1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { return Ty; } 228 229 bool Function::isVarArg() const { 230 return getFunctionType()->isVarArg(); 231 } 232 233 Type *Function::getReturnType() const { 234 return getFunctionType()->getReturnType(); 235 } 236 237 void Function::removeFromParent() { 238 getParent()->getFunctionList().remove(getIterator()); 239 } 240 241 void Function::eraseFromParent() { 242 getParent()->getFunctionList().erase(getIterator()); 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Function Implementation 247 //===----------------------------------------------------------------------===// 248 249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 250 Module *ParentModule) 251 : GlobalObject(Ty, Value::FunctionVal, 252 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 253 Ty(Ty) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setGlobalObjectSubClassData(0); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 if (ParentModule) 264 ParentModule->getFunctionList().push_back(this); 265 266 // Ensure intrinsics have the right parameter attributes. 267 // Note, the IntID field will have been set in Value::setName if this function 268 // name is a valid intrinsic ID. 269 if (IntID) 270 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 271 } 272 273 Function::~Function() { 274 dropAllReferences(); // After this it is safe to delete instructions. 275 276 // Delete all of the method arguments and unlink from symbol table... 277 ArgumentList.clear(); 278 delete SymTab; 279 280 // Remove the function from the on-the-side GC table. 281 clearGC(); 282 283 // FIXME: needed by operator delete 284 setFunctionNumOperands(1); 285 } 286 287 void Function::BuildLazyArguments() const { 288 // Create the arguments vector, all arguments start out unnamed. 289 FunctionType *FT = getFunctionType(); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 291 assert(!FT->getParamType(i)->isVoidTy() && 292 "Cannot have void typed arguments!"); 293 ArgumentList.push_back(new Argument(FT->getParamType(i))); 294 } 295 296 // Clear the lazy arguments bit. 297 unsigned SDC = getSubclassDataFromValue(); 298 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 299 } 300 301 size_t Function::arg_size() const { 302 return getFunctionType()->getNumParams(); 303 } 304 bool Function::arg_empty() const { 305 return getFunctionType()->getNumParams() == 0; 306 } 307 308 void Function::setParent(Module *parent) { 309 Parent = parent; 310 } 311 312 // dropAllReferences() - This function causes all the subinstructions to "let 313 // go" of all references that they are maintaining. This allows one to 314 // 'delete' a whole class at a time, even though there may be circular 315 // references... first all references are dropped, and all use counts go to 316 // zero. Then everything is deleted for real. Note that no operations are 317 // valid on an object that has "dropped all references", except operator 318 // delete. 319 // 320 void Function::dropAllReferences() { 321 setIsMaterializable(false); 322 323 for (iterator I = begin(), E = end(); I != E; ++I) 324 I->dropAllReferences(); 325 326 // Delete all basic blocks. They are now unused, except possibly by 327 // blockaddresses, but BasicBlock's destructor takes care of those. 328 while (!BasicBlocks.empty()) 329 BasicBlocks.begin()->eraseFromParent(); 330 331 // Prefix and prologue data are stored in a side table. 332 setPrefixData(nullptr); 333 setPrologueData(nullptr); 334 335 // Metadata is stored in a side-table. 336 clearMetadata(); 337 338 setPersonalityFn(nullptr); 339 } 340 341 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 342 AttributeSet PAL = getAttributes(); 343 PAL = PAL.addAttribute(getContext(), i, attr); 344 setAttributes(PAL); 345 } 346 347 void Function::addAttributes(unsigned i, AttributeSet attrs) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttributes(getContext(), i, attrs); 350 setAttributes(PAL); 351 } 352 353 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.removeAttributes(getContext(), i, attrs); 356 setAttributes(PAL); 357 } 358 359 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 362 setAttributes(PAL); 363 } 364 365 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 368 setAttributes(PAL); 369 } 370 