1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsHexagon.h" 39 #include "llvm/IR/IntrinsicsMips.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsRISCV.h" 44 #include "llvm/IR/IntrinsicsS390.h" 45 #include "llvm/IR/IntrinsicsWebAssembly.h" 46 #include "llvm/IR/IntrinsicsX86.h" 47 #include "llvm/IR/IntrinsicsXCore.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/SymbolTableListTraits.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 // Explicit instantiations of SymbolTableListTraits since some of the methods 72 // are not in the public header file... 73 template class llvm::SymbolTableListTraits<BasicBlock>; 74 75 //===----------------------------------------------------------------------===// 76 // Argument Implementation 77 //===----------------------------------------------------------------------===// 78 79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 80 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 81 setName(Name); 82 } 83 84 void Argument::setParent(Function *parent) { 85 Parent = parent; 86 } 87 88 bool Argument::hasNonNullAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 91 return true; 92 else if (getDereferenceableBytes() > 0 && 93 !NullPointerIsDefined(getParent(), 94 getType()->getPointerAddressSpace())) 95 return true; 96 return false; 97 } 98 99 bool Argument::hasByValAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::ByVal); 102 } 103 104 bool Argument::hasSwiftSelfAttr() const { 105 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 106 } 107 108 bool Argument::hasSwiftErrorAttr() const { 109 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 110 } 111 112 bool Argument::hasInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::InAlloca); 115 } 116 117 bool Argument::hasPassPointeeByValueAttr() const { 118 if (!getType()->isPointerTy()) return false; 119 AttributeList Attrs = getParent()->getAttributes(); 120 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 121 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 122 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 123 } 124 125 unsigned Argument::getParamAlignment() const { 126 assert(getType()->isPointerTy() && "Only pointers have alignments"); 127 return getParent()->getParamAlignment(getArgNo()); 128 } 129 130 MaybeAlign Argument::getParamAlign() const { 131 assert(getType()->isPointerTy() && "Only pointers have alignments"); 132 return getParent()->getParamAlign(getArgNo()); 133 } 134 135 Type *Argument::getParamByValType() const { 136 assert(getType()->isPointerTy() && "Only pointers have byval types"); 137 return getParent()->getParamByValType(getArgNo()); 138 } 139 140 uint64_t Argument::getDereferenceableBytes() const { 141 assert(getType()->isPointerTy() && 142 "Only pointers have dereferenceable bytes"); 143 return getParent()->getParamDereferenceableBytes(getArgNo()); 144 } 145 146 uint64_t Argument::getDereferenceableOrNullBytes() const { 147 assert(getType()->isPointerTy() && 148 "Only pointers have dereferenceable bytes"); 149 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 150 } 151 152 bool Argument::hasNestAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::Nest); 155 } 156 157 bool Argument::hasNoAliasAttr() const { 158 if (!getType()->isPointerTy()) return false; 159 return hasAttribute(Attribute::NoAlias); 160 } 161 162 bool Argument::hasNoCaptureAttr() const { 163 if (!getType()->isPointerTy()) return false; 164 return hasAttribute(Attribute::NoCapture); 165 } 166 167 bool Argument::hasStructRetAttr() const { 168 if (!getType()->isPointerTy()) return false; 169 return hasAttribute(Attribute::StructRet); 170 } 171 172 bool Argument::hasInRegAttr() const { 173 return hasAttribute(Attribute::InReg); 174 } 175 176 bool Argument::hasReturnedAttr() const { 177 return hasAttribute(Attribute::Returned); 178 } 179 180 bool Argument::hasZExtAttr() const { 181 return hasAttribute(Attribute::ZExt); 182 } 183 184 bool Argument::hasSExtAttr() const { 185 return hasAttribute(Attribute::SExt); 186 } 187 188 bool Argument::onlyReadsMemory() const { 189 AttributeList Attrs = getParent()->getAttributes(); 190 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 191 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 192 } 193 194 void Argument::addAttrs(AttrBuilder &B) { 195 AttributeList AL = getParent()->getAttributes(); 196 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 197 getParent()->setAttributes(AL); 198 } 199 200 void Argument::addAttr(Attribute::AttrKind Kind) { 201 getParent()->addParamAttr(getArgNo(), Kind); 202 } 203 204 void Argument::addAttr(Attribute Attr) { 205 getParent()->addParamAttr(getArgNo(), Attr); 206 } 207 208 void Argument::removeAttr(Attribute::AttrKind Kind) { 209 getParent()->removeParamAttr(getArgNo(), Kind); 210 } 211 212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 213 return getParent()->hasParamAttribute(getArgNo(), Kind); 214 } 215 216 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 217 return getParent()->getParamAttribute(getArgNo(), Kind); 218 } 219 220 //===----------------------------------------------------------------------===// 221 // Helper Methods in Function 222 //===----------------------------------------------------------------------===// 223 224 LLVMContext &Function::getContext() const { 225 return getType()->getContext(); 226 } 227 228 unsigned Function::getInstructionCount() const { 229 unsigned NumInstrs = 0; 230 for (const BasicBlock &BB : BasicBlocks) 231 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 232 BB.instructionsWithoutDebug().end()); 233 return NumInstrs; 234 } 235 236 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 237 const Twine &N, Module &M) { 238 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 239 } 240 241 void Function::removeFromParent() { 242 getParent()->getFunctionList().remove(getIterator()); 243 } 244 245 void Function::eraseFromParent() { 246 getParent()->getFunctionList().erase(getIterator()); 247 } 248 249 //===----------------------------------------------------------------------===// 250 // Function Implementation 251 //===----------------------------------------------------------------------===// 252 253 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 254 // If AS == -1 and we are passed a valid module pointer we place the function 255 // in the program address space. Otherwise we default to AS0. 256 if (AddrSpace == static_cast<unsigned>(-1)) 257 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 258 return AddrSpace; 259 } 260 261 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 262 const Twine &name, Module *ParentModule) 263 : GlobalObject(Ty, Value::FunctionVal, 264 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 265 computeAddrSpace(AddrSpace, ParentModule)), 266 NumArgs(Ty->getNumParams()) { 267 assert(FunctionType::isValidReturnType(getReturnType()) && 268 "invalid return type"); 269 setGlobalObjectSubClassData(0); 270 271 // We only need a symbol table for a function if the context keeps value names 272 if (!getContext().shouldDiscardValueNames()) 273 SymTab = std::make_unique<ValueSymbolTable>(); 274 275 // If the function has arguments, mark them as lazily built. 