402       llvm_unreachable("Expected an argument of Vector Type");
1403     Type *EltTy = VTy->getElementType();
1404     return PointerType::getUnqual(EltTy);
1405   }
1406   case IITDescriptor::VecElementArgument: {
1407     Type *Ty = Tys[D.getArgumentNumber()];
1408     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1409       return VTy->getElementType();
1410     llvm_unreachable("Expected an argument of Vector Type");
1411   }
1412   case IITDescriptor::VecOfBitcastsToInt: {
1413     Type *Ty = Tys[D.getArgumentNumber()];
1414     VectorType *VTy = dyn_cast<VectorType>(Ty);
1415     assert(VTy && "Expected an argument of Vector Type");
1416     return VectorType::getInteger(VTy);
1417   }
1418   case IITDescriptor::VecOfAnyPtrsToElt:
1419     // Return the overloaded type (which determines the pointers address space)
1420     return Tys[D.getOverloadArgNumber()];
1421   case IITDescriptor::AnyPtrToElt:
1422     // Return the overloaded type (which determines the pointers address space)
1423     return Tys[D.getOverloadArgNumber()];
1424   }
1425   llvm_unreachable("unhandled");
1426 }
1427 
1428 FunctionType *Intrinsic::getType(LLVMContext &Context,
1429                                  ID id, ArrayRef<Type*> Tys) {
1430   SmallVector<IITDescriptor, 8> Table;
1431   getIntrinsicInfoTableEntries(id, Table);
1432 
1433   ArrayRef<IITDescriptor> TableRef = Table;
1434   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1435 
1436   SmallVector<Type*, 8> ArgTys;
1437   while (!TableRef.empty())
1438     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1439 
1440   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1441   // If we see void type as the type of the last argument, it is vararg intrinsic
1442   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1443     ArgTys.pop_back();
1444     return FunctionType::get(ResultTy, ArgTys, true);
1445   }
1446   return FunctionType::get(ResultTy, ArgTys, false);
1447 }
1448 
1449 bool Intrinsic::isOverloaded(ID id) {
1450 #define GET_INTRINSIC_OVERLOAD_TABLE
1451 #include "llvm/IR/IntrinsicImpl.inc"
1452 #undef GET_INTRINSIC_OVERLOAD_TABLE
1453 }
1454 
1455 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1456 #define GET_INTRINSIC_ATTRIBUTES
1457 #include "llvm/IR/IntrinsicImpl.inc"
1458 #undef GET_INTRINSIC_ATTRIBUTES
1459 
1460 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1461   // There can never be multiple globals with the same name of different types,
1462   // because intrinsics must be a specific type.
1463   auto *FT = getType(M->getContext(), id, Tys);
1464   return cast<Function>(
1465       M->getOrInsertFunction(
1466            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1467           .getCallee());
1468 }
1469 
1470 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1471 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1472 #include "llvm/IR/IntrinsicImpl.inc"
1473 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1474 
1475 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1476 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1477 #include "llvm/IR/IntrinsicImpl.inc"
1478 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1479 
1480 using DeferredIntrinsicMatchPair =
1481     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1482 
1483 static bool matchIntrinsicType(
1484     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1485     SmallVectorImpl<Type *> &ArgTys,
1486     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1487     bool IsDeferredCheck) {
1488   using namespace Intrinsic;
1489 
1490   // If we ran out of descriptors, there are too many arguments.
