1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsLoongArch.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsSPIRV.h" 48 #include "llvm/IR/IntrinsicsVE.h" 49 #include "llvm/IR/IntrinsicsWebAssembly.h" 50 #include "llvm/IR/IntrinsicsX86.h" 51 #include "llvm/IR/IntrinsicsXCore.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/SymbolTableListTraits.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/ValueSymbolTable.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ModRef.h" 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <cstring> 72 #include <string> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 // Explicit instantiations of SymbolTableListTraits since some of the methods 78 // are not in the public header file... 79 template class llvm::SymbolTableListTraits<BasicBlock>; 80 81 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 82 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 83 cl::desc("Maximum size for the name of non-global values.")); 84 85 void Function::convertToNewDbgValues() { 86 IsNewDbgInfoFormat = true; 87 for (auto &BB : *this) { 88 BB.convertToNewDbgValues(); 89 } 90 } 91 92 void Function::convertFromNewDbgValues() { 93 IsNewDbgInfoFormat = false; 94 for (auto &BB : *this) { 95 BB.convertFromNewDbgValues(); 96 } 97 } 98 99 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 100 if (NewFlag && !IsNewDbgInfoFormat) 101 convertToNewDbgValues(); 102 else if (!NewFlag && IsNewDbgInfoFormat) 103 convertFromNewDbgValues(); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // Argument Implementation 108 //===----------------------------------------------------------------------===// 109 110 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 111 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 112 setName(Name); 113 } 114 115 void Argument::setParent(Function *parent) { 116 Parent = parent; 117 } 118 119 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 120 if (!getType()->isPointerTy()) return false; 121 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 122 (AllowUndefOrPoison || 123 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 124 return true; 125 else if (getDereferenceableBytes() > 0 && 126 !NullPointerIsDefined(getParent(), 127 getType()->getPointerAddressSpace())) 128 return true; 129 return false; 130 } 131 132 bool Argument::hasByValAttr() const { 133 if (!getType()->isPointerTy()) return false; 134 return hasAttribute(Attribute::ByVal); 135 } 136 137 bool Argument::hasByRefAttr() const { 138 if (!getType()->isPointerTy()) 139 return false; 140 return hasAttribute(Attribute::ByRef); 141 } 142 143 bool Argument::hasSwiftSelfAttr() const { 144 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 145 } 146 147 bool Argument::hasSwiftErrorAttr() const { 148 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 149 } 150 151 bool Argument::hasInAllocaAttr() const { 152 if (!getType()->isPointerTy()) return false; 153 return hasAttribute(Attribute::InAlloca); 154 } 155 156 bool Argument::hasPreallocatedAttr() const { 157 if (!getType()->isPointerTy()) 158 return false; 159 return hasAttribute(Attribute::Preallocated); 160 } 161 162 bool Argument::hasPassPointeeByValueCopyAttr() const { 163 if (!getType()->isPointerTy()) return false; 164 AttributeList Attrs = getParent()->getAttributes(); 165 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 166 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 167 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 168 } 169 170 bool Argument::hasPointeeInMemoryValueAttr() const { 171 if (!getType()->isPointerTy()) 172 return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 177 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 178 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 179 } 180 181 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 182 /// parameter type. 183 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 184 // FIXME: All the type carrying attributes are mutually exclusive, so there 185 // should be a single query to get the stored type that handles any of them. 186 if (Type *ByValTy = ParamAttrs.getByValType()) 187 return ByValTy; 188 if (Type *ByRefTy = ParamAttrs.getByRefType()) 189 return ByRefTy; 190 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 191 return PreAllocTy; 192 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 193 return InAllocaTy; 194 if (Type *SRetTy = ParamAttrs.getStructRetType()) 195 return SRetTy; 196 197 return nullptr; 198 } 199 200 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 201 AttributeSet ParamAttrs = 202 getParent()->getAttributes().getParamAttrs(getArgNo()); 203 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 204 return DL.getTypeAllocSize(MemTy); 205 return 0; 206 } 207 208 Type *Argument::getPointeeInMemoryValueType() const { 209 AttributeSet ParamAttrs = 210 getParent()->getAttributes().getParamAttrs(getArgNo()); 211 return getMemoryParamAllocType(ParamAttrs); 212 } 213 214 MaybeAlign Argument::getParamAlign() const { 215 assert(getType()->isPointerTy() && "Only pointers have alignments"); 216 return getParent()->getParamAlign(getArgNo()); 217 } 218 219 MaybeAlign Argument::getParamStackAlign() const { 220 return getParent()->getParamStackAlign(getArgNo()); 221 } 222 223 Type *Argument::getParamByValType() const { 224 assert(getType()->isPointerTy() && "Only pointers have byval types"); 225 return getParent()->getParamByValType(getArgNo()); 226 } 227 228 Type *Argument::getParamStructRetType() const { 229 assert(getType()->isPointerTy() && "Only pointers have sret types"); 230 return getParent()->getParamStructRetType(getArgNo()); 231 } 232 233 Type *Argument::getParamByRefType() const { 234 assert(getType()->isPointerTy() && "Only pointers have byref types"); 235 return getParent()->getParamByRefType(getArgNo()); 236 } 237 238 Type *Argument::getParamInAllocaType() const { 239 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 240 return getParent()->getParamInAllocaType(getArgNo()); 241 } 242 243 uint64_t Argument::getDereferenceableBytes() const { 244 assert(getType()->isPointerTy() && 245 "Only pointers have dereferenceable bytes"); 246 return getParent()->getParamDereferenceableBytes(getArgNo()); 247 } 248 249 uint64_t Argument::getDereferenceableOrNullBytes() const { 250 assert(getType()->isPointerTy() && 251 "Only pointers have dereferenceable bytes"); 252 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 253 } 254 255 FPClassTest Argument::getNoFPClass() const { 256 return getParent()->getParamNoFPClass(getArgNo()); 257 } 258 259 bool Argument::hasNestAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::Nest); 262 } 263 264 bool Argument::hasNoAliasAttr() const { 265 if (!getType()->isPointerTy()) return false; 266 return hasAttribute(Attribute::NoAlias); 267 } 268 269 bool Argument::hasNoCaptureAttr() const { 270 if (!getType()->isPointerTy()) return false; 271 return hasAttribute(Attribute::NoCapture); 272 } 273 274 bool Argument::hasNoFreeAttr() const { 275 if (!getType()->isPointerTy()) return false; 276 return hasAttribute(Attribute::NoFree); 277 } 278 279 bool Argument::hasStructRetAttr() const { 280 if (!getType()->isPointerTy()) return false; 281 return hasAttribute(Attribute::StructRet); 282 } 283 284 bool Argument::hasInRegAttr() const { 285 return hasAttribute(Attribute::InReg); 286 } 287 288 bool Argument::hasReturnedAttr() const { 289 return hasAttribute(Attribute::Returned); 290 } 291 292 bool Argument::hasZExtAttr() const { 293 return hasAttribute(Attribute::ZExt); 294 } 295 296 bool Argument::hasSExtAttr() const { 297 return hasAttribute(Attribute::SExt); 298 } 299 300 bool Argument::onlyReadsMemory() const { 301 AttributeList Attrs = getParent()->getAttributes(); 302 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 303 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 304 } 305 306 void Argument::addAttrs(AttrBuilder &B) { 307 AttributeList AL = getParent()->getAttributes(); 308 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 309 getParent()->setAttributes(AL); 310 } 311 312 void Argument::addAttr(Attribute::AttrKind Kind) { 313 getParent()->addParamAttr(getArgNo(), Kind); 314 } 315 316 void Argument::addAttr(Attribute Attr) { 317 getParent()->addParamAttr(getArgNo(), Attr); 318 } 319 320 void Argument::removeAttr(Attribute::AttrKind Kind) { 321 getParent()->removeParamAttr(getArgNo(), Kind); 322 } 323 324 void