xref: /llvm-project/llvm/lib/IR/Function.cpp (revision a60cdd38812d2f2cc32a2446b24bca607a1f6341)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 using namespace llvm;
30 
31 // Explicit instantiations of SymbolTableListTraits since some of the methods
32 // are not in the public header file...
33 template class llvm::SymbolTableListTraits<Argument>;
34 template class llvm::SymbolTableListTraits<BasicBlock>;
35 
36 //===----------------------------------------------------------------------===//
37 // Argument Implementation
38 //===----------------------------------------------------------------------===//
39 
40 void Argument::anchor() { }
41 
42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
43   : Value(Ty, Value::ArgumentVal) {
44   Parent = nullptr;
45 
46   if (Par)
47     Par->getArgumentList().push_back(this);
48   setName(Name);
49 }
50 
51 void Argument::setParent(Function *parent) {
52   Parent = parent;
53 }
54 
55 unsigned Argument::getArgNo() const {
56   const Function *F = getParent();
57   assert(F && "Argument is not in a function");
58 
59   Function::const_arg_iterator AI = F->arg_begin();
60   unsigned ArgIdx = 0;
61   for (; &*AI != this; ++AI)
62     ++ArgIdx;
63 
64   return ArgIdx;
65 }
66 
67 bool Argument::hasNonNullAttr() const {
68   if (!getType()->isPointerTy()) return false;
69   if (getParent()->getAttributes().
70         hasAttribute(getArgNo()+1, Attribute::NonNull))
71     return true;
72   else if (getDereferenceableBytes() > 0 &&
73            getType()->getPointerAddressSpace() == 0)
74     return true;
75   return false;
76 }
77 
78 bool Argument::hasByValAttr() const {
79   if (!getType()->isPointerTy()) return false;
80   return hasAttribute(Attribute::ByVal);
81 }
82 
83 bool Argument::hasSwiftSelfAttr() const {
84   return getParent()->getAttributes().
85     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
86 }
87 
88 bool Argument::hasSwiftErrorAttr() const {
89   return getParent()->getAttributes().
90     hasAttribute(getArgNo()+1, Attribute::SwiftError);
91 }
92 
93 bool Argument::hasInAllocaAttr() const {
94   if (!getType()->isPointerTy()) return false;
95   return hasAttribute(Attribute::InAlloca);
96 }
97 
98 bool Argument::hasByValOrInAllocaAttr() const {
99   if (!getType()->isPointerTy()) return false;
100   AttributeSet Attrs = getParent()->getAttributes();
101   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
102          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
103 }
104 
105 unsigned Argument::getParamAlignment() const {
106   assert(getType()->isPointerTy() && "Only pointers have alignments");
107   return getParent()->getParamAlignment(getArgNo()+1);
108 
109 }
110 
111 uint64_t Argument::getDereferenceableBytes() const {
112   assert(getType()->isPointerTy() &&
113          "Only pointers have dereferenceable bytes");
114   return getParent()->getDereferenceableBytes(getArgNo()+1);
115 }
116 
117 uint64_t Argument::getDereferenceableOrNullBytes() const {
118   assert(getType()->isPointerTy() &&
119          "Only pointers have dereferenceable bytes");
120   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
121 }
122 
123 bool Argument::hasNestAttr() const {
124   if (!getType()->isPointerTy()) return false;
125   return hasAttribute(Attribute::Nest);
126 }
127 
128 bool Argument::hasNoAliasAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::NoAlias);
131 }
132 
133 bool Argument::hasNoCaptureAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::NoCapture);
136 }
137 
138 bool Argument::hasStructRetAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::StructRet);
141 }
142 
143 bool Argument::hasReturnedAttr() const {
144   return hasAttribute(Attribute::Returned);
145 }
146 
147 bool Argument::hasZExtAttr() const {
148   return hasAttribute(Attribute::ZExt);
149 }
150 
151 bool Argument::hasSExtAttr() const {
152   return hasAttribute(Attribute::SExt);
153 }
154 
155 bool Argument::onlyReadsMemory() const {
156   return getParent()->getAttributes().
157       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
158       getParent()->getAttributes().
