xref: /llvm-project/llvm/lib/IR/Function.cpp (revision a63b50afb89c976a18355e8ebc5b89349e90d3d5)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/RWMutex.h"
31 #include "llvm/Support/StringPool.h"
32 #include "llvm/Support/Threading.h"
33 using namespace llvm;
34 
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file...
37 template class llvm::SymbolTableListTraits<Argument>;
38 template class llvm::SymbolTableListTraits<BasicBlock>;
39 
40 //===----------------------------------------------------------------------===//
41 // Argument Implementation
42 //===----------------------------------------------------------------------===//
43 
44 void Argument::anchor() { }
45 
46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
47   : Value(Ty, Value::ArgumentVal) {
48   Parent = nullptr;
49 
50   if (Par)
51     Par->getArgumentList().push_back(this);
52   setName(Name);
53 }
54 
55 void Argument::setParent(Function *parent) {
56   Parent = parent;
57 }
58 
59 /// getArgNo - Return the index of this formal argument in its containing
60 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
61 unsigned Argument::getArgNo() const {
62   const Function *F = getParent();
63   assert(F && "Argument is not in a function");
64 
65   Function::const_arg_iterator AI = F->arg_begin();
66   unsigned ArgIdx = 0;
67   for (; &*AI != this; ++AI)
68     ++ArgIdx;
69 
70   return ArgIdx;
71 }
72 
73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
74 /// it in its containing function. Also returns true if at least one byte is
75 /// known to be dereferenceable and the pointer is in addrspace(0).
76 bool Argument::hasNonNullAttr() const {
77   if (!getType()->isPointerTy()) return false;
78   if (getParent()->getAttributes().
79         hasAttribute(getArgNo()+1, Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 /// hasByValAttr - Return true if this argument has the byval attribute on it
88 /// in its containing function.
89 bool Argument::hasByValAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   return hasAttribute(Attribute::ByVal);
92 }
93 
94 bool Argument::hasSwiftSelfAttr() const {
95   return getParent()->getAttributes().
96     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
97 }
98 
99 bool Argument::hasSwiftErrorAttr() const {
100   return getParent()->getAttributes().
101     hasAttribute(getArgNo()+1, Attribute::SwiftError);
102 }
103 
104 /// \brief Return true if this argument has the inalloca attribute on it in
105 /// its containing function.
106 bool Argument::hasInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   return hasAttribute(Attribute::InAlloca);
109 }
110 
111 bool Argument::hasByValOrInAllocaAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   AttributeSet Attrs = getParent()->getAttributes();
114   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
115          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
116 }
117 
118 unsigned Argument::getParamAlignment() const {
119   assert(getType()->isPointerTy() && "Only pointers have alignments");
120   return getParent()->getParamAlignment(getArgNo()+1);
121 
122 }
123 
124 uint64_t Argument::getDereferenceableBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getDereferenceableBytes(getArgNo()+1);
128 }
129 
130 uint64_t Argument::getDereferenceableOrNullBytes() const {
131   assert(getType()->isPointerTy() &&
132          "Only pointers have dereferenceable bytes");
133   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
134 }
135 
136 /// hasNestAttr - Return true if this argument has the nest attribute on
137 /// it in its containing function.
138 bool Argument::hasNestAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::Nest);
141 }
142 
143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
144 /// it in its containing function.
145 bool Argument::hasNoAliasAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::NoAlias);
148 }
149 
150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
151 /// on it in its containing function.
152 bool Argument::hasNoCaptureAttr() const {
153   if (!getType()->isPointerTy()) return false;
154   return hasAttribute(Attribute::NoCapture);
155 }
156 
157 /// hasSRetAttr - Return true if this argument has the sret attribute on
158 /// it in its containing function.
159 bool Argument::hasStructRetAttr() const {
160   if (!getType()->isPointerTy()) return false;
161   return hasAttribute(Attribute::StructRet);
162 }
163 
164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
165 /// it in its containing function.
166 bool Argument::hasReturnedAttr() const {
167   return hasAttribute(Attribute::Returned);
168 }
169 
170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
171 /// its containing function.
172 bool Argument::hasZExtAttr() const {
173   return hasAttribute(Attribute::ZExt);
174 }
175 
176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
177 /// containing function.
178 bool Argument::hasSExtAttr() const {
179   return hasAttribute(Attribute::SExt);
180 }
181 
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
184 bool Argument::onlyReadsMemory() const {
185   return getParent()->getAttributes().
186       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187       getParent()->getAttributes().
188       hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190 
191 /// addAttr - Add attributes to an argument.