1491   if (Infos.empty()) return true;
1492 
1493   // Do this before slicing off the 'front' part
1494   auto InfosRef = Infos;
1495   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1496     DeferredChecks.emplace_back(T, InfosRef);
1497     return false;
1498   };
1499 
1500   IITDescriptor D = Infos.front();
1501   Infos = Infos.slice(1);
1502 
1503   switch (D.Kind) {
1504     case IITDescriptor::Void: return !Ty->isVoidTy();
1505     case IITDescriptor::VarArg: return true;
1506     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1507     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1508     case IITDescriptor::Token: return !Ty->isTokenTy();
1509     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1510     case IITDescriptor::Half: return !Ty->isHalfTy();
1511     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1512     case IITDescriptor::Float: return !Ty->isFloatTy();
1513     case IITDescriptor::Double: return !Ty->isDoubleTy();
1514     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1515     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1516     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1517     case IITDescriptor::Vector: {
1518       VectorType *VT = dyn_cast<VectorType>(Ty);
1519       return !VT || VT->getElementCount() != D.Vector_Width ||
1520              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1521                                 DeferredChecks, IsDeferredCheck);
1522     }
1523     case IITDescriptor::Pointer: {
1524       PointerType *PT = dyn_cast<PointerType>(Ty);
1525       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1526         return true;
1527       if (!PT->isOpaque()) {
1528         /* Manually consume a pointer to empty struct descriptor, which is
1529          * used for externref. We don't want to enforce that the struct is
1530          * anonymous in this case. (This renders externref intrinsics
1531          * non-unique, but this will go away with opaque pointers anyway.) */
1532         if (Infos.front().Kind == IITDescriptor::Struct &&
1533             Infos.front().Struct_NumElements == 0) {
1534           Infos = Infos.slice(1);
1535           return false;
1536         }
1537         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1538                                   ArgTys, DeferredChecks, IsDeferredCheck);
1539       }
1540       // Consume IIT descriptors relating to the pointer element type.
1541       // FIXME: Intrinsic type matching of nested single value types or even
1542       // aggregates doesn't work properly with opaque pointers but hopefully
1543       // doesn't happen in practice.
1544       while (Infos.front().Kind == IITDescriptor::Pointer ||
1545              Infos.front().Kind == IITDescriptor::Vector)
1546         Infos = Infos.slice(1);
1547       assert((Infos.front().Kind != IITDescriptor::Argument ||
1548               Infos.front().getArgumentKind() == IITDescriptor::AK_MatchType) &&
1549              "Unsupported polymorphic pointer type with opaque pointer");
1550       Infos = Infos.slice(1);
1551       return false;
1552     }
1553 
1554     case IITDescriptor::Struct: {
1555       StructType *ST = dyn_cast<StructType>(Ty);
1556       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1557           ST->getNumElements() != D.Struct_NumElements)
1558         return true;
1559 
1560       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1561         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1562                                DeferredChecks, IsDeferredCheck))
1563           return true;
1564       return false;
1565     }
1566 
1567     case IITDescriptor::Argument:
1568       // If this is the second occurrence of an argument,
1569       // verify that the later instance matches the previous instance.
1570       if (D.getArgumentNumber() < ArgTys.size())
1571         return Ty != ArgTys[D.getArgumentNumber()];
1572 
1573       if (D.getArgumentNumber() > ArgTys.size() ||
1574           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1575         return IsDeferredCheck || DeferCheck(Ty);
1576 
1577       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1578              "Table consistency error");
1579       ArgTys.push_back(Ty);
1580 
1581       switch (D.getArgumentKind()) {
1582         case IITDescriptor::AK_Any:        return false; // Success
1583         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1584         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1585         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1586         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1587         default:                           break;
1588       }
1589       llvm_unreachable("all argument kinds not covered");
1590 
1591     case IITDescriptor::ExtendArgument: {
1592       // If this is a forward reference, defer the check for later.
1593       if (D.getArgumentNumber() >= ArgTys.size())
1594         return IsDeferredCheck || DeferCheck(Ty);
1595 
1596       Type *NewTy = ArgTys[D.getArgumentNumber()];
1597       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1598         NewTy = VectorType::getExtendedElementVectorType(VTy);
1599       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1600         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1601       else
1602         return true;
1603 
1604       return Ty != NewTy;
1605     }
1606     case IITDescriptor::TruncArgument: {
1607       // If this is a forward reference, defer the check for later.
