1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/SymbolTableListTraits.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <cstring> 57 #include <string> 58 59 using namespace llvm; 60 61 // Explicit instantiations of SymbolTableListTraits since some of the methods 62 // are not in the public header file... 63 template class llvm::SymbolTableListTraits<BasicBlock>; 64 65 //===----------------------------------------------------------------------===// 66 // Argument Implementation 67 //===----------------------------------------------------------------------===// 68 69 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 70 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 71 setName(Name); 72 } 73 74 void Argument::setParent(Function *parent) { 75 Parent = parent; 76 } 77 78 bool Argument::hasNonNullAttr() const { 79 if (!getType()->isPointerTy()) return false; 80 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 bool Argument::hasByValAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 return hasAttribute(Attribute::ByVal); 91 } 92 93 bool Argument::hasSwiftSelfAttr() const { 94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 95 } 96 97 bool Argument::hasSwiftErrorAttr() const { 98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 99 } 100 101 bool Argument::hasInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 return hasAttribute(Attribute::InAlloca); 104 } 105 106 bool Argument::hasByValOrInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 AttributeList Attrs = getParent()->getAttributes(); 109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 111 } 112 113 unsigned Argument::getParamAlignment() const { 114 assert(getType()->isPointerTy() && "Only pointers have alignments"); 115 return getParent()->getParamAlignment(getArgNo()); 116 } 117 118 uint64_t Argument::getDereferenceableBytes() const { 119 assert(getType()->isPointerTy() && 120 "Only pointers have dereferenceable bytes"); 121 return getParent()->getDereferenceableBytes(getArgNo() + 122 AttributeList::FirstArgIndex); 123 } 124 125 uint64_t Argument::getDereferenceableOrNullBytes() const { 126 assert(getType()->isPointerTy() && 127 "Only pointers have dereferenceable bytes"); 128 return getParent()->getDereferenceableOrNullBytes( 129 getArgNo() + AttributeList::FirstArgIndex); 130 } 131 132 bool Argument::hasNestAttr() const { 133 if (!getType()->isPointerTy()) return false; 134 return hasAttribute(Attribute::Nest); 135 } 136 137 bool Argument::hasNoAliasAttr() const { 138 if (!getType()->isPointerTy()) return false; 139 return hasAttribute(Attribute::NoAlias); 140 } 141 142 bool Argument::hasNoCaptureAttr() const { 143 if (!getType()->isPointerTy()) return false; 144 return hasAttribute(Attribute::NoCapture); 145 } 146 147 bool Argument::hasStructRetAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return hasAttribute(Attribute::StructRet); 150 } 151 152 bool Argument::hasReturnedAttr() const { 153 return hasAttribute(Attribute::Returned); 154 } 155 156 bool Argument::hasZExtAttr() const { 157 return hasAttribute(Attribute::ZExt); 158 } 159 160 bool Argument::hasSExtAttr() const { 161 return hasAttribute(Attribute::SExt); 162 } 163 164 bool Argument::onlyReadsMemory() const { 165 AttributeList Attrs = getParent()->getAttributes(); 166 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 167 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 168 } 169 170 void Argument::addAttrs(AttrBuilder &B) { 171 AttributeList AL = getParent()->getAttributes(); 172 AL = AL.addAttributes(Parent->getContext(), 173 getArgNo() + AttributeList::FirstArgIndex, B); 174 getParent()->setAttributes(AL); 175 } 176 177 void Argument::addAttr(Attribute::AttrKind Kind) { 178 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 179 } 180 181 void Argument::addAttr(Attribute Attr) { 182 getParent()->addAttribute(getArgNo() + AttributeList::FirstArgIndex, Attr); 183 } 184 185 void Argument::removeAttr(Attribute::AttrKind Kind) { 186 getParent()->removeAttribute(getArgNo() + AttributeList::FirstArgIndex, Kind); 187 } 188 189 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 190 return getParent()->hasParamAttribute(getArgNo(), Kind); 191 } 192 193 //===----------------------------------------------------------------------===// 194 // Helper Methods in Function 195 //===----------------------------------------------------------------------===// 196 197 LLVMContext &Function::getContext() const { 198 return getType()->getContext(); 199 } 200 201 void Function::removeFromParent() { 202 getParent()->getFunctionList().remove(getIterator()); 