159       hasAttribute(getArgNo()+1, Attribute::ReadNone);
160 }
161 
162 void Argument::addAttr(AttributeSet AS) {
163   assert(AS.getNumSlots() <= 1 &&
164          "Trying to add more than one attribute set to an argument!");
165   AttrBuilder B(AS, AS.getSlotIndex(0));
166   getParent()->addAttributes(getArgNo() + 1,
167                              AttributeSet::get(Parent->getContext(),
168                                                getArgNo() + 1, B));
169 }
170 
171 void Argument::removeAttr(AttributeSet AS) {
172   assert(AS.getNumSlots() <= 1 &&
173          "Trying to remove more than one attribute set from an argument!");
174   AttrBuilder B(AS, AS.getSlotIndex(0));
175   getParent()->removeAttributes(getArgNo() + 1,
176                                 AttributeSet::get(Parent->getContext(),
177                                                   getArgNo() + 1, B));
178 }
179 
180 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
181   return getParent()->hasAttribute(getArgNo() + 1, Kind);
182 }
183 
184 //===----------------------------------------------------------------------===//
185 // Helper Methods in Function
186 //===----------------------------------------------------------------------===//
187 
188 bool Function::isMaterializable() const {
189   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
190 }
191 
192 void Function::setIsMaterializable(bool V) {
193   unsigned Mask = 1 << IsMaterializableBit;
194   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
195                               (V ? Mask : 0u));
196 }
197 
198 LLVMContext &Function::getContext() const {
199   return getType()->getContext();
200 }
201 
202 FunctionType *Function::getFunctionType() const {
203   return cast<FunctionType>(getValueType());
204 }
205 
206 bool Function::isVarArg() const {
207   return getFunctionType()->isVarArg();
208 }
209 
210 Type *Function::getReturnType() const {
211   return getFunctionType()->getReturnType();
212 }
213 
214 void Function::removeFromParent() {
215   getParent()->getFunctionList().remove(getIterator());
216 }
217 
218 void Function::eraseFromParent() {
219   getParent()->getFunctionList().erase(getIterator());
220 }
221 
222 //===----------------------------------------------------------------------===//
223 // Function Implementation
224 //===----------------------------------------------------------------------===//
225 
226 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
227                    Module *ParentModule)
228     : GlobalObject(Ty, Value::FunctionVal,
229                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
230   assert(FunctionType::isValidReturnType(getReturnType()) &&
231          "invalid return type");
232   setGlobalObjectSubClassData(0);
233 
234   // We only need a symbol table for a function if the context keeps value names
235   if (!getContext().shouldDiscardValueNames())
236     SymTab = make_unique<ValueSymbolTable>();
237 
238   // If the function has arguments, mark them as lazily built.
239   if (Ty->getNumParams())
240     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
241 
242   if (ParentModule)
243     ParentModule->getFunctionList().push_back(this);
244 
245   HasLLVMReservedName = getName().startswith("llvm.");
246   // Ensure intrinsics have the right parameter attributes.
247   // Note, the IntID field will have been set in Value::setName if this function
248   // name is a valid intrinsic ID.
249   if (IntID)
250     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
251 }
252 
253 Function::~Function() {
254   dropAllReferences();    // After this it is safe to delete instructions.
255 
256   // Delete all of the method arguments and unlink from symbol table...
257   ArgumentList.clear();
258 
259   // Remove the function from the on-the-side GC table.
260   clearGC();
261 }
262 
263 void Function::BuildLazyArguments() const {
264   // Create the arguments vector, all arguments start out unnamed.
265   FunctionType *FT = getFunctionType();
266   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
267     assert(!FT->getParamType(i)->isVoidTy() &&
268            "Cannot have void typed arguments!");
269     ArgumentList.push_back(new Argument(FT->getParamType(i)));
270   }
271 
272   // Clear the lazy arguments bit.
273   unsigned SDC = getSubclassDataFromValue();
274   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
275 }
276 
277 void Function::stealArgumentListFrom(Function &Src) {
278   assert(isDeclaration() && "Expected no references to current arguments");
279 
280   // Drop the current arguments, if any, and set the lazy argument bit.
281   if (!hasLazyArguments()) {
282     assert(llvm::all_of(ArgumentList,
283                         [](const Argument &A) { return A.use_empty(); }) &&
284            "Expected arguments to be unused in declaration");
285     ArgumentList.clear();
286     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
287   }
288 
289   // Nothing to steal if Src has lazy arguments.
290   if (Src.hasLazyArguments())
291     return;
292 
293   // Steal arguments from Src, and fix the lazy argument bits.
294   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
295   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
296   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
297 }
298 
299 size_t Function::arg_size() const {
300   return getFunctionType()->getNumParams();
301 }
302 bool Function::arg_empty() const {
303   return getFunctionType()->getNumParams() == 0;
304 }
305 
306 // dropAllReferences() - This function causes all the subinstructions to "let
307 // go" of all references that they are maintaining.  This allows one to
308 // 'delete' a whole class at a time, even though there may be circular
309 // references... first all references are dropped, and all use counts go to
310 // zero.  Then everything is deleted for real.  Note that no operations are
311 // valid on an object that has "dropped all references", except operator
312 // delete.
313 //
314 void Function::dropAllReferences() {
315   setIsMaterializable(false);
316 
317   for (BasicBlock &BB : *this)
318     BB.dropAllReferences();
319 
320   // Delete all basic blocks. They are now unused, except possibly by
321   // blockaddresses, but BasicBlock's destructor takes care of those.
322   while (!BasicBlocks.empty())
323     BasicBlocks.begin()->eraseFromParent();
324 
325   // Drop uses of any optional data (real or placeholder).
326   if (getNumOperands()) {
327     User::dropAllReferences();
328     setNumHungOffUseOperands(0);
329     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
330   }
331 
332   // Metadata is stored in a side-table.
