1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return hasAttribute(Attribute::ByVal); 93 } 94 95 bool Argument::hasSwiftSelfAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 98 } 99 100 bool Argument::hasSwiftErrorAttr() const { 101 return getParent()->getAttributes(). 102 hasAttribute(getArgNo()+1, Attribute::SwiftError); 103 } 104 105 /// \brief Return true if this argument has the inalloca attribute on it in 106 /// its containing function. 107 bool Argument::hasInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 return hasAttribute(Attribute::InAlloca); 110 } 111 112 bool Argument::hasByValOrInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 AttributeSet Attrs = getParent()->getAttributes(); 115 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 116 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 117 } 118 119 unsigned Argument::getParamAlignment() const { 120 assert(getType()->isPointerTy() && "Only pointers have alignments"); 121 return getParent()->getParamAlignment(getArgNo()+1); 122 123 } 124 125 uint64_t Argument::getDereferenceableBytes() const { 126 assert(getType()->isPointerTy() && 127 "Only pointers have dereferenceable bytes"); 128 return getParent()->getDereferenceableBytes(getArgNo()+1); 129 } 130 131 uint64_t Argument::getDereferenceableOrNullBytes() const { 132 assert(getType()->isPointerTy() && 133 "Only pointers have dereferenceable bytes"); 134 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 135 } 136 137 /// hasNestAttr - Return true if this argument has the nest attribute on 138 /// it in its containing function. 139 bool Argument::hasNestAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::Nest); 142 } 143 144 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 145 /// it in its containing function. 146 bool Argument::hasNoAliasAttr() const { 147 if (!getType()->isPointerTy()) return false; 148 return hasAttribute(Attribute::NoAlias); 149 } 150 151 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 152 /// on it in its containing function. 153 bool Argument::hasNoCaptureAttr() const { 154 if (!getType()->isPointerTy()) return false; 155 return hasAttribute(Attribute::NoCapture); 156 } 157 158 /// hasSRetAttr - Return true if this argument has the sret attribute on 159 /// it in its containing function. 160 bool Argument::hasStructRetAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::StructRet); 163 } 164 165 /// hasReturnedAttr - Return true if this argument has the returned attribute on 166 /// it in its containing function. 167 bool Argument::hasReturnedAttr() const { 168 return hasAttribute(Attribute::Returned); 169 } 170 171 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 172 /// its containing function. 173 bool Argument::hasZExtAttr() const { 174 return hasAttribute(Attribute::ZExt); 175 } 176 177 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 178 /// containing function. 179 bool Argument::hasSExtAttr() const { 180 return hasAttribute(Attribute::SExt); 181 } 182 183 /// Return true if this argument has the readonly or readnone attribute on it 184 /// in its containing function. 185 bool Argument::onlyReadsMemory() const { 186 return getParent()->getAttributes(). 187 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 188 getParent()->getAttributes(). 189 hasAttribute(getArgNo()+1, Attribute::ReadNone); 190 } 191 192 /// addAttr - Add attributes to an argument. 193 void Argument::addAttr(AttributeSet AS) { 194 assert(AS.getNumSlots() <= 1 && 195 "Trying to add more than one attribute set to an argument!"); 196 AttrBuilder B(AS, AS.getSlotIndex(0)); 197 getParent()->addAttributes(getArgNo() + 1, 198 AttributeSet::get(Parent->getContext(), 199 getArgNo() + 1, B)); 200 } 201 202 /// removeAttr - Remove attributes from an argument. 203 void Argument::removeAttr(AttributeSet AS) { 204 assert(AS.getNumSlots() <= 1 && 205 "Trying to remove more than one attribute set from an argument!"); 206 AttrBuilder B(AS, AS.getSlotIndex(0)); 207 getParent()->removeAttributes(getArgNo() + 1, 208 AttributeSet::get(Parent->getContext(), 209 getArgNo() + 1, B)); 210 } 211 212 /// hasAttribute - Checks if an argument has a given attribute. 