1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/RWMutex.h" 31 #include "llvm/Support/StringPool.h" 32 #include "llvm/Support/Threading.h" 33 using namespace llvm; 34 35 // Explicit instantiations of SymbolTableListTraits since some of the methods 36 // are not in the public header file... 37 template class llvm::SymbolTableListTraits<Argument>; 38 template class llvm::SymbolTableListTraits<BasicBlock>; 39 40 //===----------------------------------------------------------------------===// 41 // Argument Implementation 42 //===----------------------------------------------------------------------===// 43 44 void Argument::anchor() { } 45 46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 47 : Value(Ty, Value::ArgumentVal) { 48 Parent = nullptr; 49 50 if (Par) 51 Par->getArgumentList().push_back(this); 52 setName(Name); 53 } 54 55 void Argument::setParent(Function *parent) { 56 Parent = parent; 57 } 58 59 /// getArgNo - Return the index of this formal argument in its containing 60 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 61 unsigned Argument::getArgNo() const { 62 const Function *F = getParent(); 63 assert(F && "Argument is not in a function"); 64 65 Function::const_arg_iterator AI = F->arg_begin(); 66 unsigned ArgIdx = 0; 67 for (; &*AI != this; ++AI) 68 ++ArgIdx; 69 70 return ArgIdx; 71 } 72 73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 74 /// it in its containing function. Also returns true if at least one byte is 75 /// known to be dereferenceable and the pointer is in addrspace(0). 76 bool Argument::hasNonNullAttr() const { 77 if (!getType()->isPointerTy()) return false; 78 if (getParent()->getAttributes(). 79 hasAttribute(getArgNo()+1, Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 getType()->getPointerAddressSpace() == 0) 83 return true; 84 return false; 85 } 86 87 /// hasByValAttr - Return true if this argument has the byval attribute on it 88 /// in its containing function. 89 bool Argument::hasByValAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 return hasAttribute(Attribute::ByVal); 92 } 93 94 bool Argument::hasSwiftSelfAttr() const { 95 return getParent()->getAttributes(). 96 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::SwiftError); 102 } 103 104 /// \brief Return true if this argument has the inalloca attribute on it in 105 /// its containing function. 106 bool Argument::hasInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 return hasAttribute(Attribute::InAlloca); 109 } 110 111 bool Argument::hasByValOrInAllocaAttr() const { 112 if (!getType()->isPointerTy()) return false; 113 AttributeSet Attrs = getParent()->getAttributes(); 114 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 115 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 116 } 117 118 unsigned Argument::getParamAlignment() const { 119 assert(getType()->isPointerTy() && "Only pointers have alignments"); 120 return getParent()->getParamAlignment(getArgNo()+1); 121 122 } 123 124 uint64_t Argument::getDereferenceableBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getDereferenceableBytes(getArgNo()+1); 128 } 129 130 uint64_t Argument::getDereferenceableOrNullBytes() const { 131 assert(getType()->isPointerTy() && 132 "Only pointers have dereferenceable bytes"); 133 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 134 } 135 136 /// hasNestAttr - Return true if this argument has the nest attribute on 137 /// it in its containing function. 138 bool Argument::hasNestAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::Nest); 141 } 142 143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 144 /// it in its containing function. 145 bool Argument::hasNoAliasAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::NoAlias); 148 } 149 150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 151 /// on it in its containing function. 152 bool Argument::hasNoCaptureAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::NoCapture); 155 } 156 157 /// hasSRetAttr - Return true if this argument has the sret attribute on 158 /// it in its containing function. 159 bool Argument::hasStructRetAttr() const { 160 if (!getType()->isPointerTy()) return false; 161 return hasAttribute(Attribute::StructRet); 162 } 163 164 /// hasReturnedAttr - Return true if this argument has the returned attribute on 165 /// it in its containing function. 166 bool Argument::hasReturnedAttr() const { 167 return hasAttribute(Attribute::Returned); 168 } 169 170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 171 /// its containing function. 172 bool Argument::hasZExtAttr() const { 173 return hasAttribute(Attribute::ZExt); 174 } 175 176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 177 /// containing function. 178 bool Argument::hasSExtAttr() const { 179 return hasAttribute(Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 /// hasAttribute - Checks if an argument has a given attribute. 