333   clearMetadata();
334 }
335 
336 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
337   AttributeSet PAL = getAttributes();
338   PAL = PAL.addAttribute(getContext(), i, Kind);
339   setAttributes(PAL);
340 }
341 
342 void Function::addAttribute(unsigned i, Attribute Attr) {
343   AttributeSet PAL = getAttributes();
344   PAL = PAL.addAttribute(getContext(), i, Attr);
345   setAttributes(PAL);
346 }
347 
348 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
349   AttributeSet PAL = getAttributes();
350   PAL = PAL.addAttributes(getContext(), i, Attrs);
351   setAttributes(PAL);
352 }
353 
354 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
355   AttributeSet PAL = getAttributes();
356   PAL = PAL.removeAttribute(getContext(), i, Kind);
357   setAttributes(PAL);
358 }
359 
360 void Function::removeAttribute(unsigned i, StringRef Kind) {
361   AttributeSet PAL = getAttributes();
362   PAL = PAL.removeAttribute(getContext(), i, Kind);
363   setAttributes(PAL);
364 }
365 
366 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
367   AttributeSet PAL = getAttributes();
368   PAL = PAL.removeAttributes(getContext(), i, Attrs);
369   setAttributes(PAL);
370 }
371 
372 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
373   AttributeSet PAL = getAttributes();
374   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
375   setAttributes(PAL);
376 }
377 
378 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
379   AttributeSet PAL = getAttributes();
380   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
381   setAttributes(PAL);
382 }
383 
384 const std::string &Function::getGC() const {
385   assert(hasGC() && "Function has no collector");
386   return getContext().getGC(*this);
387 }
388 
389 void Function::setGC(std::string Str) {
390   setValueSubclassDataBit(14, !Str.empty());
391   getContext().setGC(*this, std::move(Str));
392 }
393 
394 void Function::clearGC() {
395   if (!hasGC())
396     return;
397   getContext().deleteGC(*this);
398   setValueSubclassDataBit(14, false);
399 }
400 
401 /// Copy all additional attributes (those not needed to create a Function) from
402 /// the Function Src to this one.
403 void Function::copyAttributesFrom(const GlobalValue *Src) {
404   GlobalObject::copyAttributesFrom(Src);
405   const Function *SrcF = dyn_cast<Function>(Src);
406   if (!SrcF)
407     return;
408 
409   setCallingConv(SrcF->getCallingConv());
410   setAttributes(SrcF->getAttributes());
411   if (SrcF->hasGC())
412     setGC(SrcF->getGC());
413   else
414     clearGC();
415   if (SrcF->hasPersonalityFn())
416     setPersonalityFn(SrcF->getPersonalityFn());
417   if (SrcF->hasPrefixData())
418     setPrefixData(SrcF->getPrefixData());
419   if (SrcF->hasPrologueData())
420     setPrologueData(SrcF->getPrologueData());
421 }
422 
423 /// Table of string intrinsic names indexed by enum value.
424 static const char * const IntrinsicNameTable[] = {
425   "not_intrinsic",
426 #define GET_INTRINSIC_NAME_TABLE
427 #include "llvm/IR/Intrinsics.gen"
428 #undef GET_INTRINSIC_NAME_TABLE
429 };
430 
431 /// Table of per-target intrinsic name tables.
432 #define GET_INTRINSIC_TARGET_DATA
433 #include "llvm/IR/Intrinsics.gen"
434 #undef GET_INTRINSIC_TARGET_DATA
435 
436 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
437 /// target as \c Name, or the generic table if \c Name is not target specific.
438 ///
439 /// Returns the relevant slice of \c IntrinsicNameTable
440 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
441   assert(Name.startswith("llvm."));
442 
443   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
444   // Drop "llvm." and take the first dotted component. That will be the target
445   // if this is target specific.
446   StringRef Target = Name.drop_front(5).split('.').first;
447   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
448                              [](const IntrinsicTargetInfo &TI,
449                                 StringRef Target) { return TI.Name < Target; });
450   // We've either found the target or just fall back to the generic set, which
451   // is always first.
452   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
453   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
454 }
455 
456 /// \brief This does the actual lookup of an intrinsic ID which
457 /// matches the given function name.
458 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
459   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
460   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
461   if (Idx == -1)
462     return Intrinsic::not_intrinsic;
463 
464   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
465   // an index into a sub-table.
466   int Adjust = NameTable.data() - IntrinsicNameTable;
467   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
468 
469   // If the intrinsic is not overloaded, require an exact match. If it is
470   // overloaded, require a prefix match.
471   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
472   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
473 }
474 
475 void Function::recalculateIntrinsicID() {
476   StringRef Name = getName();
477   if (!Name.startswith("llvm.")) {
478     HasLLVMReservedName = false;
479     IntID = Intrinsic::not_intrinsic;
480     return;
481   }
482   HasLLVMReservedName = true;
483   IntID = lookupIntrinsicID(Name);
484 }
485 
486 /// Returns a stable mangling for the type specified for use in the name
487 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
488 /// of named types is simply their name.  Manglings for unnamed types consist
489 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
490 /// combined with the mangling of their component types.  A vararg function
491 /// type will have a suffix of 'vararg'.  Since function types can contain
492 /// other function types, we close a function type mangling with suffix 'f'
493 /// which can't be confused with it's prefix.  This ensures we don't have
494 /// collisions between two unrelated function types. Otherwise, you might
495 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
496 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
497 /// cases) fall back to the MVT codepath, where they could be mangled to
498 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
499 /// everything.