192 void Argument::addAttr(AttributeSet AS) {
193   assert(AS.getNumSlots() <= 1 &&
194          "Trying to add more than one attribute set to an argument!");
195   AttrBuilder B(AS, AS.getSlotIndex(0));
196   getParent()->addAttributes(getArgNo() + 1,
197                              AttributeSet::get(Parent->getContext(),
198                                                getArgNo() + 1, B));
199 }
200 
201 /// removeAttr - Remove attributes from an argument.
202 void Argument::removeAttr(AttributeSet AS) {
203   assert(AS.getNumSlots() <= 1 &&
204          "Trying to remove more than one attribute set from an argument!");
205   AttrBuilder B(AS, AS.getSlotIndex(0));
206   getParent()->removeAttributes(getArgNo() + 1,
207                                 AttributeSet::get(Parent->getContext(),
208                                                   getArgNo() + 1, B));
209 }
210 
211 /// hasAttribute - Checks if an argument has a given attribute.
212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
213   return getParent()->hasAttribute(getArgNo() + 1, Kind);
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // Helper Methods in Function
218 //===----------------------------------------------------------------------===//
219 
220 bool Function::isMaterializable() const {
221   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
222 }
223 
224 void Function::setIsMaterializable(bool V) {
225   unsigned Mask = 1 << IsMaterializableBit;
226   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
227                               (V ? Mask : 0u));
228 }
229 
230 LLVMContext &Function::getContext() const {
231   return getType()->getContext();
232 }
233 
234 FunctionType *Function::getFunctionType() const {
235   return cast<FunctionType>(getValueType());
236 }
237 
238 bool Function::isVarArg() const {
239   return getFunctionType()->isVarArg();
240 }
241 
242 Type *Function::getReturnType() const {
243   return getFunctionType()->getReturnType();
244 }
245 
246 void Function::removeFromParent() {
247   getParent()->getFunctionList().remove(getIterator());
248 }
249 
250 void Function::eraseFromParent() {
251   getParent()->getFunctionList().erase(getIterator());
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // Function Implementation
256 //===----------------------------------------------------------------------===//
257 
258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
259                    Module *ParentModule)
260     : GlobalObject(Ty, Value::FunctionVal,
261                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
262   assert(FunctionType::isValidReturnType(getReturnType()) &&
263          "invalid return type");
264   setGlobalObjectSubClassData(0);
265   SymTab = new ValueSymbolTable();
266 
267   // If the function has arguments, mark them as lazily built.
268   if (Ty->getNumParams())
269     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
270 
271   if (ParentModule)
272     ParentModule->getFunctionList().push_back(this);
273 
274   // Ensure intrinsics have the right parameter attributes.
275   // Note, the IntID field will have been set in Value::setName if this function
276   // name is a valid intrinsic ID.
277   if (IntID)
278     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
279 }
280 
281 Function::~Function() {
282   dropAllReferences();    // After this it is safe to delete instructions.
283 
284   // Delete all of the method arguments and unlink from symbol table...
285   ArgumentList.clear();
286   delete SymTab;
287 
288   // Remove the function from the on-the-side GC table.
289   clearGC();
290 }
291 
292 void Function::BuildLazyArguments() const {
293   // Create the arguments vector, all arguments start out unnamed.
294   FunctionType *FT = getFunctionType();
295   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
296     assert(!FT->getParamType(i)->isVoidTy() &&
297            "Cannot have void typed arguments!");
298     ArgumentList.push_back(new Argument(FT->getParamType(i)));
299   }
300 
301   // Clear the lazy arguments bit.
302   unsigned SDC = getSubclassDataFromValue();
303   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
304 }
305 
306 void Function::stealArgumentListFrom(Function &Src) {
307   assert(isDeclaration() && "Expected no references to current arguments");
308 
309   // Drop the current arguments, if any, and set the lazy argument bit.
310   if (!hasLazyArguments()) {
311     assert(llvm::all_of(ArgumentList,
312                         [](const Argument &A) { return A.use_empty(); }) &&
313            "Expected arguments to be unused in declaration");
314     ArgumentList.clear();
315     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316   }
317 
318   // Nothing to steal if Src has lazy arguments.
319   if (Src.hasLazyArguments())
320     return;
321 
322   // Steal arguments from Src, and fix the lazy argument bits.
