xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 9df71d7673b5c98e1032d01be83724a45b42fafc)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<int> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 extern cl::opt<bool> UseNewDbgInfoFormat;
87 
88 void Function::convertToNewDbgValues() {
89   IsNewDbgInfoFormat = true;
90   for (auto &BB : *this) {
91     BB.convertToNewDbgValues();
92   }
93 }
94 
95 void Function::convertFromNewDbgValues() {
96   IsNewDbgInfoFormat = false;
97   for (auto &BB : *this) {
98     BB.convertFromNewDbgValues();
99   }
100 }
101 
102 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
103   if (NewFlag && !IsNewDbgInfoFormat)
104     convertToNewDbgValues();
105   else if (!NewFlag && IsNewDbgInfoFormat)
106     convertFromNewDbgValues();
107 }
108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
109   for (auto &BB : *this) {
110     BB.setNewDbgInfoFormatFlag(NewFlag);
111   }
112   IsNewDbgInfoFormat = NewFlag;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Argument Implementation
117 //===----------------------------------------------------------------------===//
118 
119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
120     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
121   setName(Name);
122 }
123 
124 void Argument::setParent(Function *parent) {
125   Parent = parent;
126 }
127 
128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
129   if (!getType()->isPointerTy()) return false;
130   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
131       (AllowUndefOrPoison ||
132        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
133     return true;
134   else if (getDereferenceableBytes() > 0 &&
135            !NullPointerIsDefined(getParent(),
136                                  getType()->getPointerAddressSpace()))
137     return true;
138   return false;
139 }
140 
141 bool Argument::hasByValAttr() const {
142   if (!getType()->isPointerTy()) return false;
143   return hasAttribute(Attribute::ByVal);
144 }
145 
146 bool Argument::hasByRefAttr() const {
147   if (!getType()->isPointerTy())
148     return false;
149   return hasAttribute(Attribute::ByRef);
150 }
151 
152 bool Argument::hasSwiftSelfAttr() const {
153   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
154 }
155 
156 bool Argument::hasSwiftErrorAttr() const {
157   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
158 }
159 
160 bool Argument::hasInAllocaAttr() const {
161   if (!getType()->isPointerTy()) return false;
162   return hasAttribute(Attribute::InAlloca);
163 }
164 
165 bool Argument::hasPreallocatedAttr() const {
166   if (!getType()->isPointerTy())
167     return false;
168   return hasAttribute(Attribute::Preallocated);
169 }
170 
171 bool Argument::hasPassPointeeByValueCopyAttr() const {
172   if (!getType()->isPointerTy()) return false;
173   AttributeList Attrs = getParent()->getAttributes();
174   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
175          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
176          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
177 }
178 
179 bool Argument::hasPointeeInMemoryValueAttr() const {
180   if (!getType()->isPointerTy())
181     return false;
182   AttributeList Attrs = getParent()->getAttributes();
183   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
186          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
187          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
188 }
189 
190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
191 /// parameter type.
192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
193   // FIXME: All the type carrying attributes are mutually exclusive, so there
194   // should be a single query to get the stored type that handles any of them.
195   if (Type *ByValTy = ParamAttrs.getByValType())
196     return ByValTy;
197   if (Type *ByRefTy = ParamAttrs.getByRefType())
198     return ByRefTy;
199   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
200     return PreAllocTy;
201   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
202     return InAllocaTy;
203   if (Type *SRetTy = ParamAttrs.getStructRetType())
204     return SRetTy;
205 
206   return nullptr;
207 }
208 
209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
210   AttributeSet ParamAttrs =
211       getParent()->getAttributes().getParamAttrs(getArgNo());
212   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
213     return DL.getTypeAllocSize(MemTy);
214   return 0;
215 }
216 
217 Type *Argument::getPointeeInMemoryValueType() const {
218   AttributeSet ParamAttrs =
219       getParent()->getAttributes().getParamAttrs(getArgNo());
220   return getMemoryParamAllocType(ParamAttrs);
221 }
222 
223 MaybeAlign Argument::getParamAlign() const {
224   assert(getType()->isPointerTy() && "Only pointers have alignments");
225   return getParent()->getParamAlign(getArgNo());
226 }
227 
228 MaybeAlign Argument::getParamStackAlign() const {
229   return getParent()->getParamStackAlign(getArgNo());
230 }
231 
232 Type *Argument::getParamByValType() const {
233   assert(getType()->isPointerTy() && "Only pointers have byval types");
234   return getParent()->getParamByValType(getArgNo());
235 }
236 
237 Type *Argument::getParamStructRetType() const {
238   assert(getType()->isPointerTy() && "Only pointers have sret types");
239   return getParent()->getParamStructRetType(getArgNo());
240 }
241 
242 Type *Argument::getParamByRefType() const {
243   assert(getType()->isPointerTy() && "Only pointers have byref types");
244   return getParent()->getParamByRefType(getArgNo());
245 }
246 
247 Type *Argument::getParamInAllocaType() const {
248   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
249   return getParent()->getParamInAllocaType(getArgNo());
250 }
251 
252 uint64_t Argument::getDereferenceableBytes() const {
253   assert(getType()->isPointerTy() &&
254          "Only pointers have dereferenceable bytes");
255   return getParent()->getParamDereferenceableBytes(getArgNo());
256 }
257 
258 uint64_t Argument::getDereferenceableOrNullBytes() const {
259   assert(getType()->isPointerTy() &&
260          "Only pointers have dereferenceable bytes");
261   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
262 }
263 
264 FPClassTest Argument::getNoFPClass() const {
265   return getParent()->getParamNoFPClass(getArgNo());
266 }
267 
268 std::optional<ConstantRange> Argument::getRange() const {
269   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
270   if (RangeAttr.isValid())
271     return RangeAttr.getRange();
272   return std::nullopt;
273 }
274 
275 bool Argument::hasNestAttr() const {
276   if (!getType()->isPointerTy()) return false;
277   return hasAttribute(Attribute::Nest);
278 }
279 
280 bool Argument::hasNoAliasAttr() const {
281   if (!getType()->isPointerTy()) return false;
282   return hasAttribute(Attribute::NoAlias);
283 }
284 
285 bool Argument::hasNoCaptureAttr() const {
286   if (!getType()->isPointerTy()) return false;
287   return hasAttribute(Attribute::NoCapture);
288 }
289 
290 bool Argument::hasNoFreeAttr() const {
291   if (!getType()->isPointerTy()) return false;
292   return hasAttribute(Attribute::NoFree);
293 }
294 
295 bool Argument::hasStructRetAttr() const {
296   if (!getType()->isPointerTy()) return false;
297   return hasAttribute(Attribute::StructRet);
298 }
299 
300 bool Argument::hasInRegAttr() const {
301   return hasAttribute(Attribute::InReg);
302 }
303 
304 bool Argument::hasReturnedAttr() const {
305   return hasAttribute(Attribute::Returned);
306 }
307 
308 bool Argument::hasZExtAttr() const {
309   return hasAttribute(Attribute::ZExt);
310 }
311 
312 bool Argument::hasSExtAttr() const {
313   return hasAttribute(Attribute::SExt);
314 }
315 
316 bool Argument::onlyReadsMemory() const {
317   AttributeList Attrs = getParent()->getAttributes();
318   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
319          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
320 }
321 
322 void Argument::addAttrs(AttrBuilder &B) {
323   AttributeList AL = getParent()->getAttributes();
324   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
325   getParent()->setAttributes(AL);
326 }
327 
328 void Argument::addAttr(Attribute::AttrKind Kind) {
329   getParent()->addParamAttr(getArgNo(), Kind);
330 }
331 
332 void Argument::addAttr(Attribute Attr) {
333   getParent()->addParamAttr(getArgNo(), Attr);
334 }
335 
336 void Argument::removeAttr(Attribute::AttrKind Kind) {
337   getParent()->removeParamAttr(getArgNo(), Kind);
338 }
339 
340 void Argument::removeAttrs(const AttributeMask &AM) {
341   AttributeList AL = getParent()->getAttributes();
342   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
343   getParent()->setAttributes(AL);
344 }
345 
346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
347   return getParent()->hasParamAttribute(getArgNo(), Kind);
348 }
349 
350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
351   return getParent()->getParamAttribute(getArgNo(), Kind);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Helper Methods in Function
356 //===----------------------------------------------------------------------===//
357 
358 LLVMContext &Function::getContext() const {
359   return getType()->getContext();
360 }
361 
362 const DataLayout &Function::getDataLayout() const {
363   return getParent()->getDataLayout();
364 }
365 
366 unsigned Function::getInstructionCount() const {
367   unsigned NumInstrs = 0;
368   for (const BasicBlock &BB : BasicBlocks)
369     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
370                                BB.instructionsWithoutDebug().end());
371   return NumInstrs;
372 }
373 
374 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
375                            const Twine &N, Module &M) {
376   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
377 }
378 
379 Function *Function::createWithDefaultAttr(FunctionType *Ty,
380                                           LinkageTypes Linkage,
381                                           unsigned AddrSpace, const Twine &N,
382                                           Module *M) {
383   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
384   AttrBuilder B(F->getContext());
385   UWTableKind UWTable = M->getUwtable();
386   if (UWTable != UWTableKind::None)
387     B.addUWTableAttr(UWTable);
388   switch (M->getFramePointer()) {
389   case FramePointerKind::None:
390     // 0 ("none") is the default.