500 static std::string getMangledTypeStr(Type* Ty) {
501   std::string Result;
502   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
503     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
504       getMangledTypeStr(PTyp->getElementType());
505   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
506     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
507       getMangledTypeStr(ATyp->getElementType());
508   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
509     if (!STyp->isLiteral()) {
510       Result += "s_";
511       Result += STyp->getName();
512     } else {
513       Result += "sl_";
514       for (auto Elem : STyp->elements())
515         Result += getMangledTypeStr(Elem);
516     }
517     // Ensure nested structs are distinguishable.
518     Result += "s";
519   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
520     Result += "f_" + getMangledTypeStr(FT->getReturnType());
521     for (size_t i = 0; i < FT->getNumParams(); i++)
522       Result += getMangledTypeStr(FT->getParamType(i));
523     if (FT->isVarArg())
524       Result += "vararg";
525     // Ensure nested function types are distinguishable.
526     Result += "f";
527   } else if (isa<VectorType>(Ty))
528     Result += "v" + utostr(Ty->getVectorNumElements()) +
529       getMangledTypeStr(Ty->getVectorElementType());
530   else if (Ty)
531     Result += EVT::getEVT(Ty).getEVTString();
532   return Result;
533 }
534 
535 StringRef Intrinsic::getName(ID id) {
536   assert(id < num_intrinsics && "Invalid intrinsic ID!");
537   assert(!isOverloaded(id) &&
538          "This version of getName does not support overloading");
539   return IntrinsicNameTable[id];
540 }
541 
542 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
543   assert(id < num_intrinsics && "Invalid intrinsic ID!");
544   std::string Result(IntrinsicNameTable[id]);
545   for (Type *Ty : Tys) {
546     Result += "." + getMangledTypeStr(Ty);
547   }
548   return Result;
549 }
550 
551 
552 /// IIT_Info - These are enumerators that describe the entries returned by the
553 /// getIntrinsicInfoTableEntries function.
554 ///
555 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
556 enum IIT_Info {
557   // Common values should be encoded with 0-15.
558   IIT_Done = 0,
559   IIT_I1   = 1,
560   IIT_I8   = 2,
561   IIT_I16  = 3,
562   IIT_I32  = 4,
563   IIT_I64  = 5,
564   IIT_F16  = 6,
565   IIT_F32  = 7,
566   IIT_F64  = 8,
567   IIT_V2   = 9,
568   IIT_V4   = 10,
569   IIT_V8   = 11,
570   IIT_V16  = 12,
571   IIT_V32  = 13,
572   IIT_PTR  = 14,
573   IIT_ARG  = 15,
574 
575   // Values from 16+ are only encodable with the inefficient encoding.
576   IIT_V64  = 16,
577   IIT_MMX  = 17,
578   IIT_TOKEN = 18,
579   IIT_METADATA = 19,
580   IIT_EMPTYSTRUCT = 20,
581   IIT_STRUCT2 = 21,
582   IIT_STRUCT3 = 22,
583   IIT_STRUCT4 = 23,
584   IIT_STRUCT5 = 24,
585   IIT_EXTEND_ARG = 25,
586   IIT_TRUNC_ARG = 26,
587   IIT_ANYPTR = 27,
588   IIT_V1   = 28,
589   IIT_VARARG = 29,
590   IIT_HALF_VEC_ARG = 30,
591   IIT_SAME_VEC_WIDTH_ARG = 31,
592   IIT_PTR_TO_ARG = 32,
593   IIT_PTR_TO_ELT = 33,
594   IIT_VEC_OF_PTRS_TO_ELT = 34,
595   IIT_I128 = 35,
596   IIT_V512 = 36,
597   IIT_V1024 = 37
598 };
599 
600 
601 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
602                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
603   IIT_Info Info = IIT_Info(Infos[NextElt++]);
604   unsigned StructElts = 2;
605   using namespace Intrinsic;
606 
607   switch (Info) {
608   case IIT_Done:
609     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
610     return;
611   case IIT_VARARG:
612     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
613     return;
614   case IIT_MMX:
615     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
616     return;
617   case IIT_TOKEN:
618     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
619     return;
620   case IIT_METADATA:
621     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
622     return;
623   case IIT_F16:
624     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
625     return;
626   case IIT_F32:
627     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
628     return;
629   case IIT_F64:
630     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
631     return;
632   case IIT_I1:
633     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
634     return;
635   case IIT_I8:
636     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
637     return;
638   case IIT_I16:
639     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
640     return;
641   case IIT_I32:
642     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
643     return;
644   case IIT_I64:
645     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
646     return;
647   case IIT_I128:
648     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
649     return;
650   case IIT_V1:
651     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
652     DecodeIITType(NextElt, Infos, OutputTable);
653     return;
654   case IIT_V2:
655     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
656     DecodeIITType(NextElt, Infos, OutputTable);
657     return;
658   case IIT_V4:
659     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
660     DecodeIITType(NextElt, Infos, OutputTable);
661     return;
662   case IIT_V8:
663     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
664     DecodeIITType(NextElt, Infos, OutputTable);
665     return;
666   case IIT_V16:
667     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
668     DecodeIITType(NextElt, Infos, OutputTable);
669     return;
670   case IIT_V32:
671     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
672     DecodeIITType(NextElt, Infos, OutputTable);
673     return;
674   case IIT_V64:
675     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
676     DecodeIITType(NextElt, Infos, OutputTable);
677     return;
678   case IIT_V512:
679     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