203 } 204 205 void Function::eraseFromParent() { 206 getParent()->getFunctionList().erase(getIterator()); 207 } 208 209 //===----------------------------------------------------------------------===// 210 // Function Implementation 211 //===----------------------------------------------------------------------===// 212 213 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 214 Module *ParentModule) 215 : GlobalObject(Ty, Value::FunctionVal, 216 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 217 NumArgs(Ty->getNumParams()) { 218 assert(FunctionType::isValidReturnType(getReturnType()) && 219 "invalid return type"); 220 setGlobalObjectSubClassData(0); 221 222 // We only need a symbol table for a function if the context keeps value names 223 if (!getContext().shouldDiscardValueNames()) 224 SymTab = make_unique<ValueSymbolTable>(); 225 226 // If the function has arguments, mark them as lazily built. 227 if (Ty->getNumParams()) 228 setValueSubclassData(1); // Set the "has lazy arguments" bit. 229 230 if (ParentModule) 231 ParentModule->getFunctionList().push_back(this); 232 233 HasLLVMReservedName = getName().startswith("llvm."); 234 // Ensure intrinsics have the right parameter attributes. 235 // Note, the IntID field will have been set in Value::setName if this function 236 // name is a valid intrinsic ID. 237 if (IntID) 238 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 239 } 240 241 Function::~Function() { 242 dropAllReferences(); // After this it is safe to delete instructions. 243 244 // Delete all of the method arguments and unlink from symbol table... 245 if (Arguments) 246 clearArguments(); 247 248 // Remove the function from the on-the-side GC table. 249 clearGC(); 250 } 251 252 void Function::BuildLazyArguments() const { 253 // Create the arguments vector, all arguments start out unnamed. 254 auto *FT = getFunctionType(); 255 if (NumArgs > 0) { 256 Arguments = std::allocator<Argument>().allocate(NumArgs); 257 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 258 Type *ArgTy = FT->getParamType(i); 259 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 260 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 261 } 262 } 263 264 // Clear the lazy arguments bit. 265 unsigned SDC = getSubclassDataFromValue(); 266 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 267 assert(!hasLazyArguments()); 268 } 269 270 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 271 return MutableArrayRef<Argument>(Args, Count); 272 } 273 274 void Function::clearArguments() { 275 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 276 A.setName(""); 277 A.~Argument(); 278 } 279 std::allocator<Argument>().deallocate(Arguments, NumArgs); 280 Arguments = nullptr; 281 } 282 283 void Function::stealArgumentListFrom(Function &Src) { 284 assert(isDeclaration() && "Expected no references to current arguments"); 285 286 // Drop the current arguments, if any, and set the lazy argument bit. 287 if (!hasLazyArguments()) { 288 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 289 [](const Argument &A) { return A.use_empty(); }) && 290 "Expected arguments to be unused in declaration"); 291 clearArguments(); 292 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 293 } 294 295 // Nothing to steal if Src has lazy arguments. 296 if (Src.hasLazyArguments()) 297 return; 298 299 // Steal arguments from Src, and fix the lazy argument bits. 300 assert(arg_size() == Src.arg_size()); 301 Arguments = Src.Arguments; 302 Src.Arguments = nullptr; 303 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 304 // FIXME: This does the work of transferNodesFromList inefficiently. 305 SmallString<128> Name; 306 if (A.hasName()) 307 Name = A.getName(); 308 if (!Name.empty()) 309 A.setName(""); 310 A.setParent(this); 311 if (!Name.empty()) 312 A.setName(Name); 313 } 314 315 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 316 assert(!hasLazyArguments()); 317 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 318 } 319 320 // dropAllReferences() - This function causes all the subinstructions to "let 321 // go" of all references that they are maintaining. This allows one to 322 // 'delete' a whole class at a time, even though there may be circular 323 // references... first all references are dropped, and all use counts go to 324 // zero. Then everything is deleted for real. Note that no operations are 325 // valid on an object that has "dropped all references", except operator 326 // delete. 