1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { 228 return cast<FunctionType>(getValueType()); 229 } 230 231 bool Function::isVarArg() const { 232 return getFunctionType()->isVarArg(); 233 } 234 235 Type *Function::getReturnType() const { 236 return getFunctionType()->getReturnType(); 237 } 238 239 void Function::removeFromParent() { 240 getParent()->getFunctionList().remove(getIterator()); 241 } 242 243 void Function::eraseFromParent() { 244 getParent()->getFunctionList().erase(getIterator()); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Function Implementation 249 //===----------------------------------------------------------------------===// 250 251 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 252 Module *ParentModule) 253 : GlobalObject(Ty, Value::FunctionVal, 254 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 255 assert(FunctionType::isValidReturnType(getReturnType()) && 256 "invalid return type"); 257 setGlobalObjectSubClassData(0); 258 SymTab = new ValueSymbolTable(); 259 260 // If the function has arguments, mark them as lazily built. 261 if (Ty->getNumParams()) 262 setValueSubclassData(1); // Set the "has lazy arguments" bit. 263 264 if (ParentModule) 265 ParentModule->getFunctionList().push_back(this); 266 267 // Ensure intrinsics have the right parameter attributes. 268 // Note, the IntID field will have been set in Value::setName if this function 269 // name is a valid intrinsic ID. 270 if (IntID) 271 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 272 } 273 274 Function::~Function() { 275 dropAllReferences(); // After this it is safe to delete instructions. 276 277 // Delete all of the method arguments and unlink from symbol table... 278 ArgumentList.clear(); 279 delete SymTab; 280 281 // Remove the function from the on-the-side GC table. 282 clearGC(); 283 } 284 285 void Function::BuildLazyArguments() const { 286 // Create the arguments vector, all arguments start out unnamed. 287 FunctionType *FT = getFunctionType(); 288 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 289 assert(!FT->getParamType(i)->isVoidTy() && 290 "Cannot have void typed arguments!"); 291 ArgumentList.push_back(new Argument(FT->getParamType(i))); 292 } 293 294 // Clear the lazy arguments bit. 295 unsigned SDC = getSubclassDataFromValue(); 296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 297 } 298 299 size_t Function::arg_size() const { 300 return getFunctionType()->getNumParams(); 301 } 302 bool Function::arg_empty() const { 303 return getFunctionType()->getNumParams() == 0; 304 } 305 306 void Function::setParent(Module *parent) { 307 Parent = parent; 308 } 309 310 // dropAllReferences() - This function causes all the subinstructions to "let 311 // go" of all references that they are maintaining. This allows one to 312 // 'delete' a whole class at a time, even though there may be circular 313 // references... first all references are dropped, and all use counts go to 314 // zero. Then everything is deleted for real. Note that no operations are 315 // valid on an object that has "dropped all references", except operator 316 // delete. 317 // 318 void Function::dropAllReferences() { 319 setIsMaterializable(false); 320 321 for (iterator I = begin(), E = end(); I != E; ++I) 322 I->dropAllReferences(); 323 324 // Delete all basic blocks. They are now unused, except possibly by 325 // blockaddresses, but BasicBlock's destructor takes care of those. 326 while (!BasicBlocks.empty()) 327 BasicBlocks.begin()->eraseFromParent(); 328 329 // Drop uses of any optional data (real or placeholder). 330 if (getNumOperands()) { 331 User::dropAllReferences(); 332 setNumHungOffUseOperands(0); 333 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 334 } 335 336 // Metadata is stored in a side-table. 