391     break;
392   case FramePointerKind::Reserved:
393     B.addAttribute("frame-pointer", "reserved");
394     break;
395   case FramePointerKind::NonLeaf:
396     B.addAttribute("frame-pointer", "non-leaf");
397     break;
398   case FramePointerKind::All:
399     B.addAttribute("frame-pointer", "all");
400     break;
401   }
402   if (M->getModuleFlag("function_return_thunk_extern"))
403     B.addAttribute(Attribute::FnRetThunkExtern);
404   StringRef DefaultCPU = F->getContext().getDefaultTargetCPU();
405   if (!DefaultCPU.empty())
406     B.addAttribute("target-cpu", DefaultCPU);
407   StringRef DefaultFeatures = F->getContext().getDefaultTargetFeatures();
408   if (!DefaultFeatures.empty())
409     B.addAttribute("target-features", DefaultFeatures);
410   F->addFnAttrs(B);
411   return F;
412 }
413 
414 void Function::removeFromParent() {
415   getParent()->getFunctionList().remove(getIterator());
416 }
417 
418 void Function::eraseFromParent() {
419   getParent()->getFunctionList().erase(getIterator());
420 }
421 
422 void Function::splice(Function::iterator ToIt, Function *FromF,
423                       Function::iterator FromBeginIt,
424                       Function::iterator FromEndIt) {
425 #ifdef EXPENSIVE_CHECKS
426   // Check that FromBeginIt is before FromEndIt.
427   auto FromFEnd = FromF->end();
428   for (auto It = FromBeginIt; It != FromEndIt; ++It)
429     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
430 #endif // EXPENSIVE_CHECKS
431   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
432 }
433 
434 Function::iterator Function::erase(Function::iterator FromIt,
435                                    Function::iterator ToIt) {
436   return BasicBlocks.erase(FromIt, ToIt);
437 }
438 
439 //===----------------------------------------------------------------------===//
440 // Function Implementation
441 //===----------------------------------------------------------------------===//
442 
443 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
444   // If AS == -1 and we are passed a valid module pointer we place the function
445   // in the program address space. Otherwise we default to AS0.
446   if (AddrSpace == static_cast<unsigned>(-1))
447     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
448   return AddrSpace;
449 }
450 
451 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
452                    const Twine &name, Module *ParentModule)
453     : GlobalObject(Ty, Value::FunctionVal,
454                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
455                    computeAddrSpace(AddrSpace, ParentModule)),
456       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) {
457   assert(FunctionType::isValidReturnType(getReturnType()) &&
458          "invalid return type");
459   setGlobalObjectSubClassData(0);
460 
461   // We only need a symbol table for a function if the context keeps value names
462   if (!getContext().shouldDiscardValueNames())
463     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
464 
465   // If the function has arguments, mark them as lazily built.
466   if (Ty->getNumParams())
467     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
468 
469   if (ParentModule) {
470     ParentModule->getFunctionList().push_back(this);
471     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
472   }
473 
474   HasLLVMReservedName = getName().starts_with("llvm.");
475   // Ensure intrinsics have the right parameter attributes.
476   // Note, the IntID field will have been set in Value::setName if this function
477   // name is a valid intrinsic ID.
478   if (IntID)
479     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
480 }
481 
482 Function::~Function() {
483   dropAllReferences();    // After this it is safe to delete instructions.
484 
485   // Delete all of the method arguments and unlink from symbol table...
486   if (Arguments)
487     clearArguments();
488 
489   // Remove the function from the on-the-side GC table.
490   clearGC();
491 }
492 
493 void Function::BuildLazyArguments() const {
494   // Create the arguments vector, all arguments start out unnamed.
495   auto *FT = getFunctionType();
496   if (NumArgs > 0) {
497     Arguments = std::allocator<Argument>().allocate(NumArgs);
498     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
499       Type *ArgTy = FT->getParamType(i);
500       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
501       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
502     }
503   }
504 
505   // Clear the lazy arguments bit.
506   unsigned SDC = getSubclassDataFromValue();
507   SDC &= ~(1 << 0);
508   const_cast<Function*>(this)->setValueSubclassData(SDC);
509   assert(!hasLazyArguments());
510 }
511 
512 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
513   return MutableArrayRef<Argument>(Args, Count);
514 }
515 
516 bool Function::isConstrainedFPIntrinsic() const {
517   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
518 }
519 
520 void Function::clearArguments() {
521   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
522     A.setName("");
523     A.~Argument();
524   }
525   std::allocator<Argument>().deallocate(Arguments, NumArgs);
526   Arguments = nullptr;
527 }
528 
529 void Function::stealArgumentListFrom(Function &Src) {
530   assert(isDeclaration() && "Expected no references to current arguments");
531 
532   // Drop the current arguments, if any, and set the lazy argument bit.
533   if (!hasLazyArguments()) {
534     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
535                         [](const Argument &A) { return A.use_empty(); }) &&
536            "Expected arguments to be unused in declaration");
537     clearArguments();
538     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
539   }
540 
541   // Nothing to steal if Src has lazy arguments.
542   if (Src.hasLazyArguments())
543     return;
544 
545   // Steal arguments from Src, and fix the lazy argument bits.
546   assert(arg_size() == Src.arg_size());
547   Arguments = Src.Arguments;
548   Src.Arguments = nullptr;
549   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
550     // FIXME: This does the work of transferNodesFromList inefficiently.
551     SmallString<128> Name;
552     if (A.hasName())
553       Name = A.getName();
554     if (!Name.empty())
555       A.setName("");
556     A.setParent(this);
557     if (!Name.empty())
558       A.setName(Name);
559   }
560 
561   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
562   assert(!hasLazyArguments());
563   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
564 }
565 
566 void Function::deleteBodyImpl(bool ShouldDrop) {
567   setIsMaterializable(false);
568 
569   for (BasicBlock &BB : *this)
570     BB.dropAllReferences();
571 
572   // Delete all basic blocks. They are now unused, except possibly by
573   // blockaddresses, but BasicBlock's destructor takes care of those.