213 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 214 return getParent()->hasAttribute(getArgNo() + 1, Kind); 215 } 216 217 //===----------------------------------------------------------------------===// 218 // Helper Methods in Function 219 //===----------------------------------------------------------------------===// 220 221 bool Function::isMaterializable() const { 222 return getGlobalObjectSubClassData() & IsMaterializableBit; 223 } 224 225 void Function::setIsMaterializable(bool V) { 226 setGlobalObjectBit(IsMaterializableBit, V); 227 } 228 229 LLVMContext &Function::getContext() const { 230 return getType()->getContext(); 231 } 232 233 FunctionType *Function::getFunctionType() const { 234 return cast<FunctionType>(getValueType()); 235 } 236 237 bool Function::isVarArg() const { 238 return getFunctionType()->isVarArg(); 239 } 240 241 Type *Function::getReturnType() const { 242 return getFunctionType()->getReturnType(); 243 } 244 245 void Function::removeFromParent() { 246 getParent()->getFunctionList().remove(getIterator()); 247 } 248 249 void Function::eraseFromParent() { 250 getParent()->getFunctionList().erase(getIterator()); 251 } 252 253 //===----------------------------------------------------------------------===// 254 // Function Implementation 255 //===----------------------------------------------------------------------===// 256 257 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 258 Module *ParentModule) 259 : GlobalObject(Ty, Value::FunctionVal, 260 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 261 assert(FunctionType::isValidReturnType(getReturnType()) && 262 "invalid return type"); 263 setGlobalObjectSubClassData(0); 264 SymTab = new ValueSymbolTable(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 // Ensure intrinsics have the right parameter attributes. 274 // Note, the IntID field will have been set in Value::setName if this function 275 // name is a valid intrinsic ID. 276 if (IntID) 277 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 278 } 279 280 Function::~Function() { 281 dropAllReferences(); // After this it is safe to delete instructions. 282 283 // Delete all of the method arguments and unlink from symbol table... 284 ArgumentList.clear(); 285 delete SymTab; 286 287 // Remove the function from the on-the-side GC table. 288 clearGC(); 289 } 290 291 void Function::BuildLazyArguments() const { 292 // Create the arguments vector, all arguments start out unnamed. 293 FunctionType *FT = getFunctionType(); 294 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 295 assert(!FT->getParamType(i)->isVoidTy() && 296 "Cannot have void typed arguments!"); 297 ArgumentList.push_back(new Argument(FT->getParamType(i))); 298 } 299 300 // Clear the lazy arguments bit. 301 unsigned SDC = getSubclassDataFromValue(); 302 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 303 } 304 305 size_t Function::arg_size() const { 306 return getFunctionType()->getNumParams(); 307 } 308 bool Function::arg_empty() const { 309 return getFunctionType()->getNumParams() == 0; 310 } 311 312 void Function::setParent(Module *parent) { 313 Parent = parent; 314 } 315 316 // dropAllReferences() - This function causes all the subinstructions to "let 317 // go" of all references that they are maintaining. This allows one to 318 // 'delete' a whole class at a time, even though there may be circular 319 // references... first all references are dropped, and all use counts go to 320 // zero. Then everything is deleted for real. Note that no operations are 321 // valid on an object that has "dropped all references", except operator 322 // delete. 323 // 324 void Function::dropAllReferences() { 325 setIsMaterializable(false); 326 327 for (iterator I = begin(), E = end(); I != E; ++I) 328 I->dropAllReferences(); 329 330 // Delete all basic blocks. They are now unused, except possibly by 331 // blockaddresses, but BasicBlock's destructor takes care of those. 332 while (!BasicBlocks.empty()) 333 BasicBlocks.begin()->eraseFromParent(); 334 335 // Drop uses of any optional data (real or placeholder). 336 if (getNumOperands()) { 337 User::dropAllReferences(); 338 setNumHungOffUseOperands(0); 339 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 340 } 341 342 // Metadata is stored in a side-table. 