337 clearMetadata(); 338 } 339 340 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 341 AttributeSet PAL = getAttributes(); 342 PAL = PAL.addAttribute(getContext(), i, attr); 343 setAttributes(PAL); 344 } 345 346 void Function::addAttributes(unsigned i, AttributeSet attrs) { 347 AttributeSet PAL = getAttributes(); 348 PAL = PAL.addAttributes(getContext(), i, attrs); 349 setAttributes(PAL); 350 } 351 352 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 353 AttributeSet PAL = getAttributes(); 354 PAL = PAL.removeAttributes(getContext(), i, attrs); 355 setAttributes(PAL); 356 } 357 358 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 359 AttributeSet PAL = getAttributes(); 360 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 361 setAttributes(PAL); 362 } 363 364 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 365 AttributeSet PAL = getAttributes(); 366 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 367 setAttributes(PAL); 368 } 369 370 const std::string &Function::getGC() const { 371 assert(hasGC() && "Function has no collector"); 372 return getContext().getGC(*this); 373 } 374 375 void Function::setGC(const std::string Str) { 376 setValueSubclassDataBit(14, !Str.empty()); 377 getContext().setGC(*this, std::move(Str)); 378 } 379 380 void Function::clearGC() { 381 if (!hasGC()) 382 return; 383 getContext().deleteGC(*this); 384 setValueSubclassDataBit(14, false); 385 } 386 387 /// Copy all additional attributes (those not needed to create a Function) from 388 /// the Function Src to this one. 389 void Function::copyAttributesFrom(const GlobalValue *Src) { 390 GlobalObject::copyAttributesFrom(Src); 391 const Function *SrcF = dyn_cast<Function>(Src); 392 if (!SrcF) 393 return; 394 395 setCallingConv(SrcF->getCallingConv()); 396 setAttributes(SrcF->getAttributes()); 397 if (SrcF->hasGC()) 398 setGC(SrcF->getGC()); 399 else 400 clearGC(); 401 if (SrcF->hasPersonalityFn()) 402 setPersonalityFn(SrcF->getPersonalityFn()); 403 if (SrcF->hasPrefixData()) 404 setPrefixData(SrcF->getPrefixData()); 405 if (SrcF->hasPrologueData()) 406 setPrologueData(SrcF->getPrologueData()); 407 } 408 409 /// \brief This does the actual lookup of an intrinsic ID which 410 /// matches the given function name. 411 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 412 unsigned Len = ValName->getKeyLength(); 413 const char *Name = ValName->getKeyData(); 414 415 #define GET_FUNCTION_RECOGNIZER 416 #include "llvm/IR/Intrinsics.gen" 417 #undef GET_FUNCTION_RECOGNIZER 418 419 return Intrinsic::not_intrinsic; 420 } 421 422 void Function::recalculateIntrinsicID() { 423 const ValueName *ValName = this->getValueName(); 424 if (!ValName || !isIntrinsic()) { 425 IntID = Intrinsic::not_intrinsic; 426 return; 427 } 428 IntID = lookupIntrinsicID(ValName); 429 } 430 431 /// Returns a stable mangling for the type specified for use in the name 432 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 433 /// of named types is simply their name. Manglings for unnamed types consist 434 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 435 /// combined with the mangling of their component types. A vararg function 436 /// type will have a suffix of 'vararg'. Since function types can contain 437 /// other function types, we close a function type mangling with suffix 'f' 438 /// which can't be confused with it's prefix. This ensures we don't have 439 /// collisions between two unrelated function types. Otherwise, you might 440 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 441 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 442 /// cases) fall back to the MVT codepath, where they could be mangled to 443 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 444 /// everything. 445 static std::string getMangledTypeStr(Type* Ty) { 446 std::string Result; 447 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 448 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 449 getMangledTypeStr(PTyp->getElementType()); 450 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 451 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 452 getMangledTypeStr(ATyp->getElementType()); 453 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 454 assert(!STyp->isLiteral() && "TODO: implement literal types"); 455 Result += STyp->getName(); 456 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 457 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 458 for (size_t i = 0; i < FT->getNumParams(); i++) 459 Result += getMangledTypeStr(FT->getParamType(i)); 460 if (FT->isVarArg()) 461 Result += "vararg"; 462 // Ensure nested function types are distinguishable. 