Argument::removeAttrs(const AttributeMask &AM) { 325 AttributeList AL = getParent()->getAttributes(); 326 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 327 getParent()->setAttributes(AL); 328 } 329 330 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 331 return getParent()->hasParamAttribute(getArgNo(), Kind); 332 } 333 334 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 335 return getParent()->getParamAttribute(getArgNo(), Kind); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Helper Methods in Function 340 //===----------------------------------------------------------------------===// 341 342 LLVMContext &Function::getContext() const { 343 return getType()->getContext(); 344 } 345 346 unsigned Function::getInstructionCount() const { 347 unsigned NumInstrs = 0; 348 for (const BasicBlock &BB : BasicBlocks) 349 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 350 BB.instructionsWithoutDebug().end()); 351 return NumInstrs; 352 } 353 354 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 355 const Twine &N, Module &M) { 356 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 357 } 358 359 Function *Function::createWithDefaultAttr(FunctionType *Ty, 360 LinkageTypes Linkage, 361 unsigned AddrSpace, const Twine &N, 362 Module *M) { 363 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 364 AttrBuilder B(F->getContext()); 365 UWTableKind UWTable = M->getUwtable(); 366 if (UWTable != UWTableKind::None) 367 B.addUWTableAttr(UWTable); 368 switch (M->getFramePointer()) { 369 case FramePointerKind::None: 370 // 0 ("none") is the default. 371 break; 372 case FramePointerKind::NonLeaf: 373 B.addAttribute("frame-pointer", "non-leaf"); 374 break; 375 case FramePointerKind::All: 376 B.addAttribute("frame-pointer", "all"); 377 break; 378 } 379 if (M->getModuleFlag("function_return_thunk_extern")) 380 B.addAttribute(Attribute::FnRetThunkExtern); 381 F->addFnAttrs(B); 382 return F; 383 } 384 385 void Function::removeFromParent() { 386 getParent()->getFunctionList().remove(getIterator()); 387 } 388 389 void Function::eraseFromParent() { 390 getParent()->getFunctionList().erase(getIterator()); 391 } 392 393 void Function::splice(Function::iterator ToIt, Function *FromF, 394 Function::iterator FromBeginIt, 395 Function::iterator FromEndIt) { 396 #ifdef EXPENSIVE_CHECKS 397 // Check that FromBeginIt is before FromEndIt. 398 auto FromFEnd = FromF->end(); 399 for (auto It = FromBeginIt; It != FromEndIt; ++It) 400 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 401 #endif // EXPENSIVE_CHECKS 402 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 403 } 404 405 Function::iterator Function::erase(Function::iterator FromIt, 406 Function::iterator ToIt) { 407 return BasicBlocks.erase(FromIt, ToIt); 408 } 409 410 //===----------------------------------------------------------------------===// 411 // Function Implementation 412 //===----------------------------------------------------------------------===// 413 414 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 415 // If AS == -1 and we are passed a valid module pointer we place the function 416 // in the program address space. Otherwise we default to AS0. 417 if (AddrSpace == static_cast<unsigned>(-1)) 418 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 419 return AddrSpace; 420 } 421 422 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 423 const Twine &name, Module *ParentModule) 424 : GlobalObject(Ty, Value::FunctionVal, 425 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 426 computeAddrSpace(AddrSpace, ParentModule)), 427 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 428 assert(FunctionType::isValidReturnType(getReturnType()) && 429 "invalid return type"); 430 setGlobalObjectSubClassData(0); 431 432 // We only need a symbol table for a function if the context keeps value names 433 if (!getContext().shouldDiscardValueNames()) 434 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 435 436 // If the function has arguments, mark them as lazily built. 437 if (Ty->getNumParams()) 438 setValueSubclassData(1); // Set the "has lazy arguments" bit. 439 440 if (ParentModule) { 441 ParentModule->getFunctionList().push_back(this); 442 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 443 } 444 445 HasLLVMReservedName = getName().starts_with("llvm."); 446 // Ensure intrinsics have the right parameter attributes. 447 // Note, the IntID field will have been set in Value::setName if this function 448 // name is a valid intrinsic ID. 449 if (IntID) 450 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 451 } 452 453 Function::~Function() { 454 dropAllReferences(); // After this it is safe to delete instructions. 455 456 // Delete all of the method arguments and unlink from symbol table... 457 if (Arguments) 458 clearArguments(); 459 460 // Remove the function from the on-the-side GC table. 461 clearGC(); 462 } 463 464 void Function::BuildLazyArguments() const { 465 // Create the arguments vector, all arguments start out unnamed. 466 auto *FT = getFunctionType(); 467 if (NumArgs > 0) { 468 Arguments = std::allocator<Argument>().allocate(NumArgs); 469 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 470 Type *ArgTy = FT->getParamType(i); 471 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 472 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 473 } 474 } 475 476 // Clear the lazy arguments bit. 477 unsigned SDC = getSubclassDataFromValue(); 478 SDC &= ~(1 << 0); 479 const_cast<Function*>(this)->setValueSubclassData(SDC); 480 assert(!hasLazyArguments()); 481 } 482 483 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 484 return MutableArrayRef<Argument>(Args, Count); 485 } 486 487 bool Function::isConstrainedFPIntrinsic() const { 488 switch (getIntrinsicID()) { 489 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 490 case Intrinsic::INTRINSIC: 491 #include "llvm/IR/ConstrainedOps.def" 492 return true; 493 #undef INSTRUCTION 494 default: 495 return false; 496 } 497 } 498 499 void Function::clearArguments() { 500 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 501 A.setName(""); 502 A.~Argument(); 503 } 504 std::allocator<Argument>().deallocate(Arguments, NumArgs); 505 Arguments = nullptr; 506 } 507 508 void Function::stealArgumentListFrom(Function &Src) { 509 assert(isDeclaration() && "Expected no references to current arguments"); 510 511 // Drop the current arguments, if any, and set the lazy argument bit. 512 if (!hasLazyArguments()) { 513 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 514 [](const Argument &A) { return A.use_empty(); }) && 515 "Expected arguments to be unused in declaration"); 516 clearArguments(); 517 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 518 } 519 520 // Nothing to steal if Src has lazy arguments. 521 if (Src.hasLazyArguments()) 522 return; 523 524 // Steal arguments from Src, and fix the lazy argument bits. 525 assert(arg_size() == Src.arg_size()); 526 Arguments = Src.Arguments; 527 Src.Arguments = nullptr; 528 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 529 // FIXME: This does the work of transferNodesFromList inefficiently. 530 SmallString<128> Name; 531 if (A.hasName()) 532 Name = A.getName(); 533 if (!Name.empty()) 534 A.setName(""); 535 A.setParent(this); 536 if (!Name.empty()) 537 A.setName(Name); 538 } 539 540 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 541 assert(!hasLazyArguments()); 542 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 543 } 544 545 void Function::deleteBodyImpl(bool ShouldDrop) { 546 setIsMaterializable(false); 547 548 for (BasicBlock &BB : *this) 549 BB.dropAllReferences(); 550 551 // Delete all basic blocks. They are now unused, except possibly by 552 // blockaddresses, but BasicBlock's destructor takes care of those. 553 while (!BasicBlocks.empty()) 554 BasicBlocks.begin()->eraseFromParent(); 555 556 if (getNumOperands()) { 557 if (ShouldDrop) { 558 // Drop uses of any optional data (real or placeholder). 559 User::dropAllReferences(); 560 setNumHungOffUseOperands(0); 561 } else { 562 // The code needs to match Function::allocHungoffUselist(). 563 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 564 Op<0>().set(CPN); 565 Op<1>().set(CPN); 566 Op<2>().set(CPN); 567 } 568 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 569 } 570 571 // Metadata is stored in a side-table. 