343 clearMetadata(); 344 } 345 346 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 347 AttributeSet PAL = getAttributes(); 348 PAL = PAL.addAttribute(getContext(), i, attr); 349 setAttributes(PAL); 350 } 351 352 void Function::addAttributes(unsigned i, AttributeSet attrs) { 353 AttributeSet PAL = getAttributes(); 354 PAL = PAL.addAttributes(getContext(), i, attrs); 355 setAttributes(PAL); 356 } 357 358 void Function::removeAttribute(unsigned i, Attribute::AttrKind attr) { 359 AttributeSet PAL = getAttributes(); 360 PAL = PAL.removeAttribute(getContext(), i, attr); 361 setAttributes(PAL); 362 } 363 364 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 365 AttributeSet PAL = getAttributes(); 366 PAL = PAL.removeAttributes(getContext(), i, attrs); 367 setAttributes(PAL); 368 } 369 370 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 371 AttributeSet PAL = getAttributes(); 372 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 373 setAttributes(PAL); 374 } 375 376 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 377 AttributeSet PAL = getAttributes(); 378 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 379 setAttributes(PAL); 380 } 381 382 const std::string &Function::getGC() const { 383 assert(hasGC() && "Function has no collector"); 384 return getContext().getGC(*this); 385 } 386 387 void Function::setGC(const std::string Str) { 388 setValueSubclassDataBit(14, !Str.empty()); 389 getContext().setGC(*this, std::move(Str)); 390 } 391 392 void Function::clearGC() { 393 if (!hasGC()) 394 return; 395 getContext().deleteGC(*this); 396 setValueSubclassDataBit(14, false); 397 } 398 399 /// Copy all additional attributes (those not needed to create a Function) from 400 /// the Function Src to this one. 401 void Function::copyAttributesFrom(const GlobalValue *Src) { 402 GlobalObject::copyAttributesFrom(Src); 403 const Function *SrcF = dyn_cast<Function>(Src); 404 if (!SrcF) 405 return; 406 407 setCallingConv(SrcF->getCallingConv()); 408 setAttributes(SrcF->getAttributes()); 409 if (SrcF->hasGC()) 410 setGC(SrcF->getGC()); 411 else 412 clearGC(); 413 if (SrcF->hasPersonalityFn()) 414 setPersonalityFn(SrcF->getPersonalityFn()); 415 if (SrcF->hasPrefixData()) 416 setPrefixData(SrcF->getPrefixData()); 417 if (SrcF->hasPrologueData()) 418 setPrologueData(SrcF->getPrologueData()); 419 } 420 421 /// Table of string intrinsic names indexed by enum value. 422 static const char * const IntrinsicNameTable[] = { 423 "not_intrinsic", 424 #define GET_INTRINSIC_NAME_TABLE 425 #include "llvm/IR/Intrinsics.gen" 426 #undef GET_INTRINSIC_NAME_TABLE 427 }; 428 429 /// \brief This does the actual lookup of an intrinsic ID which 430 /// matches the given function name. 431 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 432 StringRef Name = ValName->getKey(); 433 434 ArrayRef<const char *> NameTable(&IntrinsicNameTable[1], 435 std::end(IntrinsicNameTable)); 436 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 437 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1); 438 if (ID == Intrinsic::not_intrinsic) 439 return ID; 440 441 // If the intrinsic is not overloaded, require an exact match. If it is 442 // overloaded, require a prefix match. 443 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 444 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 445 } 446 447 void Function::recalculateIntrinsicID() { 448 const ValueName *ValName = this->getValueName(); 449 if (!ValName || !isIntrinsic()) { 450 IntID = Intrinsic::not_intrinsic; 451 return; 452 } 453 IntID = lookupIntrinsicID(ValName); 454 } 455 456 /// Returns a stable mangling for the type specified for use in the name 457 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 458 /// of named types is simply their name. Manglings for unnamed types consist 459 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 460 /// combined with the mangling of their component types. A vararg function 461 /// type will have a suffix of 'vararg'. Since function types can contain 462 /// other function types, we close a function type mangling with suffix 'f' 463 /// which can't be confused with it's prefix. This ensures we don't have 464 /// collisions between two unrelated function types. Otherwise, you might 465 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 466 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 467 /// cases) fall back to the MVT codepath, where they could be mangled to 468 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 469 /// everything. 