680     DecodeIITType(NextElt, Infos, OutputTable);
681     return;
682   case IIT_V1024:
683     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
684     DecodeIITType(NextElt, Infos, OutputTable);
685     return;
686   case IIT_PTR:
687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
688     DecodeIITType(NextElt, Infos, OutputTable);
689     return;
690   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
691     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
692                                              Infos[NextElt++]));
693     DecodeIITType(NextElt, Infos, OutputTable);
694     return;
695   }
696   case IIT_ARG: {
697     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
699     return;
700   }
701   case IIT_EXTEND_ARG: {
702     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
703     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
704                                              ArgInfo));
705     return;
706   }
707   case IIT_TRUNC_ARG: {
708     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
709     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
710                                              ArgInfo));
711     return;
712   }
713   case IIT_HALF_VEC_ARG: {
714     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
715     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
716                                              ArgInfo));
717     return;
718   }
719   case IIT_SAME_VEC_WIDTH_ARG: {
720     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
721     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
722                                              ArgInfo));
723     return;
724   }
725   case IIT_PTR_TO_ARG: {
726     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
728                                              ArgInfo));
729     return;
730   }
731   case IIT_PTR_TO_ELT: {
732     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
733     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
734     return;
735   }
736   case IIT_VEC_OF_PTRS_TO_ELT: {
737     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
739                                              ArgInfo));
740     return;
741   }
742   case IIT_EMPTYSTRUCT:
743     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
744     return;
745   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
746   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
747   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
748   case IIT_STRUCT2: {
749     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
750 
751     for (unsigned i = 0; i != StructElts; ++i)
752       DecodeIITType(NextElt, Infos, OutputTable);
753     return;
754   }
755   }
756   llvm_unreachable("unhandled");
757 }
758 
759 
760 #define GET_INTRINSIC_GENERATOR_GLOBAL
761 #include "llvm/IR/Intrinsics.gen"
762 #undef GET_INTRINSIC_GENERATOR_GLOBAL
763 
764 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
765                                              SmallVectorImpl<IITDescriptor> &T){
766   // Check to see if the intrinsic's type was expressible by the table.
767   unsigned TableVal = IIT_Table[id-1];
768 
769   // Decode the TableVal into an array of IITValues.
770   SmallVector<unsigned char, 8> IITValues;
771   ArrayRef<unsigned char> IITEntries;
772   unsigned NextElt = 0;
773   if ((TableVal >> 31) != 0) {
774     // This is an offset into the IIT_LongEncodingTable.
775     IITEntries = IIT_LongEncodingTable;
776 
777     // Strip sentinel bit.
778     NextElt = (TableVal << 1) >> 1;
779   } else {
780     // Decode the TableVal into an array of IITValues.  If the entry was encoded
781     // into a single word in the table itself, decode it now.
782     do {
783       IITValues.push_back(TableVal & 0xF);
784       TableVal >>= 4;
785     } while (TableVal);
786 
787     IITEntries = IITValues;
788     NextElt = 0;
789   }
790 
791   // Okay, decode the table into the output vector of IITDescriptors.
792   DecodeIITType(NextElt, IITEntries, T);
793   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
794     DecodeIITType(NextElt, IITEntries, T);
795 }
796 
797 
798 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
799                              ArrayRef<Type*> Tys, LLVMContext &Context) {
800   using namespace Intrinsic;
801   IITDescriptor D = Infos.front();
802   Infos = Infos.slice(1);
803 
804   switch (D.Kind) {
805   case IITDescriptor::Void: return Type::getVoidTy(Context);
806   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
807   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
808   case IITDescriptor::Token: return Type::getTokenTy(Context);
809   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
810   case IITDescriptor::Half: return Type::getHalfTy(Context);
811   case IITDescriptor::Float: return Type::getFloatTy(Context);
812   case IITDescriptor::Double: return Type::getDoubleTy(Context);
813 
814   case IITDescriptor::Integer:
815     return IntegerType::get(Context, D.Integer_Width);
816   case IITDescriptor::Vector:
817     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
818   case IITDescriptor::Pointer:
819     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
820                             D.Pointer_AddressSpace);
821   case IITDescriptor::Struct: {
822     Type *Elts[5];
823     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
824     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
825       Elts[i] = DecodeFixedType(Infos, Tys, Context);
826     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
827   }
828 
829   case IITDescriptor::Argument:
830     return Tys[D.getArgumentNumber()];
831   case IITDescriptor::ExtendArgument: {
832     Type *Ty = Tys[D.getArgumentNumber()];
833     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
834       return VectorType::getExtendedElementVectorType(VTy);
835 
836     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
837   }
838   case IITDescriptor::TruncArgument: {
839     Type *Ty = Tys[D.getArgumentNumber()];