463 Result += "f"; 464 } else if (isa<VectorType>(Ty)) 465 Result += "v" + utostr(Ty->getVectorNumElements()) + 466 getMangledTypeStr(Ty->getVectorElementType()); 467 else if (Ty) 468 Result += EVT::getEVT(Ty).getEVTString(); 469 return Result; 470 } 471 472 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 473 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 474 static const char * const Table[] = { 475 "not_intrinsic", 476 #define GET_INTRINSIC_NAME_TABLE 477 #include "llvm/IR/Intrinsics.gen" 478 #undef GET_INTRINSIC_NAME_TABLE 479 }; 480 if (Tys.empty()) 481 return Table[id]; 482 std::string Result(Table[id]); 483 for (unsigned i = 0; i < Tys.size(); ++i) { 484 Result += "." + getMangledTypeStr(Tys[i]); 485 } 486 return Result; 487 } 488 489 490 /// IIT_Info - These are enumerators that describe the entries returned by the 491 /// getIntrinsicInfoTableEntries function. 492 /// 493 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 494 enum IIT_Info { 495 // Common values should be encoded with 0-15. 496 IIT_Done = 0, 497 IIT_I1 = 1, 498 IIT_I8 = 2, 499 IIT_I16 = 3, 500 IIT_I32 = 4, 501 IIT_I64 = 5, 502 IIT_F16 = 6, 503 IIT_F32 = 7, 504 IIT_F64 = 8, 505 IIT_V2 = 9, 506 IIT_V4 = 10, 507 IIT_V8 = 11, 508 IIT_V16 = 12, 509 IIT_V32 = 13, 510 IIT_PTR = 14, 511 IIT_ARG = 15, 512 513 // Values from 16+ are only encodable with the inefficient encoding. 514 IIT_V64 = 16, 515 IIT_MMX = 17, 516 IIT_TOKEN = 18, 517 IIT_METADATA = 19, 518 IIT_EMPTYSTRUCT = 20, 519 IIT_STRUCT2 = 21, 520 IIT_STRUCT3 = 22, 521 IIT_STRUCT4 = 23, 522 IIT_STRUCT5 = 24, 523 IIT_EXTEND_ARG = 25, 524 IIT_TRUNC_ARG = 26, 525 IIT_ANYPTR = 27, 526 IIT_V1 = 28, 527 IIT_VARARG = 29, 528 IIT_HALF_VEC_ARG = 30, 529 IIT_SAME_VEC_WIDTH_ARG = 31, 530 IIT_PTR_TO_ARG = 32, 531 IIT_VEC_OF_PTRS_TO_ELT = 33, 532 IIT_I128 = 34, 533 IIT_V512 = 35, 534 IIT_V1024 = 36 535 }; 536 537 538 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 539 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 540 IIT_Info Info = IIT_Info(Infos[NextElt++]); 541 unsigned StructElts = 2; 542 using namespace Intrinsic; 543 544 switch (Info) { 545 case IIT_Done: 546 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 547 return; 548 case IIT_VARARG: 549 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 550 return; 551 case IIT_MMX: 552 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 553 return; 554 case IIT_TOKEN: 555 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 556 return; 557 case IIT_METADATA: 558 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 559 return; 560 case IIT_F16: 561 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 562 return; 563 case IIT_F32: 564 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 565 return; 566 case IIT_F64: 567 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 568 return; 569 case IIT_I1: 570 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 571 return; 572 case IIT_I8: 573 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 574 return; 575 case IIT_I16: 576 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 577 return; 578 case IIT_I32: 579 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 580 return; 581 case IIT_I64: 582 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 583 return; 584 case IIT_I128: 585 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 586 return; 587 case IIT_V1: 588 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 589 DecodeIITType(NextElt, Infos, OutputTable); 590 return; 591 case IIT_V2: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 593 DecodeIITType(NextElt, Infos, OutputTable); 594 return; 595 case IIT_V4: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 597 DecodeIITType(NextElt, Infos, OutputTable); 598 return; 599 case IIT_V8: 600 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 601 DecodeIITType(NextElt, Infos, OutputTable); 602 return; 603 case IIT_V16: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 605 DecodeIITType(NextElt, Infos, OutputTable); 606 return; 607 case IIT_V32: 608 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 