470 static std::string getMangledTypeStr(Type* Ty) { 471 std::string Result; 472 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 473 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 474 getMangledTypeStr(PTyp->getElementType()); 475 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 476 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 477 getMangledTypeStr(ATyp->getElementType()); 478 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 479 assert(!STyp->isLiteral() && "TODO: implement literal types"); 480 Result += STyp->getName(); 481 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 482 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 483 for (size_t i = 0; i < FT->getNumParams(); i++) 484 Result += getMangledTypeStr(FT->getParamType(i)); 485 if (FT->isVarArg()) 486 Result += "vararg"; 487 // Ensure nested function types are distinguishable. 488 Result += "f"; 489 } else if (isa<VectorType>(Ty)) 490 Result += "v" + utostr(Ty->getVectorNumElements()) + 491 getMangledTypeStr(Ty->getVectorElementType()); 492 else if (Ty) 493 Result += EVT::getEVT(Ty).getEVTString(); 494 return Result; 495 } 496 497 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 498 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 499 if (Tys.empty()) 500 return IntrinsicNameTable[id]; 501 std::string Result(IntrinsicNameTable[id]); 502 for (unsigned i = 0; i < Tys.size(); ++i) { 503 Result += "." + getMangledTypeStr(Tys[i]); 504 } 505 return Result; 506 } 507 508 509 /// IIT_Info - These are enumerators that describe the entries returned by the 510 /// getIntrinsicInfoTableEntries function. 511 /// 512 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 513 enum IIT_Info { 514 // Common values should be encoded with 0-15. 515 IIT_Done = 0, 516 IIT_I1 = 1, 517 IIT_I8 = 2, 518 IIT_I16 = 3, 519 IIT_I32 = 4, 520 IIT_I64 = 5, 521 IIT_F16 = 6, 522 IIT_F32 = 7, 523 IIT_F64 = 8, 524 IIT_V2 = 9, 525 IIT_V4 = 10, 526 IIT_V8 = 11, 527 IIT_V16 = 12, 528 IIT_V32 = 13, 529 IIT_PTR = 14, 530 IIT_ARG = 15, 531 532 // Values from 16+ are only encodable with the inefficient encoding. 533 IIT_V64 = 16, 534 IIT_MMX = 17, 535 IIT_TOKEN = 18, 536 IIT_METADATA = 19, 537 IIT_EMPTYSTRUCT = 20, 538 IIT_STRUCT2 = 21, 539 IIT_STRUCT3 = 22, 540 IIT_STRUCT4 = 23, 541 IIT_STRUCT5 = 24, 542 IIT_EXTEND_ARG = 25, 543 IIT_TRUNC_ARG = 26, 544 IIT_ANYPTR = 27, 545 IIT_V1 = 28, 546 IIT_VARARG = 29, 547 IIT_HALF_VEC_ARG = 30, 548 IIT_SAME_VEC_WIDTH_ARG = 31, 549 IIT_PTR_TO_ARG = 32, 550 IIT_VEC_OF_PTRS_TO_ELT = 33, 551 IIT_I128 = 34, 552 IIT_V512 = 35, 553 IIT_V1024 = 36 554 }; 555 556 557 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 558 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 559 IIT_Info Info = IIT_Info(Infos[NextElt++]); 560 unsigned StructElts = 2; 561 using namespace Intrinsic; 562 563 switch (Info) { 564 case IIT_Done: 565 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 566 return; 567 case IIT_VARARG: 568 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 569 return; 570 case IIT_MMX: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 572 return; 573 case IIT_TOKEN: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 575 return; 576 case IIT_METADATA: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 578 return; 579 case IIT_F16: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 581 return; 582 case IIT_F32: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 584 return; 585 case IIT_F64: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 587 return; 588 case IIT_I1: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 590 return; 591 case IIT_I8: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 593 return; 594 case IIT_I16: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 596 return; 597 case IIT_I32: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 599 return; 600 case IIT_I64: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 602 return; 603 case IIT_I128: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 605 return; 606 case IIT_V1: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 