212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 213 return getParent()->hasAttribute(getArgNo() + 1, Kind); 214 } 215 216 //===----------------------------------------------------------------------===// 217 // Helper Methods in Function 218 //===----------------------------------------------------------------------===// 219 220 bool Function::isMaterializable() const { 221 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 222 } 223 224 void Function::setIsMaterializable(bool V) { 225 unsigned Mask = 1 << IsMaterializableBit; 226 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 227 (V ? Mask : 0u)); 228 } 229 230 LLVMContext &Function::getContext() const { 231 return getType()->getContext(); 232 } 233 234 FunctionType *Function::getFunctionType() const { 235 return cast<FunctionType>(getValueType()); 236 } 237 238 bool Function::isVarArg() const { 239 return getFunctionType()->isVarArg(); 240 } 241 242 Type *Function::getReturnType() const { 243 return getFunctionType()->getReturnType(); 244 } 245 246 void Function::removeFromParent() { 247 getParent()->getFunctionList().remove(getIterator()); 248 } 249 250 void Function::eraseFromParent() { 251 getParent()->getFunctionList().erase(getIterator()); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Function Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 259 Module *ParentModule) 260 : GlobalObject(Ty, Value::FunctionVal, 261 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 262 assert(FunctionType::isValidReturnType(getReturnType()) && 263 "invalid return type"); 264 setGlobalObjectSubClassData(0); 265 SymTab = new ValueSymbolTable(); 266 267 // If the function has arguments, mark them as lazily built. 268 if (Ty->getNumParams()) 269 setValueSubclassData(1); // Set the "has lazy arguments" bit. 270 271 if (ParentModule) 272 ParentModule->getFunctionList().push_back(this); 273 274 // Ensure intrinsics have the right parameter attributes. 275 // Note, the IntID field will have been set in Value::setName if this function 276 // name is a valid intrinsic ID. 277 if (IntID) 278 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 279 } 280 281 Function::~Function() { 282 dropAllReferences(); // After this it is safe to delete instructions. 283 284 // Delete all of the method arguments and unlink from symbol table... 285 ArgumentList.clear(); 286 delete SymTab; 287 288 // Remove the function from the on-the-side GC table. 289 clearGC(); 290 } 291 292 void Function::BuildLazyArguments() const { 293 // Create the arguments vector, all arguments start out unnamed. 294 FunctionType *FT = getFunctionType(); 295 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 296 assert(!FT->getParamType(i)->isVoidTy() && 297 "Cannot have void typed arguments!"); 298 ArgumentList.push_back(new Argument(FT->getParamType(i))); 299 } 300 301 // Clear the lazy arguments bit. 302 unsigned SDC = getSubclassDataFromValue(); 303 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 304 } 305 306 void Function::stealArgumentListFrom(Function &Src) { 307 assert(isDeclaration() && "Expected no references to current arguments"); 308 309 // Drop the current arguments, if any, and set the lazy argument bit. 310 if (!hasLazyArguments()) { 311 assert(llvm::all_of(ArgumentList, 312 [](const Argument &A) { return A.use_empty(); }) && 313 "Expected arguments to be unused in declaration"); 314 ArgumentList.clear(); 315 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 316 } 317 318 // Nothing to steal if Src has lazy arguments. 319 if (Src.hasLazyArguments()) 320 return; 321 322 // Steal arguments from Src, and fix the lazy argument bits. 323 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 324 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 325 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 326 } 327 328 size_t Function::arg_size() const { 329 return getFunctionType()->getNumParams(); 330 } 331 bool Function::arg_empty() const { 332 return getFunctionType()->getNumParams() == 0; 333 } 334 335 void Function::setParent(Module *parent) { 336 Parent = parent; 337 } 338 339 // dropAllReferences() - This function causes all the subinstructions to "let 340 // go" of all references that they are maintaining. This allows one to 341 // 'delete' a whole class at a time, even though there may be circular 342 // references... first all references are dropped, and all use counts go to 343 // zero. Then everything is deleted for real. Note that no operations are 344 // valid on an object that has "dropped all references", except operator 345 // delete. 346 // 347 void Function::dropAllReferences() { 348 setIsMaterializable(false); 349 350 for (BasicBlock &BB : *this) 351 BB.dropAllReferences(); 352 353 // Delete all basic blocks. They are now unused, except possibly by 354 // blockaddresses, but BasicBlock's destructor takes care of those. 355 while (!BasicBlocks.empty()) 356 BasicBlocks.begin()->eraseFromParent(); 357 358 // Drop uses of any optional data (real or placeholder). 