572 clearMetadata(); 573 } 574 575 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 576 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 577 } 578 579 void Function::addFnAttr(Attribute::AttrKind Kind) { 580 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 581 } 582 583 void Function::addFnAttr(StringRef Kind, StringRef Val) { 584 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 585 } 586 587 void Function::addFnAttr(Attribute Attr) { 588 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 589 } 590 591 void Function::addFnAttrs(const AttrBuilder &Attrs) { 592 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 593 } 594 595 void Function::addRetAttr(Attribute::AttrKind Kind) { 596 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 597 } 598 599 void Function::addRetAttr(Attribute Attr) { 600 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 601 } 602 603 void Function::addRetAttrs(const AttrBuilder &Attrs) { 604 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 605 } 606 607 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 608 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 609 } 610 611 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 612 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 613 } 614 615 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 616 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 617 } 618 619 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 620 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 621 } 622 623 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 624 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 625 } 626 627 void Function::removeFnAttr(Attribute::AttrKind Kind) { 628 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 629 } 630 631 void Function::removeFnAttr(StringRef Kind) { 632 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 633 } 634 635 void Function::removeFnAttrs(const AttributeMask &AM) { 636 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 637 } 638 639 void Function::removeRetAttr(Attribute::AttrKind Kind) { 640 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 641 } 642 643 void Function::removeRetAttr(StringRef Kind) { 644 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 645 } 646 647 void Function::removeRetAttrs(const AttributeMask &Attrs) { 648 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 649 } 650 651 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 652 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 653 } 654 655 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 656 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 657 } 658 659 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 660 AttributeSets = 661 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 662 } 663 664 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 665 AttributeSets = 666 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 667 } 668 669 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 670 return AttributeSets.hasFnAttr(Kind); 671 } 672 673 bool Function::hasFnAttribute(StringRef Kind) const { 674 return AttributeSets.hasFnAttr(Kind); 675 } 676 677 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 678 return AttributeSets.hasRetAttr(Kind); 679 } 680 681 bool Function::hasParamAttribute(unsigned ArgNo, 682 Attribute::AttrKind Kind) const { 683 return AttributeSets.hasParamAttr(ArgNo, Kind); 684 } 685 686 Attribute Function::getAttributeAtIndex(unsigned i, 687 Attribute::AttrKind Kind) const { 688 return AttributeSets.getAttributeAtIndex(i, Kind); 689 } 690 691 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 692 return AttributeSets.getAttributeAtIndex(i, Kind); 693 } 694 695 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 696 return AttributeSets.getFnAttr(Kind); 697 } 698 699 Attribute Function::getFnAttribute(StringRef Kind) const { 700 return AttributeSets.getFnAttr(Kind); 701 } 702 703 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 704 return AttributeSets.getRetAttr(Kind); 705 } 706 707 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 708 uint64_t Default) const { 709 Attribute A = getFnAttribute(Name); 710 uint64_t Result = Default; 711 if (A.isStringAttribute()) { 712 StringRef Str = A.getValueAsString(); 713 if (Str.getAsInteger(0, Result)) 714 getContext().emitError("cannot parse integer attribute " + Name); 715 } 716 717 return Result; 718 } 719 720 /// gets the specified attribute from the list of attributes. 721 Attribute Function::getParamAttribute(unsigned ArgNo, 722 Attribute::AttrKind Kind) const { 723 return AttributeSets.getParamAttr(ArgNo, Kind); 724 } 725 726 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 727 uint64_t Bytes) { 728 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 729 ArgNo, Bytes); 730 } 731 732 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 733 if (&FPType == &APFloat::IEEEsingle()) { 734 DenormalMode Mode = getDenormalModeF32Raw(); 735 // If the f32 variant of the attribute isn't specified, try to use the 736 // generic one. 737 if (Mode.isValid()) 738 return Mode; 739 } 740 741 return getDenormalModeRaw(); 742 } 743 744 DenormalMode Function::getDenormalModeRaw() const { 745 Attribute Attr = getFnAttribute("denormal-fp-math"); 746 StringRef Val = Attr.getValueAsString(); 747 return parseDenormalFPAttribute(Val); 748 } 749 750 DenormalMode Function::getDenormalModeF32Raw() const { 751 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 752 if (Attr.isValid()) { 753 StringRef Val = Attr.getValueAsString(); 754 return parseDenormalFPAttribute(Val); 755 } 756 757 return DenormalMode::getInvalid(); 758 } 759 760 const std::string &Function::getGC() const { 761 assert(hasGC() && "Function has no collector"); 762 return getContext().getGC(*this); 763 } 764 765 void Function::setGC(std::string Str) { 766 setValueSubclassDataBit(14, !Str.empty()); 767 getContext().setGC(*this, std::move(Str)); 768 } 769 770 void Function::clearGC() { 771 if (!hasGC()) 772 return; 773 getContext().deleteGC(*this); 774 setValueSubclassDataBit(14, false); 775 } 776 777 bool Function::hasStackProtectorFnAttr() const { 778 return hasFnAttribute(Attribute::StackProtect) || 779 hasFnAttribute(Attribute::StackProtectStrong) || 780 hasFnAttribute(Attribute::StackProtectReq); 781 } 782 783 /// Copy all additional attributes (those not needed to create a Function) from 784 /// the Function Src to this one. 785 void Function::copyAttributesFrom(const Function *Src) { 786 GlobalObject::copyAttributesFrom(Src); 787 setCallingConv(Src->getCallingConv()); 788 setAttributes(Src->getAttributes()); 789 if (Src->hasGC()) 790 setGC(Src->getGC()); 791 else 792 clearGC(); 793 if (Src->hasPersonalityFn()) 794 setPersonalityFn(Src->getPersonalityFn()); 795 if (Src->hasPrefixData()) 796 setPrefixData(Src->getPrefixData()); 797 if (Src->hasPrologueData()) 798 setPrologueData(Src->getPrologueData()); 799 } 800 801 MemoryEffects Function::getMemoryEffects() const { 802 return getAttributes().getMemoryEffects(); 803 } 804 void Function::setMemoryEffects(MemoryEffects ME) { 805 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 806 } 807 808 /// Determine if the function does not access memory. 809 bool Function::doesNotAccessMemory() const { 810 return getMemoryEffects().doesNotAccessMemory(); 811 } 812 void Function::setDoesNotAccessMemory() { 813 setMemoryEffects(MemoryEffects::none()); 814 } 815 816 /// Determine if the function does not access or only reads memory. 817 bool Function::onlyReadsMemory() const { 818 return getMemoryEffects().onlyReadsMemory(); 819 } 820 void Function::setOnlyReadsMemory() { 821 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 822 } 823 824 /// Determine if the function does not access or only writes memory. 825 bool Function::onlyWritesMemory() const { 826 return getMemoryEffects().onlyWritesMemory(); 827 } 828 void Function::setOnlyWritesMemory() { 829 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 830 } 831 832 /// Determine if the call can access memmory only using pointers based 833 /// on its arguments. 834 bool Function::onlyAccessesArgMemory() const { 835 return getMemoryEffects().onlyAccessesArgPointees(); 836 } 837 void Function::setOnlyAccessesArgMemory() { 838 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 839 } 840 841 /// Determine if the function may only access memory that is 842 /// inaccessible from the IR. 843 bool Function::onlyAccessesInaccessibleMemory() const { 844 return getMemoryEffects().onlyAccessesInaccessibleMem(); 845 } 846 void Function::setOnlyAccessesInaccessibleMemory() { 847 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 848 } 849 850 /// Determine if the function may only access memory that is 851 /// either inaccessible from the IR or pointed to by its arguments. 