608 DecodeIITType(NextElt, Infos, OutputTable); 609 return; 610 case IIT_V2: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 612 DecodeIITType(NextElt, Infos, OutputTable); 613 return; 614 case IIT_V4: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 616 DecodeIITType(NextElt, Infos, OutputTable); 617 return; 618 case IIT_V8: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V16: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_V32: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_V64: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 632 DecodeIITType(NextElt, Infos, OutputTable); 633 return; 634 case IIT_V512: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 case IIT_V1024: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 640 DecodeIITType(NextElt, Infos, OutputTable); 641 return; 642 case IIT_PTR: 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 644 DecodeIITType(NextElt, Infos, OutputTable); 645 return; 646 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 648 Infos[NextElt++])); 649 DecodeIITType(NextElt, Infos, OutputTable); 650 return; 651 } 652 case IIT_ARG: { 653 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 655 return; 656 } 657 case IIT_EXTEND_ARG: { 658 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 660 ArgInfo)); 661 return; 662 } 663 case IIT_TRUNC_ARG: { 664 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 666 ArgInfo)); 667 return; 668 } 669 case IIT_HALF_VEC_ARG: { 670 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 672 ArgInfo)); 673 return; 674 } 675 case IIT_SAME_VEC_WIDTH_ARG: { 676 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 677 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 678 ArgInfo)); 679 return; 680 } 681 case IIT_PTR_TO_ARG: { 682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 684 ArgInfo)); 685 return; 686 } 687 case IIT_VEC_OF_PTRS_TO_ELT: { 688 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 689 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 690 ArgInfo)); 691 return; 692 } 693 case IIT_EMPTYSTRUCT: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 695 return; 696 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 697 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 698 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 699 case IIT_STRUCT2: { 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 701 702 for (unsigned i = 0; i != StructElts; ++i) 703 DecodeIITType(NextElt, Infos, OutputTable); 704 return; 705 } 706 } 707 llvm_unreachable("unhandled"); 708 } 709 710 711 #define GET_INTRINSIC_GENERATOR_GLOBAL 712 #include "llvm/IR/Intrinsics.gen" 713 #undef GET_INTRINSIC_GENERATOR_GLOBAL 714 715 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 716 SmallVectorImpl<IITDescriptor> &T){ 717 // Check to see if the intrinsic's type was expressible by the table. 718 unsigned TableVal = IIT_Table[id-1]; 719 720 // Decode the TableVal into an array of IITValues. 721 SmallVector<unsigned char, 8> IITValues; 722 ArrayRef<unsigned char> IITEntries; 723 unsigned NextElt = 0; 724 if ((TableVal >> 31) != 0) { 725 // This is an offset into the IIT_LongEncodingTable. 726 IITEntries = IIT_LongEncodingTable; 727 728 // Strip sentinel bit. 729 NextElt = (TableVal << 1) >> 1; 730 } else { 731 // Decode the TableVal into an array of IITValues. If the entry was encoded 732 // into a single word in the table itself, decode it now. 733 do { 734 IITValues.push_back(TableVal & 0xF); 735 TableVal >>= 4; 736 } while (TableVal); 737 738 IITEntries = IITValues; 739 NextElt = 0; 740 } 741 742 // Okay, decode the table into the output vector of IITDescriptors. 