359 if (getNumOperands()) { 360 User::dropAllReferences(); 361 setNumHungOffUseOperands(0); 362 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 363 } 364 365 // Metadata is stored in a side-table. 366 clearMetadata(); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Kind); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttribute(unsigned i, Attribute Attr) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttribute(getContext(), i, Attr); 378 setAttributes(PAL); 379 } 380 381 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.addAttributes(getContext(), i, Attrs); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttribute(unsigned i, StringRef Kind) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttribute(getContext(), i, Kind); 396 setAttributes(PAL); 397 } 398 399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.removeAttributes(getContext(), i, Attrs); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 412 AttributeSet PAL = getAttributes(); 413 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 414 setAttributes(PAL); 415 } 416 417 const std::string &Function::getGC() const { 418 assert(hasGC() && "Function has no collector"); 419 return getContext().getGC(*this); 420 } 421 422 void Function::setGC(std::string Str) { 423 setValueSubclassDataBit(14, !Str.empty()); 424 getContext().setGC(*this, std::move(Str)); 425 } 426 427 void Function::clearGC() { 428 if (!hasGC()) 429 return; 430 getContext().deleteGC(*this); 431 setValueSubclassDataBit(14, false); 432 } 433 434 /// Copy all additional attributes (those not needed to create a Function) from 435 /// the Function Src to this one. 436 void Function::copyAttributesFrom(const GlobalValue *Src) { 437 GlobalObject::copyAttributesFrom(Src); 438 const Function *SrcF = dyn_cast<Function>(Src); 439 if (!SrcF) 440 return; 441 442 setCallingConv(SrcF->getCallingConv()); 443 setAttributes(SrcF->getAttributes()); 444 if (SrcF->hasGC()) 445 setGC(SrcF->getGC()); 446 else 447 clearGC(); 448 if (SrcF->hasPersonalityFn()) 449 setPersonalityFn(SrcF->getPersonalityFn()); 450 if (SrcF->hasPrefixData()) 451 setPrefixData(SrcF->getPrefixData()); 452 if (SrcF->hasPrologueData()) 453 setPrologueData(SrcF->getPrologueData()); 454 } 455 456 /// Table of string intrinsic names indexed by enum value. 457 static const char * const IntrinsicNameTable[] = { 458 "not_intrinsic", 459 #define GET_INTRINSIC_NAME_TABLE 460 #include "llvm/IR/Intrinsics.gen" 461 #undef GET_INTRINSIC_NAME_TABLE 462 }; 463 464 /// Table of per-target intrinsic name tables. 465 #define GET_INTRINSIC_TARGET_DATA 466 #include "llvm/IR/Intrinsics.gen" 467 #undef GET_INTRINSIC_TARGET_DATA 468 469 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 470 /// target as \c Name, or the generic table if \c Name is not target specific. 471 /// 472 /// Returns the relevant slice of \c IntrinsicNameTable 473 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 474 assert(Name.startswith("llvm.")); 475 476 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 477 // Drop "llvm." and take the first dotted component. That will be the target 478 // if this is target specific. 479 StringRef Target = Name.drop_front(5).split('.').first; 480 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 481 [](const IntrinsicTargetInfo &TI, 482 StringRef Target) { return TI.Name < Target; }); 483 // We've either found the target or just fall back to the generic set, which 484 // is always first. 485 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 486 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 487 } 488 489 /// \brief This does the actual lookup of an intrinsic ID which 490 /// matches the given function name. 491 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 492 StringRef Name = ValName->getKey(); 493 494 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 495 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 496 if (Idx == -1) 497 return Intrinsic::not_intrinsic; 498 499 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 500 // an index into a sub-table. 501 int Adjust = NameTable.data() - IntrinsicNameTable; 502 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 503 504 // If the intrinsic is not overloaded, require an exact match. If it is 505 // overloaded, require a prefix match. 506 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 507 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 508 } 509 510 void Function::recalculateIntrinsicID() { 511 const ValueName *ValName = this->getValueName(); 512 if (!ValName || !isIntrinsic()) { 513 IntID = Intrinsic::not_intrinsic; 514 return; 515 } 516 IntID = lookupIntrinsicID(ValName); 517 } 518 519 /// Returns a stable mangling for the type specified for use in the name 520 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 521 /// of named types is simply their name. Manglings for unnamed types consist 522 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 523 /// combined with the mangling of their component types. A vararg function 524 /// type will have a suffix of 'vararg'. Since function types can contain 525 /// other function types, we close a function type mangling with suffix 'f' 526 /// which can't be confused with it's prefix. This ensures we don't have 527 /// collisions between two unrelated function types. Otherwise, you might 528 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 529 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 530 /// cases) fall back to the MVT codepath, where they could be mangled to 531 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 532 /// everything. 