609 DecodeIITType(NextElt, Infos, OutputTable); 610 return; 611 case IIT_V64: 612 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 613 DecodeIITType(NextElt, Infos, OutputTable); 614 return; 615 case IIT_V512: 616 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 617 DecodeIITType(NextElt, Infos, OutputTable); 618 return; 619 case IIT_V1024: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 621 DecodeIITType(NextElt, Infos, OutputTable); 622 return; 623 case IIT_PTR: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 625 DecodeIITType(NextElt, Infos, OutputTable); 626 return; 627 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 628 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 629 Infos[NextElt++])); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 } 633 case IIT_ARG: { 634 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 636 return; 637 } 638 case IIT_EXTEND_ARG: { 639 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 641 ArgInfo)); 642 return; 643 } 644 case IIT_TRUNC_ARG: { 645 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 646 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 647 ArgInfo)); 648 return; 649 } 650 case IIT_HALF_VEC_ARG: { 651 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 652 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 653 ArgInfo)); 654 return; 655 } 656 case IIT_SAME_VEC_WIDTH_ARG: { 657 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 658 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 659 ArgInfo)); 660 return; 661 } 662 case IIT_PTR_TO_ARG: { 663 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 665 ArgInfo)); 666 return; 667 } 668 case IIT_VEC_OF_PTRS_TO_ELT: { 669 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 671 ArgInfo)); 672 return; 673 } 674 case IIT_EMPTYSTRUCT: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 676 return; 677 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 678 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 679 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 680 case IIT_STRUCT2: { 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 682 683 for (unsigned i = 0; i != StructElts; ++i) 684 DecodeIITType(NextElt, Infos, OutputTable); 685 return; 686 } 687 } 688 llvm_unreachable("unhandled"); 689 } 690 691 692 #define GET_INTRINSIC_GENERATOR_GLOBAL 693 #include "llvm/IR/Intrinsics.gen" 694 #undef GET_INTRINSIC_GENERATOR_GLOBAL 695 696 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 697 SmallVectorImpl<IITDescriptor> &T){ 698 // Check to see if the intrinsic's type was expressible by the table. 699 unsigned TableVal = IIT_Table[id-1]; 700 701 // Decode the TableVal into an array of IITValues. 702 SmallVector<unsigned char, 8> IITValues; 703 ArrayRef<unsigned char> IITEntries; 704 unsigned NextElt = 0; 705 if ((TableVal >> 31) != 0) { 706 // This is an offset into the IIT_LongEncodingTable. 707 IITEntries = IIT_LongEncodingTable; 708 709 // Strip sentinel bit. 710 NextElt = (TableVal << 1) >> 1; 711 } else { 712 // Decode the TableVal into an array of IITValues. If the entry was encoded 713 // into a single word in the table itself, decode it now. 714 do { 715 IITValues.push_back(TableVal & 0xF); 716 TableVal >>= 4; 717 } while (TableVal); 718 719 IITEntries = IITValues; 720 NextElt = 0; 721 } 722 723 // Okay, decode the table into the output vector of IITDescriptors. 724 DecodeIITType(NextElt, IITEntries, T); 725 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 726 DecodeIITType(NextElt, IITEntries, T); 727 } 728 729 730 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 731 ArrayRef<Type*> Tys, LLVMContext &Context) { 732 using namespace Intrinsic; 733 IITDescriptor D = Infos.front(); 734 Infos = Infos.slice(1); 735 736 switch (D.Kind) { 737 case IITDescriptor::Void: return Type::getVoidTy(Context); 738 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 739 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 740 case IITDescriptor::Token: return Type::getTokenTy(Context); 741 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 742 case IITDescriptor::Half: return Type::getHalfTy(Context); 743 case