1608       if (D.getArgumentNumber() >= ArgTys.size())
1609         return IsDeferredCheck || DeferCheck(Ty);
1610 
1611       Type *NewTy = ArgTys[D.getArgumentNumber()];
1612       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1613         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1614       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1615         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1616       else
1617         return true;
1618 
1619       return Ty != NewTy;
1620     }
1621     case IITDescriptor::HalfVecArgument:
1622       // If this is a forward reference, defer the check for later.
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck || DeferCheck(Ty);
1625       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1626              VectorType::getHalfElementsVectorType(
1627                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1628     case IITDescriptor::SameVecWidthArgument: {
1629       if (D.getArgumentNumber() >= ArgTys.size()) {
1630         // Defer check and subsequent check for the vector element type.
1631         Infos = Infos.slice(1);
1632         return IsDeferredCheck || DeferCheck(Ty);
1633       }
1634       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1635       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1636       // Both must be vectors of the same number of elements or neither.
1637       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1638         return true;
1639       Type *EltTy = Ty;
1640       if (ThisArgType) {
1641         if (ReferenceType->getElementCount() !=
1642             ThisArgType->getElementCount())
1643           return true;
1644         EltTy = ThisArgType->getElementType();
1645       }
1646       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1647                                 IsDeferredCheck);
1648     }
1649     case IITDescriptor::PtrToArgument: {
1650       if (D.getArgumentNumber() >= ArgTys.size())
1651         return IsDeferredCheck || DeferCheck(Ty);
1652       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1653       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1654       return (!ThisArgType ||
1655               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1656     }
1657     case IITDescriptor::PtrToElt: {
1658       if (D.getArgumentNumber() >= ArgTys.size())
1659         return IsDeferredCheck || DeferCheck(Ty);
1660       VectorType * ReferenceType =
1661         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1662       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1663 
1664       if (!ThisArgType || !ReferenceType)
1665         return true;
1666       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1667           ReferenceType->getElementType());
1668     }
1669     case IITDescriptor::AnyPtrToElt: {
1670       unsigned RefArgNumber = D.getRefArgNumber();
1671       if (RefArgNumber >= ArgTys.size()) {
1672         if (IsDeferredCheck)
1673           return true;
1674         // If forward referencing, already add the pointer type and
1675         // defer the checks for later.
1676         ArgTys.push_back(Ty);
1677         return DeferCheck(Ty);
1678       }
1679 
1680       if (!IsDeferredCheck) {
1681         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1682                "Table consistency error");
1683         ArgTys.push_back(Ty);
1684       }
1685 
1686       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1687       auto *ThisArgType = dyn_cast<PointerType>(Ty);
1688       if (!ThisArgType || !ReferenceType)
1689         return true;
1690       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1691           ReferenceType->getElementType());
1692     }
1693     case IITDescriptor::VecOfAnyPtrsToElt: {
1694       unsigned RefArgNumber = D.getRefArgNumber();
1695       if (RefArgNumber >= ArgTys.size()) {
1696         if (IsDeferredCheck)
1697           return true;
1698         // If forward referencing, already add the pointer-vector type and
1699         // defer the checks for later.
1700         ArgTys.push_back(Ty);
1701         return DeferCheck(Ty);
1702       }
1703 
1704       if (!IsDeferredCheck){
1705         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1706                "Table consistency error");
1707         ArgTys.push_back(Ty);
1708       }
1709 
1710       // Verify the overloaded type "matches" the Ref type.
1711       // i.e. Ty is a vector with the same width as Ref.
1712       // Composed of pointers to the same element type as Ref.
1713       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1714       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1715       if (!ThisArgVecTy || !ReferenceType ||
1716           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1717         return true;
1718       PointerType *ThisArgEltTy =
1719           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1720       if (!ThisArgEltTy)
1721         return true;
1722       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1723           ReferenceType->getElementType());
1724     }
1725     case IITDescriptor::VecElementArgument: {
1726       if (D.getArgumentNumber() >= ArgTys.size())
1727         return IsDeferredCheck ? true : DeferCheck(Ty);
1728       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1729       return !ReferenceType || Ty != ReferenceType->getElementType();
1730     }
1731     case IITDescriptor::Subdivide2Argument:
1732     case IITDescriptor::Subdivide4Argument: {
1733       // If this is a forward reference, defer the check for later.