323   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
324   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
325   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
326 }
327 
328 size_t Function::arg_size() const {
329   return getFunctionType()->getNumParams();
330 }
331 bool Function::arg_empty() const {
332   return getFunctionType()->getNumParams() == 0;
333 }
334 
335 void Function::setParent(Module *parent) {
336   Parent = parent;
337 }
338 
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining.  This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero.  Then everything is deleted for real.  Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
347 void Function::dropAllReferences() {
348   setIsMaterializable(false);
349 
350   for (iterator I = begin(), E = end(); I != E; ++I)
351     I->dropAllReferences();
352 
353   // Delete all basic blocks. They are now unused, except possibly by
354   // blockaddresses, but BasicBlock's destructor takes care of those.
355   while (!BasicBlocks.empty())
356     BasicBlocks.begin()->eraseFromParent();
357 
358   // Drop uses of any optional data (real or placeholder).
359   if (getNumOperands()) {
360     User::dropAllReferences();
361     setNumHungOffUseOperands(0);
362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363   }
364 
365   // Metadata is stored in a side-table.
366   clearMetadata();
367 }
368 
369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370   AttributeSet PAL = getAttributes();
371   PAL = PAL.addAttribute(getContext(), i, Kind);
372   setAttributes(PAL);
373 }
374 
375 void Function::addAttribute(unsigned i, Attribute Attr) {
376   AttributeSet PAL = getAttributes();
377   PAL = PAL.addAttribute(getContext(), i, Attr);
378   setAttributes(PAL);
379 }
380 
381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
382   AttributeSet PAL = getAttributes();
383   PAL = PAL.addAttributes(getContext(), i, Attrs);
384   setAttributes(PAL);
385 }
386 
387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
388   AttributeSet PAL = getAttributes();
389   PAL = PAL.removeAttribute(getContext(), i, Kind);
390   setAttributes(PAL);
391 }
392 
393 void Function::removeAttribute(unsigned i, StringRef Kind) {
394   AttributeSet PAL = getAttributes();
395   PAL = PAL.removeAttribute(getContext(), i, Kind);
396   setAttributes(PAL);
397 }
398 
399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
400   AttributeSet PAL = getAttributes();
401   PAL = PAL.removeAttributes(getContext(), i, Attrs);
402   setAttributes(PAL);
403 }
404 
405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
406   AttributeSet PAL = getAttributes();
407   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
408   setAttributes(PAL);
409 }
410 
411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
412   AttributeSet PAL = getAttributes();
413   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
414   setAttributes(PAL);
415 }
416 
417 const std::string &Function::getGC() const {
418   assert(hasGC() && "Function has no collector");
419   return getContext().getGC(*this);
420 }
421 
422 void Function::setGC(std::string Str) {
423   setValueSubclassDataBit(14, !Str.empty());
424   getContext().setGC(*this, std::move(Str));
425 }
426 
427 void Function::clearGC() {
428   if (!hasGC())
429     return;
430   getContext().deleteGC(*this);
431   setValueSubclassDataBit(14, false);
432 }
433 
434 /// Copy all additional attributes (those not needed to create a Function) from
435 /// the Function Src to this one.
436 void Function::copyAttributesFrom(const GlobalValue *Src) {
437   GlobalObject::copyAttributesFrom(Src);
438   const Function *SrcF = dyn_cast<Function>(Src);
439   if (!SrcF)
440     return;
441 
442   setCallingConv(SrcF->getCallingConv());
443   setAttributes(SrcF->getAttributes());
444   if (SrcF->hasGC())
445     setGC(SrcF->getGC());
446   else
447     clearGC();
448   if (SrcF->hasPersonalityFn())
449     setPersonalityFn(SrcF->getPersonalityFn());
450   if (SrcF->hasPrefixData())
451     setPrefixData(SrcF->getPrefixData());
452   if (SrcF->hasPrologueData())
453     setPrologueData(SrcF->getPrologueData());
454 }
455 
456 /// Table of string intrinsic names indexed by enum value.
457 static const char * const IntrinsicNameTable[] = {
458   "not_intrinsic",
459 #define GET_INTRINSIC_NAME_TABLE
460 #include "llvm/IR/Intrinsics.gen"
461 #undef GET_INTRINSIC_NAME_TABLE
462 };
463 
464 /// \brief This does the actual lookup of an intrinsic ID which
465 /// matches the given function name.
466 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) {
467   StringRef Name = ValName->getKey();
468 
469   ArrayRef<const char *> NameTable(&IntrinsicNameTable[1],
470                                    std::end(IntrinsicNameTable));
471   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
472   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1);
473   if (ID == Intrinsic::not_intrinsic)
474     return ID;
475 
476   // If the intrinsic is not overloaded, require an exact match. If it is
477   // overloaded, require a prefix match.
