1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 SymTab = new ValueSymbolTable(); 262 263 // If the function has arguments, mark them as lazily built. 264 if (Ty->getNumParams()) 265 setValueSubclassData(1); // Set the "has lazy arguments" bit. 266 267 if (ParentModule) 268 ParentModule->getFunctionList().push_back(this); 269 270 // Ensure intrinsics have the right parameter attributes. 271 // Note, the IntID field will have been set in Value::setName if this function 272 // name is a valid intrinsic ID. 273 if (IntID) 274 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 275 } 276 277 Function::~Function() { 278 dropAllReferences(); // After this it is safe to delete instructions. 279 280 // Delete all of the method arguments and unlink from symbol table... 281 ArgumentList.clear(); 282 delete SymTab; 283 284 // Remove the function from the on-the-side GC table. 285 clearGC(); 286 } 287 288 void Function::BuildLazyArguments() const { 289 // Create the arguments vector, all arguments start out unnamed. 290 FunctionType *FT = getFunctionType(); 291 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 292 assert(!FT->getParamType(i)->isVoidTy() && 293 "Cannot have void typed arguments!"); 294 ArgumentList.push_back(new Argument(FT->getParamType(i))); 295 } 296 297 // Clear the lazy arguments bit. 298 unsigned SDC = getSubclassDataFromValue(); 299 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 300 } 301 302 void Function::stealArgumentListFrom(Function &Src) { 303 assert(isDeclaration() && "Expected no references to current arguments"); 304 305 // Drop the current arguments, if any, and set the lazy argument bit. 306 if (!hasLazyArguments()) { 307 assert(llvm::all_of(ArgumentList, 308 [](const Argument &A) { return A.use_empty(); }) && 309 "Expected arguments to be unused in declaration"); 310 ArgumentList.clear(); 311 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 312 } 313 314 // Nothing to steal if Src has lazy arguments. 315 if (Src.hasLazyArguments()) 316 return; 317 318 // Steal arguments from Src, and fix the lazy argument bits. 319 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 320 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 321 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 322 } 323 324 size_t Function::arg_size() const { 325 return getFunctionType()->getNumParams(); 326 } 327 bool Function::arg_empty() const { 328 return getFunctionType()->getNumParams() == 0; 329 } 330 331 void Function::setParent(Module *parent) { 332 Parent = parent; 333 } 334 335 // dropAllReferences() - This function causes all the subinstructions to "let 336 // go" of all references that they are maintaining. This allows one to 337 // 'delete' a whole class at a time, even though there may be circular 338 // references... first all references are dropped, and all use counts go to 339 // zero. Then everything is deleted for real. Note that no operations are 340 // valid on an object that has "dropped all references", except operator 341 // delete. 342 // 343 void Function::dropAllReferences() { 344 setIsMaterializable(false); 345 346 for (BasicBlock &BB : *this) 347 BB.dropAllReferences(); 348 349 // Delete all basic blocks. They are now unused, except possibly by 350 // blockaddresses, but BasicBlock's destructor takes care of those. 351 while (!BasicBlocks.empty()) 352 BasicBlocks.begin()->eraseFromParent(); 353 354 // Drop uses of any optional data (real or placeholder). 355 if (getNumOperands()) { 356 User::dropAllReferences(); 357 setNumHungOffUseOperands(0); 358 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 359 } 360 361 // Metadata is stored in a side-table. 