852 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 853 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 854 } 855 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 856 setMemoryEffects(getMemoryEffects() & 857 MemoryEffects::inaccessibleOrArgMemOnly()); 858 } 859 860 /// Table of string intrinsic names indexed by enum value. 861 static const char * const IntrinsicNameTable[] = { 862 "not_intrinsic", 863 #define GET_INTRINSIC_NAME_TABLE 864 #include "llvm/IR/IntrinsicImpl.inc" 865 #undef GET_INTRINSIC_NAME_TABLE 866 }; 867 868 /// Table of per-target intrinsic name tables. 869 #define GET_INTRINSIC_TARGET_DATA 870 #include "llvm/IR/IntrinsicImpl.inc" 871 #undef GET_INTRINSIC_TARGET_DATA 872 873 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 874 return IID > TargetInfos[0].Count; 875 } 876 877 bool Function::isTargetIntrinsic() const { 878 return isTargetIntrinsic(IntID); 879 } 880 881 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 882 /// target as \c Name, or the generic table if \c Name is not target specific. 883 /// 884 /// Returns the relevant slice of \c IntrinsicNameTable 885 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 886 assert(Name.starts_with("llvm.")); 887 888 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 889 // Drop "llvm." and take the first dotted component. That will be the target 890 // if this is target specific. 891 StringRef Target = Name.drop_front(5).split('.').first; 892 auto It = partition_point( 893 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 894 // We've either found the target or just fall back to the generic set, which 895 // is always first. 896 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 897 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 898 } 899 900 /// This does the actual lookup of an intrinsic ID which 901 /// matches the given function name. 902 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 903 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 904 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 905 if (Idx == -1) 906 return Intrinsic::not_intrinsic; 907 908 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 909 // an index into a sub-table. 910 int Adjust = NameTable.data() - IntrinsicNameTable; 911 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 912 913 // If the intrinsic is not overloaded, require an exact match. If it is 914 // overloaded, require either exact or prefix match. 915 const auto MatchSize = strlen(NameTable[Idx]); 916 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 917 bool IsExactMatch = Name.size() == MatchSize; 918 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 919 : Intrinsic::not_intrinsic; 920 } 921 922 void Function::updateAfterNameChange() { 923 LibFuncCache = UnknownLibFunc; 924 StringRef Name = getName(); 925 if (!Name.starts_with("llvm.")) { 926 HasLLVMReservedName = false; 927 IntID = Intrinsic::not_intrinsic; 928 return; 929 } 930 HasLLVMReservedName = true; 931 IntID = lookupIntrinsicID(Name); 932 } 933 934 /// Returns a stable mangling for the type specified for use in the name 935 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 936 /// of named types is simply their name. Manglings for unnamed types consist 937 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 938 /// combined with the mangling of their component types. A vararg function 939 /// type will have a suffix of 'vararg'. Since function types can contain 940 /// other function types, we close a function type mangling with suffix 'f' 941 /// which can't be confused with it's prefix. This ensures we don't have 942 /// collisions between two unrelated function types. Otherwise, you might 943 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 944 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 945 /// indicating that extra care must be taken to ensure a unique name. 946 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 947 std::string Result; 948 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 949 Result += "p" + utostr(PTyp->getAddressSpace()); 950 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 951 Result += "a" + utostr(ATyp->getNumElements()) + 952 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 953 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 954 if (!STyp->isLiteral()) { 955 Result += "s_"; 956 if (STyp->hasName()) 957 Result += STyp->getName(); 958 else 959 HasUnnamedType = true; 960 } else { 961 Result += "sl_"; 962 for (auto *Elem : STyp->elements()) 963 Result += getMangledTypeStr(Elem, HasUnnamedType); 964 } 965 // Ensure nested structs are distinguishable. 966 Result += "s"; 967 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 968 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 969 for (size_t i = 0; i < FT->getNumParams(); i++) 970 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 971 if (FT->isVarArg()) 972 Result += "vararg"; 973 // Ensure nested function types are distinguishable. 974 Result += "f"; 975 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 976 ElementCount EC = VTy->getElementCount(); 977 if (EC.isScalable()) 978 Result += "nx"; 979 Result += "v" + utostr(EC.getKnownMinValue()) + 980 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 981 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 982 Result += "t"; 983 Result += TETy->getName(); 984 for (Type *ParamTy : TETy->type_params()) 985 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 986 for (unsigned IntParam : TETy->int_params()) 987 Result += "_" + utostr(IntParam); 988 // Ensure nested target extension types are distinguishable. 989 Result += "t"; 990 } else if (Ty) { 991 switch (Ty->getTypeID()) { 992 default: llvm_unreachable("Unhandled type"); 993 case Type::VoidTyID: Result += "isVoid"; break; 994 case Type::MetadataTyID: Result += "Metadata"; break; 995 case Type::HalfTyID: Result += "f16"; break; 996 case Type::BFloatTyID: Result += "bf16"; break; 997 case Type::FloatTyID: Result += "f32"; break; 998 case Type::DoubleTyID: Result += "f64"; break; 999 case Type::X86_FP80TyID: Result += "f80"; break; 1000 case Type::FP128TyID: Result += "f128"; break; 1001 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1002 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1003 case Type::X86_AMXTyID: Result += "x86amx"; break; 1004 case Type::IntegerTyID: 1005 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1006 break; 1007 } 1008 } 1009 return Result; 1010 } 1011 1012 StringRef Intrinsic::getBaseName(ID id) { 1013 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1014 return IntrinsicNameTable[id]; 1015 } 1016 1017 StringRef Intrinsic::getName(ID id) { 1018 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1019 assert(!Intrinsic::isOverloaded(id) && 1020 "This version of getName does not support overloading"); 1021 return getBaseName(id); 1022 } 1023 1024 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1025 Module *M, FunctionType *FT, 1026 bool EarlyModuleCheck) { 1027 1028 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1029 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1030 "This version of getName is for overloaded intrinsics only"); 1031 (void)EarlyModuleCheck; 1032 assert((!EarlyModuleCheck || M || 1033 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1034 "Intrinsic overloading on pointer types need to provide a Module"); 1035 bool HasUnnamedType = false; 1036 std::string Result(Intrinsic::getBaseName(Id)); 1037 for (Type *Ty : Tys) 1038 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1039 if (HasUnnamedType) { 1040 assert(M && "unnamed types need a module"); 1041 if (!FT) 1042 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1043 else 1044 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1045 "Provided FunctionType must match arguments"); 1046 return M->getUniqueIntrinsicName(Result, Id, FT); 1047 } 1048 return Result; 1049 } 1050 1051 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1052 FunctionType *FT) { 1053 assert(M && "We need to have a Module"); 1054 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1055 } 1056 1057 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1058 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1059 } 1060 1061 /// IIT_Info - These are enumerators that describe the entries returned by the 1062 /// getIntrinsicInfoTableEntries function. 