743 DecodeIITType(NextElt, IITEntries, T); 744 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 745 DecodeIITType(NextElt, IITEntries, T); 746 } 747 748 749 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 750 ArrayRef<Type*> Tys, LLVMContext &Context) { 751 using namespace Intrinsic; 752 IITDescriptor D = Infos.front(); 753 Infos = Infos.slice(1); 754 755 switch (D.Kind) { 756 case IITDescriptor::Void: return Type::getVoidTy(Context); 757 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 758 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 759 case IITDescriptor::Token: return Type::getTokenTy(Context); 760 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 761 case IITDescriptor::Half: return Type::getHalfTy(Context); 762 case IITDescriptor::Float: return Type::getFloatTy(Context); 763 case IITDescriptor::Double: return Type::getDoubleTy(Context); 764 765 case IITDescriptor::Integer: 766 return IntegerType::get(Context, D.Integer_Width); 767 case IITDescriptor::Vector: 768 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 769 case IITDescriptor::Pointer: 770 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 771 D.Pointer_AddressSpace); 772 case IITDescriptor::Struct: { 773 Type *Elts[5]; 774 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 775 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 776 Elts[i] = DecodeFixedType(Infos, Tys, Context); 777 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 778 } 779 780 case IITDescriptor::Argument: 781 return Tys[D.getArgumentNumber()]; 782 case IITDescriptor::ExtendArgument: { 783 Type *Ty = Tys[D.getArgumentNumber()]; 784 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 785 return VectorType::getExtendedElementVectorType(VTy); 786 787 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 788 } 789 case IITDescriptor::TruncArgument: { 790 Type *Ty = Tys[D.getArgumentNumber()]; 791 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 792 return VectorType::getTruncatedElementVectorType(VTy); 793 794 IntegerType *ITy = cast<IntegerType>(Ty); 795 assert(ITy->getBitWidth() % 2 == 0); 796 return IntegerType::get(Context, ITy->getBitWidth() / 2); 797 } 798 case IITDescriptor::HalfVecArgument: 799 return VectorType::getHalfElementsVectorType(cast<VectorType>( 800 Tys[D.getArgumentNumber()])); 801 case IITDescriptor::SameVecWidthArgument: { 802 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 803 Type *Ty = Tys[D.getArgumentNumber()]; 804 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 805 return VectorType::get(EltTy, VTy->getNumElements()); 806 } 807 llvm_unreachable("unhandled"); 808 } 809 case IITDescriptor::PtrToArgument: { 810 Type *Ty = Tys[D.getArgumentNumber()]; 811 return PointerType::getUnqual(Ty); 812 } 813 case IITDescriptor::VecOfPtrsToElt: { 814 Type *Ty = Tys[D.getArgumentNumber()]; 815 VectorType *VTy = dyn_cast<VectorType>(Ty); 816 if (!VTy) 817 llvm_unreachable("Expected an argument of Vector Type"); 818 Type *EltTy = VTy->getVectorElementType(); 819 return VectorType::get(PointerType::getUnqual(EltTy), 820 VTy->getNumElements()); 821 } 822 } 823 llvm_unreachable("unhandled"); 824 } 825 826 827 828 FunctionType *Intrinsic::getType(LLVMContext &Context, 829 ID id, ArrayRef<Type*> Tys) { 830 SmallVector<IITDescriptor, 8> Table; 831 getIntrinsicInfoTableEntries(id, Table); 832 833 ArrayRef<IITDescriptor> TableRef = Table; 834 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 835 836 SmallVector<Type*, 8> ArgTys; 837 while (!TableRef.empty()) 838 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 839 840 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 841 // If we see void type as the type of the last argument, it is vararg intrinsic 842 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 843 ArgTys.pop_back(); 844 return FunctionType::get(ResultTy, ArgTys, true); 845 } 846 return FunctionType::get(ResultTy, ArgTys, false); 847 } 848 849 bool Intrinsic::isOverloaded(ID id) { 850 #define GET_INTRINSIC_OVERLOAD_TABLE 851 #include "llvm/IR/Intrinsics.gen" 852 #undef GET_INTRINSIC_OVERLOAD_TABLE 853 } 854 855 bool Intrinsic::isLeaf(ID id) { 856 switch (id) { 857 default: 858 return true; 859 860 case Intrinsic::experimental_gc_statepoint: 861 case Intrinsic::experimental_patchpoint_void: 862 case Intrinsic::experimental_patchpoint_i64: 863 return false; 864 } 865 } 866 867 /// This defines the "Intrinsic::getAttributes(ID id)" method. 