276 if (Ty->getNumParams()) 277 setValueSubclassData(1); // Set the "has lazy arguments" bit. 278 279 if (ParentModule) 280 ParentModule->getFunctionList().push_back(this); 281 282 HasLLVMReservedName = getName().startswith("llvm."); 283 // Ensure intrinsics have the right parameter attributes. 284 // Note, the IntID field will have been set in Value::setName if this function 285 // name is a valid intrinsic ID. 286 if (IntID) 287 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 288 } 289 290 Function::~Function() { 291 dropAllReferences(); // After this it is safe to delete instructions. 292 293 // Delete all of the method arguments and unlink from symbol table... 294 if (Arguments) 295 clearArguments(); 296 297 // Remove the function from the on-the-side GC table. 298 clearGC(); 299 } 300 301 void Function::BuildLazyArguments() const { 302 // Create the arguments vector, all arguments start out unnamed. 303 auto *FT = getFunctionType(); 304 if (NumArgs > 0) { 305 Arguments = std::allocator<Argument>().allocate(NumArgs); 306 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 307 Type *ArgTy = FT->getParamType(i); 308 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 309 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 310 } 311 } 312 313 // Clear the lazy arguments bit. 314 unsigned SDC = getSubclassDataFromValue(); 315 SDC &= ~(1 << 0); 316 const_cast<Function*>(this)->setValueSubclassData(SDC); 317 assert(!hasLazyArguments()); 318 } 319 320 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 321 return MutableArrayRef<Argument>(Args, Count); 322 } 323 324 bool Function::isConstrainedFPIntrinsic() const { 325 switch (getIntrinsicID()) { 326 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 327 case Intrinsic::INTRINSIC: 328 #include "llvm/IR/ConstrainedOps.def" 329 return true; 330 #undef INSTRUCTION 331 default: 332 return false; 333 } 334 } 335 336 void Function::clearArguments() { 337 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 338 A.setName(""); 339 A.~Argument(); 340 } 341 std::allocator<Argument>().deallocate(Arguments, NumArgs); 342 Arguments = nullptr; 343 } 344 345 void Function::stealArgumentListFrom(Function &Src) { 346 assert(isDeclaration() && "Expected no references to current arguments"); 347 348 // Drop the current arguments, if any, and set the lazy argument bit. 349 if (!hasLazyArguments()) { 350 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 351 [](const Argument &A) { return A.use_empty(); }) && 352 "Expected arguments to be unused in declaration"); 353 clearArguments(); 354 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 355 } 356 357 // Nothing to steal if Src has lazy arguments. 358 if (Src.hasLazyArguments()) 359 return; 360 361 // Steal arguments from Src, and fix the lazy argument bits. 362 assert(arg_size() == Src.arg_size()); 363 Arguments = Src.Arguments; 364 Src.Arguments = nullptr; 365 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 366 // FIXME: This does the work of transferNodesFromList inefficiently. 367 SmallString<128> Name; 368 if (A.hasName()) 369 Name = A.getName(); 370 if (!Name.empty()) 371 A.setName(""); 372 A.setParent(this); 373 if (!Name.empty()) 374 A.setName(Name); 375 } 376 377 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 378 assert(!hasLazyArguments()); 379 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 380 } 381 382 // dropAllReferences() - This function causes all the subinstructions to "let 383 // go" of all references that they are maintaining. This allows one to 384 // 'delete' a whole class at a time, even though there may be circular 385 // references... first all references are dropped, and all use counts go to 386 // zero. Then everything is deleted for real. Note that no operations are 387 // valid on an object that has "dropped all references", except operator 388 // delete. 389 // 390 void Function::dropAllReferences() { 391 setIsMaterializable(false); 392 393 for (BasicBlock &BB : *this) 394 BB.dropAllReferences(); 395 396 // Delete all basic blocks. They are now unused, except possibly by 397 // blockaddresses, but BasicBlock's destructor takes care of those. 398 while (!BasicBlocks.empty()) 399 BasicBlocks.begin()->eraseFromParent(); 400 401 // Drop uses of any optional data (real or placeholder). 402 if (getNumOperands()) { 403 User::dropAllReferences(); 404 setNumHungOffUseOperands(0); 405 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 406 } 407 408 // Metadata is stored in a side-table. 409 clearMetadata(); 410 } 411 412 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 413 AttributeList PAL = getAttributes(); 414 PAL = PAL.addAttribute(getContext(), i, Kind); 415 setAttributes(PAL); 416 } 417 418 void Function::addAttribute(unsigned i, Attribute Attr) { 419 AttributeList PAL = getAttributes(); 420 PAL = PAL.addAttribute(getContext(), i, Attr); 421 setAttributes(PAL); 422 } 423 424 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 425 AttributeList PAL = getAttributes(); 426 PAL = PAL.addAttributes(getContext(), i, Attrs); 427 setAttributes(PAL); 428 } 429 430 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 431 AttributeList PAL = getAttributes(); 432 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 433 setAttributes(PAL); 434 } 435 436 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 437 AttributeList PAL = getAttributes(); 438 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 439 setAttributes(PAL); 440 } 441 442 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 443 AttributeList PAL = getAttributes(); 444 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 445 setAttributes(PAL); 446 } 447 448 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 449 AttributeList PAL = getAttributes(); 450 PAL = PAL.removeAttribute(getContext(), i, Kind); 451 setAttributes(PAL); 452 } 453 454 void Function::removeAttribute(unsigned i, StringRef Kind) { 455 AttributeList PAL = getAttributes(); 456 PAL = PAL.removeAttribute(getContext(), i, Kind); 457 setAttributes(PAL); 458 } 459 460 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 461 AttributeList PAL = getAttributes(); 462 PAL = PAL.removeAttributes(getContext(), i, Attrs); 463 setAttributes(PAL); 464 } 465 466 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 467 AttributeList PAL = getAttributes(); 468 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 469 setAttributes(PAL); 470 } 471 472 