1063 /// 1064 /// Defined in Intrinsics.td. 1065 enum IIT_Info { 1066 #define GET_INTRINSIC_IITINFO 1067 #include "llvm/IR/IntrinsicImpl.inc" 1068 #undef GET_INTRINSIC_IITINFO 1069 }; 1070 1071 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1072 IIT_Info LastInfo, 1073 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1074 using namespace Intrinsic; 1075 1076 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1077 1078 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1079 unsigned StructElts = 2; 1080 1081 switch (Info) { 1082 case IIT_Done: 1083 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1084 return; 1085 case IIT_VARARG: 1086 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1087 return; 1088 case IIT_MMX: 1089 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1090 return; 1091 case IIT_AMX: 1092 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1093 return; 1094 case IIT_TOKEN: 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1096 return; 1097 case IIT_METADATA: 1098 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1099 return; 1100 case IIT_F16: 1101 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1102 return; 1103 case IIT_BF16: 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1105 return; 1106 case IIT_F32: 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1108 return; 1109 case IIT_F64: 1110 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1111 return; 1112 case IIT_F128: 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1114 return; 1115 case IIT_PPCF128: 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1117 return; 1118 case IIT_I1: 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1120 return; 1121 case IIT_I2: 1122 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1123 return; 1124 case IIT_I4: 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1126 return; 1127 case IIT_AARCH64_SVCOUNT: 1128 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1129 return; 1130 case IIT_I8: 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1132 return; 1133 case IIT_I16: 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1135 return; 1136 case IIT_I32: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1138 return; 1139 case IIT_I64: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1141 return; 1142 case IIT_I128: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1144 return; 1145 case IIT_V1: 1146 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1147 DecodeIITType(NextElt, Infos, Info, OutputTable); 1148 return; 1149 case IIT_V2: 1150 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1151 DecodeIITType(NextElt, Infos, Info, OutputTable); 1152 return; 1153 case IIT_V3: 1154 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1155 DecodeIITType(NextElt, Infos, Info, OutputTable); 1156 return; 1157 case IIT_V4: 1158 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1159 DecodeIITType(NextElt, Infos, Info, OutputTable); 1160 return; 1161 case IIT_V8: 1162 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1163 DecodeIITType(NextElt, Infos, Info, OutputTable); 1164 return; 1165 case IIT_V16: 1166 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1167 DecodeIITType(NextElt, Infos, Info, OutputTable); 1168 return; 1169 case IIT_V32: 1170 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1171 DecodeIITType(NextElt, Infos, Info, OutputTable); 1172 return; 1173 case IIT_V64: 1174 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1175 DecodeIITType(NextElt, Infos, Info, OutputTable); 1176 return; 1177 case IIT_V128: 1178 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1179 DecodeIITType(NextElt, Infos, Info, OutputTable); 1180 return; 1181 case IIT_V256: 1182 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1183 DecodeIITType(NextElt, Infos, Info, OutputTable); 1184 return; 1185 case IIT_V512: 1186 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1187 DecodeIITType(NextElt, Infos, Info, OutputTable); 1188 return; 1189 case IIT_V1024: 1190 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1191 DecodeIITType(NextElt, Infos, Info, OutputTable); 1192 return; 1193 case IIT_EXTERNREF: 1194 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1195 return; 1196 case IIT_FUNCREF: 1197 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1198 return; 1199 case IIT_PTR: 1200 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1201 return; 1202 case IIT_ANYPTR: // [ANYPTR addrspace] 1203 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1204 Infos[NextElt++])); 1205 return; 1206 case IIT_ARG: { 1207 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1209 return; 1210 } 1211 case IIT_EXTEND_ARG: { 1212 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1213 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1214 ArgInfo)); 1215 return; 1216 } 1217 case IIT_TRUNC_ARG: { 1218 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1219 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1220 ArgInfo)); 1221 return; 1222 } 1223 case IIT_HALF_VEC_ARG: { 1224 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1225 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1226 ArgInfo)); 1227 return; 1228 } 1229 case IIT_SAME_VEC_WIDTH_ARG: { 1230 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1231 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1232 ArgInfo)); 1233 return; 1234 } 1235 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1236 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1237 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1238 OutputTable.push_back( 1239 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1240 return; 1241 } 1242 case IIT_EMPTYSTRUCT: 1243 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1244 return; 1245 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1246 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1247 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1248 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1249 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1250 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1251 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1252 case IIT_STRUCT2: { 1253 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1254 1255 for (unsigned i = 0; i != StructElts; ++i) 1256 DecodeIITType(NextElt, Infos, Info, OutputTable); 1257 return; 1258 } 1259 case IIT_SUBDIVIDE2_ARG: { 1260 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1261 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1262 ArgInfo)); 1263 return; 1264 } 1265 case IIT_SUBDIVIDE4_ARG: { 1266 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1267 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1268 ArgInfo)); 1269 return; 1270 } 1271 case IIT_VEC_ELEMENT: { 1272 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1273 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1274 ArgInfo)); 1275 return; 1276 } 1277 case IIT_SCALABLE_VEC: { 1278 DecodeIITType(NextElt, Infos, Info, OutputTable); 1279 return; 1280 } 1281 case IIT_VEC_OF_BITCASTS_TO_INT: { 1282 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1283 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1284 ArgInfo)); 1285 return; 1286 } 1287 } 1288 llvm_unreachable("unhandled"); 1289 } 1290 1291 #define GET_INTRINSIC_GENERATOR_GLOBAL 1292 #include "llvm/IR/IntrinsicImpl.inc" 1293 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1294 1295 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1296 SmallVectorImpl<IITDescriptor> &T){ 1297 // Check to see if the intrinsic's type was expressible by the table. 1298 unsigned TableVal = IIT_Table[id-1]; 1299 1300 // Decode the TableVal into an array of IITValues. 1301 SmallVector<unsigned char, 8> IITValues; 1302 ArrayRef<unsigned char> IITEntries; 1303 unsigned NextElt = 0; 1304 if ((TableVal >> 31) != 0) { 1305 // This is an offset into the IIT_LongEncodingTable. 1306 IITEntries = IIT_LongEncodingTable; 1307 1308 // Strip sentinel bit. 1309 NextElt = (TableVal << 1) >> 1; 1310 } else { 1311 // Decode the TableVal into an array of IITValues. If the entry was encoded 1312 // into a single word in the table itself, decode it now. 1313 do { 1314 IITValues.push_back(TableVal & 0xF); 1315 TableVal >>= 4; 1316 } while (TableVal); 1317 1318 IITEntries = IITValues; 1319 NextElt = 0; 1320 } 1321 1322 // Okay, decode the table into the output vector of IITDescriptors. 