478   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
479   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
480 }
481 
482 void Function::recalculateIntrinsicID() {
483   const ValueName *ValName = this->getValueName();
484   if (!ValName || !isIntrinsic()) {
485     IntID = Intrinsic::not_intrinsic;
486     return;
487   }
488   IntID = lookupIntrinsicID(ValName);
489 }
490 
491 /// Returns a stable mangling for the type specified for use in the name
492 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
493 /// of named types is simply their name.  Manglings for unnamed types consist
494 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
495 /// combined with the mangling of their component types.  A vararg function
496 /// type will have a suffix of 'vararg'.  Since function types can contain
497 /// other function types, we close a function type mangling with suffix 'f'
498 /// which can't be confused with it's prefix.  This ensures we don't have
499 /// collisions between two unrelated function types. Otherwise, you might
500 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
501 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
502 /// cases) fall back to the MVT codepath, where they could be mangled to
503 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
504 /// everything.
505 static std::string getMangledTypeStr(Type* Ty) {
506   std::string Result;
507   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
508     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
509       getMangledTypeStr(PTyp->getElementType());
510   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
511     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
512       getMangledTypeStr(ATyp->getElementType());
513   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
514     assert(!STyp->isLiteral() && "TODO: implement literal types");
515     Result += STyp->getName();
516   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
517     Result += "f_" + getMangledTypeStr(FT->getReturnType());
518     for (size_t i = 0; i < FT->getNumParams(); i++)
519       Result += getMangledTypeStr(FT->getParamType(i));
520     if (FT->isVarArg())
521       Result += "vararg";
522     // Ensure nested function types are distinguishable.
523     Result += "f";
524   } else if (isa<VectorType>(Ty))
525     Result += "v" + utostr(Ty->getVectorNumElements()) +
526       getMangledTypeStr(Ty->getVectorElementType());
527   else if (Ty)
528     Result += EVT::getEVT(Ty).getEVTString();
529   return Result;
530 }
531 
532 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
533   assert(id < num_intrinsics && "Invalid intrinsic ID!");
534   if (Tys.empty())
535     return IntrinsicNameTable[id];
536   std::string Result(IntrinsicNameTable[id]);
537   for (unsigned i = 0; i < Tys.size(); ++i) {
538     Result += "." + getMangledTypeStr(Tys[i]);
539   }
540   return Result;
541 }
542 
543 
544 /// IIT_Info - These are enumerators that describe the entries returned by the
545 /// getIntrinsicInfoTableEntries function.
546 ///
547 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
548 enum IIT_Info {
549   // Common values should be encoded with 0-15.
550   IIT_Done = 0,
551   IIT_I1   = 1,
552   IIT_I8   = 2,
553   IIT_I16  = 3,
554   IIT_I32  = 4,
555   IIT_I64  = 5,
556   IIT_F16  = 6,
557   IIT_F32  = 7,
558   IIT_F64  = 8,
559   IIT_V2   = 9,
560   IIT_V4   = 10,
561   IIT_V8   = 11,
562   IIT_V16  = 12,
563   IIT_V32  = 13,
564   IIT_PTR  = 14,
565   IIT_ARG  = 15,
566 
567   // Values from 16+ are only encodable with the inefficient encoding.