371 // Maintain the GC name for each function in an on-the-side table. This saves 372 // allocating an additional word in Function for programs which do not use GC 373 // (i.e., most programs) at the cost of increased overhead for clients which do 374 // use GC. 375 static DenseMap<const Function*,PooledStringPtr> *GCNames; 376 static StringPool *GCNamePool; 377 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 378 379 bool Function::hasGC() const { 380 sys::SmartScopedReader<true> Reader(*GCLock); 381 return GCNames && GCNames->count(this); 382 } 383 384 const char *Function::getGC() const { 385 assert(hasGC() && "Function has no collector"); 386 sys::SmartScopedReader<true> Reader(*GCLock); 387 return *(*GCNames)[this]; 388 } 389 390 void Function::setGC(const char *Str) { 391 sys::SmartScopedWriter<true> Writer(*GCLock); 392 if (!GCNamePool) 393 GCNamePool = new StringPool(); 394 if (!GCNames) 395 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 396 (*GCNames)[this] = GCNamePool->intern(Str); 397 } 398 399 void Function::clearGC() { 400 sys::SmartScopedWriter<true> Writer(*GCLock); 401 if (GCNames) { 402 GCNames->erase(this); 403 if (GCNames->empty()) { 404 delete GCNames; 405 GCNames = nullptr; 406 if (GCNamePool->empty()) { 407 delete GCNamePool; 408 GCNamePool = nullptr; 409 } 410 } 411 } 412 } 413 414 /// copyAttributesFrom - copy all additional attributes (those not needed to 415 /// create a Function) from the Function Src to this one. 416 void Function::copyAttributesFrom(const GlobalValue *Src) { 417 assert(isa<Function>(Src) && "Expected a Function!"); 418 GlobalObject::copyAttributesFrom(Src); 419 const Function *SrcF = cast<Function>(Src); 420 setCallingConv(SrcF->getCallingConv()); 421 setAttributes(SrcF->getAttributes()); 422 if (SrcF->hasGC()) 423 setGC(SrcF->getGC()); 424 else 425 clearGC(); 426 if (SrcF->hasPrefixData()) 427 setPrefixData(SrcF->getPrefixData()); 428 else 429 setPrefixData(nullptr); 430 if (SrcF->hasPrologueData()) 431 setPrologueData(SrcF->getPrologueData()); 432 else 433 setPrologueData(nullptr); 434 if (SrcF->hasPersonalityFn()) 435 setPersonalityFn(SrcF->getPersonalityFn()); 436 else 437 setPersonalityFn(nullptr); 438 } 439 440 /// \brief This does the actual lookup of an intrinsic ID which 441 /// matches the given function name. 442 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 443 unsigned Len = ValName->getKeyLength(); 444 const char *Name = ValName->getKeyData(); 445 446 #define GET_FUNCTION_RECOGNIZER 447 #include "llvm/IR/Intrinsics.gen" 448 #undef GET_FUNCTION_RECOGNIZER 449 450 return Intrinsic::not_intrinsic; 451 } 452 453 void Function::recalculateIntrinsicID() { 454 const ValueName *ValName = this->getValueName(); 455 if (!ValName || !isIntrinsic()) { 456 IntID = Intrinsic::not_intrinsic; 457 return; 458 } 459 IntID = lookupIntrinsicID(ValName); 460 } 461 462 /// Returns a stable mangling for the type specified for use in the name 463 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 464 /// of named types is simply their name. Manglings for unnamed types consist 465 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 466 /// combined with the mangling of their component types. A vararg function 467 /// type will have a suffix of 'vararg'. Since function types can contain 468 /// other function types, we close a function type mangling with suffix 'f' 469 /// which can't be confused with it's prefix. This ensures we don't have 470 /// collisions between two unrelated function types. Otherwise, you might 471 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 472 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 473 /// cases) fall back to the MVT codepath, where they could be mangled to 474 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 475 /// everything. 476 static std::string getMangledTypeStr(Type* Ty) { 477 std::string Result; 478 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 479 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 480 getMangledTypeStr(PTyp->getElementType()); 481 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 482 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 483 getMangledTypeStr(ATyp->getElementType()); 484 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 485 assert(!STyp->isLiteral() && "TODO: implement literal types"); 486 Result += STyp->getName(); 487 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 488 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 489 for (size_t i = 0; i < FT->getNumParams(); i++) 490 Result += getMangledTypeStr(FT->getParamType(i)); 491 if (FT->isVarArg()) 492 Result += "vararg"; 493 // Ensure nested function types are distinguishable. 