1323 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1324 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1325 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1326 } 1327 1328 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1329 ArrayRef<Type*> Tys, LLVMContext &Context) { 1330 using namespace Intrinsic; 1331 1332 IITDescriptor D = Infos.front(); 1333 Infos = Infos.slice(1); 1334 1335 switch (D.Kind) { 1336 case IITDescriptor::Void: return Type::getVoidTy(Context); 1337 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1338 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1339 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1340 case IITDescriptor::Token: return Type::getTokenTy(Context); 1341 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1342 case IITDescriptor::Half: return Type::getHalfTy(Context); 1343 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1344 case IITDescriptor::Float: return Type::getFloatTy(Context); 1345 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1346 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1347 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1348 case IITDescriptor::AArch64Svcount: 1349 return TargetExtType::get(Context, "aarch64.svcount"); 1350 1351 case IITDescriptor::Integer: 1352 return IntegerType::get(Context, D.Integer_Width); 1353 case IITDescriptor::Vector: 1354 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1355 D.Vector_Width); 1356 case IITDescriptor::Pointer: 1357 return PointerType::get(Context, D.Pointer_AddressSpace); 1358 case IITDescriptor::Struct: { 1359 SmallVector<Type *, 8> Elts; 1360 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1361 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1362 return StructType::get(Context, Elts); 1363 } 1364 case IITDescriptor::Argument: 1365 return Tys[D.getArgumentNumber()]; 1366 case IITDescriptor::ExtendArgument: { 1367 Type *Ty = Tys[D.getArgumentNumber()]; 1368 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1369 return VectorType::getExtendedElementVectorType(VTy); 1370 1371 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1372 } 1373 case IITDescriptor::TruncArgument: { 1374 Type *Ty = Tys[D.getArgumentNumber()]; 1375 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1376 return VectorType::getTruncatedElementVectorType(VTy); 1377 1378 IntegerType *ITy = cast<IntegerType>(Ty); 1379 assert(ITy->getBitWidth() % 2 == 0); 1380 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1381 } 1382 case IITDescriptor::Subdivide2Argument: 1383 case IITDescriptor::Subdivide4Argument: { 1384 Type *Ty = Tys[D.getArgumentNumber()]; 1385 VectorType *VTy = dyn_cast<VectorType>(Ty); 1386 assert(VTy && "Expected an argument of Vector Type"); 1387 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1388 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1389 } 1390 case IITDescriptor::HalfVecArgument: 1391 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1392 Tys[D.getArgumentNumber()])); 1393 case IITDescriptor::SameVecWidthArgument: { 1394 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1395 Type *Ty = Tys[D.getArgumentNumber()]; 1396 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1397 return VectorType::get(EltTy, VTy->getElementCount()); 1398 return EltTy; 1399 } 1400 case IITDescriptor::VecElementArgument: { 1401 Type *Ty = Tys[D.getArgumentNumber()]; 1402 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1403 return VTy->getElementType(); 1404 llvm_unreachable("Expected an argument of Vector Type"); 1405 } 1406 case IITDescriptor::VecOfBitcastsToInt: { 1407 Type *Ty = Tys[D.getArgumentNumber()]; 1408 VectorType *VTy = dyn_cast<VectorType>(Ty); 1409 assert(VTy && "Expected an argument of Vector Type"); 1410 return VectorType::getInteger(VTy); 1411 } 1412 case IITDescriptor::VecOfAnyPtrsToElt: 1413 // Return the overloaded type (which determines the pointers address space) 1414 return Tys[D.getOverloadArgNumber()]; 1415 } 1416 llvm_unreachable("unhandled"); 1417 } 1418 1419 FunctionType *Intrinsic::getType(LLVMContext &Context, 1420 ID id, ArrayRef<Type*> Tys) { 1421 SmallVector<IITDescriptor, 8> Table; 1422 getIntrinsicInfoTableEntries(id, Table); 1423 1424 ArrayRef<IITDescriptor> TableRef = Table; 1425 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1426 1427 SmallVector<Type*, 8> ArgTys; 1428 while (!TableRef.empty()) 1429 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1430 1431 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1432 // If we see void type as the type of the last argument, it is vararg intrinsic 1433 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1434 ArgTys.pop_back(); 1435 return FunctionType::get(ResultTy, ArgTys, true); 1436 } 1437 return FunctionType::get(ResultTy, ArgTys, false); 1438 } 1439 1440 bool Intrinsic::isOverloaded(ID id) { 1441 #define GET_INTRINSIC_OVERLOAD_TABLE 1442 #include "llvm/IR/IntrinsicImpl.inc" 1443 #undef GET_INTRINSIC_OVERLOAD_TABLE 1444 } 1445 1446 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1447 #define GET_INTRINSIC_ATTRIBUTES 1448 #include "llvm/IR/IntrinsicImpl.inc" 1449 #undef GET_INTRINSIC_ATTRIBUTES 1450 1451 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1452 // There can never be multiple globals with the same name of different types, 1453 // because intrinsics must be a specific type. 1454 auto *FT = getType(M->getContext(), id, Tys); 1455 return cast<Function>( 1456 M->getOrInsertFunction( 1457 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1458 .getCallee()); 1459 } 1460 1461 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1462 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1463 #include "llvm/IR/IntrinsicImpl.inc" 1464 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1465 1466 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1467 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1468 #include "llvm/IR/IntrinsicImpl.inc" 1469 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1470 1471 using DeferredIntrinsicMatchPair = 1472 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1473 1474 static bool matchIntrinsicType( 1475 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1476 SmallVectorImpl<Type *> &ArgTys, 1477 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1478 bool IsDeferredCheck) { 1479 using namespace Intrinsic; 1480 1481 // If we ran out of descriptors, there are too many arguments. 1482 if (Infos.empty()) return true; 1483 1484 // Do this before slicing off the 'front' part 1485 auto InfosRef = Infos; 1486 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1487 DeferredChecks.emplace_back(T, InfosRef); 1488 return false; 1489 }; 1490 1491 IITDescriptor D = Infos.front(); 1492 Infos = Infos.slice(1); 1493 1494 switch (D.Kind) { 1495 case IITDescriptor::Void: return !Ty->isVoidTy(); 1496 case IITDescriptor::VarArg: return true; 1497 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1498 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1499 case IITDescriptor::Token: return !Ty->isTokenTy(); 1500 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1501 case IITDescriptor::Half: return !Ty->isHalfTy(); 1502 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1503 case IITDescriptor::Float: return !Ty->isFloatTy(); 1504 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1505 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1506 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1507 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1508 case IITDescriptor::AArch64Svcount: 1509 return !isa<TargetExtType>(Ty) || 1510 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1511 case IITDescriptor::Vector: { 1512 VectorType *VT = dyn_cast<VectorType>(Ty); 1513 return !VT || VT->getElementCount() != D.Vector_Width || 1514 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1515 DeferredChecks, IsDeferredCheck); 1516 } 1517 case IITDescriptor::Pointer: { 1518 PointerType *PT = dyn_cast<PointerType>(Ty); 1519 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1520 } 1521 1522 case IITDescriptor::Struct: { 1523 StructType *ST = dyn_cast<StructType>(Ty); 1524 if (!ST || !ST->isLiteral() || ST->isPacked() || 1525 ST->getNumElements() != D.Struct_NumElements) 1526 return true; 1527 1528 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1529 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1530 DeferredChecks, IsDeferredCheck)) 1531 return true; 1532 return false; 1533 } 1534 1535 case IITDescriptor::Argument: 1536 // If this is the second occurrence of an argument, 1537 // verify that the later instance matches the previous instance. 