xref: /llvm-project/llvm/lib/IR/Function.cpp (revision bb8ce25e88218be60d2a4ea9c9b0b721809eff27)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttributes(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttributes(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addAttributes(AttributeList::FunctionIndex, B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.addAttribute(getContext(), i, Kind);
535   setAttributes(PAL);
536 }
537 
538 void Function::addAttribute(unsigned i, Attribute Attr) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.addAttribute(getContext(), i, Attr);
541   setAttributes(PAL);
542 }
543 
544 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.addAttributes(getContext(), i, Attrs);
547   setAttributes(PAL);
548 }
549 
550 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
553   setAttributes(PAL);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
559   setAttributes(PAL);
560 }
561 
562 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
565   setAttributes(PAL);
566 }
567 
568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.removeAttribute(getContext(), i, Kind);
571   setAttributes(PAL);
572 }
573 
574 void Function::removeAttribute(unsigned i, StringRef Kind) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.removeAttribute(getContext(), i, Kind);
577   setAttributes(PAL);
578 }
579 
580 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
581   AttributeList PAL = getAttributes();
582   PAL = PAL.removeAttributes(getContext(), i, Attrs);
583   setAttributes(PAL);
584 }
585 
586 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
587   AttributeList PAL = getAttributes();
588   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
589   setAttributes(PAL);
590 }
591 
592 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
593   AttributeList PAL = getAttributes();
594   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
595   setAttributes(PAL);
596 }
597 
598 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
599   AttributeList PAL = getAttributes();
600   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
601   setAttributes(PAL);
602 }
603 
604 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
605   AttributeList PAL = getAttributes();
606   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
607   setAttributes(PAL);
608 }
609 
610 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
611   AttributeList PAL = getAttributes();
612   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
613   setAttributes(PAL);
614 }
615 
616 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
617   AttributeList PAL = getAttributes();
618   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
619   setAttributes(PAL);
620 }
621 
622 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
623   AttributeList PAL = getAttributes();
624   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
625   setAttributes(PAL);
626 }
627 
628 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
629                                                  uint64_t Bytes) {
630   AttributeList PAL = getAttributes();
631   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
632   setAttributes(PAL);
633 }
634 
635 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
636   if (&FPType == &APFloat::IEEEsingle()) {
637     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
638     StringRef Val = Attr.getValueAsString();
639     if (!Val.empty())
640       return parseDenormalFPAttribute(Val);
641 
642     // If the f32 variant of the attribute isn't specified, try to use the
643     // generic one.
644   }
645 
646   Attribute Attr = getFnAttribute("denormal-fp-math");
647   return parseDenormalFPAttribute(Attr.getValueAsString());
648 }
649 
650 const std::string &Function::getGC() const {
651   assert(hasGC() && "Function has no collector");
652   return getContext().getGC(*this);
653 }
654 
655 void Function::setGC(std::string Str) {
656   setValueSubclassDataBit(14, !Str.empty());
657   getContext().setGC(*this, std::move(Str));
658 }
659 
660 void Function::clearGC() {
661   if (!hasGC())
662     return;
663   getContext().deleteGC(*this);
664   setValueSubclassDataBit(14, false);
665 }
666 
667 bool Function::hasStackProtectorFnAttr() const {
668   return hasFnAttribute(Attribute::StackProtect) ||
669          hasFnAttribute(Attribute::StackProtectStrong) ||
670          hasFnAttribute(Attribute::StackProtectReq);
671 }
672 
673 /// Copy all additional attributes (those not needed to create a Function) from
674 /// the Function Src to this one.
675 void Function::copyAttributesFrom(const Function *Src) {
676   GlobalObject::copyAttributesFrom(Src);
677   setCallingConv(Src->getCallingConv());
678   setAttributes(Src->getAttributes());
679   if (Src->hasGC())
680     setGC(Src->getGC());
681   else
682     clearGC();
683   if (Src->hasPersonalityFn())
684     setPersonalityFn(Src->getPersonalityFn());
685   if (Src->hasPrefixData())
686     setPrefixData(Src->getPrefixData());
687   if (Src->hasPrologueData())
688     setPrologueData(Src->getPrologueData());
689 }
690 
691 /// Table of string intrinsic names indexed by enum value.
692 static const char * const IntrinsicNameTable[] = {
693   "not_intrinsic",
694 #define GET_INTRINSIC_NAME_TABLE
695 #include "llvm/IR/IntrinsicImpl.inc"
696 #undef GET_INTRINSIC_NAME_TABLE
697 };
698 
699 /// Table of per-target intrinsic name tables.
700 #define GET_INTRINSIC_TARGET_DATA
701 #include "llvm/IR/IntrinsicImpl.inc"
702 #undef GET_INTRINSIC_TARGET_DATA
703 
704 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
705   return IID > TargetInfos[0].Count;
706 }
707 
708 bool Function::isTargetIntrinsic() const {
709   return isTargetIntrinsic(IntID);
710 }
711 
712 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
713 /// target as \c Name, or the generic table if \c Name is not target specific.
714 ///
715 /// Returns the relevant slice of \c IntrinsicNameTable
716 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
717   assert(Name.startswith("llvm."));
718 
719   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
720   // Drop "llvm." and take the first dotted component. That will be the target
721   // if this is target specific.
722   StringRef Target = Name.drop_front(5).split('.').first;
723   auto It = partition_point(
724       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
725   // We've either found the target or just fall back to the generic set, which
726   // is always first.