533 static std::string getMangledTypeStr(Type* Ty) { 534 std::string Result; 535 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 536 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 537 getMangledTypeStr(PTyp->getElementType()); 538 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 539 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 540 getMangledTypeStr(ATyp->getElementType()); 541 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 542 assert(!STyp->isLiteral() && "TODO: implement literal types"); 543 Result += STyp->getName(); 544 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 545 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 546 for (size_t i = 0; i < FT->getNumParams(); i++) 547 Result += getMangledTypeStr(FT->getParamType(i)); 548 if (FT->isVarArg()) 549 Result += "vararg"; 550 // Ensure nested function types are distinguishable. 551 Result += "f"; 552 } else if (isa<VectorType>(Ty)) 553 Result += "v" + utostr(Ty->getVectorNumElements()) + 554 getMangledTypeStr(Ty->getVectorElementType()); 555 else if (Ty) 556 Result += EVT::getEVT(Ty).getEVTString(); 557 return Result; 558 } 559 560 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 561 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 562 std::string Result(IntrinsicNameTable[id]); 563 for (Type *Ty : Tys) { 564 Result += "." + getMangledTypeStr(Ty); 565 } 566 return Result; 567 } 568 569 570 /// IIT_Info - These are enumerators that describe the entries returned by the 571 /// getIntrinsicInfoTableEntries function. 572 /// 573 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 574 enum IIT_Info { 575 // Common values should be encoded with 0-15. 576 IIT_Done = 0, 577 IIT_I1 = 1, 578 IIT_I8 = 2, 579 IIT_I16 = 3, 580 IIT_I32 = 4, 581 IIT_I64 = 5, 582 IIT_F16 = 6, 583 IIT_F32 = 7, 584 IIT_F64 = 8, 585 IIT_V2 = 9, 586 IIT_V4 = 10, 587 IIT_V8 = 11, 588 IIT_V16 = 12, 589 IIT_V32 = 13, 590 IIT_PTR = 14, 591 IIT_ARG = 15, 592 593 // Values from 16+ are only encodable with the inefficient encoding. 594 IIT_V64 = 16, 595 IIT_MMX = 17, 596 IIT_TOKEN = 18, 597 IIT_METADATA = 19, 598 IIT_EMPTYSTRUCT = 20, 599 IIT_STRUCT2 = 21, 600 IIT_STRUCT3 = 22, 601 IIT_STRUCT4 = 23, 602 IIT_STRUCT5 = 24, 603 IIT_EXTEND_ARG = 25, 604 IIT_TRUNC_ARG = 26, 605 IIT_ANYPTR = 27, 606 IIT_V1 = 28, 607 IIT_VARARG = 29, 608 IIT_HALF_VEC_ARG = 30, 609 IIT_SAME_VEC_WIDTH_ARG = 31, 610 IIT_PTR_TO_ARG = 32, 611 IIT_VEC_OF_PTRS_TO_ELT = 33, 612 IIT_I128 = 34, 613 IIT_V512 = 35, 614 IIT_V1024 = 36 615 }; 616 617 618 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 619 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 620 IIT_Info Info = IIT_Info(Infos[NextElt++]); 621 unsigned StructElts = 2; 622 using namespace Intrinsic; 623 624 switch (Info) { 625 case IIT_Done: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 627 return; 628 case IIT_VARARG: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 630 return; 631 case IIT_MMX: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 633 return; 634 case IIT_TOKEN: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 636 return; 637 case IIT_METADATA: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 639 return; 640 case IIT_F16: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 642 return; 643 case IIT_F32: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 645 return; 646 case IIT_F64: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 648 return; 649 case IIT_I1: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 651 return; 652 case IIT_I8: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 654 return; 655 case IIT_I16: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 657 return; 658 case IIT_I32: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 660 return; 661 case IIT_I64: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 663 return; 664 case IIT_I128: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 666 return; 667 case IIT_V1: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 669 DecodeIITType(NextElt, Infos, OutputTable); 670 return; 671 case IIT_V2: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 673 DecodeIITType(NextElt, Infos, OutputTable); 674 return; 675 case IIT_V4: 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 677 DecodeIITType(NextElt, Infos, OutputTable); 678 return; 679 case IIT_V8: 