1538 if (D.getArgumentNumber() < ArgTys.size()) 1539 return Ty != ArgTys[D.getArgumentNumber()]; 1540 1541 if (D.getArgumentNumber() > ArgTys.size() || 1542 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1543 return IsDeferredCheck || DeferCheck(Ty); 1544 1545 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1546 "Table consistency error"); 1547 ArgTys.push_back(Ty); 1548 1549 switch (D.getArgumentKind()) { 1550 case IITDescriptor::AK_Any: return false; // Success 1551 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1552 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1553 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1554 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1555 default: break; 1556 } 1557 llvm_unreachable("all argument kinds not covered"); 1558 1559 case IITDescriptor::ExtendArgument: { 1560 // If this is a forward reference, defer the check for later. 1561 if (D.getArgumentNumber() >= ArgTys.size()) 1562 return IsDeferredCheck || DeferCheck(Ty); 1563 1564 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1565 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1566 NewTy = VectorType::getExtendedElementVectorType(VTy); 1567 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1568 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1569 else 1570 return true; 1571 1572 return Ty != NewTy; 1573 } 1574 case IITDescriptor::TruncArgument: { 1575 // If this is a forward reference, defer the check for later. 1576 if (D.getArgumentNumber() >= ArgTys.size()) 1577 return IsDeferredCheck || DeferCheck(Ty); 1578 1579 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1580 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1581 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1582 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1583 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1584 else 1585 return true; 1586 1587 return Ty != NewTy; 1588 } 1589 case IITDescriptor::HalfVecArgument: 1590 // If this is a forward reference, defer the check for later. 1591 if (D.getArgumentNumber() >= ArgTys.size()) 1592 return IsDeferredCheck || DeferCheck(Ty); 1593 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1594 VectorType::getHalfElementsVectorType( 1595 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1596 case IITDescriptor::SameVecWidthArgument: { 1597 if (D.getArgumentNumber() >= ArgTys.size()) { 1598 // Defer check and subsequent check for the vector element type. 1599 Infos = Infos.slice(1); 1600 return IsDeferredCheck || DeferCheck(Ty); 1601 } 1602 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1603 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1604 // Both must be vectors of the same number of elements or neither. 1605 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1606 return true; 1607 Type *EltTy = Ty; 1608 if (ThisArgType) { 1609 if (ReferenceType->getElementCount() != 1610 ThisArgType->getElementCount()) 1611 return true; 1612 EltTy = ThisArgType->getElementType(); 1613 } 1614 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1615 IsDeferredCheck); 1616 } 1617 case IITDescriptor::VecOfAnyPtrsToElt: { 1618 unsigned RefArgNumber = D.getRefArgNumber(); 1619 if (RefArgNumber >= ArgTys.size()) { 1620 if (IsDeferredCheck) 1621 return true; 1622 // If forward referencing, already add the pointer-vector type and 1623 // defer the checks for later. 1624 ArgTys.push_back(Ty); 1625 return DeferCheck(Ty); 1626 } 1627 1628 if (!IsDeferredCheck){ 1629 assert(D.getOverloadArgNumber() == ArgTys.size() && 1630 "Table consistency error"); 1631 ArgTys.push_back(Ty); 1632 } 1633 1634 // Verify the overloaded type "matches" the Ref type. 1635 // i.e. Ty is a vector with the same width as Ref. 1636 // Composed of pointers to the same element type as Ref. 1637 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1638 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1639 if (!ThisArgVecTy || !ReferenceType || 1640 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1641 return true; 1642 return !ThisArgVecTy->getElementType()->isPointerTy(); 1643 } 1644 case IITDescriptor::VecElementArgument: { 1645 if (D.getArgumentNumber() >= ArgTys.size()) 1646 return IsDeferredCheck ? true : DeferCheck(Ty); 1647 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1648 return !ReferenceType || Ty != ReferenceType->getElementType(); 1649 } 1650 case IITDescriptor::Subdivide2Argument: 1651 case IITDescriptor::Subdivide4Argument: { 1652 // If this is a forward reference, defer the check for later. 1653 if (D.getArgumentNumber() >= ArgTys.size()) 1654 return IsDeferredCheck || DeferCheck(Ty); 1655 1656 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1657 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1658 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1659 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1660 return Ty != NewTy; 1661 } 1662 return true; 1663 } 1664 case IITDescriptor::VecOfBitcastsToInt: { 1665 if (D.getArgumentNumber() >= ArgTys.size()) 1666 return IsDeferredCheck || DeferCheck(Ty); 1667 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1668 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1669 if (!ThisArgVecTy || !ReferenceType) 1670 return true; 1671 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1672 } 1673 } 1674 llvm_unreachable("unhandled"); 1675 } 1676 1677 Intrinsic::MatchIntrinsicTypesResult 1678 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1679 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1680 SmallVectorImpl<Type *> &ArgTys) { 1681 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1682 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1683 false)) 1684 return MatchIntrinsicTypes_NoMatchRet; 1685 1686 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1687 1688 for (auto *Ty : FTy->params()) 1689 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1690 return MatchIntrinsicTypes_NoMatchArg; 1691 1692 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1693 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1694 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1695 true)) 1696 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1697 : MatchIntrinsicTypes_NoMatchArg; 1698 } 1699 1700 return MatchIntrinsicTypes_Match; 1701 } 1702 1703 bool 1704 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1705 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1706 // If there are no descriptors left, then it can't be a vararg. 1707 if (Infos.empty()) 1708 return isVarArg; 1709 1710 // There should be only one descriptor remaining at this point. 1711 if (Infos.size() != 1) 1712 return true; 1713 1714 // Check and verify the descriptor. 1715 IITDescriptor D = Infos.front(); 1716 Infos = Infos.slice(1); 1717 if (D.Kind == IITDescriptor::VarArg) 1718 return !isVarArg; 1719 1720 return true; 1721 } 1722 1723 bool Intrinsic::getIntrinsicSignature(Function *F, 1724 SmallVectorImpl<Type *> &ArgTys) { 1725 Intrinsic::ID ID = F->getIntrinsicID(); 1726 if (!ID) 1727 return false; 1728 1729 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1730 getIntrinsicInfoTableEntries(ID, Table); 1731 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1732 1733 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1734 ArgTys) != 1735 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1736 return false; 1737 } 1738 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1739 TableRef)) 1740 return false; 1741 return true; 1742 } 1743 1744 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1745 SmallVector<Type *, 4> ArgTys; 1746 if (!getIntrinsicSignature(F, ArgTys)) 1747 return std::nullopt; 1748 1749 Intrinsic::ID ID = F->getIntrinsicID(); 1750 StringRef Name = F->getName(); 1751 std::string WantedName = 1752 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1753 if (Name == WantedName) 1754 return std::nullopt; 1755 1756 Function *NewDecl = [&] { 1757 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1758 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1759 if (ExistingF->getFunctionType() == F->getFunctionType()) 1760 return ExistingF; 1761 1762 // The name already exists, but is not a function or has the wrong 1763 // prototype. Make place for the new one by renaming the old version. 