727   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
728   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
729 }
730 
731 /// This does the actual lookup of an intrinsic ID which
732 /// matches the given function name.
733 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
734   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
735   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
736   if (Idx == -1)
737     return Intrinsic::not_intrinsic;
738 
739   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
740   // an index into a sub-table.
741   int Adjust = NameTable.data() - IntrinsicNameTable;
742   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
743 
744   // If the intrinsic is not overloaded, require an exact match. If it is
745   // overloaded, require either exact or prefix match.
746   const auto MatchSize = strlen(NameTable[Idx]);
747   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
748   bool IsExactMatch = Name.size() == MatchSize;
749   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
750                                                      : Intrinsic::not_intrinsic;
751 }
752 
753 void Function::recalculateIntrinsicID() {
754   StringRef Name = getName();
755   if (!Name.startswith("llvm.")) {
756     HasLLVMReservedName = false;
757     IntID = Intrinsic::not_intrinsic;
758     return;
759   }
760   HasLLVMReservedName = true;
761   IntID = lookupIntrinsicID(Name);
762 }
763 
764 /// Returns a stable mangling for the type specified for use in the name
765 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
766 /// of named types is simply their name.  Manglings for unnamed types consist
767 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
768 /// combined with the mangling of their component types.  A vararg function
769 /// type will have a suffix of 'vararg'.  Since function types can contain
770 /// other function types, we close a function type mangling with suffix 'f'
771 /// which can't be confused with it's prefix.  This ensures we don't have
772 /// collisions between two unrelated function types. Otherwise, you might
773 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
774 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
775 /// indicating that extra care must be taken to ensure a unique name.
776 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
777   std::string Result;
778   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
779     Result += "p" + utostr(PTyp->getAddressSpace()) +
780               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
781   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
782     Result += "a" + utostr(ATyp->getNumElements()) +
783               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
784   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
785     if (!STyp->isLiteral()) {
786       Result += "s_";
787       if (STyp->hasName())
788         Result += STyp->getName();
789       else
790         HasUnnamedType = true;
791     } else {
792       Result += "sl_";
793       for (auto Elem : STyp->elements())
794         Result += getMangledTypeStr(Elem, HasUnnamedType);
795     }
796     // Ensure nested structs are distinguishable.
797     Result += "s";
798   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
799     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
800     for (size_t i = 0; i < FT->getNumParams(); i++)
801       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
802     if (FT->isVarArg())
803       Result += "vararg";
804     // Ensure nested function types are distinguishable.
805     Result += "f";
806   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
807     ElementCount EC = VTy->getElementCount();
808     if (EC.isScalable())
809       Result += "nx";
810     Result += "v" + utostr(EC.getKnownMinValue()) +
811               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
812   } else if (Ty) {
813     switch (Ty->getTypeID()) {
814     default: llvm_unreachable("Unhandled type");
815     case Type::VoidTyID:      Result += "isVoid";   break;
816     case Type::MetadataTyID:  Result += "Metadata"; break;
817     case Type::HalfTyID:      Result += "f16";      break;
818     case Type::BFloatTyID:    Result += "bf16";     break;
819     case Type::FloatTyID:     Result += "f32";      break;
820     case Type::DoubleTyID:    Result += "f64";      break;
821     case Type::X86_FP80TyID:  Result += "f80";      break;
822     case Type::FP128TyID:     Result += "f128";     break;
823     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
824     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
825     case Type::X86_AMXTyID:   Result += "x86amx";   break;
826     case Type::IntegerTyID:
827       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
828       break;
829     }
830   }
831   return Result;
832 }
833 
834 StringRef Intrinsic::getBaseName(ID id) {
835   assert(id < num_intrinsics && "Invalid intrinsic ID!");
836   return IntrinsicNameTable[id];
837 }
838 
839 StringRef Intrinsic::getName(ID id) {
840   assert(id < num_intrinsics && "Invalid intrinsic ID!");
841   assert(!Intrinsic::isOverloaded(id) &&
842          "This version of getName does not support overloading");
843   return getBaseName(id);
844 }
845 
846 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
847                                         Module *M, FunctionType *FT,
848                                         bool EarlyModuleCheck) {
849 
850   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
851   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
852          "This version of getName is for overloaded intrinsics only");
853   (void)EarlyModuleCheck;
854   assert((!EarlyModuleCheck || M ||
855           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
856          "Intrinsic overloading on pointer types need to provide a Module");
857   bool HasUnnamedType = false;
858   std::string Result(Intrinsic::getBaseName(Id));
859   for (Type *Ty : Tys)
860     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
861   if (HasUnnamedType) {
862     assert(M && "unnamed types need a module");
863     if (!FT)
864       FT = Intrinsic::getType(M->getContext(), Id, Tys);
865     else
866       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
867              "Provided FunctionType must match arguments");
868     return M->getUniqueIntrinsicName(Result, Id, FT);
869   }
870   return Result;
871 }
872 
873 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
874                                FunctionType *FT) {
875   assert(M && "We need to have a Module");
876   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
877 }
878 
879 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
880   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
881 }
882 
883 /// IIT_Info - These are enumerators that describe the entries returned by the
884 /// getIntrinsicInfoTableEntries function.
885 ///
886 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
887 enum IIT_Info {
888   // Common values should be encoded with 0-15.