327 // 328 void Function::dropAllReferences() { 329 setIsMaterializable(false); 330 331 for (BasicBlock &BB : *this) 332 BB.dropAllReferences(); 333 334 // Delete all basic blocks. They are now unused, except possibly by 335 // blockaddresses, but BasicBlock's destructor takes care of those. 336 while (!BasicBlocks.empty()) 337 BasicBlocks.begin()->eraseFromParent(); 338 339 // Drop uses of any optional data (real or placeholder). 340 if (getNumOperands()) { 341 User::dropAllReferences(); 342 setNumHungOffUseOperands(0); 343 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 344 } 345 346 // Metadata is stored in a side-table. 347 clearMetadata(); 348 } 349 350 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 351 AttributeList PAL = getAttributes(); 352 PAL = PAL.addAttribute(getContext(), i, Kind); 353 setAttributes(PAL); 354 } 355 356 void Function::addAttribute(unsigned i, Attribute Attr) { 357 AttributeList PAL = getAttributes(); 358 PAL = PAL.addAttribute(getContext(), i, Attr); 359 setAttributes(PAL); 360 } 361 362 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 363 AttributeList PAL = getAttributes(); 364 PAL = PAL.addAttributes(getContext(), i, Attrs); 365 setAttributes(PAL); 366 } 367 368 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 369 AttributeList PAL = getAttributes(); 370 PAL = PAL.removeAttribute(getContext(), i, Kind); 371 setAttributes(PAL); 372 } 373 374 void Function::removeAttribute(unsigned i, StringRef Kind) { 375 AttributeList PAL = getAttributes(); 376 PAL = PAL.removeAttribute(getContext(), i, Kind); 377 setAttributes(PAL); 378 } 379 380 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 381 AttributeList PAL = getAttributes(); 382 PAL = PAL.removeAttributes(getContext(), i, Attrs); 383 setAttributes(PAL); 384 } 385 386 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 387 AttributeList PAL = getAttributes(); 388 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 389 setAttributes(PAL); 390 } 391 392 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 393 AttributeList PAL = getAttributes(); 394 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 395 setAttributes(PAL); 396 } 397 398 const std::string &Function::getGC() const { 399 assert(hasGC() && "Function has no collector"); 400 return getContext().getGC(*this); 401 } 402 403 void Function::setGC(std::string Str) { 404 setValueSubclassDataBit(14, !Str.empty()); 405 getContext().setGC(*this, std::move(Str)); 406 } 407 408 void Function::clearGC() { 409 if (!hasGC()) 410 return; 411 getContext().deleteGC(*this); 412 setValueSubclassDataBit(14, false); 413 } 414 415 /// Copy all additional attributes (those not needed to create a Function) from 416 /// the Function Src to this one. 417 void Function::copyAttributesFrom(const Function *Src) { 418 GlobalObject::copyAttributesFrom(Src); 419 setCallingConv(Src->getCallingConv()); 420 setAttributes(Src->getAttributes()); 421 if (Src->hasGC()) 422 setGC(Src->getGC()); 423 else 424 clearGC(); 425 if (Src->hasPersonalityFn()) 426 setPersonalityFn(Src->getPersonalityFn()); 427 if (Src->hasPrefixData()) 428 setPrefixData(Src->getPrefixData()); 429 if (Src->hasPrologueData()) 430 setPrologueData(Src->getPrologueData()); 431 } 432 433 /// Table of string intrinsic names indexed by enum value. 434 static const char * const IntrinsicNameTable[] = { 435 "not_intrinsic", 436 #define GET_INTRINSIC_NAME_TABLE 437 #include "llvm/IR/Intrinsics.gen" 438 #undef GET_INTRINSIC_NAME_TABLE 439 }; 440 441 /// Table of per-target intrinsic name tables. 442 #define GET_INTRINSIC_TARGET_DATA 443 #include "llvm/IR/Intrinsics.gen" 444 #undef GET_INTRINSIC_TARGET_DATA 445 446 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 447 /// target as \c Name, or the generic table if \c Name is not target specific. 448 /// 449 /// Returns the relevant slice of \c IntrinsicNameTable 450 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 451 assert(Name.startswith("llvm.")); 452 453 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 454 // Drop "llvm." and take the first dotted component. That will be the target 455 // if this is target specific. 456 StringRef Target = Name.drop_front(5).split('.').first; 457 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 458 [](const IntrinsicTargetInfo &TI, 459 StringRef Target) { return TI.Name < Target; }); 460 // We've either found the target or just fall back to the generic set, which 461 // is always first. 