568   IIT_V64  = 16,
569   IIT_MMX  = 17,
570   IIT_TOKEN = 18,
571   IIT_METADATA = 19,
572   IIT_EMPTYSTRUCT = 20,
573   IIT_STRUCT2 = 21,
574   IIT_STRUCT3 = 22,
575   IIT_STRUCT4 = 23,
576   IIT_STRUCT5 = 24,
577   IIT_EXTEND_ARG = 25,
578   IIT_TRUNC_ARG = 26,
579   IIT_ANYPTR = 27,
580   IIT_V1   = 28,
581   IIT_VARARG = 29,
582   IIT_HALF_VEC_ARG = 30,
583   IIT_SAME_VEC_WIDTH_ARG = 31,
584   IIT_PTR_TO_ARG = 32,
585   IIT_VEC_OF_PTRS_TO_ELT = 33,
586   IIT_I128 = 34,
587   IIT_V512 = 35,
588   IIT_V1024 = 36
589 };
590 
591 
592 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
593                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
594   IIT_Info Info = IIT_Info(Infos[NextElt++]);
595   unsigned StructElts = 2;
596   using namespace Intrinsic;
597 
598   switch (Info) {
599   case IIT_Done:
600     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
601     return;
602   case IIT_VARARG:
603     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
604     return;
605   case IIT_MMX:
606     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
607     return;
608   case IIT_TOKEN:
609     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
610     return;
611   case IIT_METADATA:
612     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
613     return;
614   case IIT_F16:
615     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
616     return;
617   case IIT_F32:
618     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
619     return;
620   case IIT_F64:
621     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
622     return;
623   case IIT_I1:
624     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
625     return;
626   case IIT_I8:
627     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
628     return;
629   case IIT_I16:
630     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
631     return;
632   case IIT_I32:
633     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
634     return;
635   case IIT_I64:
636     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
637     return;
638   case IIT_I128:
639     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
640     return;
641   case IIT_V1:
642     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
643     DecodeIITType(NextElt, Infos, OutputTable);
644     return;
645   case IIT_V2:
646     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
647     DecodeIITType(NextElt, Infos, OutputTable);
648     return;
649   case IIT_V4:
650     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
651     DecodeIITType(NextElt, Infos, OutputTable);
652     return;
653   case IIT_V8:
654     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
655     DecodeIITType(NextElt, Infos, OutputTable);
656     return;
657   case IIT_V16:
658     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
659     DecodeIITType(NextElt, Infos, OutputTable);
660     return;
661   case IIT_V32:
662     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
663     DecodeIITType(NextElt, Infos, OutputTable);
664     return;
665   case IIT_V64:
666     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
667     DecodeIITType(NextElt, Infos, OutputTable);
668     return;
669   case IIT_V512:
670     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
671     DecodeIITType(NextElt, Infos, OutputTable);
672     return;
673   case IIT_V1024:
674     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
675     DecodeIITType(NextElt, Infos, OutputTable);
676     return;
677   case IIT_PTR:
678     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
679     DecodeIITType(NextElt, Infos, OutputTable);
680     return;
681   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
682     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
683                                              Infos[NextElt++]));
684     DecodeIITType(NextElt, Infos, OutputTable);
685     return;
686   }
687   case IIT_ARG: {
688     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
689     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
690     return;
691   }
692   case IIT_EXTEND_ARG: {
693     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
694     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
695                                              ArgInfo));
696     return;
697   }
698   case IIT_TRUNC_ARG: {
699     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
700     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
701                                              ArgInfo));
702     return;
703   }
704   case IIT_HALF_VEC_ARG: {
705     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
706     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
707                                              ArgInfo));
708     return;
709   }
710   case IIT_SAME_VEC_WIDTH_ARG: {
711     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
712     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
713                                              ArgInfo));
714     return;
715   }
716   case IIT_PTR_TO_ARG: {
717     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
718     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
719                                              ArgInfo));
720     return;
721   }
722   case IIT_VEC_OF_PTRS_TO_ELT: {
723     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
724     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
725                                              ArgInfo));
726     return;
727   }
728   case IIT_EMPTYSTRUCT:
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
730     return;
731   case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
732   case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
733   case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
734   case IIT_STRUCT2: {
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
736 
737     for (unsigned i = 0; i != StructElts; ++i)
738       DecodeIITType(NextElt, Infos, OutputTable);
739     return;
740   }
741   }
742   llvm_unreachable("unhandled");
743 }
744 
745 
746 #define GET_INTRINSIC_GENERATOR_GLOBAL
747 #include "llvm/IR/Intrinsics.gen"
748 #undef GET_INTRINSIC_GENERATOR_GLOBAL
749 
750 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
751                                              SmallVectorImpl<IITDescriptor> &T){
752   // Check to see if the intrinsic's type was expressible by the table.
753   unsigned TableVal = IIT_Table[id-1];
754 
755   // Decode the TableVal into an array of IITValues.
756   SmallVector<unsigned char, 8> IITValues;
757   ArrayRef<unsigned char> IITEntries;
758   unsigned NextElt = 0;
759   if ((TableVal >> 31) != 0) {
760     // This is an offset into the IIT_LongEncodingTable.
761     IITEntries = IIT_LongEncodingTable;
762 
763     // Strip sentinel bit.
764     NextElt = (TableVal << 1) >> 1;
765   } else {
766     // Decode the TableVal into an array of IITValues.  If the entry was encoded
767     // into a single word in the table itself, decode it now.
768     do {
769       IITValues.push_back(TableVal & 0xF);
770       TableVal >>= 4;
771     } while (TableVal);
772 
773     IITEntries = IITValues;
774     NextElt = 0;
775   }
776 
777   // Okay, decode the table into the output vector of IITDescriptors.