494 Result += "f"; 495 } else if (isa<VectorType>(Ty)) 496 Result += "v" + utostr(Ty->getVectorNumElements()) + 497 getMangledTypeStr(Ty->getVectorElementType()); 498 else if (Ty) 499 Result += EVT::getEVT(Ty).getEVTString(); 500 return Result; 501 } 502 503 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 504 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 505 static const char * const Table[] = { 506 "not_intrinsic", 507 #define GET_INTRINSIC_NAME_TABLE 508 #include "llvm/IR/Intrinsics.gen" 509 #undef GET_INTRINSIC_NAME_TABLE 510 }; 511 if (Tys.empty()) 512 return Table[id]; 513 std::string Result(Table[id]); 514 for (unsigned i = 0; i < Tys.size(); ++i) { 515 Result += "." + getMangledTypeStr(Tys[i]); 516 } 517 return Result; 518 } 519 520 521 /// IIT_Info - These are enumerators that describe the entries returned by the 522 /// getIntrinsicInfoTableEntries function. 523 /// 524 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 525 enum IIT_Info { 526 // Common values should be encoded with 0-15. 527 IIT_Done = 0, 528 IIT_I1 = 1, 529 IIT_I8 = 2, 530 IIT_I16 = 3, 531 IIT_I32 = 4, 532 IIT_I64 = 5, 533 IIT_F16 = 6, 534 IIT_F32 = 7, 535 IIT_F64 = 8, 536 IIT_V2 = 9, 537 IIT_V4 = 10, 538 IIT_V8 = 11, 539 IIT_V16 = 12, 540 IIT_V32 = 13, 541 IIT_PTR = 14, 542 IIT_ARG = 15, 543 544 // Values from 16+ are only encodable with the inefficient encoding. 545 IIT_V64 = 16, 546 IIT_MMX = 17, 547 IIT_TOKEN = 18, 548 IIT_METADATA = 19, 549 IIT_EMPTYSTRUCT = 20, 550 IIT_STRUCT2 = 21, 551 IIT_STRUCT3 = 22, 552 IIT_STRUCT4 = 23, 553 IIT_STRUCT5 = 24, 554 IIT_EXTEND_ARG = 25, 555 IIT_TRUNC_ARG = 26, 556 IIT_ANYPTR = 27, 557 IIT_V1 = 28, 558 IIT_VARARG = 29, 559 IIT_HALF_VEC_ARG = 30, 560 IIT_SAME_VEC_WIDTH_ARG = 31, 561 IIT_PTR_TO_ARG = 32, 562 IIT_VEC_OF_PTRS_TO_ELT = 33, 563 IIT_I128 = 34, 564 IIT_V512 = 35, 565 IIT_V1024 = 36 566 }; 567 568 569 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 570 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 571 IIT_Info Info = IIT_Info(Infos[NextElt++]); 572 unsigned StructElts = 2; 573 using namespace Intrinsic; 574 575 switch (Info) { 576 case IIT_Done: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 578 return; 579 case IIT_VARARG: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 581 return; 582 case IIT_MMX: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 584 return; 585 case IIT_TOKEN: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 587 return; 588 case IIT_METADATA: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 590 return; 591 case IIT_F16: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 593 return; 594 case IIT_F32: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 596 return; 597 case IIT_F64: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 599 return; 600 case IIT_I1: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 602 return; 603 case IIT_I8: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 605 return; 606 case IIT_I16: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 608 return; 609 case IIT_I32: 610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 611 return; 612 case IIT_I64: 613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 614 return; 615 case IIT_I128: 616 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 617 return; 618 case IIT_V1: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V2: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_V4: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_V8: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 632 DecodeIITType(NextElt, Infos, OutputTable); 633 return; 634 case IIT_V16: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 case IIT_V32: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 640 DecodeIITType(NextElt, Infos, OutputTable); 641 return; 642 case IIT_V64: 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 