362 clearMetadata(); 363 } 364 365 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addAttribute(getContext(), i, Kind); 368 setAttributes(PAL); 369 } 370 371 void Function::addAttribute(unsigned i, Attribute Attr) { 372 AttributeSet PAL = getAttributes(); 373 PAL = PAL.addAttribute(getContext(), i, Attr); 374 setAttributes(PAL); 375 } 376 377 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 378 AttributeSet PAL = getAttributes(); 379 PAL = PAL.addAttributes(getContext(), i, Attrs); 380 setAttributes(PAL); 381 } 382 383 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 384 AttributeSet PAL = getAttributes(); 385 PAL = PAL.removeAttribute(getContext(), i, Kind); 386 setAttributes(PAL); 387 } 388 389 void Function::removeAttribute(unsigned i, StringRef Kind) { 390 AttributeSet PAL = getAttributes(); 391 PAL = PAL.removeAttribute(getContext(), i, Kind); 392 setAttributes(PAL); 393 } 394 395 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 396 AttributeSet PAL = getAttributes(); 397 PAL = PAL.removeAttributes(getContext(), i, Attrs); 398 setAttributes(PAL); 399 } 400 401 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 402 AttributeSet PAL = getAttributes(); 403 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 404 setAttributes(PAL); 405 } 406 407 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 408 AttributeSet PAL = getAttributes(); 409 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 410 setAttributes(PAL); 411 } 412 413 const std::string &Function::getGC() const { 414 assert(hasGC() && "Function has no collector"); 415 return getContext().getGC(*this); 416 } 417 418 void Function::setGC(std::string Str) { 419 setValueSubclassDataBit(14, !Str.empty()); 420 getContext().setGC(*this, std::move(Str)); 421 } 422 423 void Function::clearGC() { 424 if (!hasGC()) 425 return; 426 getContext().deleteGC(*this); 427 setValueSubclassDataBit(14, false); 428 } 429 430 /// Copy all additional attributes (those not needed to create a Function) from 431 /// the Function Src to this one. 432 void Function::copyAttributesFrom(const GlobalValue *Src) { 433 GlobalObject::copyAttributesFrom(Src); 434 const Function *SrcF = dyn_cast<Function>(Src); 435 if (!SrcF) 436 return; 437 438 setCallingConv(SrcF->getCallingConv()); 439 setAttributes(SrcF->getAttributes()); 440 if (SrcF->hasGC()) 441 setGC(SrcF->getGC()); 442 else 443 clearGC(); 444 if (SrcF->hasPersonalityFn()) 445 setPersonalityFn(SrcF->getPersonalityFn()); 446 if (SrcF->hasPrefixData()) 447 setPrefixData(SrcF->getPrefixData()); 448 if (SrcF->hasPrologueData()) 449 setPrologueData(SrcF->getPrologueData()); 450 } 451 452 /// Table of string intrinsic names indexed by enum value. 453 static const char * const IntrinsicNameTable[] = { 454 "not_intrinsic", 455 #define GET_INTRINSIC_NAME_TABLE 456 #include "llvm/IR/Intrinsics.gen" 457 #undef GET_INTRINSIC_NAME_TABLE 458 }; 459 460 /// Table of per-target intrinsic name tables. 461 #define GET_INTRINSIC_TARGET_DATA 462 #include "llvm/IR/Intrinsics.gen" 463 #undef GET_INTRINSIC_TARGET_DATA 464 465 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 466 /// target as \c Name, or the generic table if \c Name is not target specific. 467 /// 468 /// Returns the relevant slice of \c IntrinsicNameTable 469 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 470 assert(Name.startswith("llvm.")); 471 472 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 473 // Drop "llvm." and take the first dotted component. That will be the target 474 // if this is target specific. 475 StringRef Target = Name.drop_front(5).split('.').first; 476 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 477 [](const IntrinsicTargetInfo &TI, 478 StringRef Target) { return TI.Name < Target; }); 479 // We've either found the target or just fall back to the generic set, which 480 // is always first. 481 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 482 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 483 } 484 485 /// \brief This does the actual lookup of an intrinsic ID which 486 /// matches the given function name. 487 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 488 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 489 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 490 if (Idx == -1) 491 return Intrinsic::not_intrinsic; 492 493 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 494 // an index into a sub-table. 495 int Adjust = NameTable.data() - IntrinsicNameTable; 496 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 497 498 // If the intrinsic is not overloaded, require an exact match. If it is 499 // overloaded, require a prefix match. 