574   while (!BasicBlocks.empty())
575     BasicBlocks.begin()->eraseFromParent();
576 
577   if (getNumOperands()) {
578     if (ShouldDrop) {
579       // Drop uses of any optional data (real or placeholder).
580       User::dropAllReferences();
581       setNumHungOffUseOperands(0);
582     } else {
583       // The code needs to match Function::allocHungoffUselist().
584       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
585       Op<0>().set(CPN);
586       Op<1>().set(CPN);
587       Op<2>().set(CPN);
588     }
589     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
590   }
591 
592   // Metadata is stored in a side-table.
593   clearMetadata();
594 }
595 
596 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
597   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
598 }
599 
600 void Function::addFnAttr(Attribute::AttrKind Kind) {
601   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
602 }
603 
604 void Function::addFnAttr(StringRef Kind, StringRef Val) {
605   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
606 }
607 
608 void Function::addFnAttr(Attribute Attr) {
609   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
610 }
611 
612 void Function::addFnAttrs(const AttrBuilder &Attrs) {
613   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
614 }
615 
616 void Function::addRetAttr(Attribute::AttrKind Kind) {
617   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
618 }
619 
620 void Function::addRetAttr(Attribute Attr) {
621   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
622 }
623 
624 void Function::addRetAttrs(const AttrBuilder &Attrs) {
625   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
626 }
627 
628 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
629   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
630 }
631 
632 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
633   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
634 }
635 
636 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
637   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
638 }
639 
640 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
641   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
642 }
643 
644 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
645   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
646 }
647 
648 void Function::removeFnAttr(Attribute::AttrKind Kind) {
649   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
650 }
651 
652 void Function::removeFnAttr(StringRef Kind) {
653   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
654 }
655 
656 void Function::removeFnAttrs(const AttributeMask &AM) {
657   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
658 }
659 
660 void Function::removeRetAttr(Attribute::AttrKind Kind) {
661   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
662 }
663 
664 void Function::removeRetAttr(StringRef Kind) {
665   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
666 }
667 
668 void Function::removeRetAttrs(const AttributeMask &Attrs) {
669   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
670 }
671 
672 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
673   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
674 }
675 
676 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
677   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
678 }
679 
680 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
681   AttributeSets =
682       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
683 }
684 
685 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
686   AttributeSets =
687       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
688 }
689 
690 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
691   return AttributeSets.hasFnAttr(Kind);
692 }
693 
694 bool Function::hasFnAttribute(StringRef Kind) const {
695   return AttributeSets.hasFnAttr(Kind);
696 }
697 
698 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
699   return AttributeSets.hasRetAttr(Kind);
700 }
701 
702 bool Function::hasParamAttribute(unsigned ArgNo,
703                                  Attribute::AttrKind Kind) const {
704   return AttributeSets.hasParamAttr(ArgNo, Kind);
705 }
706 
707 Attribute Function::getAttributeAtIndex(unsigned i,
708                                         Attribute::AttrKind Kind) const {
709   return AttributeSets.getAttributeAtIndex(i, Kind);
710 }
711 
712 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
713   return AttributeSets.getAttributeAtIndex(i, Kind);
714 }
715 
716 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
717   return AttributeSets.getFnAttr(Kind);
718 }
719 
720 Attribute Function::getFnAttribute(StringRef Kind) const {
721   return AttributeSets.getFnAttr(Kind);
722 }
723 
724 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
725   return AttributeSets.getRetAttr(Kind);
726 }
727 
728 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
729                                                  uint64_t Default) const {
730   Attribute A = getFnAttribute(Name);
731   uint64_t Result = Default;
732   if (A.isStringAttribute()) {
733     StringRef Str = A.getValueAsString();
734     if (Str.getAsInteger(0, Result))
735       getContext().emitError("cannot parse integer attribute " + Name);
736   }
737 
738   return Result;
739 }
740 
741 /// gets the specified attribute from the list of attributes.
742 Attribute Function::getParamAttribute(unsigned ArgNo,
743                                       Attribute::AttrKind Kind) const {
744   return AttributeSets.getParamAttr(ArgNo, Kind);
745 }
746 
747 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
748                                                  uint64_t Bytes) {
749   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
750                                                                   ArgNo, Bytes);
751 }
752 
753 void Function::addRangeRetAttr(const ConstantRange &CR) {
754   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
755 }
756 
757 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
758   if (&FPType == &APFloat::IEEEsingle()) {
759     DenormalMode Mode = getDenormalModeF32Raw();
760     // If the f32 variant of the attribute isn't specified, try to use the
761     // generic one.
762     if (Mode.isValid())
763       return Mode;
764   }
765 
766   return getDenormalModeRaw();
767 }
768 
769 DenormalMode Function::getDenormalModeRaw() const {
770   Attribute Attr = getFnAttribute("denormal-fp-math");
771   StringRef Val = Attr.getValueAsString();
772   return parseDenormalFPAttribute(Val);
773 }
774 
775 DenormalMode Function::getDenormalModeF32Raw() const {
776   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
777   if (Attr.isValid()) {
778     StringRef Val = Attr.getValueAsString();
779     return parseDenormalFPAttribute(Val);
780   }
781 
782   return DenormalMode::getInvalid();
783 }
784 
785 const std::string &Function::getGC() const {
786   assert(hasGC() && "Function has no collector");
787   return getContext().getGC(*this);
788 }
789 
790 void Function::setGC(std::string Str) {
791   setValueSubclassDataBit(14, !Str.empty());
792   getContext().setGC(*this, std::move(Str));
793 }
794 
795 void Function::clearGC() {
796   if (!hasGC())
797     return;
798   getContext().deleteGC(*this);
799   setValueSubclassDataBit(14, false);
800 }
801 
802 bool Function::hasStackProtectorFnAttr() const {
803   return hasFnAttribute(Attribute::StackProtect) ||
804          hasFnAttribute(Attribute::StackProtectStrong) ||
805          hasFnAttribute(Attribute::StackProtectReq);
806 }
807 
808 /// Copy all additional attributes (those not needed to create a Function) from
809 /// the Function Src to this one.
810 void Function::copyAttributesFrom(const Function *Src) {
811   GlobalObject::copyAttributesFrom(Src);
812   setCallingConv(Src->getCallingConv());
813   setAttributes(Src->getAttributes());
814   if (Src->hasGC())
815     setGC(Src->getGC());
816   else
817     clearGC();
818   if (Src->hasPersonalityFn())
819     setPersonalityFn(Src->getPersonalityFn());
820   if (Src->hasPrefixData())
821     setPrefixData(Src->getPrefixData());
822   if (Src->hasPrologueData())
823     setPrologueData(Src->getPrologueData());
824 }
825 
826 MemoryEffects Function::getMemoryEffects() const {
827   return getAttributes().getMemoryEffects();
828 }
829 void Function::setMemoryEffects(MemoryEffects ME) {
830   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
831 }
832 
833 /// Determine if the function does not access memory.
834 bool Function::doesNotAccessMemory() const {
835   return getMemoryEffects().doesNotAccessMemory();
836 }
837 void Function::setDoesNotAccessMemory() {
838   setMemoryEffects(MemoryEffects::none());
839 }
840 
841 /// Determine if the function does not access or only reads memory.
842 bool Function::onlyReadsMemory() const {
843   return getMemoryEffects().onlyReadsMemory();
844 }
845 void Function::setOnlyReadsMemory() {
846   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
847 }
848 
849 /// Determine if the function does not access or only writes memory.