680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 681 DecodeIITType(NextElt, Infos, OutputTable); 682 return; 683 case IIT_V16: 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 685 DecodeIITType(NextElt, Infos, OutputTable); 686 return; 687 case IIT_V32: 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 689 DecodeIITType(NextElt, Infos, OutputTable); 690 return; 691 case IIT_V64: 692 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 693 DecodeIITType(NextElt, Infos, OutputTable); 694 return; 695 case IIT_V512: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 697 DecodeIITType(NextElt, Infos, OutputTable); 698 return; 699 case IIT_V1024: 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 701 DecodeIITType(NextElt, Infos, OutputTable); 702 return; 703 case IIT_PTR: 704 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 705 DecodeIITType(NextElt, Infos, OutputTable); 706 return; 707 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 709 Infos[NextElt++])); 710 DecodeIITType(NextElt, Infos, OutputTable); 711 return; 712 } 713 case IIT_ARG: { 714 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 716 return; 717 } 718 case IIT_EXTEND_ARG: { 719 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 721 ArgInfo)); 722 return; 723 } 724 case IIT_TRUNC_ARG: { 725 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 727 ArgInfo)); 728 return; 729 } 730 case IIT_HALF_VEC_ARG: { 731 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 733 ArgInfo)); 734 return; 735 } 736 case IIT_SAME_VEC_WIDTH_ARG: { 737 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 739 ArgInfo)); 740 return; 741 } 742 case IIT_PTR_TO_ARG: { 743 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 745 ArgInfo)); 746 return; 747 } 748 case IIT_VEC_OF_PTRS_TO_ELT: { 749 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 750 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 751 ArgInfo)); 752 return; 753 } 754 case IIT_EMPTYSTRUCT: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 756 return; 757 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 758 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 759 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 760 case IIT_STRUCT2: { 761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 762 763 for (unsigned i = 0; i != StructElts; ++i) 764 DecodeIITType(NextElt, Infos, OutputTable); 765 return; 766 } 767 } 768 llvm_unreachable("unhandled"); 769 } 770 771 772 #define GET_INTRINSIC_GENERATOR_GLOBAL 773 #include "llvm/IR/Intrinsics.gen" 774 #undef GET_INTRINSIC_GENERATOR_GLOBAL 775 776 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 777 SmallVectorImpl<IITDescriptor> &T){ 778 // Check to see if the intrinsic's type was expressible by the table. 779 unsigned TableVal = IIT_Table[id-1]; 780 781 // Decode the TableVal into an array of IITValues. 782 SmallVector<unsigned char, 8> IITValues; 783 ArrayRef<unsigned char> IITEntries; 784 unsigned NextElt = 0; 785 if ((TableVal >> 31) != 0) { 786 // This is an offset into the IIT_LongEncodingTable. 787 IITEntries = IIT_LongEncodingTable; 788 789 // Strip sentinel bit. 790 NextElt = (TableVal << 1) >> 1; 791 } else { 792 // Decode the TableVal into an array of IITValues. If the entry was encoded 793 // into a single word in the table itself, decode it now. 794 do { 795 IITValues.push_back(TableVal & 0xF); 796 TableVal >>= 4; 797 } while (TableVal); 798 799 IITEntries = IITValues; 800 NextElt = 0; 801 } 802 803 // Okay, decode the table into the output vector of IITDescriptors. 804 DecodeIITType(NextElt, IITEntries, T); 805 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 806 DecodeIITType(NextElt, IITEntries, T); 807 } 808 809 810 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 811 ArrayRef<Type*> Tys, LLVMContext &Context) { 812 using namespace Intrinsic; 813 IITDescriptor D = Infos.front(); 814 Infos = Infos.slice(1); 815 816 switch (D.Kind) { 817 case IITDescriptor::Void: return Type::getVoidTy(Context); 818 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 819 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 820 case IITDescriptor::Token: return Type::getTokenTy(Context); 821 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 822 case IITDescriptor::Half: return Type::getHalfTy(Context); 823 case IITDescriptor::Float: return Type::getFloatTy(Context); 824 case IITDescriptor::Double: return Type::getDoubleTy(Context); 825 826 case IITDescriptor::Integer: 827 return IntegerType::get(Context, D.Integer_Width); 828 case IITDescriptor::Vector: 829 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 830 case IITDescriptor::Pointer: 831 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 832 D.Pointer_AddressSpace); 833 case IITDescriptor::Struct: { 834 Type *Elts[5]; 835 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 836 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 837 Elts[i] = DecodeFixedType(Infos, Tys, Context); 838 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 