500 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 501 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 502 } 503 504 void Function::recalculateIntrinsicID() { 505 const ValueName *ValName = this->getValueName(); 506 if (!ValName || !isIntrinsic()) { 507 IntID = Intrinsic::not_intrinsic; 508 return; 509 } 510 IntID = lookupIntrinsicID(ValName->getKey()); 511 } 512 513 /// Returns a stable mangling for the type specified for use in the name 514 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 515 /// of named types is simply their name. Manglings for unnamed types consist 516 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 517 /// combined with the mangling of their component types. A vararg function 518 /// type will have a suffix of 'vararg'. Since function types can contain 519 /// other function types, we close a function type mangling with suffix 'f' 520 /// which can't be confused with it's prefix. This ensures we don't have 521 /// collisions between two unrelated function types. Otherwise, you might 522 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 523 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 524 /// cases) fall back to the MVT codepath, where they could be mangled to 525 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 526 /// everything. 527 static std::string getMangledTypeStr(Type* Ty) { 528 std::string Result; 529 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 530 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 531 getMangledTypeStr(PTyp->getElementType()); 532 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 533 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 534 getMangledTypeStr(ATyp->getElementType()); 535 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 536 assert(!STyp->isLiteral() && "TODO: implement literal types"); 537 Result += STyp->getName(); 538 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 539 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 540 for (size_t i = 0; i < FT->getNumParams(); i++) 541 Result += getMangledTypeStr(FT->getParamType(i)); 542 if (FT->isVarArg()) 543 Result += "vararg"; 544 // Ensure nested function types are distinguishable. 545 Result += "f"; 546 } else if (isa<VectorType>(Ty)) 547 Result += "v" + utostr(Ty->getVectorNumElements()) + 548 getMangledTypeStr(Ty->getVectorElementType()); 549 else if (Ty) 550 Result += EVT::getEVT(Ty).getEVTString(); 551 return Result; 552 } 553 554 StringRef Intrinsic::getName(ID id) { 555 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 556 assert(!isOverloaded(id) && 557 "This version of getName does not support overloading"); 558 return IntrinsicNameTable[id]; 559 } 560 561 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 562 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 563 std::string Result(IntrinsicNameTable[id]); 564 for (Type *Ty : Tys) { 565 Result += "." + getMangledTypeStr(Ty); 566 } 567 return Result; 568 } 569 570 571 /// IIT_Info - These are enumerators that describe the entries returned by the 572 /// getIntrinsicInfoTableEntries function. 573 /// 574 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 575 enum IIT_Info { 576 // Common values should be encoded with 0-15. 577 IIT_Done = 0, 578 IIT_I1 = 1, 579 IIT_I8 = 2, 580 IIT_I16 = 3, 581 IIT_I32 = 4, 582 IIT_I64 = 5, 583 IIT_F16 = 6, 584 IIT_F32 = 7, 585 IIT_F64 = 8, 586 IIT_V2 = 9, 587 IIT_V4 = 10, 588 IIT_V8 = 11, 589 IIT_V16 = 12, 590 IIT_V32 = 13, 591 IIT_PTR = 14, 592 IIT_ARG = 15, 593 594 // Values from 16+ are only encodable with the inefficient encoding. 595 IIT_V64 = 16, 596 IIT_MMX = 17, 597 IIT_TOKEN = 18, 598 IIT_METADATA = 19, 599 IIT_EMPTYSTRUCT = 20, 600 IIT_STRUCT2 = 21, 601 IIT_STRUCT3 = 22, 602 IIT_STRUCT4 = 23, 603 IIT_STRUCT5 = 24, 604 IIT_EXTEND_ARG = 25, 605 IIT_TRUNC_ARG = 26, 606 IIT_ANYPTR = 27, 607 IIT_V1 = 28, 608 IIT_VARARG = 29, 609 IIT_HALF_VEC_ARG = 30, 610 IIT_SAME_VEC_WIDTH_ARG = 31, 611 IIT_PTR_TO_ARG = 32, 612 IIT_VEC_OF_PTRS_TO_ELT = 33, 613 IIT_I128 = 34, 614 IIT_V512 = 35, 615 IIT_V1024 = 36 616 }; 617 618 619 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 620 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 621 IIT_Info Info = IIT_Info(Infos[NextElt++]); 622 unsigned StructElts = 2; 623 using namespace Intrinsic; 624 625 switch (Info) { 626 case IIT_Done: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 628 return; 629 case IIT_VARARG: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 631 