1764 // Either this old version will be removed later on or the module is 1765 // invalid and we'll get an error. 1766 ExistingGV->setName(WantedName + ".renamed"); 1767 } 1768 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1769 }(); 1770 1771 NewDecl->setCallingConv(F->getCallingConv()); 1772 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1773 "Shouldn't change the signature"); 1774 return NewDecl; 1775 } 1776 1777 /// hasAddressTaken - returns true if there are any uses of this function 1778 /// other than direct calls or invokes to it. Optionally ignores callback 1779 /// uses, assume like pointer annotation calls, and references in llvm.used 1780 /// and llvm.compiler.used variables. 1781 bool Function::hasAddressTaken(const User **PutOffender, 1782 bool IgnoreCallbackUses, 1783 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1784 bool IgnoreARCAttachedCall, 1785 bool IgnoreCastedDirectCall) const { 1786 for (const Use &U : uses()) { 1787 const User *FU = U.getUser(); 1788 if (isa<BlockAddress>(FU)) 1789 continue; 1790 1791 if (IgnoreCallbackUses) { 1792 AbstractCallSite ACS(&U); 1793 if (ACS && ACS.isCallbackCall()) 1794 continue; 1795 } 1796 1797 const auto *Call = dyn_cast<CallBase>(FU); 1798 if (!Call) { 1799 if (IgnoreAssumeLikeCalls && 1800 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1801 all_of(FU->users(), [](const User *U) { 1802 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1803 return I->isAssumeLikeIntrinsic(); 1804 return false; 1805 })) { 1806 continue; 1807 } 1808 1809 if (IgnoreLLVMUsed && !FU->user_empty()) { 1810 const User *FUU = FU; 1811 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1812 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1813 FUU = *FU->user_begin(); 1814 if (llvm::all_of(FUU->users(), [](const User *U) { 1815 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1816 return GV->hasName() && 1817 (GV->getName().equals("llvm.compiler.used") || 1818 GV->getName().equals("llvm.used")); 1819 return false; 1820 })) 1821 continue; 1822 } 1823 if (PutOffender) 1824 *PutOffender = FU; 1825 return true; 1826 } 1827 1828 if (IgnoreAssumeLikeCalls) { 1829 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1830 if (I->isAssumeLikeIntrinsic()) 1831 continue; 1832 } 1833 1834 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1835 Call->getFunctionType() != getFunctionType())) { 1836 if (IgnoreARCAttachedCall && 1837 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1838 U.getOperandNo())) 1839 continue; 1840 1841 if (PutOffender) 1842 *PutOffender = FU; 1843 return true; 1844 } 1845 } 1846 return false; 1847 } 1848 1849 bool Function::isDefTriviallyDead() const { 1850 // Check the linkage 1851 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1852 !hasAvailableExternallyLinkage()) 1853 return false; 1854 1855 // Check if the function is used by anything other than a blockaddress. 1856 for (const User *U : users()) 1857 if (!isa<BlockAddress>(U)) 1858 return false; 1859 1860 return true; 1861 } 1862 1863 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1864 /// setjmp or other function that gcc recognizes as "returning twice". 1865 bool Function::callsFunctionThatReturnsTwice() const { 1866 for (const Instruction &I : instructions(this)) 1867 if (const auto *Call = dyn_cast<CallBase>(&I)) 1868 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1869 return true; 1870 1871 return false; 1872 } 1873 1874 Constant *Function::getPersonalityFn() const { 1875 assert(hasPersonalityFn() && getNumOperands()); 1876 return cast<Constant>(Op<0>()); 1877 } 1878 1879 void Function::setPersonalityFn(Constant *Fn) { 1880 setHungoffOperand<0>(Fn); 1881 setValueSubclassDataBit(3, Fn != nullptr); 1882 } 1883 1884 Constant *Function::getPrefixData() const { 1885 assert(hasPrefixData() && getNumOperands()); 1886 return cast<Constant>(Op<1>()); 1887 } 1888 1889 void Function::setPrefixData(Constant *PrefixData) { 1890 setHungoffOperand<1>(PrefixData); 1891 setValueSubclassDataBit(1, PrefixData != nullptr); 1892 } 1893 1894 Constant *Function::getPrologueData() const { 1895 assert(hasPrologueData() && getNumOperands()); 1896 return cast<Constant>(Op<2>()); 1897 } 1898 1899 void Function::setPrologueData(Constant *PrologueData) { 1900 setHungoffOperand<2>(PrologueData); 1901 setValueSubclassDataBit(2, PrologueData != nullptr); 1902 } 1903 1904 void Function::allocHungoffUselist() { 1905 // If we've already allocated a uselist, stop here. 1906 if (getNumOperands()) 1907 return; 1908 1909 allocHungoffUses(3, /*IsPhi=*/ false); 1910 setNumHungOffUseOperands(3); 1911 1912 // Initialize the uselist with placeholder operands to allow traversal. 1913 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1914 Op<0>().set(CPN); 1915 Op<1>().set(CPN); 1916 Op<2>().set(CPN); 1917 } 1918 1919 template <int Idx> 1920 void Function::setHungoffOperand(Constant *C) { 1921 if (C) { 1922 allocHungoffUselist(); 1923 Op<Idx>().set(C); 1924 } else if (getNumOperands()) { 1925 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1926 } 1927 } 1928 1929 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1930 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1931 if (On) 1932 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1933 else 1934 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1935 } 1936 1937 void Function::setEntryCount(ProfileCount Count, 1938 const DenseSet<GlobalValue::GUID> *S) { 1939 #if !defined(NDEBUG) 1940 auto PrevCount = getEntryCount(); 1941 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1942 #endif 1943 1944 auto ImportGUIDs = getImportGUIDs(); 1945 if (S == nullptr && ImportGUIDs.size()) 1946 S = &ImportGUIDs; 1947 1948 MDBuilder MDB(getContext()); 1949 setMetadata( 1950 LLVMContext::MD_prof, 1951 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1952 } 1953 1954 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1955 const DenseSet<GlobalValue::GUID> *Imports) { 1956 setEntryCount(ProfileCount(Count, Type), Imports); 1957 } 1958 1959 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1960 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1961 if (MD && MD->getOperand(0)) 1962 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1963 if (MDS->getString().equals("function_entry_count")) { 1964 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1965 uint64_t Count = CI->getValue().getZExtValue(); 1966 // A value of -1 is used for SamplePGO when there were no samples. 1967 // Treat this the same as unknown. 1968 if (Count == (uint64_t)-1) 1969 return std::nullopt; 1970 return ProfileCount(Count, PCT_Real); 1971 } else if (AllowSynthetic && 1972 MDS->getString().equals("synthetic_function_entry_count")) { 1973 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1974 uint64_t Count = CI->getValue().getZExtValue(); 1975 return ProfileCount(Count, PCT_Synthetic); 1976 } 1977 } 1978 return std::nullopt; 1979 } 1980 1981 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1982 DenseSet<GlobalValue::GUID> R; 1983 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1984 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1985 if (MDS->getString().equals("function_entry_count")) 1986 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1987 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1988 ->getValue() 1989 .getZExtValue()); 1990 return R; 1991 } 1992 1993 void Function::setSectionPrefix(StringRef Prefix) { 1994 MDBuilder MDB(getContext()); 1995 setMetadata(LLVMContext::MD_section_prefix, 1996 MDB.createFunctionSectionPrefix(Prefix)); 1997 } 1998 1999 std::optional<StringRef> Function::getSectionPrefix() const { 2000 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2001 assert(cast<MDString>(MD->getOperand(0)) 2002 ->getString() 2003 .equals("function_section_prefix") && 2004 "Metadata not match"); 2005 return cast<MDString>(MD->getOperand(1))->getString(); 2006 } 2007 return std::nullopt; 2008 } 2009 2010 bool Function::nullPointerIsDefined() const { 2011 return hasFnAttribute(Attribute::NullPointerIsValid); 2012 } 2013 2014 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2015 if (F && F->nullPointerIsDefined()) 2016 return true; 2017 2018 if (AS != 0) 2019 return true; 2020 2021 return false; 2022 } 2023