778   DecodeIITType(NextElt, IITEntries, T);
779   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
780     DecodeIITType(NextElt, IITEntries, T);
781 }
782 
783 
784 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
785                              ArrayRef<Type*> Tys, LLVMContext &Context) {
786   using namespace Intrinsic;
787   IITDescriptor D = Infos.front();
788   Infos = Infos.slice(1);
789 
790   switch (D.Kind) {
791   case IITDescriptor::Void: return Type::getVoidTy(Context);
792   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
793   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
794   case IITDescriptor::Token: return Type::getTokenTy(Context);
795   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
796   case IITDescriptor::Half: return Type::getHalfTy(Context);
797   case IITDescriptor::Float: return Type::getFloatTy(Context);
798   case IITDescriptor::Double: return Type::getDoubleTy(Context);
799 
800   case IITDescriptor::Integer:
801     return IntegerType::get(Context, D.Integer_Width);
802   case IITDescriptor::Vector:
803     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
804   case IITDescriptor::Pointer:
805     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
806                             D.Pointer_AddressSpace);
807   case IITDescriptor::Struct: {
808     Type *Elts[5];
809     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
810     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
811       Elts[i] = DecodeFixedType(Infos, Tys, Context);
812     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
813   }
814 
815   case IITDescriptor::Argument:
816     return Tys[D.getArgumentNumber()];
817   case IITDescriptor::ExtendArgument: {
818     Type *Ty = Tys[D.getArgumentNumber()];
819     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
820       return VectorType::getExtendedElementVectorType(VTy);
821 
822     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
823   }
824   case IITDescriptor::TruncArgument: {
825     Type *Ty = Tys[D.getArgumentNumber()];
826     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
827       return VectorType::getTruncatedElementVectorType(VTy);
828 
829     IntegerType *ITy = cast<IntegerType>(Ty);
830     assert(ITy->getBitWidth() % 2 == 0);
831     return IntegerType::get(Context, ITy->getBitWidth() / 2);
832   }
833   case IITDescriptor::HalfVecArgument:
834     return VectorType::getHalfElementsVectorType(cast<VectorType>(
835                                                   Tys[D.getArgumentNumber()]));
836   case IITDescriptor::SameVecWidthArgument: {
837     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
838     Type *Ty = Tys[D.getArgumentNumber()];
839     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
840       return VectorType::get(EltTy, VTy->getNumElements());
841     }
842     llvm_unreachable("unhandled");
843   }
844   case IITDescriptor::PtrToArgument: {
845     Type *Ty = Tys[D.getArgumentNumber()];
846     return PointerType::getUnqual(Ty);
847   }
848   case IITDescriptor::VecOfPtrsToElt: {
849     Type *Ty = Tys[D.getArgumentNumber()];
850     VectorType *VTy = dyn_cast<VectorType>(Ty);
851     if (!VTy)
852       llvm_unreachable("Expected an argument of Vector Type");
853     Type *EltTy = VTy->getVectorElementType();
854     return VectorType::get(PointerType::getUnqual(EltTy),
855                            VTy->getNumElements());
856   }
857  }
858   llvm_unreachable("unhandled");
859 }
860 
861 
862 
863 FunctionType *Intrinsic::getType(LLVMContext &Context,
864                                  ID id, ArrayRef<Type*> Tys) {
865   SmallVector<IITDescriptor, 8> Table;
866   getIntrinsicInfoTableEntries(id, Table);
867 
868   ArrayRef<IITDescriptor> TableRef = Table;
869   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
870 
871   SmallVector<Type*, 8> ArgTys;
872   while (!TableRef.empty())
873     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
874 
875   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
876   // If we see void type as the type of the last argument, it is vararg intrinsic
877   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
878     ArgTys.pop_back();
879     return FunctionType::get(ResultTy, ArgTys, true);
880   }
881   return FunctionType::get(ResultTy, ArgTys, false);
882 }
883 
884 bool Intrinsic::isOverloaded(ID id) {
885 #define GET_INTRINSIC_OVERLOAD_TABLE
886 #include "llvm/IR/Intrinsics.gen"
887 #undef GET_INTRINSIC_OVERLOAD_TABLE
888 }
889 
890 bool Intrinsic::isLeaf(ID id) {
891   switch (id) {
892   default:
893     return true;
894 
895   case Intrinsic::experimental_gc_statepoint:
896   case Intrinsic::experimental_patchpoint_void:
897   case Intrinsic::experimental_patchpoint_i64:
898     return false;
899   }
900 }
901 
902 /// This defines the "Intrinsic::getAttributes(ID id)" method.