return; 632 case IIT_MMX: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 634 return; 635 case IIT_TOKEN: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 637 return; 638 case IIT_METADATA: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 640 return; 641 case IIT_F16: 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 643 return; 644 case IIT_F32: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 646 return; 647 case IIT_F64: 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 649 return; 650 case IIT_I1: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 652 return; 653 case IIT_I8: 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 655 return; 656 case IIT_I16: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 658 return; 659 case IIT_I32: 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 661 return; 662 case IIT_I64: 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 664 return; 665 case IIT_I128: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 667 return; 668 case IIT_V1: 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 670 DecodeIITType(NextElt, Infos, OutputTable); 671 return; 672 case IIT_V2: 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 674 DecodeIITType(NextElt, Infos, OutputTable); 675 return; 676 case IIT_V4: 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 678 DecodeIITType(NextElt, Infos, OutputTable); 679 return; 680 case IIT_V8: 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 682 DecodeIITType(NextElt, Infos, OutputTable); 683 return; 684 case IIT_V16: 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 686 DecodeIITType(NextElt, Infos, OutputTable); 687 return; 688 case IIT_V32: 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 690 DecodeIITType(NextElt, Infos, OutputTable); 691 return; 692 case IIT_V64: 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 694 DecodeIITType(NextElt, Infos, OutputTable); 695 return; 696 case IIT_V512: 697 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 698 DecodeIITType(NextElt, Infos, OutputTable); 699 return; 700 case IIT_V1024: 701 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 702 DecodeIITType(NextElt, Infos, OutputTable); 703 return; 704 case IIT_PTR: 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 706 DecodeIITType(NextElt, Infos, OutputTable); 707 return; 708 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 710 Infos[NextElt++])); 711 DecodeIITType(NextElt, Infos, OutputTable); 712 return; 713 } 714 case IIT_ARG: { 715 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 717 return; 718 } 719 case IIT_EXTEND_ARG: { 720 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 722 ArgInfo)); 723 return; 724 } 725 case IIT_TRUNC_ARG: { 726 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 728 ArgInfo)); 729 return; 730 } 731 case IIT_HALF_VEC_ARG: { 732 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 734 ArgInfo)); 735 return; 736 } 737 case IIT_SAME_VEC_WIDTH_ARG: { 738 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 740 ArgInfo)); 741 return; 742 } 743 case IIT_PTR_TO_ARG: { 744 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 746 ArgInfo)); 747 return; 748 } 749 case IIT_VEC_OF_PTRS_TO_ELT: { 750 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 752 ArgInfo)); 753 return; 754 } 755 case IIT_EMPTYSTRUCT: 756 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 757 return; 758 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 759 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 760 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 761 case IIT_STRUCT2: { 762 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 763 764 for (unsigned i = 0; i != StructElts; ++i) 765 DecodeIITType(NextElt, Infos, OutputTable); 766 return; 767 } 768 } 769 llvm_unreachable("unhandled"); 770 } 771 772 773 #define GET_INTRINSIC_GENERATOR_GLOBAL 774 #include "llvm/IR/Intrinsics.gen" 775 #undef GET_INTRINSIC_GENERATOR_GLOBAL 776 777 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 778 SmallVectorImpl<IITDescriptor> &T){ 779 // Check to see if the intrinsic's type was expressible by the table. 780 unsigned TableVal = IIT_Table[id-1]; 781 782 // Decode the TableVal into an array of IITValues. 