889   IIT_Done = 0,
890   IIT_I1   = 1,
891   IIT_I8   = 2,
892   IIT_I16  = 3,
893   IIT_I32  = 4,
894   IIT_I64  = 5,
895   IIT_F16  = 6,
896   IIT_F32  = 7,
897   IIT_F64  = 8,
898   IIT_V2   = 9,
899   IIT_V4   = 10,
900   IIT_V8   = 11,
901   IIT_V16  = 12,
902   IIT_V32  = 13,
903   IIT_PTR  = 14,
904   IIT_ARG  = 15,
905 
906   // Values from 16+ are only encodable with the inefficient encoding.
907   IIT_V64  = 16,
908   IIT_MMX  = 17,
909   IIT_TOKEN = 18,
910   IIT_METADATA = 19,
911   IIT_EMPTYSTRUCT = 20,
912   IIT_STRUCT2 = 21,
913   IIT_STRUCT3 = 22,
914   IIT_STRUCT4 = 23,
915   IIT_STRUCT5 = 24,
916   IIT_EXTEND_ARG = 25,
917   IIT_TRUNC_ARG = 26,
918   IIT_ANYPTR = 27,
919   IIT_V1   = 28,
920   IIT_VARARG = 29,
921   IIT_HALF_VEC_ARG = 30,
922   IIT_SAME_VEC_WIDTH_ARG = 31,
923   IIT_PTR_TO_ARG = 32,
924   IIT_PTR_TO_ELT = 33,
925   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
926   IIT_I128 = 35,
927   IIT_V512 = 36,
928   IIT_V1024 = 37,
929   IIT_STRUCT6 = 38,
930   IIT_STRUCT7 = 39,
931   IIT_STRUCT8 = 40,
932   IIT_F128 = 41,
933   IIT_VEC_ELEMENT = 42,
934   IIT_SCALABLE_VEC = 43,
935   IIT_SUBDIVIDE2_ARG = 44,
936   IIT_SUBDIVIDE4_ARG = 45,
937   IIT_VEC_OF_BITCASTS_TO_INT = 46,
938   IIT_V128 = 47,
939   IIT_BF16 = 48,
940   IIT_STRUCT9 = 49,
941   IIT_V256 = 50,
942   IIT_AMX  = 51
943 };
944 
945 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
946                       IIT_Info LastInfo,
947                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
948   using namespace Intrinsic;
949 
950   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
951 
952   IIT_Info Info = IIT_Info(Infos[NextElt++]);
953   unsigned StructElts = 2;
954 
955   switch (Info) {
956   case IIT_Done:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
958     return;
959   case IIT_VARARG:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
961     return;
962   case IIT_MMX:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
964     return;
965   case IIT_AMX:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
967     return;
968   case IIT_TOKEN:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
970     return;
971   case IIT_METADATA:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
973     return;
974   case IIT_F16:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
976     return;
977   case IIT_BF16:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
979     return;
980   case IIT_F32:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
982     return;
983   case IIT_F64:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
985     return;
986   case IIT_F128:
987     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
988     return;
989   case IIT_I1:
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
991     return;
992   case IIT_I8:
993     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
994     return;
995   case IIT_I16:
996     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
997     return;
998   case IIT_I32:
999     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1000     return;
1001   case IIT_I64:
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1003     return;
1004   case IIT_I128:
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1006     return;
1007   case IIT_V1:
1008     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1009     DecodeIITType(NextElt, Infos, Info, OutputTable);
1010     return;
1011   case IIT_V2:
1012     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1013     DecodeIITType(NextElt, Infos, Info, OutputTable);
1014     return;
1015   case IIT_V4:
1016     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1017     DecodeIITType(NextElt, Infos, Info, OutputTable);
1018     return;
1019   case IIT_V8:
1020     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1021     DecodeIITType(NextElt, Infos, Info, OutputTable);
1022     return;
1023   case IIT_V16:
1024     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1025     DecodeIITType(NextElt, Infos, Info, OutputTable);
1026     return;
1027   case IIT_V32:
1028     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1029     DecodeIITType(NextElt, Infos, Info, OutputTable);
1030     return;
1031   case IIT_V64:
1032     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1033     DecodeIITType(NextElt, Infos, Info, OutputTable);
1034     return;
1035   case IIT_V128:
1036     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1037     DecodeIITType(NextElt, Infos, Info, OutputTable);
1038     return;
1039   case IIT_V256:
1040     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1041     DecodeIITType(NextElt, Infos, Info, OutputTable);
1042     return;
1043   case IIT_V512:
1044     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1045     DecodeIITType(NextElt, Infos, Info, OutputTable);
1046     return;
1047   case IIT_V1024:
1048     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1049     DecodeIITType(NextElt, Infos, Info, OutputTable);
1050     return;
1051   case IIT_PTR:
1052     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1053     DecodeIITType(NextElt, Infos, Info, OutputTable);
1054     return;
1055   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1056     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1057                                              Infos[NextElt++]));
1058     DecodeIITType(NextElt, Infos, Info, OutputTable);
1059     return;
1060   }
1061   case IIT_ARG: {
1062     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1063     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1064     return;
1065   }
1066   case IIT_EXTEND_ARG: {
1067     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1068     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1069                                              ArgInfo));
1070     return;
1071   }
1072   case IIT_TRUNC_ARG: {
1073     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1074     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1075                                              ArgInfo));
1076     return;
1077   }
1078   case IIT_HALF_VEC_ARG: {
1079     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1080     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1081                                              ArgInfo));
1082     return;
1083   }
1084   case IIT_SAME_VEC_WIDTH_ARG: {
1085     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1086     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1087                                              ArgInfo));
1088     return;
1089   }
1090   case IIT_PTR_TO_ARG: {
1091     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1092     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1093                                              ArgInfo));