903 #define GET_INTRINSIC_ATTRIBUTES
904 #include "llvm/IR/Intrinsics.gen"
905 #undef GET_INTRINSIC_ATTRIBUTES
906 
907 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
908   // There can never be multiple globals with the same name of different types,
909   // because intrinsics must be a specific type.
910   return
911     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
912                                           getType(M->getContext(), id, Tys)));
913 }
914 
915 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
916 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
917 #include "llvm/IR/Intrinsics.gen"
918 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
919 
920 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
921 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
922 #include "llvm/IR/Intrinsics.gen"
923 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
924 
925 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
926                                    SmallVectorImpl<Type*> &ArgTys) {
927   using namespace Intrinsic;
928 
929   // If we ran out of descriptors, there are too many arguments.
930   if (Infos.empty()) return true;
931   IITDescriptor D = Infos.front();
932   Infos = Infos.slice(1);
933 
934   switch (D.Kind) {
935     case IITDescriptor::Void: return !Ty->isVoidTy();
936     case IITDescriptor::VarArg: return true;
937     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
938     case IITDescriptor::Token: return !Ty->isTokenTy();
939     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
940     case IITDescriptor::Half: return !Ty->isHalfTy();
941     case IITDescriptor::Float: return !Ty->isFloatTy();
942     case IITDescriptor::Double: return !Ty->isDoubleTy();
943     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
944     case IITDescriptor::Vector: {
945       VectorType *VT = dyn_cast<VectorType>(Ty);
946       return !VT || VT->getNumElements() != D.Vector_Width ||
947              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
948     }
949     case IITDescriptor::Pointer: {
950       PointerType *PT = dyn_cast<PointerType>(Ty);
951       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
952              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
953     }
954 
955     case IITDescriptor::Struct: {
956       StructType *ST = dyn_cast<StructType>(Ty);
957       if (!ST || ST->getNumElements() != D.Struct_NumElements)
958         return true;
959 
960       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
961         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
962           return true;
963       return false;
964     }
965 
966     case IITDescriptor::Argument:
967       // Two cases here - If this is the second occurrence of an argument, verify
968       // that the later instance matches the previous instance.
969       if (D.getArgumentNumber() < ArgTys.size())
970         return Ty != ArgTys[D.getArgumentNumber()];
971 
972           // Otherwise, if this is the first instance of an argument, record it and
973           // verify the "Any" kind.
974           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
975           ArgTys.push_back(Ty);
976 
977           switch (D.getArgumentKind()) {
978             case IITDescriptor::AK_Any:        return false; // Success
979             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
980             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
981             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
982             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
983           }
984           llvm_unreachable("all argument kinds not covered");
985 
986     case IITDescriptor::ExtendArgument: {
987       // This may only be used when referring to a previous vector argument.
988       if (D.getArgumentNumber() >= ArgTys.size())
989         return true;
990 
991       Type *NewTy = ArgTys[D.getArgumentNumber()];
992       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
993         NewTy = VectorType::getExtendedElementVectorType(VTy);
994       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
995         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
996       else
997         return true;
998 
999       return Ty != NewTy;
1000     }
1001     case IITDescriptor::TruncArgument: {
1002       // This may only be used when referring to a previous vector argument.
1003       if (D.getArgumentNumber() >= ArgTys.size())
1004         return true;
1005 
1006       Type *NewTy = ArgTys[D.getArgumentNumber()];
1007       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1008         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1009       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1010         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1011       else
1012         return true;
1013 
1014       return Ty != NewTy;
1015     }
1016     case IITDescriptor::HalfVecArgument:
1017       // This may only be used when referring to a previous vector argument.
1018       return D.getArgumentNumber() >= ArgTys.size() ||
1019              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1020              VectorType::getHalfElementsVectorType(
1021                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1022     case IITDescriptor::SameVecWidthArgument: {
1023       if (D.getArgumentNumber() >= ArgTys.size())
1024         return true;
1025       VectorType * ReferenceType =
1026               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1027       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1028       if (!ThisArgType || !ReferenceType ||
1029           (ReferenceType->getVectorNumElements() !=
1030            ThisArgType->getVectorNumElements()))
1031         return true;
1032       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1033                                 Infos, ArgTys);
1034     }
1035     case IITDescriptor::PtrToArgument: {
1036       if (D.getArgumentNumber() >= ArgTys.size())
1037         return true;
1038       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1039       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1040       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1041     }
1042     case IITDescriptor::VecOfPtrsToElt: {
1043       if (D.getArgumentNumber() >= ArgTys.size())
1044         return true;
1045       VectorType * ReferenceType =
1046               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1047       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1048       if (!ThisArgVecTy || !ReferenceType ||
1049           (ReferenceType->getVectorNumElements() !=
1050            ThisArgVecTy->getVectorNumElements()))
1051         return true;
1052       PointerType *ThisArgEltTy =
1053               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1054       if (!ThisArgEltTy)
1055         return true;
1056       return ThisArgEltTy->getElementType() !=
1057              ReferenceType->getVectorElementType();
1058     }
1059   }
1060   llvm_unreachable("unhandled");
1061 }
1062 
1063 /// hasAddressTaken - returns true if there are any uses of this function
1064 /// other than direct calls or invokes to it.