839 } 840 841 case IITDescriptor::Argument: 842 return Tys[D.getArgumentNumber()]; 843 case IITDescriptor::ExtendArgument: { 844 Type *Ty = Tys[D.getArgumentNumber()]; 845 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 846 return VectorType::getExtendedElementVectorType(VTy); 847 848 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 849 } 850 case IITDescriptor::TruncArgument: { 851 Type *Ty = Tys[D.getArgumentNumber()]; 852 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 853 return VectorType::getTruncatedElementVectorType(VTy); 854 855 IntegerType *ITy = cast<IntegerType>(Ty); 856 assert(ITy->getBitWidth() % 2 == 0); 857 return IntegerType::get(Context, ITy->getBitWidth() / 2); 858 } 859 case IITDescriptor::HalfVecArgument: 860 return VectorType::getHalfElementsVectorType(cast<VectorType>( 861 Tys[D.getArgumentNumber()])); 862 case IITDescriptor::SameVecWidthArgument: { 863 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 864 Type *Ty = Tys[D.getArgumentNumber()]; 865 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 866 return VectorType::get(EltTy, VTy->getNumElements()); 867 } 868 llvm_unreachable("unhandled"); 869 } 870 case IITDescriptor::PtrToArgument: { 871 Type *Ty = Tys[D.getArgumentNumber()]; 872 return PointerType::getUnqual(Ty); 873 } 874 case IITDescriptor::VecOfPtrsToElt: { 875 Type *Ty = Tys[D.getArgumentNumber()]; 876 VectorType *VTy = dyn_cast<VectorType>(Ty); 877 if (!VTy) 878 llvm_unreachable("Expected an argument of Vector Type"); 879 Type *EltTy = VTy->getVectorElementType(); 880 return VectorType::get(PointerType::getUnqual(EltTy), 881 VTy->getNumElements()); 882 } 883 } 884 llvm_unreachable("unhandled"); 885 } 886 887 888 889 FunctionType *Intrinsic::getType(LLVMContext &Context, 890 ID id, ArrayRef<Type*> Tys) { 891 SmallVector<IITDescriptor, 8> Table; 892 getIntrinsicInfoTableEntries(id, Table); 893 894 ArrayRef<IITDescriptor> TableRef = Table; 895 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 896 897 SmallVector<Type*, 8> ArgTys; 898 while (!TableRef.empty()) 899 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 900 901 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 902 // If we see void type as the type of the last argument, it is vararg intrinsic 903 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 904 ArgTys.pop_back(); 905 return FunctionType::get(ResultTy, ArgTys, true); 906 } 907 return FunctionType::get(ResultTy, ArgTys, false); 908 } 909 910 bool Intrinsic::isOverloaded(ID id) { 911 #define GET_INTRINSIC_OVERLOAD_TABLE 912 #include "llvm/IR/Intrinsics.gen" 913 #undef GET_INTRINSIC_OVERLOAD_TABLE 914 } 915 916 bool Intrinsic::isLeaf(ID id) { 917 switch (id) { 918 default: 919 return true; 920 921 case Intrinsic::experimental_gc_statepoint: 922 case Intrinsic::experimental_patchpoint_void: 923 case Intrinsic::experimental_patchpoint_i64: 924 return false; 925 } 926 } 927 928 /// This defines the "Intrinsic::getAttributes(ID id)" method. 929 #define GET_INTRINSIC_ATTRIBUTES 930 #include "llvm/IR/Intrinsics.gen" 931 #undef GET_INTRINSIC_ATTRIBUTES 932 933 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 934 // There can never be multiple globals with the same name of different types, 935 // because intrinsics must be a specific type. 936 return 937 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 938 getType(M->getContext(), id, Tys))); 939 } 940 941 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 942 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 943 #include "llvm/IR/Intrinsics.gen" 944 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 945 946 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 947 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 948 #include "llvm/IR/Intrinsics.gen" 949 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 950 951 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 952 SmallVectorImpl<Type*> &ArgTys) { 953 using namespace Intrinsic; 954 955 // If we ran out of descriptors, there are too many arguments. 956 if (Infos.empty()) return true; 957 IITDescriptor D = Infos.front(); 958 Infos = Infos.slice(1); 959 960 switch (D.Kind) { 961 case IITDescriptor::Void: return !Ty->isVoidTy(); 962 case IITDescriptor::VarArg: return true; 963 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 964 case IITDescriptor::Token: return !Ty->isTokenTy(); 965 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 966 case IITDescriptor::Half: return !Ty->isHalfTy(); 967 case IITDescriptor::Float: return !Ty->isFloatTy(); 968 case IITDescriptor::Double: return !Ty->isDoubleTy(); 969 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 970 case IITDescriptor::Vector: { 971 VectorType *VT = dyn_cast<VectorType>(Ty); 972 return !VT || VT->getNumElements() != D.Vector_Width || 973 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 974 } 975 case IITDescriptor::Pointer: { 976 PointerType *PT = dyn_cast<PointerType>(Ty); 977 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 978 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 979 } 980 981 case IITDescriptor::Struct: { 982 StructType *ST = dyn_cast<StructType>(Ty); 983 if (!ST || ST->getNumElements() != D.Struct_NumElements) 984 return true; 985 986 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 987 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 988 return true; 989 return false; 990 } 991 992 case IITDescriptor::Argument: 993 // Two cases here - If this is the second occurrence of an argument, verify 994 // that the later instance matches the previous instance. 