1094     return;
1095   }
1096   case IIT_PTR_TO_ELT: {
1097     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1099     return;
1100   }
1101   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1102     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1103     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1104     OutputTable.push_back(
1105         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1106     return;
1107   }
1108   case IIT_EMPTYSTRUCT:
1109     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1110     return;
1111   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1112   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1113   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1114   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1115   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1116   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1117   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1118   case IIT_STRUCT2: {
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1120 
1121     for (unsigned i = 0; i != StructElts; ++i)
1122       DecodeIITType(NextElt, Infos, Info, OutputTable);
1123     return;
1124   }
1125   case IIT_SUBDIVIDE2_ARG: {
1126     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1127     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1128                                              ArgInfo));
1129     return;
1130   }
1131   case IIT_SUBDIVIDE4_ARG: {
1132     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1133     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1134                                              ArgInfo));
1135     return;
1136   }
1137   case IIT_VEC_ELEMENT: {
1138     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1139     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1140                                              ArgInfo));
1141     return;
1142   }
1143   case IIT_SCALABLE_VEC: {
1144     DecodeIITType(NextElt, Infos, Info, OutputTable);
1145     return;
1146   }
1147   case IIT_VEC_OF_BITCASTS_TO_INT: {
1148     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1150                                              ArgInfo));
1151     return;
1152   }
1153   }
1154   llvm_unreachable("unhandled");
1155 }
1156 
1157 #define GET_INTRINSIC_GENERATOR_GLOBAL
1158 #include "llvm/IR/IntrinsicImpl.inc"
1159 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1160 
1161 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1162                                              SmallVectorImpl<IITDescriptor> &T){
1163   // Check to see if the intrinsic's type was expressible by the table.
1164   unsigned TableVal = IIT_Table[id-1];
1165 
1166   // Decode the TableVal into an array of IITValues.
1167   SmallVector<unsigned char, 8> IITValues;
1168   ArrayRef<unsigned char> IITEntries;
1169   unsigned NextElt = 0;
1170   if ((TableVal >> 31) != 0) {
1171     // This is an offset into the IIT_LongEncodingTable.
1172     IITEntries = IIT_LongEncodingTable;
1173 
1174     // Strip sentinel bit.
1175     NextElt = (TableVal << 1) >> 1;
1176   } else {
1177     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1178     // into a single word in the table itself, decode it now.
1179     do {
1180       IITValues.push_back(TableVal & 0xF);
1181       TableVal >>= 4;
1182     } while (TableVal);
1183 
1184     IITEntries = IITValues;
1185     NextElt = 0;
1186   }
1187 
1188   // Okay, decode the table into the output vector of IITDescriptors.
1189   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1190   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1191     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1192 }
1193 
1194 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1195                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1196   using namespace Intrinsic;
1197 
1198   IITDescriptor D = Infos.front();
1199   Infos = Infos.slice(1);
1200 
1201   switch (D.Kind) {
1202   case IITDescriptor::Void: return Type::getVoidTy(Context);
1203   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1204   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1205   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1206   case IITDescriptor::Token: return Type::getTokenTy(Context);
1207   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1208   case IITDescriptor::Half: return Type::getHalfTy(Context);
1209   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1210   case IITDescriptor::Float: return Type::getFloatTy(Context);
1211   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1212   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1213 
1214   case IITDescriptor::Integer:
1215     return IntegerType::get(Context, D.Integer_Width);
1216   case IITDescriptor::Vector:
1217     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1218                            D.Vector_Width);
1219   case IITDescriptor::Pointer:
1220     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1221                             D.Pointer_AddressSpace);
1222   case IITDescriptor::Struct: {
1223     SmallVector<Type *, 8> Elts;
1224     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1225       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1226     return StructType::get(Context, Elts);
1227   }
1228   case IITDescriptor::Argument:
1229     return Tys[D.getArgumentNumber()];
1230   case IITDescriptor::ExtendArgument: {
1231     Type *Ty = Tys[D.getArgumentNumber()];
1232     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1233       return VectorType::getExtendedElementVectorType(VTy);
1234 
1235     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1236   }
1237   case IITDescriptor::TruncArgument: {
1238     Type *Ty = Tys[D.getArgumentNumber()];
1239     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1240       return VectorType::getTruncatedElementVectorType(VTy);
1241 
1242     IntegerType *ITy = cast<IntegerType>(Ty);
1243     assert(ITy->getBitWidth() % 2 == 0);
1244     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1245   }
1246   case IITDescriptor::Subdivide2Argument:
1247   case IITDescriptor::Subdivide4Argument: {
1248     Type *Ty = Tys[D.getArgumentNumber()];
1249     VectorType *VTy = dyn_cast<VectorType>(Ty);
1250     assert(VTy && "Expected an argument of Vector Type");
1251     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1252     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1253   }
1254   case IITDescriptor::HalfVecArgument:
1255     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1256                                                   Tys[D.getArgumentNumber()]));
1257   case IITDescriptor::SameVecWidthArgument: {