462 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 463 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 464 } 465 466 /// \brief This does the actual lookup of an intrinsic ID which 467 /// matches the given function name. 468 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 469 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 470 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 471 if (Idx == -1) 472 return Intrinsic::not_intrinsic; 473 474 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 475 // an index into a sub-table. 476 int Adjust = NameTable.data() - IntrinsicNameTable; 477 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 478 479 // If the intrinsic is not overloaded, require an exact match. If it is 480 // overloaded, require a prefix match. 481 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 482 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 483 } 484 485 void Function::recalculateIntrinsicID() { 486 StringRef Name = getName(); 487 if (!Name.startswith("llvm.")) { 488 HasLLVMReservedName = false; 489 IntID = Intrinsic::not_intrinsic; 490 return; 491 } 492 HasLLVMReservedName = true; 493 IntID = lookupIntrinsicID(Name); 494 } 495 496 /// Returns a stable mangling for the type specified for use in the name 497 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 498 /// of named types is simply their name. Manglings for unnamed types consist 499 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 500 /// combined with the mangling of their component types. A vararg function 501 /// type will have a suffix of 'vararg'. Since function types can contain 502 /// other function types, we close a function type mangling with suffix 'f' 503 /// which can't be confused with it's prefix. This ensures we don't have 504 /// collisions between two unrelated function types. Otherwise, you might 505 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 506 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 507 /// cases) fall back to the MVT codepath, where they could be mangled to 508 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 509 /// everything. 510 static std::string getMangledTypeStr(Type* Ty) { 511 std::string Result; 512 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 513 Result += "p" + utostr(PTyp->getAddressSpace()) + 514 getMangledTypeStr(PTyp->getElementType()); 515 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 516 Result += "a" + utostr(ATyp->getNumElements()) + 517 getMangledTypeStr(ATyp->getElementType()); 518 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 519 if (!STyp->isLiteral()) { 520 Result += "s_"; 521 Result += STyp->getName(); 522 } else { 523 Result += "sl_"; 524 for (auto Elem : STyp->elements()) 525 Result += getMangledTypeStr(Elem); 526 } 527 // Ensure nested structs are distinguishable. 528 Result += "s"; 529 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 530 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 531 for (size_t i = 0; i < FT->getNumParams(); i++) 532 Result += getMangledTypeStr(FT->getParamType(i)); 533 if (FT->isVarArg()) 534 Result += "vararg"; 535 // Ensure nested function types are distinguishable. 536 Result += "f"; 537 } else if (isa<VectorType>(Ty)) 538 Result += "v" + utostr(Ty->getVectorNumElements()) + 539 getMangledTypeStr(Ty->getVectorElementType()); 540 else if (Ty) 541 Result += EVT::getEVT(Ty).getEVTString(); 542 return Result; 543 } 544 545 StringRef Intrinsic::getName(ID id) { 546 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 547 assert(!isOverloaded(id) && 548 "This version of getName does not support overloading"); 549 return IntrinsicNameTable[id]; 550 } 551 552 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 553 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 554 std::string Result(IntrinsicNameTable[id]); 555 for (Type *Ty : Tys) { 556 Result += "." + getMangledTypeStr(Ty); 557 } 558 return Result; 559 } 560 561 /// IIT_Info - These are enumerators that describe the entries returned by the 562 /// getIntrinsicInfoTableEntries function. 563 /// 564 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 565 enum IIT_Info { 566 // Common values should be encoded with 0-15. 567 IIT_Done = 0, 568 IIT_I1 = 1, 569 IIT_I8 = 2, 570 IIT_I16 = 3, 571 IIT_I32 = 4, 572 IIT_I64 = 5, 573 IIT_F16 = 6, 574 IIT_F32 = 7, 575 IIT_F64 = 8, 576 IIT_V2 = 9, 577 IIT_V4 = 10, 578 IIT_V8 = 11, 579 IIT_V16 = 12, 580 IIT_V32 = 13, 581 IIT_PTR = 14, 582 IIT_ARG = 15, 583 584 // Values from 16+ are only encodable with the inefficient encoding. 