783 SmallVector<unsigned char, 8> IITValues; 784 ArrayRef<unsigned char> IITEntries; 785 unsigned NextElt = 0; 786 if ((TableVal >> 31) != 0) { 787 // This is an offset into the IIT_LongEncodingTable. 788 IITEntries = IIT_LongEncodingTable; 789 790 // Strip sentinel bit. 791 NextElt = (TableVal << 1) >> 1; 792 } else { 793 // Decode the TableVal into an array of IITValues. If the entry was encoded 794 // into a single word in the table itself, decode it now. 795 do { 796 IITValues.push_back(TableVal & 0xF); 797 TableVal >>= 4; 798 } while (TableVal); 799 800 IITEntries = IITValues; 801 NextElt = 0; 802 } 803 804 // Okay, decode the table into the output vector of IITDescriptors. 805 DecodeIITType(NextElt, IITEntries, T); 806 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 807 DecodeIITType(NextElt, IITEntries, T); 808 } 809 810 811 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 812 ArrayRef<Type*> Tys, LLVMContext &Context) { 813 using namespace Intrinsic; 814 IITDescriptor D = Infos.front(); 815 Infos = Infos.slice(1); 816 817 switch (D.Kind) { 818 case IITDescriptor::Void: return Type::getVoidTy(Context); 819 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 820 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 821 case IITDescriptor::Token: return Type::getTokenTy(Context); 822 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 823 case IITDescriptor::Half: return Type::getHalfTy(Context); 824 case IITDescriptor::Float: return Type::getFloatTy(Context); 825 case IITDescriptor::Double: return Type::getDoubleTy(Context); 826 827 case IITDescriptor::Integer: 828 return IntegerType::get(Context, D.Integer_Width); 829 case IITDescriptor::Vector: 830 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 831 case IITDescriptor::Pointer: 832 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 833 D.Pointer_AddressSpace); 834 case IITDescriptor::Struct: { 835 Type *Elts[5]; 836 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 837 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 838 Elts[i] = DecodeFixedType(Infos, Tys, Context); 839 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 840 } 841 842 case IITDescriptor::Argument: 843 return Tys[D.getArgumentNumber()]; 844 case IITDescriptor::ExtendArgument: { 845 Type *Ty = Tys[D.getArgumentNumber()]; 846 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 847 return VectorType::getExtendedElementVectorType(VTy); 848 849 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 850 } 851 case IITDescriptor::TruncArgument: { 852 Type *Ty = Tys[D.getArgumentNumber()]; 853 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 854 return VectorType::getTruncatedElementVectorType(VTy); 855 856 IntegerType *ITy = cast<IntegerType>(Ty); 857 assert(ITy->getBitWidth() % 2 == 0); 858 return IntegerType::get(Context, ITy->getBitWidth() / 2); 859 } 860 case IITDescriptor::HalfVecArgument: 861 return VectorType::getHalfElementsVectorType(cast<VectorType>( 862 Tys[D.getArgumentNumber()])); 863 case IITDescriptor::SameVecWidthArgument: { 864 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 865 Type *Ty = Tys[D.getArgumentNumber()]; 866 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 867 return VectorType::get(EltTy, VTy->getNumElements()); 868 } 869 llvm_unreachable("unhandled"); 870 } 871 case IITDescriptor::PtrToArgument: { 872 Type *Ty = Tys[D.getArgumentNumber()]; 873 return PointerType::getUnqual(Ty); 874 } 875 case IITDescriptor::VecOfPtrsToElt: { 876 Type *Ty = Tys[D.getArgumentNumber()]; 877 VectorType *VTy = dyn_cast<VectorType>(Ty); 878 if (!VTy) 879 llvm_unreachable("Expected an argument of Vector Type"); 880 Type *EltTy = VTy->getVectorElementType(); 881 return VectorType::get(PointerType::getUnqual(EltTy), 882 VTy->getNumElements()); 883 } 884 } 885 llvm_unreachable("unhandled"); 886 } 887 888 889 890 FunctionType *Intrinsic::getType(LLVMContext &Context, 891 ID id, ArrayRef<Type*> Tys) { 892 SmallVector<IITDescriptor, 8> Table; 893 getIntrinsicInfoTableEntries(id, Table); 894 895 ArrayRef<IITDescriptor> TableRef = Table; 896 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 897 898 SmallVector<Type*, 8> ArgTys; 899 while (!TableRef.empty()) 900 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 901 902 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 