IITDescriptor::Float: return Type::getFloatTy(Context); 744 case IITDescriptor::Double: return Type::getDoubleTy(Context); 745 746 case IITDescriptor::Integer: 747 return IntegerType::get(Context, D.Integer_Width); 748 case IITDescriptor::Vector: 749 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 750 case IITDescriptor::Pointer: 751 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 752 D.Pointer_AddressSpace); 753 case IITDescriptor::Struct: { 754 Type *Elts[5]; 755 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 756 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 757 Elts[i] = DecodeFixedType(Infos, Tys, Context); 758 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 759 } 760 761 case IITDescriptor::Argument: 762 return Tys[D.getArgumentNumber()]; 763 case IITDescriptor::ExtendArgument: { 764 Type *Ty = Tys[D.getArgumentNumber()]; 765 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 766 return VectorType::getExtendedElementVectorType(VTy); 767 768 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 769 } 770 case IITDescriptor::TruncArgument: { 771 Type *Ty = Tys[D.getArgumentNumber()]; 772 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 773 return VectorType::getTruncatedElementVectorType(VTy); 774 775 IntegerType *ITy = cast<IntegerType>(Ty); 776 assert(ITy->getBitWidth() % 2 == 0); 777 return IntegerType::get(Context, ITy->getBitWidth() / 2); 778 } 779 case IITDescriptor::HalfVecArgument: 780 return VectorType::getHalfElementsVectorType(cast<VectorType>( 781 Tys[D.getArgumentNumber()])); 782 case IITDescriptor::SameVecWidthArgument: { 783 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 784 Type *Ty = Tys[D.getArgumentNumber()]; 785 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 786 return VectorType::get(EltTy, VTy->getNumElements()); 787 } 788 llvm_unreachable("unhandled"); 789 } 790 case IITDescriptor::PtrToArgument: { 791 Type *Ty = Tys[D.getArgumentNumber()]; 792 return PointerType::getUnqual(Ty); 793 } 794 case IITDescriptor::VecOfPtrsToElt: { 795 Type *Ty = Tys[D.getArgumentNumber()]; 796 VectorType *VTy = dyn_cast<VectorType>(Ty); 797 if (!VTy) 798 llvm_unreachable("Expected an argument of Vector Type"); 799 Type *EltTy = VTy->getVectorElementType(); 800 return VectorType::get(PointerType::getUnqual(EltTy), 801 VTy->getNumElements()); 802 } 803 } 804 llvm_unreachable("unhandled"); 805 } 806 807 808 809 FunctionType *Intrinsic::getType(LLVMContext &Context, 810 ID id, ArrayRef<Type*> Tys) { 811 SmallVector<IITDescriptor, 8> Table; 812 getIntrinsicInfoTableEntries(id, Table); 813 814 ArrayRef<IITDescriptor> TableRef = Table; 815 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 816 817 SmallVector<Type*, 8> ArgTys; 818 while (!TableRef.empty()) 819 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 820 821 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 822 // If we see void type as the type of the last argument, it is vararg intrinsic 823 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 824 ArgTys.pop_back(); 825 return FunctionType::get(ResultTy, ArgTys, true); 826 } 827 return FunctionType::get(ResultTy, ArgTys, false); 828 } 829 830 bool Intrinsic::isOverloaded(ID id) { 831 #define GET_INTRINSIC_OVERLOAD_TABLE 832 #include "llvm/IR/Intrinsics.gen" 833 #undef GET_INTRINSIC_OVERLOAD_TABLE 834 } 835 836 bool Intrinsic::isLeaf(ID id) { 837 switch (id) { 838 default: 839 return true; 840 841 case Intrinsic::experimental_gc_statepoint: 842 case Intrinsic::experimental_patchpoint_void: 843 case Intrinsic::experimental_patchpoint_i64: 844 return false; 845 } 846 } 847 848 /// This defines the "Intrinsic::getAttributes(ID id)" method. 