1258     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1259     Type *Ty = Tys[D.getArgumentNumber()];
1260     if (auto *VTy = dyn_cast<VectorType>(Ty))
1261       return VectorType::get(EltTy, VTy->getElementCount());
1262     return EltTy;
1263   }
1264   case IITDescriptor::PtrToArgument: {
1265     Type *Ty = Tys[D.getArgumentNumber()];
1266     return PointerType::getUnqual(Ty);
1267   }
1268   case IITDescriptor::PtrToElt: {
1269     Type *Ty = Tys[D.getArgumentNumber()];
1270     VectorType *VTy = dyn_cast<VectorType>(Ty);
1271     if (!VTy)
1272       llvm_unreachable("Expected an argument of Vector Type");
1273     Type *EltTy = VTy->getElementType();
1274     return PointerType::getUnqual(EltTy);
1275   }
1276   case IITDescriptor::VecElementArgument: {
1277     Type *Ty = Tys[D.getArgumentNumber()];
1278     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1279       return VTy->getElementType();
1280     llvm_unreachable("Expected an argument of Vector Type");
1281   }
1282   case IITDescriptor::VecOfBitcastsToInt: {
1283     Type *Ty = Tys[D.getArgumentNumber()];
1284     VectorType *VTy = dyn_cast<VectorType>(Ty);
1285     assert(VTy && "Expected an argument of Vector Type");
1286     return VectorType::getInteger(VTy);
1287   }
1288   case IITDescriptor::VecOfAnyPtrsToElt:
1289     // Return the overloaded type (which determines the pointers address space)
1290     return Tys[D.getOverloadArgNumber()];
1291   }
1292   llvm_unreachable("unhandled");
1293 }
1294 
1295 FunctionType *Intrinsic::getType(LLVMContext &Context,
1296                                  ID id, ArrayRef<Type*> Tys) {
1297   SmallVector<IITDescriptor, 8> Table;
1298   getIntrinsicInfoTableEntries(id, Table);
1299 
1300   ArrayRef<IITDescriptor> TableRef = Table;
1301   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1302 
1303   SmallVector<Type*, 8> ArgTys;
1304   while (!TableRef.empty())
1305     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1306 
1307   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1308   // If we see void type as the type of the last argument, it is vararg intrinsic
1309   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1310     ArgTys.pop_back();
1311     return FunctionType::get(ResultTy, ArgTys, true);
1312   }
1313   return FunctionType::get(ResultTy, ArgTys, false);
1314 }
1315 
1316 bool Intrinsic::isOverloaded(ID id) {
1317 #define GET_INTRINSIC_OVERLOAD_TABLE
1318 #include "llvm/IR/IntrinsicImpl.inc"
1319 #undef GET_INTRINSIC_OVERLOAD_TABLE
1320 }
1321 
1322 bool Intrinsic::isLeaf(ID id) {
1323   switch (id) {
1324   default:
1325     return true;
1326 
1327   case Intrinsic::experimental_gc_statepoint:
1328   case Intrinsic::experimental_patchpoint_void:
1329   case Intrinsic::experimental_patchpoint_i64:
1330     return false;
1331   }
1332 }
1333 
1334 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1335 #define GET_INTRINSIC_ATTRIBUTES
1336 #include "llvm/IR/IntrinsicImpl.inc"
1337 #undef GET_INTRINSIC_ATTRIBUTES
1338 
1339 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1340   // There can never be multiple globals with the same name of different types,
1341   // because intrinsics must be a specific type.
1342   auto *FT = getType(M->getContext(), id, Tys);
1343   return cast<Function>(
1344       M->getOrInsertFunction(Tys.empty() ? getName(id)
1345                                          : getName(id, Tys, M, FT),
1346                              getType(M->getContext(), id, Tys))
1347           .getCallee());
1348 }
1349 
1350 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1351 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1352 #include "llvm/IR/IntrinsicImpl.inc"
1353 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1354 
1355 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1356 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1357 #include "llvm/IR/IntrinsicImpl.inc"
1358 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1359 
1360 using DeferredIntrinsicMatchPair =
1361     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1362 
1363 static bool matchIntrinsicType(
1364     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1365     SmallVectorImpl<Type *> &ArgTys,
1366     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1367     bool IsDeferredCheck) {
1368   using namespace Intrinsic;
1369 
1370   // If we ran out of descriptors, there are too many arguments.
1371   if (Infos.empty()) return true;
1372 
1373   // Do this before slicing off the 'front' part
1374   auto InfosRef = Infos;
1375   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1376     DeferredChecks.emplace_back(T, InfosRef);
1377     return false;
1378   };
1379 
1380   IITDescriptor D = Infos.front();
1381   Infos = Infos.slice(1);
1382 
1383   switch (D.Kind) {
1384     case IITDescriptor::Void: return !Ty->isVoidTy();
1385     case IITDescriptor::VarArg: return true;
1386     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1387     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1388     case IITDescriptor::Token: return !Ty->isTokenTy();
1389     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1390     case IITDescriptor::Half: return !Ty->isHalfTy();
1391     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1392     case IITDescriptor::Float: return !Ty->isFloatTy();
1393     case IITDescriptor::Double: return !Ty->isDoubleTy();
1394     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1395     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1396     case IITDescriptor::Vector: {
1397       VectorType *VT = dyn_cast<VectorType>(Ty);
1398       return !VT || VT->getElementCount() != D.Vector_Width ||
1399              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1400                                 DeferredChecks, IsDeferredCheck);
1401     }
1402     case IITDescriptor::Pointer: {
1403       PointerType *PT = dyn_cast<PointerType>(Ty);
1404       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1405              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1406                                 DeferredChecks, IsDeferredCheck);
1407     }
1408 
1409     case IITDescriptor::Struct: {
1410       StructType *ST = dyn_cast<StructType>(Ty);
1411       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1412         return true;
1413 
1414       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1415         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1416                                DeferredChecks, IsDeferredCheck))
1417           return true;
1418       return false;
1419     }
1420 
1421     case IITDescriptor::Argument:
1422       // If this is the second occurrence of an argument,
1423       // verify that the later instance matches the previous instance.