1065 bool Function::hasAddressTaken(const User* *PutOffender) const {
1066   for (const Use &U : uses()) {
1067     const User *FU = U.getUser();
1068     if (isa<BlockAddress>(FU))
1069       continue;
1070     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1071       if (PutOffender)
1072         *PutOffender = FU;
1073       return true;
1074     }
1075     ImmutableCallSite CS(cast<Instruction>(FU));
1076     if (!CS.isCallee(&U)) {
1077       if (PutOffender)
1078         *PutOffender = FU;
1079       return true;
1080     }
1081   }
1082   return false;
1083 }
1084 
1085 bool Function::isDefTriviallyDead() const {
1086   // Check the linkage
1087   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1088       !hasAvailableExternallyLinkage())
1089     return false;
1090 
1091   // Check if the function is used by anything other than a blockaddress.
1092   for (const User *U : users())
1093     if (!isa<BlockAddress>(U))
1094       return false;
1095 
1096   return true;
1097 }
1098 
1099 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1100 /// setjmp or other function that gcc recognizes as "returning twice".
1101 bool Function::callsFunctionThatReturnsTwice() const {
1102   for (const_inst_iterator
1103          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1104     ImmutableCallSite CS(&*I);
1105     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1106       return true;
1107   }
1108 
1109   return false;
1110 }
1111 
1112 Constant *Function::getPersonalityFn() const {
1113   assert(hasPersonalityFn() && getNumOperands());
1114   return cast<Constant>(Op<0>());
1115 }
1116 
1117 void Function::setPersonalityFn(Constant *Fn) {
1118   setHungoffOperand<0>(Fn);
1119   setValueSubclassDataBit(3, Fn != nullptr);
1120 }
1121 
1122 Constant *Function::getPrefixData() const {
1123   assert(hasPrefixData() && getNumOperands());
1124   return cast<Constant>(Op<1>());
1125 }
1126 
1127 void Function::setPrefixData(Constant *PrefixData) {
1128   setHungoffOperand<1>(PrefixData);
1129   setValueSubclassDataBit(1, PrefixData != nullptr);
1130 }
1131 
1132 Constant *Function::getPrologueData() const {
1133   assert(hasPrologueData() && getNumOperands());
1134   return cast<Constant>(Op<2>());
1135 }
1136 
1137 void Function::setPrologueData(Constant *PrologueData) {
1138   setHungoffOperand<2>(PrologueData);
1139   setValueSubclassDataBit(2, PrologueData != nullptr);
1140 }
1141 
1142 void Function::allocHungoffUselist() {
1143   // If we've already allocated a uselist, stop here.
1144   if (getNumOperands())
1145     return;
1146 
1147   allocHungoffUses(3, /*IsPhi=*/ false);
1148   setNumHungOffUseOperands(3);
1149 
1150   // Initialize the uselist with placeholder operands to allow traversal.
1151   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1152   Op<0>().set(CPN);
1153   Op<1>().set(CPN);
1154   Op<2>().set(CPN);
1155 }
1156 
1157 template <int Idx>
1158 void Function::setHungoffOperand(Constant *C) {
1159   if (C) {
1160     allocHungoffUselist();
1161     Op<Idx>().set(C);
1162   } else if (getNumOperands()) {
1163     Op<Idx>().set(
1164         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1165   }
1166 }
1167 
1168 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1169   assert(Bit < 16 && "SubclassData contains only 16 bits");
1170   if (On)
1171     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1172   else
1173     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1174 }
1175 
1176 void Function::setEntryCount(uint64_t Count) {
1177   MDBuilder MDB(getContext());
1178   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1179 }
1180 
1181 Optional<uint64_t> Function::getEntryCount() const {
1182   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1183   if (MD && MD->getOperand(0))
1184     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1185       if (MDS->getString().equals("function_entry_count")) {
1186         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1187         return CI->getValue().getZExtValue();
1188       }
1189   return None;
1190 }
1191