850 bool Function::onlyWritesMemory() const {
851   return getMemoryEffects().onlyWritesMemory();
852 }
853 void Function::setOnlyWritesMemory() {
854   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
855 }
856 
857 /// Determine if the call can access memmory only using pointers based
858 /// on its arguments.
859 bool Function::onlyAccessesArgMemory() const {
860   return getMemoryEffects().onlyAccessesArgPointees();
861 }
862 void Function::setOnlyAccessesArgMemory() {
863   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
864 }
865 
866 /// Determine if the function may only access memory that is
867 ///  inaccessible from the IR.
868 bool Function::onlyAccessesInaccessibleMemory() const {
869   return getMemoryEffects().onlyAccessesInaccessibleMem();
870 }
871 void Function::setOnlyAccessesInaccessibleMemory() {
872   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
873 }
874 
875 /// Determine if the function may only access memory that is
876 ///  either inaccessible from the IR or pointed to by its arguments.
877 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
878   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
879 }
880 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
881   setMemoryEffects(getMemoryEffects() &
882                    MemoryEffects::inaccessibleOrArgMemOnly());
883 }
884 
885 /// Table of string intrinsic names indexed by enum value.
886 static const char * const IntrinsicNameTable[] = {
887   "not_intrinsic",
888 #define GET_INTRINSIC_NAME_TABLE
889 #include "llvm/IR/IntrinsicImpl.inc"
890 #undef GET_INTRINSIC_NAME_TABLE
891 };
892 
893 /// Table of per-target intrinsic name tables.
894 #define GET_INTRINSIC_TARGET_DATA
895 #include "llvm/IR/IntrinsicImpl.inc"
896 #undef GET_INTRINSIC_TARGET_DATA
897 
898 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
899   return IID > TargetInfos[0].Count;
900 }
901 
902 bool Function::isTargetIntrinsic() const {
903   return isTargetIntrinsic(IntID);
904 }
905 
906 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
907 /// target as \c Name, or the generic table if \c Name is not target specific.
908 ///
909 /// Returns the relevant slice of \c IntrinsicNameTable
910 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
911   assert(Name.starts_with("llvm."));
912 
913   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
914   // Drop "llvm." and take the first dotted component. That will be the target
915   // if this is target specific.
916   StringRef Target = Name.drop_front(5).split('.').first;
917   auto It = partition_point(
918       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
919   // We've either found the target or just fall back to the generic set, which
920   // is always first.
921   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
922   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
923 }
924 
925 /// This does the actual lookup of an intrinsic ID which
926 /// matches the given function name.
927 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
928   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
929   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
930   if (Idx == -1)
931     return Intrinsic::not_intrinsic;
932 
933   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
934   // an index into a sub-table.
935   int Adjust = NameTable.data() - IntrinsicNameTable;
936   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
937 
938   // If the intrinsic is not overloaded, require an exact match. If it is
939   // overloaded, require either exact or prefix match.
940   const auto MatchSize = strlen(NameTable[Idx]);
941   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
942   bool IsExactMatch = Name.size() == MatchSize;
943   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
944                                                      : Intrinsic::not_intrinsic;
945 }
946 
947 void Function::updateAfterNameChange() {
948   LibFuncCache = UnknownLibFunc;
949   StringRef Name = getName();
950   if (!Name.starts_with("llvm.")) {
951     HasLLVMReservedName = false;
952     IntID = Intrinsic::not_intrinsic;
953     return;
954   }
955   HasLLVMReservedName = true;
956   IntID = lookupIntrinsicID(Name);
957 }
958 
959 /// Returns a stable mangling for the type specified for use in the name
960 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
961 /// of named types is simply their name.  Manglings for unnamed types consist
962 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
963 /// combined with the mangling of their component types.  A vararg function
964 /// type will have a suffix of 'vararg'.  Since function types can contain
965 /// other function types, we close a function type mangling with suffix 'f'
966 /// which can't be confused with it's prefix.  This ensures we don't have
967 /// collisions between two unrelated function types. Otherwise, you might
968 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
969 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
970 /// indicating that extra care must be taken to ensure a unique name.
971 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
972   std::string Result;
973   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
974     Result += "p" + utostr(PTyp->getAddressSpace());
975   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
976     Result += "a" + utostr(ATyp->getNumElements()) +
977               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
978   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
979     if (!STyp->isLiteral()) {
980       Result += "s_";
981       if (STyp->hasName())
982         Result += STyp->getName();
983       else
984         HasUnnamedType = true;
985     } else {
986       Result += "sl_";
987       for (auto *Elem : STyp->elements())
988         Result += getMangledTypeStr(Elem, HasUnnamedType);
989     }
990     // Ensure nested structs are distinguishable.
991     Result += "s";
992   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
993     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
994     for (size_t i = 0; i < FT->getNumParams(); i++)
995       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
996     if (FT->isVarArg())
997       Result += "vararg";
998     // Ensure nested function types are distinguishable.
999     Result += "f";
1000   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1001     ElementCount EC = VTy->getElementCount();
1002     if (EC.isScalable())
1003       Result += "nx";
1004     Result += "v" + utostr(EC.getKnownMinValue()) +
1005               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
1006   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
1007     Result += "t";
1008     Result += TETy->getName();
1009     for (Type *ParamTy : TETy->type_params())
1010       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
1011     for (unsigned IntParam : TETy->int_params())
1012       Result += "_" + utostr(IntParam);
1013     // Ensure nested target extension types are distinguishable.
1014     Result += "t";
1015   } else if (Ty) {
1016     switch (Ty->getTypeID()) {
1017     default: llvm_unreachable("Unhandled type");
1018     case Type::VoidTyID:      Result += "isVoid";   break;
1019     case Type::MetadataTyID:  Result += "Metadata"; break;
1020     case Type::HalfTyID:      Result += "f16";      break;
1021     case Type::BFloatTyID:    Result += "bf16";     break;
1022     case Type::FloatTyID:     Result += "f32";      break;
1023     case Type::DoubleTyID:    Result += "f64";      break;
1024     case Type::X86_FP80TyID:  Result += "f80";      break;
1025     case Type::FP128TyID:     Result += "f128";     break;
1026     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
1027     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
1028     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1029     case Type::IntegerTyID:
1030       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1031       break;
1032     }
1033   }
1034   return Result;
1035 }
1036 
1037 StringRef Intrinsic::getBaseName(ID id) {
1038   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1039   return IntrinsicNameTable[id];
1040 }
1041 
1042 StringRef Intrinsic::getName(ID id) {
1043   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1044   assert(!Intrinsic::isOverloaded(id) &&
1045          "This version of getName does not support overloading");
1046   return getBaseName(id);
1047 }
1048 
1049 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1050                                         Module *M, FunctionType *FT,
1051                                         bool EarlyModuleCheck) {
1052 
1053   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1054   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1055          "This version of getName is for overloaded intrinsics only");
1056   (void)EarlyModuleCheck;
1057   assert((!EarlyModuleCheck || M ||
1058           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1059          "Intrinsic overloading on pointer types need to provide a Module");
1060   bool HasUnnamedType = false;
1061   std::string Result(Intrinsic::getBaseName(Id));
1062   for (Type *Ty : Tys)
1063     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1064   if (HasUnnamedType) {
1065     assert(M && "unnamed types need a module");
1066     if (!FT)
1067       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1068     else
1069       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1070              "Provided FunctionType must match arguments");
1071     return M->getUniqueIntrinsicName(Result, Id, FT);
1072   }
1073   return Result;
1074 }
1075 
1076 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1077                                FunctionType *FT) {
1078   assert(M && "We need to have a Module");
1079   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1080 }
1081 
1082 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1083   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1084 }
1085 
1086 /// IIT_Info - These are enumerators that describe the entries returned by the
1087 /// getIntrinsicInfoTableEntries function.