1424       if (D.getArgumentNumber() < ArgTys.size())
1425         return Ty != ArgTys[D.getArgumentNumber()];
1426 
1427       if (D.getArgumentNumber() > ArgTys.size() ||
1428           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1429         return IsDeferredCheck || DeferCheck(Ty);
1430 
1431       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1432              "Table consistency error");
1433       ArgTys.push_back(Ty);
1434 
1435       switch (D.getArgumentKind()) {
1436         case IITDescriptor::AK_Any:        return false; // Success
1437         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1438         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1439         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1440         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1441         default:                           break;
1442       }
1443       llvm_unreachable("all argument kinds not covered");
1444 
1445     case IITDescriptor::ExtendArgument: {
1446       // If this is a forward reference, defer the check for later.
1447       if (D.getArgumentNumber() >= ArgTys.size())
1448         return IsDeferredCheck || DeferCheck(Ty);
1449 
1450       Type *NewTy = ArgTys[D.getArgumentNumber()];
1451       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1452         NewTy = VectorType::getExtendedElementVectorType(VTy);
1453       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1454         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1455       else
1456         return true;
1457 
1458       return Ty != NewTy;
1459     }
1460     case IITDescriptor::TruncArgument: {
1461       // If this is a forward reference, defer the check for later.
1462       if (D.getArgumentNumber() >= ArgTys.size())
1463         return IsDeferredCheck || DeferCheck(Ty);
1464 
1465       Type *NewTy = ArgTys[D.getArgumentNumber()];
1466       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1467         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1468       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1469         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1470       else
1471         return true;
1472 
1473       return Ty != NewTy;
1474     }
1475     case IITDescriptor::HalfVecArgument:
1476       // If this is a forward reference, defer the check for later.
1477       if (D.getArgumentNumber() >= ArgTys.size())
1478         return IsDeferredCheck || DeferCheck(Ty);
1479       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1480              VectorType::getHalfElementsVectorType(
1481                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1482     case IITDescriptor::SameVecWidthArgument: {
1483       if (D.getArgumentNumber() >= ArgTys.size()) {
1484         // Defer check and subsequent check for the vector element type.
1485         Infos = Infos.slice(1);
1486         return IsDeferredCheck || DeferCheck(Ty);
1487       }
1488       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1489       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1490       // Both must be vectors of the same number of elements or neither.
1491       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1492         return true;
1493       Type *EltTy = Ty;
1494       if (ThisArgType) {
1495         if (ReferenceType->getElementCount() !=
1496             ThisArgType->getElementCount())
1497           return true;
1498         EltTy = ThisArgType->getElementType();
1499       }
1500       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1501                                 IsDeferredCheck);
1502     }
1503     case IITDescriptor::PtrToArgument: {
1504       if (D.getArgumentNumber() >= ArgTys.size())
1505         return IsDeferredCheck || DeferCheck(Ty);
1506       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1507       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1508       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1509     }
1510     case IITDescriptor::PtrToElt: {
1511       if (D.getArgumentNumber() >= ArgTys.size())
1512         return IsDeferredCheck || DeferCheck(Ty);
1513       VectorType * ReferenceType =
1514         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1515       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1516 
1517       return (!ThisArgType || !ReferenceType ||
1518               ThisArgType->getElementType() != ReferenceType->getElementType());
1519     }
1520     case IITDescriptor::VecOfAnyPtrsToElt: {
1521       unsigned RefArgNumber = D.getRefArgNumber();
1522       if (RefArgNumber >= ArgTys.size()) {
1523         if (IsDeferredCheck)
1524           return true;
1525         // If forward referencing, already add the pointer-vector type and
1526         // defer the checks for later.
1527         ArgTys.push_back(Ty);
1528         return DeferCheck(Ty);
1529       }
1530 
1531       if (!IsDeferredCheck){
1532         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1533                "Table consistency error");
1534         ArgTys.push_back(Ty);
1535       }
1536 
1537       // Verify the overloaded type "matches" the Ref type.
1538       // i.e. Ty is a vector with the same width as Ref.
1539       // Composed of pointers to the same element type as Ref.
1540       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1541       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1542       if (!ThisArgVecTy || !ReferenceType ||
1543           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1544         return true;
1545       PointerType *ThisArgEltTy =
1546           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1547       if (!ThisArgEltTy)
1548         return true;
1549       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1550     }
1551     case IITDescriptor::VecElementArgument: {
1552       if (D.getArgumentNumber() >= ArgTys.size())
1553         return IsDeferredCheck ? true : DeferCheck(Ty);
1554       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1555       return !ReferenceType || Ty != ReferenceType->getElementType();
1556     }
1557     case IITDescriptor::Subdivide2Argument:
1558     case IITDescriptor::Subdivide4Argument: {
1559       // If this is a forward reference, defer the check for later.