995 if (D.getArgumentNumber() < ArgTys.size()) 996 return Ty != ArgTys[D.getArgumentNumber()]; 997 998 // Otherwise, if this is the first instance of an argument, record it and 999 // verify the "Any" kind. 1000 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1001 ArgTys.push_back(Ty); 1002 1003 switch (D.getArgumentKind()) { 1004 case IITDescriptor::AK_Any: return false; // Success 1005 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1006 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1007 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1008 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1009 } 1010 llvm_unreachable("all argument kinds not covered"); 1011 1012 case IITDescriptor::ExtendArgument: { 1013 // This may only be used when referring to a previous vector argument. 1014 if (D.getArgumentNumber() >= ArgTys.size()) 1015 return true; 1016 1017 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1018 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1019 NewTy = VectorType::getExtendedElementVectorType(VTy); 1020 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1021 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1022 else 1023 return true; 1024 1025 return Ty != NewTy; 1026 } 1027 case IITDescriptor::TruncArgument: { 1028 // This may only be used when referring to a previous vector argument. 1029 if (D.getArgumentNumber() >= ArgTys.size()) 1030 return true; 1031 1032 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1033 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1034 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1035 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1036 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1037 else 1038 return true; 1039 1040 return Ty != NewTy; 1041 } 1042 case IITDescriptor::HalfVecArgument: 1043 // This may only be used when referring to a previous vector argument. 1044 return D.getArgumentNumber() >= ArgTys.size() || 1045 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1046 VectorType::getHalfElementsVectorType( 1047 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1048 case IITDescriptor::SameVecWidthArgument: { 1049 if (D.getArgumentNumber() >= ArgTys.size()) 1050 return true; 1051 VectorType * ReferenceType = 1052 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1053 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1054 if (!ThisArgType || !ReferenceType || 1055 (ReferenceType->getVectorNumElements() != 1056 ThisArgType->getVectorNumElements())) 1057 return true; 1058 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1059 Infos, ArgTys); 1060 } 1061 case IITDescriptor::PtrToArgument: { 1062 if (D.getArgumentNumber() >= ArgTys.size()) 1063 return true; 1064 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1065 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1066 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1067 } 1068 case IITDescriptor::VecOfPtrsToElt: { 1069 if (D.getArgumentNumber() >= ArgTys.size()) 1070 return true; 1071 VectorType * ReferenceType = 1072 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1073 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1074 if (!ThisArgVecTy || !ReferenceType || 1075 (ReferenceType->getVectorNumElements() != 1076 ThisArgVecTy->getVectorNumElements())) 1077 return true; 1078 PointerType *ThisArgEltTy = 1079 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1080 if (!ThisArgEltTy) 1081 return true; 1082 return ThisArgEltTy->getElementType() != 1083 ReferenceType->getVectorElementType(); 1084 } 1085 } 1086 llvm_unreachable("unhandled"); 1087 } 1088 1089 bool 1090 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1091 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1092 // If there are no descriptors left, then it can't be a vararg. 1093 if (Infos.empty()) 1094 return isVarArg; 1095 1096 // There should be only one descriptor remaining at this point. 1097 if (Infos.size() != 1) 1098 return true; 1099 1100 // Check and verify the descriptor. 