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 473 AttributeList PAL = getAttributes(); 474 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 475 setAttributes(PAL); 476 } 477 478 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 479 AttributeList PAL = getAttributes(); 480 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 481 setAttributes(PAL); 482 } 483 484 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 485 AttributeList PAL = getAttributes(); 486 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 487 setAttributes(PAL); 488 } 489 490 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 491 AttributeList PAL = getAttributes(); 492 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 493 setAttributes(PAL); 494 } 495 496 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 497 AttributeList PAL = getAttributes(); 498 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 499 setAttributes(PAL); 500 } 501 502 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 503 uint64_t Bytes) { 504 AttributeList PAL = getAttributes(); 505 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 506 setAttributes(PAL); 507 } 508 509 const std::string &Function::getGC() const { 510 assert(hasGC() && "Function has no collector"); 511 return getContext().getGC(*this); 512 } 513 514 void Function::setGC(std::string Str) { 515 setValueSubclassDataBit(14, !Str.empty()); 516 getContext().setGC(*this, std::move(Str)); 517 } 518 519 void Function::clearGC() { 520 if (!hasGC()) 521 return; 522 getContext().deleteGC(*this); 523 setValueSubclassDataBit(14, false); 524 } 525 526 /// Copy all additional attributes (those not needed to create a Function) from 527 /// the Function Src to this one. 528 void Function::copyAttributesFrom(const Function *Src) { 529 GlobalObject::copyAttributesFrom(Src); 530 setCallingConv(Src->getCallingConv()); 531 setAttributes(Src->getAttributes()); 532 if (Src->hasGC()) 533 setGC(Src->getGC()); 534 else 535 clearGC(); 536 if (Src->hasPersonalityFn()) 537 setPersonalityFn(Src->getPersonalityFn()); 538 if (Src->hasPrefixData()) 539 setPrefixData(Src->getPrefixData()); 540 if (Src->hasPrologueData()) 541 setPrologueData(Src->getPrologueData()); 542 } 543 544 /// Table of string intrinsic names indexed by enum value. 545 static const char * const IntrinsicNameTable[] = { 546 "not_intrinsic", 547 #define GET_INTRINSIC_NAME_TABLE 548 #include "llvm/IR/IntrinsicImpl.inc" 549 #undef GET_INTRINSIC_NAME_TABLE 550 }; 551 552 /// Table of per-target intrinsic name tables. 553 #define GET_INTRINSIC_TARGET_DATA 554 #include "llvm/IR/IntrinsicImpl.inc" 555 #undef GET_INTRINSIC_TARGET_DATA 556 557 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 558 /// target as \c Name, or the generic table if \c Name is not target specific. 559 /// 560 /// Returns the relevant slice of \c IntrinsicNameTable 561 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 562 assert(Name.startswith("llvm.")); 563 564 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 565 // Drop "llvm." and take the first dotted component. That will be the target 566 // if this is target specific. 567 StringRef Target = Name.drop_front(5).split('.').first; 568 auto It = partition_point( 569 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 570 // We've either found the target or just fall back to the generic set, which 571 // is always first. 572 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 573 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 574 } 575 576 /// This does the actual lookup of an intrinsic ID which 577 /// matches the given function name. 578 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 579 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 580 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 581 if (Idx == -1) 582 return Intrinsic::not_intrinsic; 583 584 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 585 // an index into a sub-table. 586 int Adjust = NameTable.data() - IntrinsicNameTable; 587 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 588 589 // If the intrinsic is not overloaded, require an exact match. If it is 590 // overloaded, require either exact or prefix match. 591 const auto MatchSize = strlen(NameTable[Idx]); 592 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 593 bool IsExactMatch = Name.size() == MatchSize; 594 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 595 : Intrinsic::not_intrinsic; 596 } 597 598 void Function::recalculateIntrinsicID() { 599 StringRef Name = getName(); 600 if (!Name.startswith("llvm.")) { 601 HasLLVMReservedName = false; 602 IntID = Intrinsic::not_intrinsic; 603 return; 604 } 605 HasLLVMReservedName = true; 606 IntID = lookupIntrinsicID(Name); 607 } 608 609 /// Returns a stable mangling for the type specified for use in the name 610 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 611 /// of named types is simply their name. Manglings for unnamed types consist 612 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 613 /// combined with the mangling of their component types. A vararg function 614 /// type will have a suffix of 'vararg'. Since function types can contain 615 /// other function types, we close a function type mangling with suffix 'f' 616 /// which can't be confused with it's prefix. This ensures we don't have 617 /// collisions between two unrelated function types. Otherwise, you might 618 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 619 /// 620 static std::string getMangledTypeStr(Type* Ty) { 621 std::string Result; 622 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 623 Result += "p" + utostr(PTyp->getAddressSpace()) + 624 getMangledTypeStr(PTyp->getElementType()); 625 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 626 Result += "a" + utostr(ATyp->getNumElements()) + 627 getMangledTypeStr(ATyp->getElementType()); 628 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 629 if (!STyp->isLiteral()) { 630 Result += "s_"; 631 Result += STyp->getName(); 632 } else { 633 Result += "sl_"; 634 for (auto Elem : STyp->elements()) 635 Result += getMangledTypeStr(Elem); 636 } 637 // Ensure nested structs are distinguishable. 638 Result += "s"; 639 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 640 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 641 for (size_t i = 0; i < FT->getNumParams(); i++) 642 Result += getMangledTypeStr(FT->getParamType(i)); 643 if (FT->isVarArg()) 644 Result += "vararg"; 645 // Ensure nested function types are distinguishable. 