868 #define GET_INTRINSIC_ATTRIBUTES 869 #include "llvm/IR/Intrinsics.gen" 870 #undef GET_INTRINSIC_ATTRIBUTES 871 872 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 873 // There can never be multiple globals with the same name of different types, 874 // because intrinsics must be a specific type. 875 return 876 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 877 getType(M->getContext(), id, Tys))); 878 } 879 880 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 881 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 882 #include "llvm/IR/Intrinsics.gen" 883 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 884 885 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 886 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 887 #include "llvm/IR/Intrinsics.gen" 888 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 889 890 /// hasAddressTaken - returns true if there are any uses of this function 891 /// other than direct calls or invokes to it. 892 bool Function::hasAddressTaken(const User* *PutOffender) const { 893 for (const Use &U : uses()) { 894 const User *FU = U.getUser(); 895 if (isa<BlockAddress>(FU)) 896 continue; 897 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 898 if (PutOffender) 899 *PutOffender = FU; 900 return true; 901 } 902 ImmutableCallSite CS(cast<Instruction>(FU)); 903 if (!CS.isCallee(&U)) { 904 if (PutOffender) 905 *PutOffender = FU; 906 return true; 907 } 908 } 909 return false; 910 } 911 912 bool Function::isDefTriviallyDead() const { 913 // Check the linkage 914 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 915 !hasAvailableExternallyLinkage()) 916 return false; 917 918 // Check if the function is used by anything other than a blockaddress. 919 for (const User *U : users()) 920 if (!isa<BlockAddress>(U)) 921 return false; 922 923 return true; 924 } 925 926 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 927 /// setjmp or other function that gcc recognizes as "returning twice". 928 bool Function::callsFunctionThatReturnsTwice() const { 929 for (const_inst_iterator 930 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 931 ImmutableCallSite CS(&*I); 932 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 933 return true; 934 } 935 936 return false; 937 } 938 939 Constant *Function::getPersonalityFn() const { 940 assert(hasPersonalityFn() && getNumOperands()); 941 return cast<Constant>(Op<0>()); 942 } 943 944 void Function::setPersonalityFn(Constant *Fn) { 945 setHungoffOperand<0>(Fn); 946 setValueSubclassDataBit(3, Fn != nullptr); 947 } 948 949 Constant *Function::getPrefixData() const { 950 assert(hasPrefixData() && getNumOperands()); 951 return cast<Constant>(Op<1>()); 952 } 953 954 void Function::setPrefixData(Constant *PrefixData) { 955 setHungoffOperand<1>(PrefixData); 956 setValueSubclassDataBit(1, PrefixData != nullptr); 957 } 958 959 Constant *Function::getPrologueData() const { 960 assert(hasPrologueData() && getNumOperands()); 961 return cast<Constant>(Op<2>()); 962 } 963 964 void Function::setPrologueData(Constant *PrologueData) { 965 setHungoffOperand<2>(PrologueData); 966 setValueSubclassDataBit(2, PrologueData != nullptr); 967 } 968 969 void Function::allocHungoffUselist() { 970 // If we've already allocated a uselist, stop here. 971 if (getNumOperands()) 972 return; 973 974 allocHungoffUses(3, /*IsPhi=*/ false); 975 setNumHungOffUseOperands(3); 976 977 // Initialize the uselist with placeholder operands to allow traversal. 978 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 979 Op<0>().set(CPN); 980 Op<1>().set(CPN); 981 Op<2>().set(CPN); 982 } 983 984 template <int Idx> 985 void Function::setHungoffOperand(Constant *C) { 986 if (C) { 987 allocHungoffUselist(); 988 Op<Idx>().set(C); 989 } else if (getNumOperands()) { 990 Op<Idx>().set( 991 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 992 } 993 } 994 995 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 996 assert(Bit < 16 && "SubclassData contains only 16 bits"); 997 if (On) 998 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 999 else 1000 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1001 } 1002 1003 void Function::setEntryCount(uint64_t Count) { 1004 MDBuilder MDB(getContext()); 1005 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1006 } 1007 1008 Optional<uint64_t> Function::getEntryCount() const { 1009 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1010 if (MD && MD->getOperand(0)) 1011 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1012 if (MDS->getString().equals("function_entry_count")) { 1013 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1014 return CI->getValue().getZExtValue(); 1015 } 1016 return None; 1017 } 1018