1734       if (D.getArgumentNumber() >= ArgTys.size())
1735         return IsDeferredCheck || DeferCheck(Ty);
1736 
1737       Type *NewTy = ArgTys[D.getArgumentNumber()];
1738       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1739         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1740         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1741         return Ty != NewTy;
1742       }
1743       return true;
1744     }
1745     case IITDescriptor::VecOfBitcastsToInt: {
1746       if (D.getArgumentNumber() >= ArgTys.size())
1747         return IsDeferredCheck || DeferCheck(Ty);
1748       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1749       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1750       if (!ThisArgVecTy || !ReferenceType)
1751         return true;
1752       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1753     }
1754   }
1755   llvm_unreachable("unhandled");
1756 }
1757 
1758 Intrinsic::MatchIntrinsicTypesResult
1759 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1760                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1761                                    SmallVectorImpl<Type *> &ArgTys) {
1762   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1763   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1764                          false))
1765     return MatchIntrinsicTypes_NoMatchRet;
1766 
1767   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1768 
1769   for (auto *Ty : FTy->params())
1770     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1771       return MatchIntrinsicTypes_NoMatchArg;
1772 
1773   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1774     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1775     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1776                            true))
1777       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1778                                          : MatchIntrinsicTypes_NoMatchArg;
1779   }
1780 
1781   return MatchIntrinsicTypes_Match;
1782 }
1783 
1784 bool
1785 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1786                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1787   // If there are no descriptors left, then it can't be a vararg.
1788   if (Infos.empty())
1789     return isVarArg;
1790 
1791   // There should be only one descriptor remaining at this point.
1792   if (Infos.size() != 1)
1793     return true;
1794 
1795   // Check and verify the descriptor.
1796   IITDescriptor D = Infos.front();
1797   Infos = Infos.slice(1);
1798   if (D.Kind == IITDescriptor::VarArg)
1799     return !isVarArg;
1800 
1801   return true;
1802 }
1803 
1804 bool Intrinsic::getIntrinsicSignature(Function *F,
1805                                       SmallVectorImpl<Type *> &ArgTys) {
1806   Intrinsic::ID ID = F->getIntrinsicID();
1807   if (!ID)
1808     return false;
1809 
1810   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1811   getIntrinsicInfoTableEntries(ID, Table);
1812   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1813 
1814   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1815                                          ArgTys) !=
1816       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1817     return false;
1818   }
1819   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1820                                       TableRef))
1821     return false;
1822   return true;
1823 }
1824 
1825 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1826   SmallVector<Type *, 4> ArgTys;
1827   if (!getIntrinsicSignature(F, ArgTys))
1828     return std::nullopt;
1829 
1830   Intrinsic::ID ID = F->getIntrinsicID();
1831   StringRef Name = F->getName();
1832   std::string WantedName =
1833       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1834   if (Name == WantedName)
1835     return std::nullopt;
1836 
1837   Function *NewDecl = [&] {
1838     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1839       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1840         if (ExistingF->getFunctionType() == F->getFunctionType())
1841           return ExistingF;
1842 
1843       // The name already exists, but is not a function or has the wrong
1844       // prototype. Make place for the new one by renaming the old version.
1845       // Either this old version will be removed later on or the module is
1846       // invalid and we'll get an error.
1847       ExistingGV->setName(WantedName + ".renamed");
1848     }
1849     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1850   }();
1851 
1852   NewDecl->setCallingConv(F->getCallingConv());
1853   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1854          "Shouldn't change the signature");
1855   return NewDecl;
1856 }
1857 
1858 /// hasAddressTaken - returns true if there are any uses of this function
1859 /// other than direct calls or invokes to it. Optionally ignores callback
1860 /// uses, assume like pointer annotation calls, and references in llvm.used
1861 /// and llvm.compiler.used variables.