1088 ///
1089 /// Defined in Intrinsics.td.
1090 enum IIT_Info {
1091 #define GET_INTRINSIC_IITINFO
1092 #include "llvm/IR/IntrinsicImpl.inc"
1093 #undef GET_INTRINSIC_IITINFO
1094 };
1095 
1096 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1097                       IIT_Info LastInfo,
1098                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1099   using namespace Intrinsic;
1100 
1101   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1102 
1103   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1104   unsigned StructElts = 2;
1105 
1106   switch (Info) {
1107   case IIT_Done:
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1109     return;
1110   case IIT_VARARG:
1111     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1112     return;
1113   case IIT_MMX:
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1115     return;
1116   case IIT_AMX:
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1118     return;
1119   case IIT_TOKEN:
1120     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1121     return;
1122   case IIT_METADATA:
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1124     return;
1125   case IIT_F16:
1126     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1127     return;
1128   case IIT_BF16:
1129     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1130     return;
1131   case IIT_F32:
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1133     return;
1134   case IIT_F64:
1135     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1136     return;
1137   case IIT_F128:
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1139     return;
1140   case IIT_PPCF128:
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1142     return;
1143   case IIT_I1:
1144     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1145     return;
1146   case IIT_I2:
1147     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1148     return;
1149   case IIT_I4:
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1151     return;
1152   case IIT_AARCH64_SVCOUNT:
1153     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1154     return;
1155   case IIT_I8:
1156     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1157     return;
1158   case IIT_I16:
1159     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1160     return;
1161   case IIT_I32:
1162     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1163     return;
1164   case IIT_I64:
1165     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1166     return;
1167   case IIT_I128:
1168     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1169     return;
1170   case IIT_V1:
1171     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1172     DecodeIITType(NextElt, Infos, Info, OutputTable);
1173     return;
1174   case IIT_V2:
1175     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1176     DecodeIITType(NextElt, Infos, Info, OutputTable);
1177     return;
1178   case IIT_V3:
1179     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1180     DecodeIITType(NextElt, Infos, Info, OutputTable);
1181     return;
1182   case IIT_V4:
1183     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1184     DecodeIITType(NextElt, Infos, Info, OutputTable);
1185     return;
1186   case IIT_V6:
1187     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1188     DecodeIITType(NextElt, Infos, Info, OutputTable);
1189     return;
1190   case IIT_V8:
1191     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1192     DecodeIITType(NextElt, Infos, Info, OutputTable);
1193     return;
1194   case IIT_V10:
1195     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1196     DecodeIITType(NextElt, Infos, Info, OutputTable);
1197     return;
1198   case IIT_V16:
1199     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1200     DecodeIITType(NextElt, Infos, Info, OutputTable);
1201     return;
1202   case IIT_V32:
1203     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1204     DecodeIITType(NextElt, Infos, Info, OutputTable);
1205     return;
1206   case IIT_V64:
1207     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1208     DecodeIITType(NextElt, Infos, Info, OutputTable);
1209     return;
1210   case IIT_V128:
1211     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1212     DecodeIITType(NextElt, Infos, Info, OutputTable);
1213     return;
1214   case IIT_V256:
1215     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1216     DecodeIITType(NextElt, Infos, Info, OutputTable);
1217     return;
1218   case IIT_V512:
1219     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1220     DecodeIITType(NextElt, Infos, Info, OutputTable);
1221     return;
1222   case IIT_V1024:
1223     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1224     DecodeIITType(NextElt, Infos, Info, OutputTable);
1225     return;
1226   case IIT_EXTERNREF:
1227     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1228     return;
1229   case IIT_FUNCREF:
1230     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1231     return;
1232   case IIT_PTR:
1233     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1234     return;
1235   case IIT_ANYPTR: // [ANYPTR addrspace]
1236     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1237                                              Infos[NextElt++]));
1238     return;
1239   case IIT_ARG: {
1240     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1241     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1242     return;
1243   }
1244   case IIT_EXTEND_ARG: {
1245     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1246     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1247                                              ArgInfo));
1248     return;
1249   }
1250   case IIT_TRUNC_ARG: {
1251     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1252     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1253                                              ArgInfo));
1254     return;
1255   }
1256   case IIT_HALF_VEC_ARG: {
1257     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1258     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1259                                              ArgInfo));
1260     return;
1261   }
1262   case IIT_SAME_VEC_WIDTH_ARG: {
1263     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1264     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1265                                              ArgInfo));
1266     return;
1267   }
1268   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1269     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1270     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1271     OutputTable.push_back(
1272         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1273     return;
1274   }
1275   case IIT_EMPTYSTRUCT:
1276     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1277     return;
1278   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1279   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1280   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1281   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1282   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1283   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1284   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1285   case IIT_STRUCT2: {
1286     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1287 
1288     for (unsigned i = 0; i != StructElts; ++i)
1289       DecodeIITType(NextElt, Infos, Info, OutputTable);
1290     return;
1291   }
1292   case IIT_SUBDIVIDE2_ARG: {
1293     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1294     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1295                                              ArgInfo));
1296     return;
1297   }
1298   case IIT_SUBDIVIDE4_ARG: {
1299     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1300     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1301                                              ArgInfo));
1302     return;
1303   }
1304   case IIT_VEC_ELEMENT: {
1305     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1306     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1307                                              ArgInfo));
1308     return;
1309   }
1310   case IIT_SCALABLE_VEC: {
1311     DecodeIITType(NextElt, Infos, Info, OutputTable);
1312     return;
1313   }
1314   case IIT_VEC_OF_BITCASTS_TO_INT: {
1315     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1316     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1317                                              ArgInfo));
1318     return;
1319   }
1320   }
1321   llvm_unreachable("unhandled");
1322 }
1323 
1324 #define GET_INTRINSIC_GENERATOR_GLOBAL
1325 #include "llvm/IR/IntrinsicImpl.inc"
1326 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1327 
1328 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1329                                              SmallVectorImpl<IITDescriptor> &T){
1330   // Check to see if the intrinsic's type was expressible by the table.
1331   unsigned TableVal = IIT_Table[id-1];
1332 
1333   // Decode the TableVal into an array of IITValues.
1334   SmallVector<unsigned char, 8> IITValues;
1335   ArrayRef<unsigned char> IITEntries;
1336   unsigned NextElt = 0;
1337   if ((TableVal >> 31) != 0) {
1338     // This is an offset into the IIT_LongEncodingTable.
1339     IITEntries = IIT_LongEncodingTable;
1340 
1341     // Strip sentinel bit.
1342     NextElt = (TableVal << 1) >> 1;
1343   } else {
1344     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1345     // into a single word in the table itself, decode it now.
1346     do {
1347       IITValues.push_back(TableVal & 0xF);
1348       TableVal >>= 4;
1349     } while (TableVal);
1350 
1351     IITEntries = IITValues;
1352     NextElt = 0;
1353   }
1354 
1355   // Okay, decode the table into the output vector of IITDescriptors.