646 Result += "f"; 647 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 648 ElementCount EC = VTy->getElementCount(); 649 if (EC.Scalable) 650 Result += "nx"; 651 Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType()); 652 } else if (Ty) { 653 switch (Ty->getTypeID()) { 654 default: llvm_unreachable("Unhandled type"); 655 case Type::VoidTyID: Result += "isVoid"; break; 656 case Type::MetadataTyID: Result += "Metadata"; break; 657 case Type::HalfTyID: Result += "f16"; break; 658 case Type::FloatTyID: Result += "f32"; break; 659 case Type::DoubleTyID: Result += "f64"; break; 660 case Type::X86_FP80TyID: Result += "f80"; break; 661 case Type::FP128TyID: Result += "f128"; break; 662 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 663 case Type::X86_MMXTyID: Result += "x86mmx"; break; 664 case Type::IntegerTyID: 665 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 666 break; 667 } 668 } 669 return Result; 670 } 671 672 StringRef Intrinsic::getName(ID id) { 673 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 674 assert(!Intrinsic::isOverloaded(id) && 675 "This version of getName does not support overloading"); 676 return IntrinsicNameTable[id]; 677 } 678 679 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 680 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 681 std::string Result(IntrinsicNameTable[id]); 682 for (Type *Ty : Tys) { 683 Result += "." + getMangledTypeStr(Ty); 684 } 685 return Result; 686 } 687 688 /// IIT_Info - These are enumerators that describe the entries returned by the 689 /// getIntrinsicInfoTableEntries function. 690 /// 691 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 692 enum IIT_Info { 693 // Common values should be encoded with 0-15. 694 IIT_Done = 0, 695 IIT_I1 = 1, 696 IIT_I8 = 2, 697 IIT_I16 = 3, 698 IIT_I32 = 4, 699 IIT_I64 = 5, 700 IIT_F16 = 6, 701 IIT_F32 = 7, 702 IIT_F64 = 8, 703 IIT_V2 = 9, 704 IIT_V4 = 10, 705 IIT_V8 = 11, 706 IIT_V16 = 12, 707 IIT_V32 = 13, 708 IIT_PTR = 14, 709 IIT_ARG = 15, 710 711 // Values from 16+ are only encodable with the inefficient encoding. 712 IIT_V64 = 16, 713 IIT_MMX = 17, 714 IIT_TOKEN = 18, 715 IIT_METADATA = 19, 716 IIT_EMPTYSTRUCT = 20, 717 IIT_STRUCT2 = 21, 718 IIT_STRUCT3 = 22, 719 IIT_STRUCT4 = 23, 720 IIT_STRUCT5 = 24, 721 IIT_EXTEND_ARG = 25, 722 IIT_TRUNC_ARG = 26, 723 IIT_ANYPTR = 27, 724 IIT_V1 = 28, 725 IIT_VARARG = 29, 726 IIT_HALF_VEC_ARG = 30, 727 IIT_SAME_VEC_WIDTH_ARG = 31, 728 IIT_PTR_TO_ARG = 32, 729 IIT_PTR_TO_ELT = 33, 730 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 731 IIT_I128 = 35, 732 IIT_V512 = 36, 733 IIT_V1024 = 37, 734 IIT_STRUCT6 = 38, 735 IIT_STRUCT7 = 39, 736 IIT_STRUCT8 = 40, 737 IIT_F128 = 41, 738 IIT_VEC_ELEMENT = 42, 739 IIT_SCALABLE_VEC = 43, 740 IIT_SUBDIVIDE2_ARG = 44, 741 IIT_SUBDIVIDE4_ARG = 45, 742 IIT_VEC_OF_BITCASTS_TO_INT = 46, 743 IIT_V128 = 47 744 }; 745 746 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 747 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 748 using namespace Intrinsic; 749 750 IIT_Info Info = IIT_Info(Infos[NextElt++]); 751 unsigned StructElts = 2; 752 753 switch (Info) { 754 case IIT_Done: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 756 return; 757 case IIT_VARARG: 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 759 return; 760 case IIT_MMX: 761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 762 return; 763 case IIT_TOKEN: 764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 765 return; 766 case IIT_METADATA: 767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 768 return; 769 case IIT_F16: 770 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 771 return; 772 case IIT_F32: 773 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 774 return; 775 case IIT_F64: 776 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 777 return; 778 case IIT_F128: 779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 780 return; 781 case IIT_I1: 782 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 783 return; 784 case IIT_I8: 785 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 786 return; 787 case IIT_I16: 788 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 789 return; 790 case IIT_I32: 791 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 792 return; 793 case IIT_I64: 794 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 795 return; 796 case IIT_I128: 797 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 798 return; 799 case IIT_V1: 800 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 801 DecodeIITType(NextElt, Infos, OutputTable); 802 return; 803 case IIT_V2: 804 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 805 DecodeIITType(NextElt, Infos, OutputTable); 806 return; 807 case IIT_V4: 808 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 809 DecodeIITType(NextElt, Infos, OutputTable); 810 return; 811 case IIT_V8: 812 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 813 DecodeIITType(NextElt, Infos, OutputTable); 814 return; 815 case IIT_V16: 816 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 817 DecodeIITType(NextElt, Infos, OutputTable); 818 return; 819 case IIT_V32: 820 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 821 DecodeIITType(NextElt, Infos, OutputTable); 822 return; 823 case IIT_V64: 824 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 825 DecodeIITType(NextElt, Infos, OutputTable); 826 return; 827 case IIT_V128: 828 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 128)); 829 DecodeIITType(NextElt, Infos, OutputTable); 830 return; 831 case IIT_V512: 832 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 833 DecodeIITType(NextElt, Infos, OutputTable); 834 return; 835 case IIT_V1024: 836 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 837 DecodeIITType(NextElt, Infos, OutputTable); 838 return; 839 case IIT_PTR: 840 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 841 DecodeIITType(NextElt, Infos, OutputTable); 842 return; 843 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 844 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 845 Infos[NextElt++])); 846 DecodeIITType(NextElt, Infos, OutputTable); 847 return; 848 } 849 case IIT_ARG: { 850 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 851 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 852 return; 853 } 854 case IIT_EXTEND_ARG: { 855 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 856 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 857 ArgInfo)); 858 return; 859 } 860 case IIT_TRUNC_ARG: { 861 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 862 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 863 ArgInfo)); 864 return; 865 } 866 case IIT_HALF_VEC_ARG: { 867 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 868 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 869 ArgInfo)); 870 return; 871 } 872 case IIT_SAME_VEC_WIDTH_ARG: { 873 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 874 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 875 ArgInfo)); 876 return; 877 } 878 case IIT_PTR_TO_ARG: { 879 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 880 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 