1560       if (D.getArgumentNumber() >= ArgTys.size())
1561         return IsDeferredCheck || DeferCheck(Ty);
1562 
1563       Type *NewTy = ArgTys[D.getArgumentNumber()];
1564       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1565         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1566         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1567         return Ty != NewTy;
1568       }
1569       return true;
1570     }
1571     case IITDescriptor::VecOfBitcastsToInt: {
1572       if (D.getArgumentNumber() >= ArgTys.size())
1573         return IsDeferredCheck || DeferCheck(Ty);
1574       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1575       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1576       if (!ThisArgVecTy || !ReferenceType)
1577         return true;
1578       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1579     }
1580   }
1581   llvm_unreachable("unhandled");
1582 }
1583 
1584 Intrinsic::MatchIntrinsicTypesResult
1585 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1586                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1587                                    SmallVectorImpl<Type *> &ArgTys) {
1588   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1589   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1590                          false))
1591     return MatchIntrinsicTypes_NoMatchRet;
1592 
1593   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1594 
1595   for (auto Ty : FTy->params())
1596     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1597       return MatchIntrinsicTypes_NoMatchArg;
1598 
1599   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1600     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1601     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1602                            true))
1603       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1604                                          : MatchIntrinsicTypes_NoMatchArg;
1605   }
1606 
1607   return MatchIntrinsicTypes_Match;
1608 }
1609 
1610 bool
1611 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1612                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1613   // If there are no descriptors left, then it can't be a vararg.
1614   if (Infos.empty())
1615     return isVarArg;
1616 
1617   // There should be only one descriptor remaining at this point.
1618   if (Infos.size() != 1)
1619     return true;
1620 
1621   // Check and verify the descriptor.
1622   IITDescriptor D = Infos.front();
1623   Infos = Infos.slice(1);
1624   if (D.Kind == IITDescriptor::VarArg)
1625     return !isVarArg;
1626 
1627   return true;
1628 }
1629 
1630 bool Intrinsic::getIntrinsicSignature(Function *F,
1631                                       SmallVectorImpl<Type *> &ArgTys) {
1632   Intrinsic::ID ID = F->getIntrinsicID();
1633   if (!ID)
1634     return false;
1635 
1636   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1637   getIntrinsicInfoTableEntries(ID, Table);
1638   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1639 
1640   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1641                                          ArgTys) !=
1642       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1643     return false;
1644   }
1645   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1646                                       TableRef))
1647     return false;
1648   return true;
1649 }
1650 
1651 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1652   SmallVector<Type *, 4> ArgTys;
1653   if (!getIntrinsicSignature(F, ArgTys))
1654     return None;
1655 
1656   Intrinsic::ID ID = F->getIntrinsicID();
1657   StringRef Name = F->getName();
1658   if (Name ==
1659       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1660     return None;
1661 
1662   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1663   NewDecl->setCallingConv(F->getCallingConv());
1664   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1665          "Shouldn't change the signature");
1666   return NewDecl;
1667 }
1668 
1669 /// hasAddressTaken - returns true if there are any uses of this function
1670 /// other than direct calls or invokes to it. Optionally ignores callback
1671 /// uses, assume like pointer annotation calls, and references in llvm.used
1672 /// and llvm.compiler.used variables.
1673 bool Function::hasAddressTaken(const User **PutOffender,
1674                                bool IgnoreCallbackUses,
1675                                bool IgnoreAssumeLikeCalls,
1676                                bool IgnoreLLVMUsed) const {
1677   for (const Use &U : uses()) {
1678     const User *FU = U.getUser();
1679     if (isa<BlockAddress>(FU))
1680       continue;
1681 
1682     if (IgnoreCallbackUses) {
1683       AbstractCallSite ACS(&U);
1684       if (ACS && ACS.isCallbackCall())
1685         continue;
1686     }
1687 
1688     const auto *Call = dyn_cast<CallBase>(FU);
1689     if (!Call) {
1690       if (IgnoreAssumeLikeCalls) {
1691         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1692           if (FI->isCast() && !FI->user_empty() &&
1693               llvm::all_of(FU->users(), [](const User *U) {
1694                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1695                   return I->isAssumeLikeIntrinsic();
1696                 return false;
1697               }))
1698             continue;
1699         }
1700       }
1701       if (IgnoreLLVMUsed && !FU->user_empty()) {
1702         const User *FUU = FU;
1703         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1704             !FU->user_begin()->user_empty())
1705           FUU = *FU->user_begin();
1706         if (llvm::all_of(FUU->users(), [](const User *U) {
1707               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1708                 return GV->hasName() &&
1709                        (GV->getName().equals("llvm.compiler.used") ||
1710                         GV->getName().equals("llvm.used"));
1711               return false;
1712             }))
1713           continue;
1714       }
1715       if (PutOffender)
1716         *PutOffender = FU;
1717       return true;
1718     }
1719     if (!Call->isCallee(&U)) {
1720       if (PutOffender)
1721         *PutOffender = FU;
1722       return true;
1723     }
1724   }
1725   return false;
1726 }
1727 
1728 bool Function::isDefTriviallyDead() const {
1729   // Check the linkage
1730   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1731       !hasAvailableExternallyLinkage())
1732     return false;
1733 
1734   // Check if the function is used by anything other than a blockaddress.