903 // If we see void type as the type of the last argument, it is vararg intrinsic 904 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 905 ArgTys.pop_back(); 906 return FunctionType::get(ResultTy, ArgTys, true); 907 } 908 return FunctionType::get(ResultTy, ArgTys, false); 909 } 910 911 bool Intrinsic::isOverloaded(ID id) { 912 #define GET_INTRINSIC_OVERLOAD_TABLE 913 #include "llvm/IR/Intrinsics.gen" 914 #undef GET_INTRINSIC_OVERLOAD_TABLE 915 } 916 917 bool Intrinsic::isLeaf(ID id) { 918 switch (id) { 919 default: 920 return true; 921 922 case Intrinsic::experimental_gc_statepoint: 923 case Intrinsic::experimental_patchpoint_void: 924 case Intrinsic::experimental_patchpoint_i64: 925 return false; 926 } 927 } 928 929 /// This defines the "Intrinsic::getAttributes(ID id)" method. 930 #define GET_INTRINSIC_ATTRIBUTES 931 #include "llvm/IR/Intrinsics.gen" 932 #undef GET_INTRINSIC_ATTRIBUTES 933 934 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 935 // There can never be multiple globals with the same name of different types, 936 // because intrinsics must be a specific type. 937 return 938 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 939 getType(M->getContext(), id, Tys))); 940 } 941 942 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 943 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 944 #include "llvm/IR/Intrinsics.gen" 945 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 946 947 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 948 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 949 #include "llvm/IR/Intrinsics.gen" 950 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 951 952 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 953 SmallVectorImpl<Type*> &ArgTys) { 954 using namespace Intrinsic; 955 956 // If we ran out of descriptors, there are too many arguments. 957 if (Infos.empty()) return true; 958 IITDescriptor D = Infos.front(); 959 Infos = Infos.slice(1); 960 961 switch (D.Kind) { 962 case IITDescriptor::Void: return !Ty->isVoidTy(); 963 case IITDescriptor::VarArg: return true; 964 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 965 case IITDescriptor::Token: return !Ty->isTokenTy(); 966 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 967 case IITDescriptor::Half: return !Ty->isHalfTy(); 968 case IITDescriptor::Float: return !Ty->isFloatTy(); 969 case IITDescriptor::Double: return !Ty->isDoubleTy(); 970 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 971 case IITDescriptor::Vector: { 972 VectorType *VT = dyn_cast<VectorType>(Ty); 973 return !VT || VT->getNumElements() != D.Vector_Width || 974 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 975 } 976 case IITDescriptor::Pointer: { 977 PointerType *PT = dyn_cast<PointerType>(Ty); 978 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 979 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 980 } 981 982 case IITDescriptor::Struct: { 983 StructType *ST = dyn_cast<StructType>(Ty); 984 if (!ST || ST->getNumElements() != D.Struct_NumElements) 985 return true; 986 987 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 988 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 989 return true; 990 return false; 991 } 992 993 case IITDescriptor::Argument: 994 // Two cases here - If this is the second occurrence of an argument, verify 995 // that the later instance matches the previous instance. 996 if (D.getArgumentNumber() < ArgTys.size()) 997 return Ty != ArgTys[D.getArgumentNumber()]; 998 999 // Otherwise, if this is the first instance of an argument, record it and 1000 // verify the "Any" kind. 1001 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1002 ArgTys.push_back(Ty); 1003 1004 switch (D.getArgumentKind()) { 1005 case IITDescriptor::AK_Any: return false; // Success 1006 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1007 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1008 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1009 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1010 } 1011 llvm_unreachable("all argument kinds not covered"); 1012 1013 case IITDescriptor::ExtendArgument: { 1014 // This may only be used when referring to a previous vector argument. 