840     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
841       return VectorType::getTruncatedElementVectorType(VTy);
842 
843     IntegerType *ITy = cast<IntegerType>(Ty);
844     assert(ITy->getBitWidth() % 2 == 0);
845     return IntegerType::get(Context, ITy->getBitWidth() / 2);
846   }
847   case IITDescriptor::HalfVecArgument:
848     return VectorType::getHalfElementsVectorType(cast<VectorType>(
849                                                   Tys[D.getArgumentNumber()]));
850   case IITDescriptor::SameVecWidthArgument: {
851     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
852     Type *Ty = Tys[D.getArgumentNumber()];
853     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
854       return VectorType::get(EltTy, VTy->getNumElements());
855     }
856     llvm_unreachable("unhandled");
857   }
858   case IITDescriptor::PtrToArgument: {
859     Type *Ty = Tys[D.getArgumentNumber()];
860     return PointerType::getUnqual(Ty);
861   }
862   case IITDescriptor::PtrToElt: {
863     Type *Ty = Tys[D.getArgumentNumber()];
864     VectorType *VTy = dyn_cast<VectorType>(Ty);
865     if (!VTy)
866       llvm_unreachable("Expected an argument of Vector Type");
867     Type *EltTy = VTy->getVectorElementType();
868     return PointerType::getUnqual(EltTy);
869   }
870   case IITDescriptor::VecOfPtrsToElt: {
871     Type *Ty = Tys[D.getArgumentNumber()];
872     VectorType *VTy = dyn_cast<VectorType>(Ty);
873     if (!VTy)
874       llvm_unreachable("Expected an argument of Vector Type");
875     Type *EltTy = VTy->getVectorElementType();
876     return VectorType::get(PointerType::getUnqual(EltTy),
877                            VTy->getNumElements());
878   }
879  }
880   llvm_unreachable("unhandled");
881 }
882 
883 
884 
885 FunctionType *Intrinsic::getType(LLVMContext &Context,
886                                  ID id, ArrayRef<Type*> Tys) {
887   SmallVector<IITDescriptor, 8> Table;
888   getIntrinsicInfoTableEntries(id, Table);
889 
890   ArrayRef<IITDescriptor> TableRef = Table;
891   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
892 
893   SmallVector<Type*, 8> ArgTys;
894   while (!TableRef.empty())
895     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
896 
897   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
898   // If we see void type as the type of the last argument, it is vararg intrinsic
899   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
900     ArgTys.pop_back();
901     return FunctionType::get(ResultTy, ArgTys, true);
902   }
903   return FunctionType::get(ResultTy, ArgTys, false);
904 }
905 
906 bool Intrinsic::isOverloaded(ID id) {
907 #define GET_INTRINSIC_OVERLOAD_TABLE
908 #include "llvm/IR/Intrinsics.gen"
909 #undef GET_INTRINSIC_OVERLOAD_TABLE
910 }
911 
912 bool Intrinsic::isLeaf(ID id) {
913   switch (id) {
914   default:
915     return true;
916 
917   case Intrinsic::experimental_gc_statepoint:
918   case Intrinsic::experimental_patchpoint_void:
919   case Intrinsic::experimental_patchpoint_i64:
920     return false;
921   }
922 }
923 
924 /// This defines the "Intrinsic::getAttributes(ID id)" method.
925 #define GET_INTRINSIC_ATTRIBUTES
926 #include "llvm/IR/Intrinsics.gen"
927 #undef GET_INTRINSIC_ATTRIBUTES
928 
929 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
930   // There can never be multiple globals with the same name of different types,
931   // because intrinsics must be a specific type.
932   return
933     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
934                                           getType(M->getContext(), id, Tys)));
935 }
936 
937 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
938 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
939 #include "llvm/IR/Intrinsics.gen"
940 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
941 
942 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
943 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
944 #include "llvm/IR/Intrinsics.gen"
945 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
946 
947 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
948                                    SmallVectorImpl<Type*> &ArgTys) {
949   using namespace Intrinsic;
950 
951   // If we ran out of descriptors, there are too many arguments.
952   if (Infos.empty()) return true;
953   IITDescriptor D = Infos.front();
954   Infos = Infos.slice(1);
955 
956   switch (D.Kind) {
957     case IITDescriptor::Void: return !Ty->isVoidTy();
958     case IITDescriptor::VarArg: return true;
959     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
960     case IITDescriptor::Token: return !Ty->isTokenTy();
961     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
962     case IITDescriptor::Half: return !Ty->isHalfTy();
963     case IITDescriptor::Float: return !Ty->isFloatTy();
964     case IITDescriptor::Double: return !Ty->isDoubleTy();
965     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
966     case IITDescriptor::Vector: {
967       VectorType *VT = dyn_cast<VectorType>(Ty);
968       return !VT || VT->getNumElements() != D.Vector_Width ||
969              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
970     }
971     case IITDescriptor::Pointer: {
972       PointerType *PT = dyn_cast<PointerType>(Ty);
973       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
974              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
975     }
976 
977     case IITDescriptor::Struct: {
978       StructType *ST = dyn_cast<StructType>(Ty);
979       if (!ST || ST->getNumElements() != D.Struct_NumElements)
980         return true;
981 
982       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
983         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
984           return true;
985       return false;
986     }
987 
988     case IITDescriptor::Argument:
989       // Two cases here - If this is the second occurrence of an argument, verify
990       // that the later instance matches the previous instance.