1735   for (const User *U : users())
1736     if (!isa<BlockAddress>(U))
1737       return false;
1738 
1739   return true;
1740 }
1741 
1742 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1743 /// setjmp or other function that gcc recognizes as "returning twice".
1744 bool Function::callsFunctionThatReturnsTwice() const {
1745   for (const Instruction &I : instructions(this))
1746     if (const auto *Call = dyn_cast<CallBase>(&I))
1747       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1748         return true;
1749 
1750   return false;
1751 }
1752 
1753 Constant *Function::getPersonalityFn() const {
1754   assert(hasPersonalityFn() && getNumOperands());
1755   return cast<Constant>(Op<0>());
1756 }
1757 
1758 void Function::setPersonalityFn(Constant *Fn) {
1759   setHungoffOperand<0>(Fn);
1760   setValueSubclassDataBit(3, Fn != nullptr);
1761 }
1762 
1763 Constant *Function::getPrefixData() const {
1764   assert(hasPrefixData() && getNumOperands());
1765   return cast<Constant>(Op<1>());
1766 }
1767 
1768 void Function::setPrefixData(Constant *PrefixData) {
1769   setHungoffOperand<1>(PrefixData);
1770   setValueSubclassDataBit(1, PrefixData != nullptr);
1771 }
1772 
1773 Constant *Function::getPrologueData() const {
1774   assert(hasPrologueData() && getNumOperands());
1775   return cast<Constant>(Op<2>());
1776 }
1777 
1778 void Function::setPrologueData(Constant *PrologueData) {
1779   setHungoffOperand<2>(PrologueData);
1780   setValueSubclassDataBit(2, PrologueData != nullptr);
1781 }
1782 
1783 void Function::allocHungoffUselist() {
1784   // If we've already allocated a uselist, stop here.
1785   if (getNumOperands())
1786     return;
1787 
1788   allocHungoffUses(3, /*IsPhi=*/ false);
1789   setNumHungOffUseOperands(3);
1790 
1791   // Initialize the uselist with placeholder operands to allow traversal.
1792   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1793   Op<0>().set(CPN);
1794   Op<1>().set(CPN);
1795   Op<2>().set(CPN);
1796 }
1797 
1798 template <int Idx>
1799 void Function::setHungoffOperand(Constant *C) {
1800   if (C) {
1801     allocHungoffUselist();
1802     Op<Idx>().set(C);
1803   } else if (getNumOperands()) {
1804     Op<Idx>().set(
1805         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1806   }
1807 }
1808 
1809 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1810   assert(Bit < 16 && "SubclassData contains only 16 bits");
1811   if (On)
1812     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1813   else
1814     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1815 }
1816 
1817 void Function::setEntryCount(ProfileCount Count,
1818                              const DenseSet<GlobalValue::GUID> *S) {
1819   assert(Count.hasValue());
1820 #if !defined(NDEBUG)
1821   auto PrevCount = getEntryCount();
1822   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1823 #endif
1824 
1825   auto ImportGUIDs = getImportGUIDs();
1826   if (S == nullptr && ImportGUIDs.size())
1827     S = &ImportGUIDs;
1828 
1829   MDBuilder MDB(getContext());
1830   setMetadata(
1831       LLVMContext::MD_prof,
1832       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1833 }
1834 
1835 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1836                              const DenseSet<GlobalValue::GUID> *Imports) {
1837   setEntryCount(ProfileCount(Count, Type), Imports);
1838 }
1839 
1840 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1841   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1842   if (MD && MD->getOperand(0))
1843     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1844       if (MDS->getString().equals("function_entry_count")) {
1845         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1846         uint64_t Count = CI->getValue().getZExtValue();
1847         // A value of -1 is used for SamplePGO when there were no samples.
1848         // Treat this the same as unknown.
1849         if (Count == (uint64_t)-1)
1850           return ProfileCount::getInvalid();
1851         return ProfileCount(Count, PCT_Real);
1852       } else if (AllowSynthetic &&
1853                  MDS->getString().equals("synthetic_function_entry_count")) {
1854         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1855         uint64_t Count = CI->getValue().getZExtValue();
1856         return ProfileCount(Count, PCT_Synthetic);
1857       }
1858     }
1859   return ProfileCount::getInvalid();
1860 }
1861 
1862 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1863   DenseSet<GlobalValue::GUID> R;
1864   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1865     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1866       if (MDS->getString().equals("function_entry_count"))
1867         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1868           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1869                        ->getValue()
1870                        .getZExtValue());
1871   return R;
1872 }
1873 
1874 void Function::setSectionPrefix(StringRef Prefix) {
1875   MDBuilder MDB(getContext());
1876   setMetadata(LLVMContext::MD_section_prefix,
1877               MDB.createFunctionSectionPrefix(Prefix));
1878 }
1879 
1880 Optional<StringRef> Function::getSectionPrefix() const {
1881   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1882     assert(cast<MDString>(MD->getOperand(0))
1883                ->getString()
1884                .equals("function_section_prefix") &&
1885            "Metadata not match");
1886     return cast<MDString>(MD->getOperand(1))->getString();
1887   }
1888   return None;
1889 }
1890 
1891 bool Function::nullPointerIsDefined() const {
1892   return hasFnAttribute(Attribute::NullPointerIsValid);
1893 }
1894 
1895 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1896   if (F && F->nullPointerIsDefined())
1897     return true;
1898 
1899   if (AS != 0)
1900     return true;
1901 
1902   return false;
1903 }
1904