1356   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1357   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1358     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1359 }
1360 
1361 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1362                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1363   using namespace Intrinsic;
1364 
1365   IITDescriptor D = Infos.front();
1366   Infos = Infos.slice(1);
1367 
1368   switch (D.Kind) {
1369   case IITDescriptor::Void: return Type::getVoidTy(Context);
1370   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1371   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1372   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1373   case IITDescriptor::Token: return Type::getTokenTy(Context);
1374   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1375   case IITDescriptor::Half: return Type::getHalfTy(Context);
1376   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1377   case IITDescriptor::Float: return Type::getFloatTy(Context);
1378   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1379   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1380   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1381   case IITDescriptor::AArch64Svcount:
1382     return TargetExtType::get(Context, "aarch64.svcount");
1383 
1384   case IITDescriptor::Integer:
1385     return IntegerType::get(Context, D.Integer_Width);
1386   case IITDescriptor::Vector:
1387     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1388                            D.Vector_Width);
1389   case IITDescriptor::Pointer:
1390     return PointerType::get(Context, D.Pointer_AddressSpace);
1391   case IITDescriptor::Struct: {
1392     SmallVector<Type *, 8> Elts;
1393     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1394       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1395     return StructType::get(Context, Elts);
1396   }
1397   case IITDescriptor::Argument:
1398     return Tys[D.getArgumentNumber()];
1399   case IITDescriptor::ExtendArgument: {
1400     Type *Ty = Tys[D.getArgumentNumber()];
1401     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1402       return VectorType::getExtendedElementVectorType(VTy);
1403 
1404     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1405   }
1406   case IITDescriptor::TruncArgument: {
1407     Type *Ty = Tys[D.getArgumentNumber()];
1408     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1409       return VectorType::getTruncatedElementVectorType(VTy);
1410 
1411     IntegerType *ITy = cast<IntegerType>(Ty);
1412     assert(ITy->getBitWidth() % 2 == 0);
1413     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1414   }
1415   case IITDescriptor::Subdivide2Argument:
1416   case IITDescriptor::Subdivide4Argument: {
1417     Type *Ty = Tys[D.getArgumentNumber()];
1418     VectorType *VTy = dyn_cast<VectorType>(Ty);
1419     assert(VTy && "Expected an argument of Vector Type");
1420     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1421     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1422   }
1423   case IITDescriptor::HalfVecArgument:
1424     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1425                                                   Tys[D.getArgumentNumber()]));
1426   case IITDescriptor::SameVecWidthArgument: {
1427     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1428     Type *Ty = Tys[D.getArgumentNumber()];
1429     if (auto *VTy = dyn_cast<VectorType>(Ty))
1430       return VectorType::get(EltTy, VTy->getElementCount());
1431     return EltTy;
1432   }
1433   case IITDescriptor::VecElementArgument: {
1434     Type *Ty = Tys[D.getArgumentNumber()];
1435     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1436       return VTy->getElementType();
1437     llvm_unreachable("Expected an argument of Vector Type");
1438   }
1439   case IITDescriptor::VecOfBitcastsToInt: {
1440     Type *Ty = Tys[D.getArgumentNumber()];
1441     VectorType *VTy = dyn_cast<VectorType>(Ty);
1442     assert(VTy && "Expected an argument of Vector Type");
1443     return VectorType::getInteger(VTy);
1444   }
1445   case IITDescriptor::VecOfAnyPtrsToElt:
1446     // Return the overloaded type (which determines the pointers address space)
1447     return Tys[D.getOverloadArgNumber()];
1448   }
1449   llvm_unreachable("unhandled");
1450 }
1451 
1452 FunctionType *Intrinsic::getType(LLVMContext &Context,
1453                                  ID id, ArrayRef<Type*> Tys) {
1454   SmallVector<IITDescriptor, 8> Table;
1455   getIntrinsicInfoTableEntries(id, Table);
1456 
1457   ArrayRef<IITDescriptor> TableRef = Table;
1458   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1459 
1460   SmallVector<Type*, 8> ArgTys;
1461   while (!TableRef.empty())
1462     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1463 
1464   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1465   // If we see void type as the type of the last argument, it is vararg intrinsic
1466   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1467     ArgTys.pop_back();
1468     return FunctionType::get(ResultTy, ArgTys, true);
1469   }
1470   return FunctionType::get(ResultTy, ArgTys, false);
1471 }
1472 
1473 bool Intrinsic::isOverloaded(ID id) {
1474 #define GET_INTRINSIC_OVERLOAD_TABLE
1475 #include "llvm/IR/IntrinsicImpl.inc"
1476 #undef GET_INTRINSIC_OVERLOAD_TABLE
1477 }
1478 
1479 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1480 #define GET_INTRINSIC_ATTRIBUTES
1481 #include "llvm/IR/IntrinsicImpl.inc"
1482 #undef GET_INTRINSIC_ATTRIBUTES
1483 
1484 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1485   // There can never be multiple globals with the same name of different types,
1486   // because intrinsics must be a specific type.
1487   auto *FT = getType(M->getContext(), id, Tys);
1488   return cast<Function>(
1489       M->getOrInsertFunction(
1490            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1491           .getCallee());
1492 }
1493 
1494 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1495 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1496 #include "llvm/IR/IntrinsicImpl.inc"
1497 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1498 
1499 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1500 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1501 #include "llvm/IR/IntrinsicImpl.inc"
1502 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1503 
1504 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1505   switch (QID) {
1506 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1507   case Intrinsic::INTRINSIC:
1508 #include "llvm/IR/ConstrainedOps.def"
1509 #undef INSTRUCTION
1510     return true;
1511   default:
1512     return false;
1513   }
1514 }
1515 
1516 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
1517   switch (QID) {
1518 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1519   case Intrinsic::INTRINSIC:                                                   \
1520     return ROUND_MODE == 1;
1521 #include "llvm/IR/ConstrainedOps.def"
1522 #undef INSTRUCTION
1523   default:
1524     return false;
1525   }
1526 }
1527 
1528 using DeferredIntrinsicMatchPair =
1529     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1530 
1531 static bool matchIntrinsicType(
1532     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1533     SmallVectorImpl<Type *> &ArgTys,
1534     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1535     bool IsDeferredCheck) {
1536   using namespace Intrinsic;
1537 
1538   // If we ran out of descriptors, there are too many arguments.
1539   if (Infos.empty()) return true;
1540 
1541   // Do this before slicing off the 'front' part
1542   auto InfosRef = Infos;
1543   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1544     DeferredChecks.emplace_back(T, InfosRef);
1545     return false;
1546   };
1547 
1548   IITDescriptor D = Infos.front();
1549   Infos = Infos.slice(1);
1550 
1551   switch (D.Kind) {
1552     case IITDescriptor::Void: return !Ty->isVoidTy();
1553     case IITDescriptor::VarArg: return true;
1554     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1555     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1556     case IITDescriptor::Token: return !Ty->isTokenTy();
1557     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1558     case IITDescriptor::Half: return !Ty->isHalfTy();
1559     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1560     case IITDescriptor::Float: return !Ty->isFloatTy();
1561     case IITDescriptor::Double: return !Ty->isDoubleTy();
1562     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1563     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1564     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1565     case IITDescriptor::AArch64Svcount:
1566       return !isa<TargetExtType>(Ty) ||
1567              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1568     case IITDescriptor::Vector: {
1569       VectorType *VT = dyn_cast<VectorType>(Ty);
1570       return !VT || VT->getElementCount() != D.Vector_Width ||
1571              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1572                                 DeferredChecks, IsDeferredCheck);
1573     }
1574     case IITDescriptor::Pointer: {
1575       PointerType *PT = dyn_cast<PointerType>(Ty);
1576       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1577     }
1578 
1579     case IITDescriptor::Struct: {
1580       StructType *ST = dyn_cast<StructType>(Ty);
1581       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1582           ST->getNumElements() != D.Struct_NumElements)
1583         return true;
1584 
1585       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1586         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1587                                DeferredChecks, IsDeferredCheck))
1588           return true;
1589       return false;
1590     }
1591 
1592     case IITDescriptor::Argument:
1593       // If this is the second occurrence of an argument,
1594       // verify that the later instance matches the previous instance.