849 #define GET_INTRINSIC_ATTRIBUTES 850 #include "llvm/IR/Intrinsics.gen" 851 #undef GET_INTRINSIC_ATTRIBUTES 852 853 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 854 // There can never be multiple globals with the same name of different types, 855 // because intrinsics must be a specific type. 856 return 857 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 858 getType(M->getContext(), id, Tys))); 859 } 860 861 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 862 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 863 #include "llvm/IR/Intrinsics.gen" 864 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 865 866 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 867 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 868 #include "llvm/IR/Intrinsics.gen" 869 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 870 871 /// hasAddressTaken - returns true if there are any uses of this function 872 /// other than direct calls or invokes to it. 873 bool Function::hasAddressTaken(const User* *PutOffender) const { 874 for (const Use &U : uses()) { 875 const User *FU = U.getUser(); 876 if (isa<BlockAddress>(FU)) 877 continue; 878 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 879 return PutOffender ? (*PutOffender = FU, true) : true; 880 ImmutableCallSite CS(cast<Instruction>(FU)); 881 if (!CS.isCallee(&U)) 882 return PutOffender ? (*PutOffender = FU, true) : true; 883 } 884 return false; 885 } 886 887 bool Function::isDefTriviallyDead() const { 888 // Check the linkage 889 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 890 !hasAvailableExternallyLinkage()) 891 return false; 892 893 // Check if the function is used by anything other than a blockaddress. 894 for (const User *U : users()) 895 if (!isa<BlockAddress>(U)) 896 return false; 897 898 return true; 899 } 900 901 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 902 /// setjmp or other function that gcc recognizes as "returning twice". 903 bool Function::callsFunctionThatReturnsTwice() const { 904 for (const_inst_iterator 905 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 906 ImmutableCallSite CS(&*I); 907 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 908 return true; 909 } 910 911 return false; 912 } 913 914 Constant *Function::getPersonalityFn() const { 915 assert(hasPersonalityFn() && getNumOperands()); 916 return cast<Constant>(Op<0>()); 917 } 918 919 void Function::setPersonalityFn(Constant *Fn) { 920 setHungoffOperand<0>(Fn); 921 setValueSubclassDataBit(3, Fn != nullptr); 922 } 923 924 Constant *Function::getPrefixData() const { 925 assert(hasPrefixData() && getNumOperands()); 926 return cast<Constant>(Op<1>()); 927 } 928 929 void Function::setPrefixData(Constant *PrefixData) { 930 setHungoffOperand<1>(PrefixData); 931 setValueSubclassDataBit(1, PrefixData != nullptr); 932 } 933 934 Constant *Function::getPrologueData() const { 935 assert(hasPrologueData() && getNumOperands()); 936 return cast<Constant>(Op<2>()); 937 } 938 939 void Function::setPrologueData(Constant *PrologueData) { 940 setHungoffOperand<2>(PrologueData); 941 setValueSubclassDataBit(2, PrologueData != nullptr); 942 } 943 944 void Function::allocHungoffUselist() { 945 // If we've already allocated a uselist, stop here. 946 if (getNumOperands()) 947 return; 948 949 allocHungoffUses(3, /*IsPhi=*/ false); 950 setNumHungOffUseOperands(3); 951 952 // Initialize the uselist with placeholder operands to allow traversal. 953 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 954 Op<0>().set(CPN); 955 Op<1>().set(CPN); 956 Op<2>().set(CPN); 957 } 958 959 template <int Idx> 960 void Function::setHungoffOperand(Constant *C) { 961 if (C) { 962 allocHungoffUselist(); 963 Op<Idx>().set(C); 964 } else if (getNumOperands()) { 965 Op<Idx>().set( 966 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 967 } 968 } 969 970 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 971 assert(Bit < 16 && "SubclassData contains only 16 bits"); 972 if (On) 973 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 974 else 975 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 976 } 977 978 void Function::setEntryCount(uint64_t Count) { 979 MDBuilder MDB(getContext()); 980 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 981 } 982 983 Optional<uint64_t> Function::getEntryCount() const { 984 MDNode *MD = getMetadata(LLVMContext::MD_prof); 985 if (MD && MD->getOperand(0)) 986 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 987 if (MDS->getString().equals("function_entry_count")) { 988 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 989 return CI->getValue().getZExtValue(); 990 } 991 return None; 992 } 993