1015 if (D.getArgumentNumber() >= ArgTys.size()) 1016 return true; 1017 1018 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1019 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1020 NewTy = VectorType::getExtendedElementVectorType(VTy); 1021 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1022 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1023 else 1024 return true; 1025 1026 return Ty != NewTy; 1027 } 1028 case IITDescriptor::TruncArgument: { 1029 // This may only be used when referring to a previous vector argument. 1030 if (D.getArgumentNumber() >= ArgTys.size()) 1031 return true; 1032 1033 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1034 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1035 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1036 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1037 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1038 else 1039 return true; 1040 1041 return Ty != NewTy; 1042 } 1043 case IITDescriptor::HalfVecArgument: 1044 // This may only be used when referring to a previous vector argument. 1045 return D.getArgumentNumber() >= ArgTys.size() || 1046 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1047 VectorType::getHalfElementsVectorType( 1048 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1049 case IITDescriptor::SameVecWidthArgument: { 1050 if (D.getArgumentNumber() >= ArgTys.size()) 1051 return true; 1052 VectorType * ReferenceType = 1053 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1054 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1055 if (!ThisArgType || !ReferenceType || 1056 (ReferenceType->getVectorNumElements() != 1057 ThisArgType->getVectorNumElements())) 1058 return true; 1059 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1060 Infos, ArgTys); 1061 } 1062 case IITDescriptor::PtrToArgument: { 1063 if (D.getArgumentNumber() >= ArgTys.size()) 1064 return true; 1065 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1066 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1067 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1068 } 1069 case IITDescriptor::VecOfPtrsToElt: { 1070 if (D.getArgumentNumber() >= ArgTys.size()) 1071 return true; 1072 VectorType * ReferenceType = 1073 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1074 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1075 if (!ThisArgVecTy || !ReferenceType || 1076 (ReferenceType->getVectorNumElements() != 1077 ThisArgVecTy->getVectorNumElements())) 1078 return true; 1079 PointerType *ThisArgEltTy = 1080 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1081 if (!ThisArgEltTy) 1082 return true; 1083 return ThisArgEltTy->getElementType() != 1084 ReferenceType->getVectorElementType(); 1085 } 1086 } 1087 llvm_unreachable("unhandled"); 1088 } 1089 1090 bool 1091 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1092 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1093 // If there are no descriptors left, then it can't be a vararg. 1094 if (Infos.empty()) 1095 return isVarArg; 1096 1097 // There should be only one descriptor remaining at this point. 1098 if (Infos.size() != 1) 1099 return true; 1100 1101 // Check and verify the descriptor. 1102 IITDescriptor D = Infos.front(); 1103 Infos = Infos.slice(1); 1104 if (D.Kind == IITDescriptor::VarArg) 1105 return !isVarArg; 1106 1107 return true; 1108 } 1109 1110 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1111 Intrinsic::ID ID = F->getIntrinsicID(); 1112 if (!ID) 1113 return None; 1114 1115 FunctionType *FTy = F->getFunctionType(); 1116 // Accumulate an array of overloaded types for the given intrinsic 1117 SmallVector<Type *, 4> ArgTys; 1118 { 1119 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1120 getIntrinsicInfoTableEntries(ID, Table); 1121 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1122 1123 // If we encounter any problems matching the signature with the descriptor 1124 // just give up remangling. It's up to verifier to report the discrepancy. 