1862 bool Function::hasAddressTaken(const User **PutOffender,
1863                                bool IgnoreCallbackUses,
1864                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1865                                bool IgnoreARCAttachedCall) const {
1866   for (const Use &U : uses()) {
1867     const User *FU = U.getUser();
1868     if (isa<BlockAddress>(FU))
1869       continue;
1870 
1871     if (IgnoreCallbackUses) {
1872       AbstractCallSite ACS(&U);
1873       if (ACS && ACS.isCallbackCall())
1874         continue;
1875     }
1876 
1877     const auto *Call = dyn_cast<CallBase>(FU);
1878     if (!Call) {
1879       if (IgnoreAssumeLikeCalls &&
1880           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1881           all_of(FU->users(), [](const User *U) {
1882             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1883               return I->isAssumeLikeIntrinsic();
1884             return false;
1885           })) {
1886         continue;
1887       }
1888 
1889       if (IgnoreLLVMUsed && !FU->user_empty()) {
1890         const User *FUU = FU;
1891         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1892             FU->hasOneUse() && !FU->user_begin()->user_empty())
1893           FUU = *FU->user_begin();
1894         if (llvm::all_of(FUU->users(), [](const User *U) {
1895               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1896                 return GV->hasName() &&
1897                        (GV->getName().equals("llvm.compiler.used") ||
1898                         GV->getName().equals("llvm.used"));
1899               return false;
1900             }))
1901           continue;
1902       }
1903       if (PutOffender)
1904         *PutOffender = FU;
1905       return true;
1906     }
1907 
1908     if (IgnoreAssumeLikeCalls) {
1909       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1910         if (I->isAssumeLikeIntrinsic())
1911           continue;
1912     }
1913 
1914     if (!Call->isCallee(&U) || Call->getFunctionType() != getFunctionType()) {
1915       if (IgnoreARCAttachedCall &&
1916           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1917                                       U.getOperandNo()))
1918         continue;
1919 
1920       if (PutOffender)
1921         *PutOffender = FU;
1922       return true;
1923     }
1924   }
1925   return false;
1926 }
1927 
1928 bool Function::isDefTriviallyDead() const {
1929   // Check the linkage
1930   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1931       !hasAvailableExternallyLinkage())
1932     return false;
1933 
1934   // Check if the function is used by anything other than a blockaddress.
1935   for (const User *U : users())
1936     if (!isa<BlockAddress>(U))
1937       return false;
1938 
1939   return true;
1940 }
1941 
1942 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1943 /// setjmp or other function that gcc recognizes as "returning twice".
1944 bool Function::callsFunctionThatReturnsTwice() const {
1945   for (const Instruction &I : instructions(this))
1946     if (const auto *Call = dyn_cast<CallBase>(&I))
1947       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1948         return true;
1949 
1950   return false;
1951 }
1952 
1953 Constant *Function::getPersonalityFn() const {
1954   assert(hasPersonalityFn() && getNumOperands());
1955   return cast<Constant>(Op<0>());
1956 }
1957 
1958 void Function::setPersonalityFn(Constant *Fn) {
1959   setHungoffOperand<0>(Fn);
1960   setValueSubclassDataBit(3, Fn != nullptr);
1961 }
1962 
1963 Constant *Function::getPrefixData() const {
1964   assert(hasPrefixData() && getNumOperands());
1965   return cast<Constant>(Op<1>());
1966 }
1967 
1968 void Function::setPrefixData(Constant *PrefixData) {
1969   setHungoffOperand<1>(PrefixData);
1970   setValueSubclassDataBit(1, PrefixData != nullptr);
1971 }
1972 
1973 Constant *Function::getPrologueData() const {
1974   assert(hasPrologueData() && getNumOperands());
1975   return cast<Constant>(Op<2>());
1976 }
1977 
1978 void Function::setPrologueData(Constant *PrologueData) {
1979   setHungoffOperand<2>(PrologueData);
1980   setValueSubclassDataBit(2, PrologueData != nullptr);
1981 }
1982 
1983 void Function::allocHungoffUselist() {
1984   // If we've already allocated a uselist, stop here.