1101 IITDescriptor D = Infos.front(); 1102 Infos = Infos.slice(1); 1103 if (D.Kind == IITDescriptor::VarArg) 1104 return !isVarArg; 1105 1106 return true; 1107 } 1108 1109 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1110 Intrinsic::ID ID = F->getIntrinsicID(); 1111 if (!ID) 1112 return None; 1113 1114 FunctionType *FTy = F->getFunctionType(); 1115 // Accumulate an array of overloaded types for the given intrinsic 1116 SmallVector<Type *, 4> ArgTys; 1117 { 1118 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1119 getIntrinsicInfoTableEntries(ID, Table); 1120 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1121 1122 // If we encounter any problems matching the signature with the descriptor 1123 // just give up remangling. It's up to verifier to report the discrepancy. 1124 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1125 return None; 1126 for (auto Ty : FTy->params()) 1127 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1128 return None; 1129 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1130 return None; 1131 } 1132 1133 StringRef Name = F->getName(); 1134 if (Name == Intrinsic::getName(ID, ArgTys)) 1135 return None; 1136 1137 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1138 NewDecl->setCallingConv(F->getCallingConv()); 1139 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1140 return NewDecl; 1141 } 1142 1143 /// hasAddressTaken - returns true if there are any uses of this function 1144 /// other than direct calls or invokes to it. 1145 bool Function::hasAddressTaken(const User* *PutOffender) const { 1146 for (const Use &U : uses()) { 1147 const User *FU = U.getUser(); 1148 if (isa<BlockAddress>(FU)) 1149 continue; 1150 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1151 if (PutOffender) 1152 *PutOffender = FU; 1153 return true; 1154 } 1155 ImmutableCallSite CS(cast<Instruction>(FU)); 1156 if (!CS.isCallee(&U)) { 1157 if (PutOffender) 1158 *PutOffender = FU; 1159 return true; 1160 } 1161 } 1162 return false; 1163 } 1164 1165 bool Function::isDefTriviallyDead() const { 1166 // Check the linkage 1167 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1168 !hasAvailableExternallyLinkage()) 1169 return false; 1170 1171 // Check if the function is used by anything other than a blockaddress. 1172 for (const User *U : users()) 1173 if (!isa<BlockAddress>(U)) 1174 return false; 1175 1176 return true; 1177 } 1178 1179 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1180 /// setjmp or other function that gcc recognizes as "returning twice". 1181 bool Function::callsFunctionThatReturnsTwice() const { 1182 for (const_inst_iterator 1183 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1184 ImmutableCallSite CS(&*I); 1185 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1186 return true; 1187 } 1188 1189 return false; 1190 } 1191 1192 Constant *Function::getPersonalityFn() const { 1193 assert(hasPersonalityFn() && getNumOperands()); 1194 return cast<Constant>(Op<0>()); 1195 } 1196 1197 void Function::setPersonalityFn(Constant *Fn) { 1198 setHungoffOperand<0>(Fn); 1199 setValueSubclassDataBit(3, Fn != nullptr); 1200 } 1201 1202 Constant *Function::getPrefixData() const { 1203 assert(hasPrefixData() && getNumOperands()); 1204 return cast<Constant>(Op<1>()); 1205 } 1206 1207 void Function::setPrefixData(Constant *PrefixData) { 1208 setHungoffOperand<1>(PrefixData); 1209 setValueSubclassDataBit(1, PrefixData != nullptr); 1210 } 1211 1212 Constant *Function::getPrologueData() const { 1213 assert(hasPrologueData() && getNumOperands()); 1214 return cast<Constant>(Op<2>()); 1215 } 1216 1217 void Function::setPrologueData(Constant *PrologueData) { 1218 setHungoffOperand<2>(PrologueData); 1219 setValueSubclassDataBit(2, PrologueData != nullptr); 1220 } 1221 1222 void Function::allocHungoffUselist() { 1223 // If we've already allocated a uselist, stop here. 1224 if (getNumOperands()) 1225 return; 1226 1227 allocHungoffUses(3, /*IsPhi=*/ false); 1228 setNumHungOffUseOperands(3); 1229 1230 // Initialize the uselist with placeholder operands to allow traversal. 1231 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1232 Op<0>().set(CPN); 1233 Op<1>().set(CPN); 1234 Op<2>().set(CPN); 1235 } 1236 1237 template <int Idx> 1238 void Function::setHungoffOperand(Constant *C) { 1239 if (C) { 1240 allocHungoffUselist(); 1241 Op<Idx>().set(C); 1242 } else if (getNumOperands()) { 1243 Op<Idx>().set( 1244 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1245 } 1246 } 1247 1248 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1249 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1250 if (On) 1251 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1252 else 1253 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1254 } 1255 1256 void Function::setEntryCount(uint64_t Count) { 1257 MDBuilder MDB(getContext()); 1258 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1259 } 1260 1261 Optional<uint64_t> Function::getEntryCount() const { 1262 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1263 if (MD && MD->getOperand(0)) 1264 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1265 if (MDS->getString().equals("function_entry_count")) { 1266 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1267 return CI->getValue().getZExtValue(); 1268 } 1269 return None; 1270 } 1271