644 DecodeIITType(NextElt, Infos, OutputTable); 645 return; 646 case IIT_V512: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 648 DecodeIITType(NextElt, Infos, OutputTable); 649 return; 650 case IIT_V1024: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 652 DecodeIITType(NextElt, Infos, OutputTable); 653 return; 654 case IIT_PTR: 655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 656 DecodeIITType(NextElt, Infos, OutputTable); 657 return; 658 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 660 Infos[NextElt++])); 661 DecodeIITType(NextElt, Infos, OutputTable); 662 return; 663 } 664 case IIT_ARG: { 665 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 667 return; 668 } 669 case IIT_EXTEND_ARG: { 670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 672 ArgInfo)); 673 return; 674 } 675 case IIT_TRUNC_ARG: { 676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 678 ArgInfo)); 679 return; 680 } 681 case IIT_HALF_VEC_ARG: { 682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 684 ArgInfo)); 685 return; 686 } 687 case IIT_SAME_VEC_WIDTH_ARG: { 688 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 690 ArgInfo)); 691 return; 692 } 693 case IIT_PTR_TO_ARG: { 694 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 696 ArgInfo)); 697 return; 698 } 699 case IIT_VEC_OF_PTRS_TO_ELT: { 700 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 701 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 702 ArgInfo)); 703 return; 704 } 705 case IIT_EMPTYSTRUCT: 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 707 return; 708 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 709 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 710 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 711 case IIT_STRUCT2: { 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 713 714 for (unsigned i = 0; i != StructElts; ++i) 715 DecodeIITType(NextElt, Infos, OutputTable); 716 return; 717 } 718 } 719 llvm_unreachable("unhandled"); 720 } 721 722 723 #define GET_INTRINSIC_GENERATOR_GLOBAL 724 #include "llvm/IR/Intrinsics.gen" 725 #undef GET_INTRINSIC_GENERATOR_GLOBAL 726 727 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 728 SmallVectorImpl<IITDescriptor> &T){ 729 // Check to see if the intrinsic's type was expressible by the table. 730 unsigned TableVal = IIT_Table[id-1]; 731 732 // Decode the TableVal into an array of IITValues. 733 SmallVector<unsigned char, 8> IITValues; 734 ArrayRef<unsigned char> IITEntries; 735 unsigned NextElt = 0; 736 if ((TableVal >> 31) != 0) { 737 // This is an offset into the IIT_LongEncodingTable. 738 IITEntries = IIT_LongEncodingTable; 739 740 // Strip sentinel bit. 741 NextElt = (TableVal << 1) >> 1; 742 } else { 743 // Decode the TableVal into an array of IITValues. If the entry was encoded 744 // into a single word in the table itself, decode it now. 745 do { 746 IITValues.push_back(TableVal & 0xF); 747 TableVal >>= 4; 748 } while (TableVal); 749 750 IITEntries = IITValues; 751 NextElt = 0; 752 } 753 754 // Okay, decode the table into the output vector of IITDescriptors. 755 DecodeIITType(NextElt, IITEntries, T); 756 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 757 DecodeIITType(NextElt, IITEntries, T); 758 } 759 760 761 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 762 ArrayRef<Type*> Tys, LLVMContext &Context) { 763 using namespace Intrinsic; 764 IITDescriptor D = Infos.front(); 765 Infos = Infos.slice(1); 766 767 switch (D.Kind) { 768 case IITDescriptor::Void: return Type::getVoidTy(Context); 769 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 770 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 771 case IITDescriptor::Token: return Type::getTokenTy(Context); 772 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 773 case IITDescriptor::Half: return Type::getHalfTy(Context); 774 case IITDescriptor::Float: return Type::getFloatTy(Context); 775 case IITDescriptor::Double: return Type::getDoubleTy(Context); 776 777 case IITDescriptor::Integer: 778 return IntegerType::get(Context, D.Integer_Width); 779 case IITDescriptor::Vector: 780 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 781 case IITDescriptor::Pointer: 782 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 783 D.Pointer_AddressSpace); 784 case