1125 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1126 return None; 1127 for (auto Ty : FTy->params()) 1128 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1129 return None; 1130 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1131 return None; 1132 } 1133 1134 StringRef Name = F->getName(); 1135 if (Name == Intrinsic::getName(ID, ArgTys)) 1136 return None; 1137 1138 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1139 NewDecl->setCallingConv(F->getCallingConv()); 1140 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1141 return NewDecl; 1142 } 1143 1144 /// hasAddressTaken - returns true if there are any uses of this function 1145 /// other than direct calls or invokes to it. 1146 bool Function::hasAddressTaken(const User* *PutOffender) const { 1147 for (const Use &U : uses()) { 1148 const User *FU = U.getUser(); 1149 if (isa<BlockAddress>(FU)) 1150 continue; 1151 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1152 if (PutOffender) 1153 *PutOffender = FU; 1154 return true; 1155 } 1156 ImmutableCallSite CS(cast<Instruction>(FU)); 1157 if (!CS.isCallee(&U)) { 1158 if (PutOffender) 1159 *PutOffender = FU; 1160 return true; 1161 } 1162 } 1163 return false; 1164 } 1165 1166 bool Function::isDefTriviallyDead() const { 1167 // Check the linkage 1168 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1169 !hasAvailableExternallyLinkage()) 1170 return false; 1171 1172 // Check if the function is used by anything other than a blockaddress. 1173 for (const User *U : users()) 1174 if (!isa<BlockAddress>(U)) 1175 return false; 1176 1177 return true; 1178 } 1179 1180 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1181 /// setjmp or other function that gcc recognizes as "returning twice". 1182 bool Function::callsFunctionThatReturnsTwice() const { 1183 for (const_inst_iterator 1184 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1185 ImmutableCallSite CS(&*I); 1186 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1187 return true; 1188 } 1189 1190 return false; 1191 } 1192 1193 Constant *Function::getPersonalityFn() const { 1194 assert(hasPersonalityFn() && getNumOperands()); 1195 return cast<Constant>(Op<0>()); 1196 } 1197 1198 void Function::setPersonalityFn(Constant *Fn) { 1199 setHungoffOperand<0>(Fn); 1200 setValueSubclassDataBit(3, Fn != nullptr); 1201 } 1202 1203 Constant *Function::getPrefixData() const { 1204 assert(hasPrefixData() && getNumOperands()); 1205 return cast<Constant>(Op<1>()); 1206 } 1207 1208 void Function::setPrefixData(Constant *PrefixData) { 1209 setHungoffOperand<1>(PrefixData); 1210 setValueSubclassDataBit(1, PrefixData != nullptr); 1211 } 1212 1213 Constant *Function::getPrologueData() const { 1214 assert(hasPrologueData() && getNumOperands()); 1215 return cast<Constant>(Op<2>()); 1216 } 1217 1218 void Function::setPrologueData(Constant *PrologueData) { 1219 setHungoffOperand<2>(PrologueData); 1220 setValueSubclassDataBit(2, PrologueData != nullptr); 1221 } 1222 1223 void Function::allocHungoffUselist() { 1224 // If we've already allocated a uselist, stop here. 1225 if (getNumOperands()) 1226 return; 1227 1228 allocHungoffUses(3, /*IsPhi=*/ false); 1229 setNumHungOffUseOperands(3); 1230 1231 // Initialize the uselist with placeholder operands to allow traversal. 1232 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1233 Op<0>().set(CPN); 1234 Op<1>().set(CPN); 1235 Op<2>().set(CPN); 1236 } 1237 1238 template <int Idx> 1239 void Function::setHungoffOperand(Constant *C) { 1240 if (C) { 1241 allocHungoffUselist(); 1242 Op<Idx>().set(C); 1243 } else if (getNumOperands()) { 1244 Op<Idx>().set( 1245 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1246 } 1247 } 1248 1249 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1250 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1251 if (On) 1252 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1253 else 1254 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1255 } 1256 1257 void Function::setEntryCount(uint64_t Count) { 1258 MDBuilder MDB(getContext()); 1259 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1260 } 1261 1262 Optional<uint64_t> Function::getEntryCount() const { 1263 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1264 if (MD && MD->getOperand(0)) 1265 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1266 if (MDS->getString().equals("function_entry_count")) { 1267 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1268 uint64_t Count = CI->getValue().getZExtValue(); 1269 if (Count == 0) 1270 return None; 1271 return Count; 1272 } 1273 return None; 1274 } 1275