1985   if (getNumOperands())
1986     return;
1987 
1988   allocHungoffUses(3, /*IsPhi=*/ false);
1989   setNumHungOffUseOperands(3);
1990 
1991   // Initialize the uselist with placeholder operands to allow traversal.
1992   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1993   Op<0>().set(CPN);
1994   Op<1>().set(CPN);
1995   Op<2>().set(CPN);
1996 }
1997 
1998 template <int Idx>
1999 void Function::setHungoffOperand(Constant *C) {
2000   if (C) {
2001     allocHungoffUselist();
2002     Op<Idx>().set(C);
2003   } else if (getNumOperands()) {
2004     Op<Idx>().set(
2005         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
2006   }
2007 }
2008 
2009 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
2010   assert(Bit < 16 && "SubclassData contains only 16 bits");
2011   if (On)
2012     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
2013   else
2014     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
2015 }
2016 
2017 void Function::setEntryCount(ProfileCount Count,
2018                              const DenseSet<GlobalValue::GUID> *S) {
2019 #if !defined(NDEBUG)
2020   auto PrevCount = getEntryCount();
2021   assert(!PrevCount || PrevCount->getType() == Count.getType());
2022 #endif
2023 
2024   auto ImportGUIDs = getImportGUIDs();
2025   if (S == nullptr && ImportGUIDs.size())
2026     S = &ImportGUIDs;
2027 
2028   MDBuilder MDB(getContext());
2029   setMetadata(
2030       LLVMContext::MD_prof,
2031       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2032 }
2033 
2034 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2035                              const DenseSet<GlobalValue::GUID> *Imports) {
2036   setEntryCount(ProfileCount(Count, Type), Imports);
2037 }
2038 
2039 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2040   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2041   if (MD && MD->getOperand(0))
2042     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2043       if (MDS->getString().equals("function_entry_count")) {
2044         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2045         uint64_t Count = CI->getValue().getZExtValue();
2046         // A value of -1 is used for SamplePGO when there were no samples.
2047         // Treat this the same as unknown.
2048         if (Count == (uint64_t)-1)
2049           return std::nullopt;
2050         return ProfileCount(Count, PCT_Real);
2051       } else if (AllowSynthetic &&
2052                  MDS->getString().equals("synthetic_function_entry_count")) {
2053         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2054         uint64_t Count = CI->getValue().getZExtValue();
2055         return ProfileCount(Count, PCT_Synthetic);
2056       }
2057     }
2058   return std::nullopt;
2059 }
2060 
2061 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2062   DenseSet<GlobalValue::GUID> R;
2063   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2064     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2065       if (MDS->getString().equals("function_entry_count"))
2066         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2067           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2068                        ->getValue()
2069                        .getZExtValue());
2070   return R;
2071 }
2072 
2073 void Function::setSectionPrefix(StringRef Prefix) {
2074   MDBuilder MDB(getContext());
2075   setMetadata(LLVMContext::MD_section_prefix,
2076               MDB.createFunctionSectionPrefix(Prefix));
2077 }
2078 
2079 std::optional<StringRef> Function::getSectionPrefix() const {
2080   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2081     assert(cast<MDString>(MD->getOperand(0))
2082                ->getString()
2083                .equals("function_section_prefix") &&
2084            "Metadata not match");
2085     return cast<MDString>(MD->getOperand(1))->getString();
2086   }
2087   return std::nullopt;
2088 }
2089 
2090 bool Function::nullPointerIsDefined() const {
2091   return hasFnAttribute(Attribute::NullPointerIsValid);
2092 }
2093 
2094 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2095   if (F && F->nullPointerIsDefined())
2096     return true;
2097 
2098   if (AS != 0)
2099     return true;
2100 
2101   return false;
2102 }
2103