881 ArgInfo)); 882 return; 883 } 884 case IIT_PTR_TO_ELT: { 885 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 886 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 887 return; 888 } 889 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 890 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 891 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 892 OutputTable.push_back( 893 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 894 return; 895 } 896 case IIT_EMPTYSTRUCT: 897 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 898 return; 899 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 900 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 901 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 902 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 903 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 904 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 905 case IIT_STRUCT2: { 906 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 907 908 for (unsigned i = 0; i != StructElts; ++i) 909 DecodeIITType(NextElt, Infos, OutputTable); 910 return; 911 } 912 case IIT_SUBDIVIDE2_ARG: { 913 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 914 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 915 ArgInfo)); 916 return; 917 } 918 case IIT_SUBDIVIDE4_ARG: { 919 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 920 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 921 ArgInfo)); 922 return; 923 } 924 case IIT_VEC_ELEMENT: { 925 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 926 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 927 ArgInfo)); 928 return; 929 } 930 case IIT_SCALABLE_VEC: { 931 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument, 932 0)); 933 DecodeIITType(NextElt, Infos, OutputTable); 934 return; 935 } 936 case IIT_VEC_OF_BITCASTS_TO_INT: { 937 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 938 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 939 ArgInfo)); 940 return; 941 } 942 } 943 llvm_unreachable("unhandled"); 944 } 945 946 #define GET_INTRINSIC_GENERATOR_GLOBAL 947 #include "llvm/IR/IntrinsicImpl.inc" 948 #undef GET_INTRINSIC_GENERATOR_GLOBAL 949 950 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 951 SmallVectorImpl<IITDescriptor> &T){ 952 // Check to see if the intrinsic's type was expressible by the table. 953 unsigned TableVal = IIT_Table[id-1]; 954 955 // Decode the TableVal into an array of IITValues. 956 SmallVector<unsigned char, 8> IITValues; 957 ArrayRef<unsigned char> IITEntries; 958 unsigned NextElt = 0; 959 if ((TableVal >> 31) != 0) { 960 // This is an offset into the IIT_LongEncodingTable. 961 IITEntries = IIT_LongEncodingTable; 962 963 // Strip sentinel bit. 964 NextElt = (TableVal << 1) >> 1; 965 } else { 966 // Decode the TableVal into an array of IITValues. If the entry was encoded 967 // into a single word in the table itself, decode it now. 968 do { 969 IITValues.push_back(TableVal & 0xF); 970 TableVal >>= 4; 971 } while (TableVal); 972 973 IITEntries = IITValues; 974 NextElt = 0; 975 } 976 977 // Okay, decode the table into the output vector of IITDescriptors. 978 DecodeIITType(NextElt, IITEntries, T); 979 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 980 DecodeIITType(NextElt, IITEntries, T); 981 } 982 983 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 984 ArrayRef<Type*> Tys, LLVMContext &Context) { 985 using namespace Intrinsic; 986 987 IITDescriptor D = Infos.front(); 988 Infos = Infos.slice(1); 989 990 switch (D.Kind) { 991 case IITDescriptor::Void: return Type::getVoidTy(Context); 992 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 993 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 994 case IITDescriptor::Token: return Type::getTokenTy(Context); 995 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 996 case IITDescriptor::Half: return Type::getHalfTy(Context); 997 case IITDescriptor::Float: return Type::getFloatTy(Context); 998 case IITDescriptor::Double: return Type::getDoubleTy(Context); 999 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1000 1001 case IITDescriptor::Integer: 1002 return IntegerType::get(Context, D.Integer_Width); 1003 case IITDescriptor::Vector: 1004 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 1005 case IITDescriptor::Pointer: 1006 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1007 D.Pointer_AddressSpace); 1008 case IITDescriptor::Struct: { 1009 SmallVector<Type *, 8> Elts; 1010 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1011 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1012 return StructType::get(Context, Elts); 1013 } 1014 case IITDescriptor::Argument: 1015 return Tys[D.getArgumentNumber()]; 1016 case IITDescriptor::ExtendArgument: { 1017 Type *Ty = Tys[D.getArgumentNumber()]; 1018 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1019 return VectorType::getExtendedElementVectorType(VTy); 1020 1021 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1022 } 1023 case IITDescriptor::TruncArgument: { 1024 Type *Ty = Tys[D.getArgumentNumber()]; 1025 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1026 return VectorType::getTruncatedElementVectorType(VTy); 1027 1028 IntegerType *ITy = cast<IntegerType>(Ty); 1029 assert(ITy->getBitWidth() % 2 == 0); 1030 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1031 } 1032 case IITDescriptor::Subdivide2Argument: 1033 case IITDescriptor::Subdivide4Argument: { 1034 Type *Ty = Tys[D.getArgumentNumber()]; 1035 VectorType *VTy = dyn_cast<VectorType>(Ty); 1036 assert(VTy && "Expected an argument of Vector Type"); 1037 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1038 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1039 } 1040 case IITDescriptor::HalfVecArgument: 1041 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1042 Tys[D.getArgumentNumber()])); 1043 case IITDescriptor::SameVecWidthArgument: { 1044 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1045 Type *Ty = Tys[D.getArgumentNumber()]; 1046 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1047 return VectorType::get(EltTy, VTy->getElementCount()); 1048 return EltTy; 1049 } 1050 case IITDescriptor::PtrToArgument: { 1051 Type *Ty = Tys[D.getArgumentNumber()]; 1052 return PointerType::getUnqual(Ty); 1053 } 1054 case IITDescriptor::PtrToElt: { 1055 Type *Ty = Tys[D.getArgumentNumber()]; 1056 VectorType *VTy = dyn_cast<VectorType>(Ty); 1057 if (!VTy) 1058 llvm_unreachable("Expected an argument of Vector Type"); 1059 Type *EltTy = VTy->getElementType(); 1060 return PointerType::getUnqual(EltTy); 1061 } 1062 case IITDescriptor::VecElementArgument: { 1063 Type *Ty = Tys[D.getArgumentNumber()]; 1064 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1065 return VTy->getElementType(); 1066 llvm_unreachable("Expected an argument of Vector Type"); 