IITDescriptor::Struct: { 785 Type *Elts[5]; 786 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 787 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 788 Elts[i] = DecodeFixedType(Infos, Tys, Context); 789 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 790 } 791 792 case IITDescriptor::Argument: 793 return Tys[D.getArgumentNumber()]; 794 case IITDescriptor::ExtendArgument: { 795 Type *Ty = Tys[D.getArgumentNumber()]; 796 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 797 return VectorType::getExtendedElementVectorType(VTy); 798 799 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 800 } 801 case IITDescriptor::TruncArgument: { 802 Type *Ty = Tys[D.getArgumentNumber()]; 803 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 804 return VectorType::getTruncatedElementVectorType(VTy); 805 806 IntegerType *ITy = cast<IntegerType>(Ty); 807 assert(ITy->getBitWidth() % 2 == 0); 808 return IntegerType::get(Context, ITy->getBitWidth() / 2); 809 } 810 case IITDescriptor::HalfVecArgument: 811 return VectorType::getHalfElementsVectorType(cast<VectorType>( 812 Tys[D.getArgumentNumber()])); 813 case IITDescriptor::SameVecWidthArgument: { 814 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 815 Type *Ty = Tys[D.getArgumentNumber()]; 816 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 817 return VectorType::get(EltTy, VTy->getNumElements()); 818 } 819 llvm_unreachable("unhandled"); 820 } 821 case IITDescriptor::PtrToArgument: { 822 Type *Ty = Tys[D.getArgumentNumber()]; 823 return PointerType::getUnqual(Ty); 824 } 825 case IITDescriptor::VecOfPtrsToElt: { 826 Type *Ty = Tys[D.getArgumentNumber()]; 827 VectorType *VTy = dyn_cast<VectorType>(Ty); 828 if (!VTy) 829 llvm_unreachable("Expected an argument of Vector Type"); 830 Type *EltTy = VTy->getVectorElementType(); 831 return VectorType::get(PointerType::getUnqual(EltTy), 832 VTy->getNumElements()); 833 } 834 } 835 llvm_unreachable("unhandled"); 836 } 837 838 839 840 FunctionType *Intrinsic::getType(LLVMContext &Context, 841 ID id, ArrayRef<Type*> Tys) { 842 SmallVector<IITDescriptor, 8> Table; 843 getIntrinsicInfoTableEntries(id, Table); 844 845 ArrayRef<IITDescriptor> TableRef = Table; 846 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 847 848 SmallVector<Type*, 8> ArgTys; 849 while (!TableRef.empty()) 850 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 851 852 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 853 // If we see void type as the type of the last argument, it is vararg intrinsic 854 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 855 ArgTys.pop_back(); 856 return FunctionType::get(ResultTy, ArgTys, true); 857 } 858 return FunctionType::get(ResultTy, ArgTys, false); 859 } 860 861 bool Intrinsic::isOverloaded(ID id) { 862 #define GET_INTRINSIC_OVERLOAD_TABLE 863 #include "llvm/IR/Intrinsics.gen" 864 #undef GET_INTRINSIC_OVERLOAD_TABLE 865 } 866 867 bool Intrinsic::isLeaf(ID id) { 868 switch (id) { 869 default: 870 return true; 871 872 case Intrinsic::experimental_gc_statepoint: 873 case Intrinsic::experimental_patchpoint_void: 874 case Intrinsic::experimental_patchpoint_i64: 875 return false; 876 } 877 } 878 879 /// This defines the "Intrinsic::getAttributes(ID id)" method. 880 #define GET_INTRINSIC_ATTRIBUTES 881 #include "llvm/IR/Intrinsics.gen" 882 #undef GET_INTRINSIC_ATTRIBUTES 883 884 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 885 // There can never be multiple globals with the same name of different types, 886 // because intrinsics must be a specific type. 887 return 888 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 889 getType(M->getContext(), id, Tys))); 890 } 891 892 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 893 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 894 #include "llvm/IR/Intrinsics.gen" 895 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 896 897 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 898 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 899 #include "llvm/IR/Intrinsics.gen" 900 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 901 902 /// hasAddressTaken - returns true if there are any uses of this function 903 /// other than direct calls or invokes to it. 904 bool Function::hasAddressTaken(const User* *PutOffender) const { 905 for (const Use &U : uses()) { 906 const User *FU = U.getUser(); 907 if (isa<BlockAddress>(FU)) 908 continue; 909 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 910 return PutOffender ? (*PutOffender = FU, true) : true; 911 ImmutableCallSite CS(cast<Instruction>(FU)); 912 if (!CS.isCallee(&U)) 913 return PutOffender ? (*PutOffender = FU, true) : true; 914 } 915 return false; 916 } 917 918 bool Function::isDefTriviallyDead() const { 919 // Check the linkage 920 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 921 !hasAvailableExternallyLinkage()) 922 return false; 923 924 // Check if the function is used by anything other than a blockaddress. 925 for (const User *U : users()) 926 if (!isa<BlockAddress>(U)) 927 return false; 928 929 return true; 930 } 931 932 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 933 /// setjmp or other function that gcc recognizes as "returning twice". 934 bool Function::callsFunctionThatReturnsTwice() const { 935 for (const_inst_iterator 936 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 937 ImmutableCallSite CS(&*I); 938 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 939 return true; 940 } 941 942 return false; 943 } 944 945 static Constant * 946 getFunctionData(const Function *F, 947 const LLVMContextImpl::FunctionDataMapTy &Map) { 948 const auto &Entry = Map.find(F); 949 assert(Entry != Map.end()); 950 return cast<Constant>(Entry->second->getReturnValue()); 951 } 952 953 /// setFunctionData - Set "Map[F] = Data". Return an updated SubclassData value 954 /// in which Bit is low iff Data is null. 955 static unsigned setFunctionData(Function *F, 956 LLVMContextImpl::FunctionDataMapTy &Map, 957 Constant *Data, unsigned SCData, unsigned Bit) { 958 ReturnInst *&Holder = Map[F]; 959 if (Data) { 960 if (Holder) 961 Holder->setOperand(0, Data); 962 else 963 Holder = ReturnInst::Create(F->getContext(), Data); 964 return SCData | (1 << Bit); 965 } else { 966 delete Holder; 967 Map.erase(F); 968 return SCData & ~(1 << Bit); 969 } 970 } 971 972 Constant *Function::getPrefixData() const { 973 assert(hasPrefixData()); 974 return getFunctionData(this, getContext().pImpl->PrefixDataMap); 975 } 976 977 void Function::setPrefixData(Constant *PrefixData) { 978 if (!PrefixData && !hasPrefixData()) 979 return; 980 981 unsigned SCData = getSubclassDataFromValue(); 982 SCData = setFunctionData(this, getContext().pImpl->PrefixDataMap, PrefixData, 983 SCData, /*Bit=*/1); 984 setValueSubclassData(SCData); 985 } 986 987 Constant *Function::getPrologueData() const { 988 assert(hasPrologueData()); 989 return getFunctionData(this, getContext().pImpl->PrologueDataMap); 990 } 991 992 void Function::setPrologueData(Constant *PrologueData) { 993 if (!PrologueData && !hasPrologueData()) 994 return; 995 996 unsigned SCData = getSubclassDataFromValue(); 997 SCData = setFunctionData(this, getContext().pImpl->PrologueDataMap, 998 PrologueData, SCData, /*Bit=*/2); 999 setValueSubclassData(SCData); 1000 } 1001 1002 void Function::setEntryCount(uint64_t Count) { 1003 MDBuilder MDB(getContext()); 1004 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1005 } 1006 1007 Optional<uint64_t> Function::getEntryCount() const { 1008 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1009 if (MD && MD->getOperand(0)) 1010 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1011 if (MDS->getString().equals("function_entry_count")) { 1012 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1013 return CI->getValue().getZExtValue(); 1014 } 1015 return None; 1016 } 1017 1018 void Function::setPersonalityFn(Constant *C) { 1019 if (!C) { 1020 if (hasPersonalityFn()) { 1021 // Note, the num operands is used to compute the offset of the operand, so 1022 // the order here matters. Clearing the operand then clearing the num 1023 // operands ensures we have the correct offset to the operand. 1024 Op<0>().set(nullptr); 1025 setFunctionNumOperands(0); 1026 } 1027 } else { 1028 // Note, the num operands is used to compute the offset of the operand, so 1029 // the order here matters. We need to set num operands to 1 first so that 1030 // we get the correct offset to the first operand when we set it. 1031 if (!hasPersonalityFn()) 1032 setFunctionNumOperands(1); 1033 Op<0>().set(C); 1034 } 1035 } 1036