991       if (D.getArgumentNumber() < ArgTys.size())
992         return Ty != ArgTys[D.getArgumentNumber()];
993 
994           // Otherwise, if this is the first instance of an argument, record it and
995           // verify the "Any" kind.
996           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
997           ArgTys.push_back(Ty);
998 
999           switch (D.getArgumentKind()) {
1000             case IITDescriptor::AK_Any:        return false; // Success
1001             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1002             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1003             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1004             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1005           }
1006           llvm_unreachable("all argument kinds not covered");
1007 
1008     case IITDescriptor::ExtendArgument: {
1009       // This may only be used when referring to a previous vector argument.
1010       if (D.getArgumentNumber() >= ArgTys.size())
1011         return true;
1012 
1013       Type *NewTy = ArgTys[D.getArgumentNumber()];
1014       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1015         NewTy = VectorType::getExtendedElementVectorType(VTy);
1016       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1017         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1018       else
1019         return true;
1020 
1021       return Ty != NewTy;
1022     }
1023     case IITDescriptor::TruncArgument: {
1024       // This may only be used when referring to a previous vector argument.
1025       if (D.getArgumentNumber() >= ArgTys.size())
1026         return true;
1027 
1028       Type *NewTy = ArgTys[D.getArgumentNumber()];
1029       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1030         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1031       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1032         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1033       else
1034         return true;
1035 
1036       return Ty != NewTy;
1037     }
1038     case IITDescriptor::HalfVecArgument:
1039       // This may only be used when referring to a previous vector argument.
1040       return D.getArgumentNumber() >= ArgTys.size() ||
1041              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1042              VectorType::getHalfElementsVectorType(
1043                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1044     case IITDescriptor::SameVecWidthArgument: {
1045       if (D.getArgumentNumber() >= ArgTys.size())
1046         return true;
1047       VectorType * ReferenceType =
1048         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1049       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1050       if (!ThisArgType || !ReferenceType ||
1051           (ReferenceType->getVectorNumElements() !=
1052            ThisArgType->getVectorNumElements()))
1053         return true;
1054       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1055                                 Infos, ArgTys);
1056     }
1057     case IITDescriptor::PtrToArgument: {
1058       if (D.getArgumentNumber() >= ArgTys.size())
1059         return true;
1060       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1061       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1062       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1063     }
1064     case IITDescriptor::PtrToElt: {
1065       if (D.getArgumentNumber() >= ArgTys.size())
1066         return true;
1067       VectorType * ReferenceType =
1068         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1069       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1070 
1071       return (!ThisArgType || !ReferenceType ||
1072               ThisArgType->getElementType() != ReferenceType->getElementType());
1073     }
1074     case IITDescriptor::VecOfPtrsToElt: {
1075       if (D.getArgumentNumber() >= ArgTys.size())
1076         return true;
1077       VectorType * ReferenceType =
1078               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1079       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1080       if (!ThisArgVecTy || !ReferenceType ||
1081           (ReferenceType->getVectorNumElements() !=
1082            ThisArgVecTy->getVectorNumElements()))
1083         return true;
1084       PointerType *ThisArgEltTy =
1085               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1086       if (!ThisArgEltTy)
1087         return true;
1088       return ThisArgEltTy->getElementType() !=
1089              ReferenceType->getVectorElementType();
1090     }
1091   }
1092   llvm_unreachable("unhandled");
1093 }
1094 
1095 bool
1096 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1097                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1098   // If there are no descriptors left, then it can't be a vararg.
1099   if (Infos.empty())
1100     return isVarArg;
1101 
1102   // There should be only one descriptor remaining at this point.
1103   if (Infos.size() != 1)
1104     return true;
1105 
1106   // Check and verify the descriptor.
1107   IITDescriptor D = Infos.front();
1108   Infos = Infos.slice(1);
1109   if (D.Kind == IITDescriptor::VarArg)
1110     return !isVarArg;
1111 
1112   return true;
1113 }
1114 
1115 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1116   Intrinsic::ID ID = F->getIntrinsicID();
1117   if (!ID)
1118     return None;
1119 
1120   FunctionType *FTy = F->getFunctionType();
1121   // Accumulate an array of overloaded types for the given intrinsic
1122   SmallVector<Type *, 4> ArgTys;
1123   {
1124     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1125     getIntrinsicInfoTableEntries(ID, Table);
1126     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1127 
1128     // If we encounter any problems matching the signature with the descriptor
1129     // just give up remangling. It's up to verifier to report the discrepancy.
1130     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1131       return None;
1132     for (auto Ty : FTy->params())
1133       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1134         return None;
1135     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1136       return None;
1137   }
1138 
1139   StringRef Name = F->getName();
1140   if (Name == Intrinsic::getName(ID, ArgTys))
1141     return None;
1142 
1143   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1144   NewDecl->setCallingConv(F->getCallingConv());
1145   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1146   return NewDecl;
1147 }
1148 
1149 /// hasAddressTaken - returns true if there are any uses of this function
1150 /// other than direct calls or invokes to it.