1067 } 1068 case IITDescriptor::VecOfBitcastsToInt: { 1069 Type *Ty = Tys[D.getArgumentNumber()]; 1070 VectorType *VTy = dyn_cast<VectorType>(Ty); 1071 assert(VTy && "Expected an argument of Vector Type"); 1072 return VectorType::getInteger(VTy); 1073 } 1074 case IITDescriptor::VecOfAnyPtrsToElt: 1075 // Return the overloaded type (which determines the pointers address space) 1076 return Tys[D.getOverloadArgNumber()]; 1077 case IITDescriptor::ScalableVecArgument: { 1078 auto *Ty = cast<FixedVectorType>(DecodeFixedType(Infos, Tys, Context)); 1079 return ScalableVectorType::get(Ty->getElementType(), Ty->getNumElements()); 1080 } 1081 } 1082 llvm_unreachable("unhandled"); 1083 } 1084 1085 FunctionType *Intrinsic::getType(LLVMContext &Context, 1086 ID id, ArrayRef<Type*> Tys) { 1087 SmallVector<IITDescriptor, 8> Table; 1088 getIntrinsicInfoTableEntries(id, Table); 1089 1090 ArrayRef<IITDescriptor> TableRef = Table; 1091 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1092 1093 SmallVector<Type*, 8> ArgTys; 1094 while (!TableRef.empty()) 1095 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1096 1097 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1098 // If we see void type as the type of the last argument, it is vararg intrinsic 1099 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1100 ArgTys.pop_back(); 1101 return FunctionType::get(ResultTy, ArgTys, true); 1102 } 1103 return FunctionType::get(ResultTy, ArgTys, false); 1104 } 1105 1106 bool Intrinsic::isOverloaded(ID id) { 1107 #define GET_INTRINSIC_OVERLOAD_TABLE 1108 #include "llvm/IR/IntrinsicImpl.inc" 1109 #undef GET_INTRINSIC_OVERLOAD_TABLE 1110 } 1111 1112 bool Intrinsic::isLeaf(ID id) { 1113 switch (id) { 1114 default: 1115 return true; 1116 1117 case Intrinsic::experimental_gc_statepoint: 1118 case Intrinsic::experimental_patchpoint_void: 1119 case Intrinsic::experimental_patchpoint_i64: 1120 return false; 1121 } 1122 } 1123 1124 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1125 #define GET_INTRINSIC_ATTRIBUTES 1126 #include "llvm/IR/IntrinsicImpl.inc" 1127 #undef GET_INTRINSIC_ATTRIBUTES 1128 1129 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1130 // There can never be multiple globals with the same name of different types, 1131 // because intrinsics must be a specific type. 1132 return cast<Function>( 1133 M->getOrInsertFunction(getName(id, Tys), 1134 getType(M->getContext(), id, Tys)) 1135 .getCallee()); 1136 } 1137 1138 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1139 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1140 #include "llvm/IR/IntrinsicImpl.inc" 1141 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1142 1143 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1144 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1145 #include "llvm/IR/IntrinsicImpl.inc" 1146 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1147 1148 using DeferredIntrinsicMatchPair = 1149 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1150 1151 static bool matchIntrinsicType( 1152 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1153 SmallVectorImpl<Type *> &ArgTys, 1154 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1155 bool IsDeferredCheck) { 1156 using namespace Intrinsic; 1157 1158 // If we ran out of descriptors, there are too many arguments. 1159 if (Infos.empty()) return true; 1160 1161 // Do this before slicing off the 'front' part 1162 auto InfosRef = Infos; 1163 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1164 DeferredChecks.emplace_back(T, InfosRef); 1165 return false; 1166 }; 1167 1168 IITDescriptor D = Infos.front(); 1169 Infos = Infos.slice(1); 1170 1171 switch (D.Kind) { 1172 case IITDescriptor::Void: return !Ty->isVoidTy(); 1173 case IITDescriptor::VarArg: return true; 1174 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1175 case IITDescriptor::Token: return !Ty->isTokenTy(); 1176 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1177 case IITDescriptor::Half: return !Ty->isHalfTy(); 1178 case IITDescriptor::Float: return !Ty->isFloatTy(); 1179 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1180 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1181 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1182 case IITDescriptor::Vector: { 1183 VectorType *VT = dyn_cast<VectorType>(Ty); 1184 return !VT || VT->getNumElements() != D.Vector_Width || 1185 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1186 DeferredChecks, IsDeferredCheck); 1187 } 1188 case IITDescriptor::Pointer: { 1189 PointerType *PT = dyn_cast<PointerType>(Ty); 1190 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1191 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1192 DeferredChecks, IsDeferredCheck); 1193 } 1194 1195 case IITDescriptor::Struct: { 1196 StructType *ST = dyn_cast<StructType>(Ty); 1197 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1198 return true; 1199 1200 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1201 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1202 DeferredChecks, IsDeferredCheck)) 1203 return true; 1204 return false; 1205 } 1206 1207 case IITDescriptor::Argument: 1208 // If this is the second occurrence of an argument, 1209 // verify that the later instance matches the previous instance. 1210 if (D.getArgumentNumber() < ArgTys.size()) 1211 return Ty != ArgTys[D.getArgumentNumber()]; 1212 1213 if (D.getArgumentNumber() > ArgTys.size() || 1214 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1215 return IsDeferredCheck || DeferCheck(Ty); 1216 1217 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1218 "Table consistency error"); 1219 ArgTys.push_back(Ty); 1220 1221 switch (D.getArgumentKind()) { 1222 case IITDescriptor::AK_Any: return false; // Success 1223 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1224 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1225 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1226 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1227 default: break; 1228 } 1229 llvm_unreachable("all argument kinds not covered"); 1230 1231 case IITDescriptor::ExtendArgument: { 1232 // If this is a forward reference, defer the check for later. 1233 if (D.getArgumentNumber() >= ArgTys.size()) 1234 return IsDeferredCheck || DeferCheck(Ty); 1235 1236 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1237 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1238 NewTy = VectorType::getExtendedElementVectorType(VTy); 1239 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1240 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1241 else 1242 return true; 1243 1244 return Ty != NewTy; 1245 } 1246 case IITDescriptor::TruncArgument: { 1247 // If this is a forward reference, defer the check for later. 