1595       if (D.getArgumentNumber() < ArgTys.size())
1596         return Ty != ArgTys[D.getArgumentNumber()];
1597 
1598       if (D.getArgumentNumber() > ArgTys.size() ||
1599           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1600         return IsDeferredCheck || DeferCheck(Ty);
1601 
1602       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1603              "Table consistency error");
1604       ArgTys.push_back(Ty);
1605 
1606       switch (D.getArgumentKind()) {
1607         case IITDescriptor::AK_Any:        return false; // Success
1608         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1609         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1610         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1611         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1612         default:                           break;
1613       }
1614       llvm_unreachable("all argument kinds not covered");
1615 
1616     case IITDescriptor::ExtendArgument: {
1617       // If this is a forward reference, defer the check for later.
1618       if (D.getArgumentNumber() >= ArgTys.size())
1619         return IsDeferredCheck || DeferCheck(Ty);
1620 
1621       Type *NewTy = ArgTys[D.getArgumentNumber()];
1622       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1623         NewTy = VectorType::getExtendedElementVectorType(VTy);
1624       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1625         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1626       else
1627         return true;
1628 
1629       return Ty != NewTy;
1630     }
1631     case IITDescriptor::TruncArgument: {
1632       // If this is a forward reference, defer the check for later.
1633       if (D.getArgumentNumber() >= ArgTys.size())
1634         return IsDeferredCheck || DeferCheck(Ty);
1635 
1636       Type *NewTy = ArgTys[D.getArgumentNumber()];
1637       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1638         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1639       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1640         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1641       else
1642         return true;
1643 
1644       return Ty != NewTy;
1645     }
1646     case IITDescriptor::HalfVecArgument:
1647       // If this is a forward reference, defer the check for later.
1648       if (D.getArgumentNumber() >= ArgTys.size())
1649         return IsDeferredCheck || DeferCheck(Ty);
1650       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1651              VectorType::getHalfElementsVectorType(
1652                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1653     case IITDescriptor::SameVecWidthArgument: {
1654       if (D.getArgumentNumber() >= ArgTys.size()) {
1655         // Defer check and subsequent check for the vector element type.
1656         Infos = Infos.slice(1);
1657         return IsDeferredCheck || DeferCheck(Ty);
1658       }
1659       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1660       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1661       // Both must be vectors of the same number of elements or neither.
1662       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1663         return true;
1664       Type *EltTy = Ty;
1665       if (ThisArgType) {
1666         if (ReferenceType->getElementCount() !=
1667             ThisArgType->getElementCount())
1668           return true;
1669         EltTy = ThisArgType->getElementType();
1670       }
1671       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1672                                 IsDeferredCheck);
1673     }
1674     case IITDescriptor::VecOfAnyPtrsToElt: {
1675       unsigned RefArgNumber = D.getRefArgNumber();
1676       if (RefArgNumber >= ArgTys.size()) {
1677         if (IsDeferredCheck)
1678           return true;
1679         // If forward referencing, already add the pointer-vector type and
1680         // defer the checks for later.
1681         ArgTys.push_back(Ty);
1682         return DeferCheck(Ty);
1683       }
1684 
1685       if (!IsDeferredCheck){
1686         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1687                "Table consistency error");
1688         ArgTys.push_back(Ty);
1689       }
1690 
1691       // Verify the overloaded type "matches" the Ref type.
1692       // i.e. Ty is a vector with the same width as Ref.
1693       // Composed of pointers to the same element type as Ref.
1694       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1695       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1696       if (!ThisArgVecTy || !ReferenceType ||
1697           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1698         return true;
1699       return !ThisArgVecTy->getElementType()->isPointerTy();
1700     }
1701     case IITDescriptor::VecElementArgument: {
1702       if (D.getArgumentNumber() >= ArgTys.size())
1703         return IsDeferredCheck ? true : DeferCheck(Ty);
1704       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1705       return !ReferenceType || Ty != ReferenceType->getElementType();
1706     }
1707     case IITDescriptor::Subdivide2Argument:
1708     case IITDescriptor::Subdivide4Argument: {
1709       // If this is a forward reference, defer the check for later.
1710       if (D.getArgumentNumber() >= ArgTys.size())
1711         return IsDeferredCheck || DeferCheck(Ty);
1712 
1713       Type *NewTy = ArgTys[D.getArgumentNumber()];
1714       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1715         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1716         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1717         return Ty != NewTy;
1718       }
1719       return true;
1720     }
1721     case IITDescriptor::VecOfBitcastsToInt: {
1722       if (D.getArgumentNumber() >= ArgTys.size())
1723         return IsDeferredCheck || DeferCheck(Ty);
1724       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1725       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1726       if (!ThisArgVecTy || !ReferenceType)
1727         return true;
1728       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1729     }
1730   }
1731   llvm_unreachable("unhandled");
1732 }
1733 
1734 Intrinsic::MatchIntrinsicTypesResult
1735 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1736                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1737                                    SmallVectorImpl<Type *> &ArgTys) {
1738   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1739   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1740                          false))
1741     return MatchIntrinsicTypes_NoMatchRet;
1742 
1743   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1744 
1745   for (auto *Ty : FTy->params())
1746     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1747       return MatchIntrinsicTypes_NoMatchArg;
1748 
1749   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1750     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1751     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1752                            true))
1753       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1754                                          : MatchIntrinsicTypes_NoMatchArg;
1755   }
1756 
1757   return MatchIntrinsicTypes_Match;
1758 }
1759 
1760 bool
1761 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1762                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1763   // If there are no descriptors left, then it can't be a vararg.
1764   if (Infos.empty())
1765     return isVarArg;
1766 
1767   // There should be only one descriptor remaining at this point.
1768   if (Infos.size() != 1)
1769     return true;
1770 
1771   // Check and verify the descriptor.
1772   IITDescriptor D = Infos.front();
1773   Infos = Infos.slice(1);
1774   if (D.Kind == IITDescriptor::VarArg)
1775     return !isVarArg;
1776 
1777   return true;
1778 }
1779 
1780 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1781                                       SmallVectorImpl<Type *> &ArgTys) {
1782   if (!ID)
1783     return false;
1784 
1785   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1786   getIntrinsicInfoTableEntries(ID, Table);
1787   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1788 
1789   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1790       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1791     return false;
1792   }
1793   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1794     return false;
1795   return true;
1796 }
1797 
1798 bool Intrinsic::getIntrinsicSignature(Function *F,
1799                                       SmallVectorImpl<Type *> &ArgTys) {
1800   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1801                                ArgTys);
1802 }
1803 
1804 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1805   SmallVector<Type *, 4> ArgTys;
1806   if (!getIntrinsicSignature(F, ArgTys))
1807     return std::nullopt;
1808 
1809   Intrinsic::ID ID = F->getIntrinsicID();
1810   StringRef Name = F->getName();
1811   std::string WantedName =
1812       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1813   if (Name == WantedName)
1814     return std::nullopt;
1815 
1816   Function *NewDecl = [&] {
1817     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1818       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1819         if (ExistingF->getFunctionType() == F->getFunctionType())
1820           return ExistingF;
1821 
1822       // The name already exists, but is not a function or has the wrong
1823       // prototype. Make place for the new one by renaming the old version.
1824       // Either this old version will be removed later on or the module is
1825       // invalid and we'll get an error.
1826       ExistingGV->setName(WantedName + ".renamed");
1827     }
1828     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1829   }();
1830 
1831   NewDecl->setCallingConv(F->getCallingConv());
1832   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1833          "Shouldn't change the signature");
1834   return NewDecl;
1835 }
1836 
1837 /// hasAddressTaken - returns true if there are any uses of this function
1838 /// other than direct calls or invokes to it. Optionally ignores callback
1839 /// uses, assume like pointer annotation calls, and references in llvm.used
1840 /// and llvm.compiler.used variables.