1151 bool Function::hasAddressTaken(const User* *PutOffender) const {
1152   for (const Use &U : uses()) {
1153     const User *FU = U.getUser();
1154     if (isa<BlockAddress>(FU))
1155       continue;
1156     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1157       if (PutOffender)
1158         *PutOffender = FU;
1159       return true;
1160     }
1161     ImmutableCallSite CS(cast<Instruction>(FU));
1162     if (!CS.isCallee(&U)) {
1163       if (PutOffender)
1164         *PutOffender = FU;
1165       return true;
1166     }
1167   }
1168   return false;
1169 }
1170 
1171 bool Function::isDefTriviallyDead() const {
1172   // Check the linkage
1173   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1174       !hasAvailableExternallyLinkage())
1175     return false;
1176 
1177   // Check if the function is used by anything other than a blockaddress.
1178   for (const User *U : users())
1179     if (!isa<BlockAddress>(U))
1180       return false;
1181 
1182   return true;
1183 }
1184 
1185 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1186 /// setjmp or other function that gcc recognizes as "returning twice".
1187 bool Function::callsFunctionThatReturnsTwice() const {
1188   for (const_inst_iterator
1189          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1190     ImmutableCallSite CS(&*I);
1191     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1192       return true;
1193   }
1194 
1195   return false;
1196 }
1197 
1198 Constant *Function::getPersonalityFn() const {
1199   assert(hasPersonalityFn() && getNumOperands());
1200   return cast<Constant>(Op<0>());
1201 }
1202 
1203 void Function::setPersonalityFn(Constant *Fn) {
1204   setHungoffOperand<0>(Fn);
1205   setValueSubclassDataBit(3, Fn != nullptr);
1206 }
1207 
1208 Constant *Function::getPrefixData() const {
1209   assert(hasPrefixData() && getNumOperands());
1210   return cast<Constant>(Op<1>());
1211 }
1212 
1213 void Function::setPrefixData(Constant *PrefixData) {
1214   setHungoffOperand<1>(PrefixData);
1215   setValueSubclassDataBit(1, PrefixData != nullptr);
1216 }
1217 
1218 Constant *Function::getPrologueData() const {
1219   assert(hasPrologueData() && getNumOperands());
1220   return cast<Constant>(Op<2>());
1221 }
1222 
1223 void Function::setPrologueData(Constant *PrologueData) {
1224   setHungoffOperand<2>(PrologueData);
1225   setValueSubclassDataBit(2, PrologueData != nullptr);
1226 }
1227 
1228 void Function::allocHungoffUselist() {
1229   // If we've already allocated a uselist, stop here.
1230   if (getNumOperands())
1231     return;
1232 
1233   allocHungoffUses(3, /*IsPhi=*/ false);
1234   setNumHungOffUseOperands(3);
1235 
1236   // Initialize the uselist with placeholder operands to allow traversal.
1237   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1238   Op<0>().set(CPN);
1239   Op<1>().set(CPN);
1240   Op<2>().set(CPN);
1241 }
1242 
1243 template <int Idx>
1244 void Function::setHungoffOperand(Constant *C) {
1245   if (C) {
1246     allocHungoffUselist();
1247     Op<Idx>().set(C);
1248   } else if (getNumOperands()) {
1249     Op<Idx>().set(
1250         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1251   }
1252 }
1253 
1254 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1255   assert(Bit < 16 && "SubclassData contains only 16 bits");
1256   if (On)
1257     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1258   else
1259     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1260 }
1261 
1262 void Function::setEntryCount(uint64_t Count,
1263                              const DenseSet<GlobalValue::GUID> *S) {
1264   MDBuilder MDB(getContext());
1265   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S));
1266 }
1267 
1268 Optional<uint64_t> Function::getEntryCount() const {
1269   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1270   if (MD && MD->getOperand(0))
1271     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1272       if (MDS->getString().equals("function_entry_count")) {
1273         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1274         uint64_t Count = CI->getValue().getZExtValue();
1275         if (Count == 0)
1276           return None;
1277         return Count;
1278       }
1279   return None;
1280 }
1281 
1282 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1283   DenseSet<GlobalValue::GUID> R;
1284   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1285     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1286       if (MDS->getString().equals("function_entry_count"))
1287         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1288           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1289                        ->getValue()
1290                        .getZExtValue());
1291   return R;
1292 }
1293 
1294 void Function::setSectionPrefix(StringRef Prefix) {
1295   MDBuilder MDB(getContext());
1296   setMetadata(LLVMContext::MD_section_prefix,
1297               MDB.createFunctionSectionPrefix(Prefix));
1298 }
1299 
1300 Optional<StringRef> Function::getSectionPrefix() const {
1301   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1302     assert(dyn_cast<MDString>(MD->getOperand(0))
1303                ->getString()
1304                .equals("function_section_prefix") &&
1305            "Metadata not match");
1306     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1307   }
1308   return None;
1309 }
1310