1248 if (D.getArgumentNumber() >= ArgTys.size()) 1249 return IsDeferredCheck || DeferCheck(Ty); 1250 1251 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1252 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1253 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1254 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1255 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1256 else 1257 return true; 1258 1259 return Ty != NewTy; 1260 } 1261 case IITDescriptor::HalfVecArgument: 1262 // If this is a forward reference, defer the check for later. 1263 if (D.getArgumentNumber() >= ArgTys.size()) 1264 return IsDeferredCheck || DeferCheck(Ty); 1265 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1266 VectorType::getHalfElementsVectorType( 1267 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1268 case IITDescriptor::SameVecWidthArgument: { 1269 if (D.getArgumentNumber() >= ArgTys.size()) { 1270 // Defer check and subsequent check for the vector element type. 1271 Infos = Infos.slice(1); 1272 return IsDeferredCheck || DeferCheck(Ty); 1273 } 1274 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1275 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1276 // Both must be vectors of the same number of elements or neither. 1277 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1278 return true; 1279 Type *EltTy = Ty; 1280 if (ThisArgType) { 1281 if (ReferenceType->getElementCount() != 1282 ThisArgType->getElementCount()) 1283 return true; 1284 EltTy = ThisArgType->getElementType(); 1285 } 1286 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1287 IsDeferredCheck); 1288 } 1289 case IITDescriptor::PtrToArgument: { 1290 if (D.getArgumentNumber() >= ArgTys.size()) 1291 return IsDeferredCheck || DeferCheck(Ty); 1292 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1293 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1294 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1295 } 1296 case IITDescriptor::PtrToElt: { 1297 if (D.getArgumentNumber() >= ArgTys.size()) 1298 return IsDeferredCheck || DeferCheck(Ty); 1299 VectorType * ReferenceType = 1300 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1301 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1302 1303 return (!ThisArgType || !ReferenceType || 1304 ThisArgType->getElementType() != ReferenceType->getElementType()); 1305 } 1306 case IITDescriptor::VecOfAnyPtrsToElt: { 1307 unsigned RefArgNumber = D.getRefArgNumber(); 1308 if (RefArgNumber >= ArgTys.size()) { 1309 if (IsDeferredCheck) 1310 return true; 1311 // If forward referencing, already add the pointer-vector type and 1312 // defer the checks for later. 1313 ArgTys.push_back(Ty); 1314 return DeferCheck(Ty); 1315 } 1316 1317 if (!IsDeferredCheck){ 1318 assert(D.getOverloadArgNumber() == ArgTys.size() && 1319 "Table consistency error"); 1320 ArgTys.push_back(Ty); 1321 } 1322 1323 // Verify the overloaded type "matches" the Ref type. 1324 // i.e. Ty is a vector with the same width as Ref. 1325 // Composed of pointers to the same element type as Ref. 1326 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1327 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1328 if (!ThisArgVecTy || !ReferenceType || 1329 (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements())) 1330 return true; 1331 PointerType *ThisArgEltTy = 1332 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1333 if (!ThisArgEltTy) 1334 return true; 1335 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1336 } 1337 case IITDescriptor::VecElementArgument: { 1338 if (D.getArgumentNumber() >= ArgTys.size()) 1339 return IsDeferredCheck ? true : DeferCheck(Ty); 1340 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1341 return !ReferenceType || Ty != ReferenceType->getElementType(); 1342 } 1343 case IITDescriptor::Subdivide2Argument: 1344 case IITDescriptor::Subdivide4Argument: { 1345 // If this is a forward reference, defer the check for later. 1346 if (D.getArgumentNumber() >= ArgTys.size()) 1347 return IsDeferredCheck || DeferCheck(Ty); 1348 1349 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1350 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1351 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1352 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1353 return Ty != NewTy; 1354 } 1355 return true; 1356 } 1357 case IITDescriptor::ScalableVecArgument: { 1358 if (!isa<ScalableVectorType>(Ty)) 1359 return true; 1360 return matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, 1361 IsDeferredCheck); 1362 } 1363 case IITDescriptor::VecOfBitcastsToInt: { 1364 if (D.getArgumentNumber() >= ArgTys.size()) 1365 return IsDeferredCheck || DeferCheck(Ty); 1366 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1367 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1368 if (!ThisArgVecTy || !ReferenceType) 1369 return true; 1370 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1371 } 1372 } 1373 llvm_unreachable("unhandled"); 1374 } 1375 1376 Intrinsic::MatchIntrinsicTypesResult 1377 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1378 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1379 SmallVectorImpl<Type *> &ArgTys) { 1380 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1381 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1382 false)) 1383 return MatchIntrinsicTypes_NoMatchRet; 1384 1385 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1386 1387 for (auto Ty : FTy->params()) 1388 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1389 return MatchIntrinsicTypes_NoMatchArg; 1390 1391 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1392 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1393 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1394 true)) 1395 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1396 : MatchIntrinsicTypes_NoMatchArg; 1397 } 1398 1399 return MatchIntrinsicTypes_Match; 1400 } 1401 1402 bool 1403 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1404 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1405 // If there are no descriptors left, then it can't be a vararg. 1406 if (Infos.empty()) 1407 return isVarArg; 1408 1409 // There should be only one descriptor remaining at this point. 1410 if (Infos.size() != 1) 1411 return true; 1412 1413 // Check and verify the descriptor. 