1841 bool Function::hasAddressTaken(const User **PutOffender,
1842                                bool IgnoreCallbackUses,
1843                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1844                                bool IgnoreARCAttachedCall,
1845                                bool IgnoreCastedDirectCall) const {
1846   for (const Use &U : uses()) {
1847     const User *FU = U.getUser();
1848     if (isa<BlockAddress>(FU))
1849       continue;
1850 
1851     if (IgnoreCallbackUses) {
1852       AbstractCallSite ACS(&U);
1853       if (ACS && ACS.isCallbackCall())
1854         continue;
1855     }
1856 
1857     const auto *Call = dyn_cast<CallBase>(FU);
1858     if (!Call) {
1859       if (IgnoreAssumeLikeCalls &&
1860           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1861           all_of(FU->users(), [](const User *U) {
1862             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1863               return I->isAssumeLikeIntrinsic();
1864             return false;
1865           })) {
1866         continue;
1867       }
1868 
1869       if (IgnoreLLVMUsed && !FU->user_empty()) {
1870         const User *FUU = FU;
1871         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1872             FU->hasOneUse() && !FU->user_begin()->user_empty())
1873           FUU = *FU->user_begin();
1874         if (llvm::all_of(FUU->users(), [](const User *U) {
1875               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1876                 return GV->hasName() &&
1877                        (GV->getName() == "llvm.compiler.used" ||
1878                         GV->getName() == "llvm.used");
1879               return false;
1880             }))
1881           continue;
1882       }
1883       if (PutOffender)
1884         *PutOffender = FU;
1885       return true;
1886     }
1887 
1888     if (IgnoreAssumeLikeCalls) {
1889       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1890         if (I->isAssumeLikeIntrinsic())
1891           continue;
1892     }
1893 
1894     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1895                                 Call->getFunctionType() != getFunctionType())) {
1896       if (IgnoreARCAttachedCall &&
1897           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1898                                       U.getOperandNo()))
1899         continue;
1900 
1901       if (PutOffender)
1902         *PutOffender = FU;
1903       return true;
1904     }
1905   }
1906   return false;
1907 }
1908 
1909 bool Function::isDefTriviallyDead() const {
1910   // Check the linkage
1911   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1912       !hasAvailableExternallyLinkage())
1913     return false;
1914 
1915   // Check if the function is used by anything other than a blockaddress.
1916   for (const User *U : users())
1917     if (!isa<BlockAddress>(U))
1918       return false;
1919 
1920   return true;
1921 }
1922 
1923 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1924 /// setjmp or other function that gcc recognizes as "returning twice".
1925 bool Function::callsFunctionThatReturnsTwice() const {
1926   for (const Instruction &I : instructions(this))
1927     if (const auto *Call = dyn_cast<CallBase>(&I))
1928       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1929         return true;
1930 
1931   return false;
1932 }
1933 
1934 Constant *Function::getPersonalityFn() const {
1935   assert(hasPersonalityFn() && getNumOperands());
1936   return cast<Constant>(Op<0>());
1937 }
1938 
1939 void Function::setPersonalityFn(Constant *Fn) {
1940   setHungoffOperand<0>(Fn);
1941   setValueSubclassDataBit(3, Fn != nullptr);
1942 }
1943 
1944 Constant *Function::getPrefixData() const {
1945   assert(hasPrefixData() && getNumOperands());
1946   return cast<Constant>(Op<1>());
1947 }
1948 
1949 void Function::setPrefixData(Constant *PrefixData) {
1950   setHungoffOperand<1>(PrefixData);
1951   setValueSubclassDataBit(1, PrefixData != nullptr);
1952 }
1953 
1954 Constant *Function::getPrologueData() const {
1955   assert(hasPrologueData() && getNumOperands());
1956   return cast<Constant>(Op<2>());
1957 }
1958 
1959 void Function::setPrologueData(Constant *PrologueData) {
1960   setHungoffOperand<2>(PrologueData);
1961   setValueSubclassDataBit(2, PrologueData != nullptr);
1962 }
1963 
1964 void Function::allocHungoffUselist() {
1965   // If we've already allocated a uselist, stop here.
1966   if (getNumOperands())
1967     return;
1968 
1969   allocHungoffUses(3, /*IsPhi=*/ false);
1970   setNumHungOffUseOperands(3);
1971 
1972   // Initialize the uselist with placeholder operands to allow traversal.
1973   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1974   Op<0>().set(CPN);
1975   Op<1>().set(CPN);
1976   Op<2>().set(CPN);
1977 }
1978 
1979 template <int Idx>
1980 void Function::setHungoffOperand(Constant *C) {
1981   if (C) {
1982     allocHungoffUselist();
1983     Op<Idx>().set(C);
1984   } else if (getNumOperands()) {
1985     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1986   }
1987 }
1988 
1989 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1990   assert(Bit < 16 && "SubclassData contains only 16 bits");
1991   if (On)
1992     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1993   else
1994     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1995 }
1996 
1997 void Function::setEntryCount(ProfileCount Count,
1998                              const DenseSet<GlobalValue::GUID> *S) {
1999 #if !defined(NDEBUG)
2000   auto PrevCount = getEntryCount();
2001   assert(!PrevCount || PrevCount->getType() == Count.getType());
2002 #endif
2003 
2004   auto ImportGUIDs = getImportGUIDs();
2005   if (S == nullptr && ImportGUIDs.size())
2006     S = &ImportGUIDs;
2007 
2008   MDBuilder MDB(getContext());
2009   setMetadata(
2010       LLVMContext::MD_prof,
2011       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
2012 }
2013 
2014 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2015                              const DenseSet<GlobalValue::GUID> *Imports) {
2016   setEntryCount(ProfileCount(Count, Type), Imports);
2017 }
2018 
2019 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2020   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2021   if (MD && MD->getOperand(0))
2022     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2023       if (MDS->getString() == "function_entry_count") {
2024         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2025         uint64_t Count = CI->getValue().getZExtValue();
2026         // A value of -1 is used for SamplePGO when there were no samples.
2027         // Treat this the same as unknown.
2028         if (Count == (uint64_t)-1)
2029           return std::nullopt;
2030         return ProfileCount(Count, PCT_Real);
2031       } else if (AllowSynthetic &&
2032                  MDS->getString() == "synthetic_function_entry_count") {
2033         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2034         uint64_t Count = CI->getValue().getZExtValue();
2035         return ProfileCount(Count, PCT_Synthetic);
2036       }
2037     }
2038   return std::nullopt;
2039 }
2040 
2041 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2042   DenseSet<GlobalValue::GUID> R;
2043   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2044     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2045       if (MDS->getString() == "function_entry_count")
2046         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2047           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2048                        ->getValue()
2049                        .getZExtValue());
2050   return R;
2051 }
2052 
2053 void Function::setSectionPrefix(StringRef Prefix) {
2054   MDBuilder MDB(getContext());
2055   setMetadata(LLVMContext::MD_section_prefix,
2056               MDB.createFunctionSectionPrefix(Prefix));
2057 }
2058 
2059 std::optional<StringRef> Function::getSectionPrefix() const {
2060   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2061     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2062                "function_section_prefix" &&
2063            "Metadata not match");
2064     return cast<MDString>(MD->getOperand(1))->getString();
2065   }
2066   return std::nullopt;
2067 }
2068 
2069 bool Function::nullPointerIsDefined() const {
2070   return hasFnAttribute(Attribute::NullPointerIsValid);
2071 }
2072 
2073 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2074   if (F && F->nullPointerIsDefined())
2075     return true;
2076 
2077   if (AS != 0)
2078     return true;
2079 
2080   return false;
2081 }
2082