1414 IITDescriptor D = Infos.front(); 1415 Infos = Infos.slice(1); 1416 if (D.Kind == IITDescriptor::VarArg) 1417 return !isVarArg; 1418 1419 return true; 1420 } 1421 1422 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1423 Intrinsic::ID ID = F->getIntrinsicID(); 1424 if (!ID) 1425 return None; 1426 1427 FunctionType *FTy = F->getFunctionType(); 1428 // Accumulate an array of overloaded types for the given intrinsic 1429 SmallVector<Type *, 4> ArgTys; 1430 { 1431 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1432 getIntrinsicInfoTableEntries(ID, Table); 1433 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1434 1435 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1436 return None; 1437 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1438 return None; 1439 } 1440 1441 StringRef Name = F->getName(); 1442 if (Name == Intrinsic::getName(ID, ArgTys)) 1443 return None; 1444 1445 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1446 NewDecl->setCallingConv(F->getCallingConv()); 1447 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1448 return NewDecl; 1449 } 1450 1451 /// hasAddressTaken - returns true if there are any uses of this function 1452 /// other than direct calls or invokes to it. 1453 bool Function::hasAddressTaken(const User* *PutOffender) const { 1454 for (const Use &U : uses()) { 1455 const User *FU = U.getUser(); 1456 if (isa<BlockAddress>(FU)) 1457 continue; 1458 const auto *Call = dyn_cast<CallBase>(FU); 1459 if (!Call) { 1460 if (PutOffender) 1461 *PutOffender = FU; 1462 return true; 1463 } 1464 if (!Call->isCallee(&U)) { 1465 if (PutOffender) 1466 *PutOffender = FU; 1467 return true; 1468 } 1469 } 1470 return false; 1471 } 1472 1473 bool Function::isDefTriviallyDead() const { 1474 // Check the linkage 1475 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1476 !hasAvailableExternallyLinkage()) 1477 return false; 1478 1479 // Check if the function is used by anything other than a blockaddress. 1480 for (const User *U : users()) 1481 if (!isa<BlockAddress>(U)) 1482 return false; 1483 1484 return true; 1485 } 1486 1487 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1488 /// setjmp or other function that gcc recognizes as "returning twice". 1489 bool Function::callsFunctionThatReturnsTwice() const { 1490 for (const Instruction &I : instructions(this)) 1491 if (const auto *Call = dyn_cast<CallBase>(&I)) 1492 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1493 return true; 1494 1495 return false; 1496 } 1497 1498 Constant *Function::getPersonalityFn() const { 1499 assert(hasPersonalityFn() && getNumOperands()); 1500 return cast<Constant>(Op<0>()); 1501 } 1502 1503 void Function::setPersonalityFn(Constant *Fn) { 1504 setHungoffOperand<0>(Fn); 1505 setValueSubclassDataBit(3, Fn != nullptr); 1506 } 1507 1508 Constant *Function::getPrefixData() const { 1509 assert(hasPrefixData() && getNumOperands()); 1510 return cast<Constant>(Op<1>()); 1511 } 1512 1513 void Function::setPrefixData(Constant *PrefixData) { 1514 setHungoffOperand<1>(PrefixData); 1515 setValueSubclassDataBit(1, PrefixData != nullptr); 1516 } 1517 1518 Constant *Function::getPrologueData() const { 1519 assert(hasPrologueData() && getNumOperands()); 1520 return cast<Constant>(Op<2>()); 1521 } 1522 1523 void Function::setPrologueData(Constant *PrologueData) { 1524 setHungoffOperand<2>(PrologueData); 1525 setValueSubclassDataBit(2, PrologueData != nullptr); 1526 } 1527 1528 void Function::allocHungoffUselist() { 1529 // If we've already allocated a uselist, stop here. 1530 if (getNumOperands()) 1531 return; 1532 1533 allocHungoffUses(3, /*IsPhi=*/ false); 1534 setNumHungOffUseOperands(3); 1535 1536 // Initialize the uselist with placeholder operands to allow traversal. 1537 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1538 Op<0>().set(CPN); 1539 Op<1>().set(CPN); 1540 Op<2>().set(CPN); 1541 } 1542 1543 template <int Idx> 1544 void Function::setHungoffOperand(Constant *C) { 1545 if (C) { 1546 allocHungoffUselist(); 1547 Op<Idx>().set(C); 1548 } else if (getNumOperands()) { 1549 Op<Idx>().set( 1550 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1551 } 1552 } 1553 1554 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1555 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1556 if (On) 1557 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1558 else 1559 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1560 } 1561 1562 void Function::setEntryCount(ProfileCount Count, 1563 const DenseSet<GlobalValue::GUID> *S) { 1564 assert(Count.hasValue()); 1565 #if !defined(NDEBUG) 1566 auto PrevCount = getEntryCount(); 1567 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1568 #endif 1569 1570 auto ImportGUIDs = getImportGUIDs(); 1571 if (S == nullptr && ImportGUIDs.size()) 1572 S = &ImportGUIDs; 1573 1574 MDBuilder MDB(getContext()); 1575 setMetadata( 1576 LLVMContext::MD_prof, 1577 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1578 } 1579 1580 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1581 const DenseSet<GlobalValue::GUID> *Imports) { 1582 setEntryCount(ProfileCount(Count, Type), Imports); 1583 } 1584 1585 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1586 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1587 if (MD && MD->getOperand(0)) 1588 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1589 if (MDS->getString().equals("function_entry_count")) { 1590 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1591 uint64_t Count = CI->getValue().getZExtValue(); 1592 // A value of -1 is used for SamplePGO when there were no samples. 1593 // Treat this the same as unknown. 1594 if (Count == (uint64_t)-1) 1595 return ProfileCount::getInvalid(); 1596 return ProfileCount(Count, PCT_Real); 1597 } else if (AllowSynthetic && 1598 MDS->getString().equals("synthetic_function_entry_count")) { 1599 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1600 uint64_t Count = CI->getValue().getZExtValue(); 1601 return ProfileCount(Count, PCT_Synthetic); 1602 } 1603 } 1604 return ProfileCount::getInvalid(); 1605 } 1606 1607 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1608 DenseSet<GlobalValue::GUID> R; 1609 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1610 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1611 if (MDS->getString().equals("function_entry_count")) 1612 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1613 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1614 ->getValue() 1615 .getZExtValue()); 1616 return R; 1617 } 1618 1619 void Function::setSectionPrefix(StringRef Prefix) { 1620 MDBuilder MDB(getContext()); 1621 setMetadata(LLVMContext::MD_section_prefix, 1622 MDB.createFunctionSectionPrefix(Prefix)); 1623 } 1624 1625 Optional<StringRef> Function::getSectionPrefix() const { 1626 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1627 assert(cast<MDString>(MD->getOperand(0)) 1628 ->getString() 1629 .equals("function_section_prefix") && 1630 "Metadata not match"); 1631 return cast<MDString>(MD->getOperand(1))->getString(); 1632 } 1633 return None; 1634 } 1635 1636 bool Function::nullPointerIsDefined() const { 1637 return getFnAttribute("null-pointer-is-valid") 1638 .getValueAsString() 1639 .equals("true"); 1640 } 1641 1642 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1643 if (F && F->nullPointerIsDefined()) 1644 return true; 1645 1646 if (AS != 0) 1647 return true; 1648 1649 return false; 1650 } 1651