585 IIT_V64 = 16, 586 IIT_MMX = 17, 587 IIT_TOKEN = 18, 588 IIT_METADATA = 19, 589 IIT_EMPTYSTRUCT = 20, 590 IIT_STRUCT2 = 21, 591 IIT_STRUCT3 = 22, 592 IIT_STRUCT4 = 23, 593 IIT_STRUCT5 = 24, 594 IIT_EXTEND_ARG = 25, 595 IIT_TRUNC_ARG = 26, 596 IIT_ANYPTR = 27, 597 IIT_V1 = 28, 598 IIT_VARARG = 29, 599 IIT_HALF_VEC_ARG = 30, 600 IIT_SAME_VEC_WIDTH_ARG = 31, 601 IIT_PTR_TO_ARG = 32, 602 IIT_PTR_TO_ELT = 33, 603 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 604 IIT_I128 = 35, 605 IIT_V512 = 36, 606 IIT_V1024 = 37 607 }; 608 609 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 610 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 611 using namespace Intrinsic; 612 613 IIT_Info Info = IIT_Info(Infos[NextElt++]); 614 unsigned StructElts = 2; 615 616 switch (Info) { 617 case IIT_Done: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 619 return; 620 case IIT_VARARG: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 622 return; 623 case IIT_MMX: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 625 return; 626 case IIT_TOKEN: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 628 return; 629 case IIT_METADATA: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 631 return; 632 case IIT_F16: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 634 return; 635 case IIT_F32: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 637 return; 638 case IIT_F64: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 640 return; 641 case IIT_I1: 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 643 return; 644 case IIT_I8: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 646 return; 647 case IIT_I16: 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 649 return; 650 case IIT_I32: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 652 return; 653 case IIT_I64: 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 655 return; 656 case IIT_I128: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 658 return; 659 case IIT_V1: 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 661 DecodeIITType(NextElt, Infos, OutputTable); 662 return; 663 case IIT_V2: 664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 665 DecodeIITType(NextElt, Infos, OutputTable); 666 return; 667 case IIT_V4: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 669 DecodeIITType(NextElt, Infos, OutputTable); 670 return; 671 case IIT_V8: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 673 DecodeIITType(NextElt, Infos, OutputTable); 674 return; 675 case IIT_V16: 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 677 DecodeIITType(NextElt, Infos, OutputTable); 678 return; 679 case IIT_V32: 680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 681 DecodeIITType(NextElt, Infos, OutputTable); 682 return; 683 case IIT_V64: 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 685 DecodeIITType(NextElt, Infos, OutputTable); 686 return; 687 case IIT_V512: 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 689 DecodeIITType(NextElt, Infos, OutputTable); 690 return; 691 case IIT_V1024: 692 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 693 DecodeIITType(NextElt, Infos, OutputTable); 694 return; 695 case IIT_PTR: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 697 DecodeIITType(NextElt, Infos, OutputTable); 698 return; 699 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 701 Infos[NextElt++])); 702 DecodeIITType(NextElt, Infos, OutputTable); 703 return; 704 } 705 case IIT_ARG: { 706 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 708 return; 709 } 710 case IIT_EXTEND_ARG: { 711 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 713 ArgInfo)); 714 return; 715 } 716 case IIT_TRUNC_ARG: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 719 ArgInfo)); 720 return; 721 } 722 case IIT_HALF_VEC_ARG: { 723 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 725 ArgInfo)); 726 return; 727 } 728 case IIT_SAME_VEC_WIDTH_ARG: { 729 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 731 ArgInfo)); 732 return; 733 } 734 case IIT_PTR_TO_ARG: { 735 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 737 ArgInfo)); 738 return; 739 } 740 case IIT_PTR_TO_ELT: { 741 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 743 return; 744 } 745 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 746 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 747 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 748 OutputTable.push_back( 749 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 750 return; 751 } 752 case IIT_EMPTYSTRUCT: 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 754 return; 755 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 756 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 757 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 758 case IIT_STRUCT2: { 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 760 761 for (unsigned i = 0; i != StructElts; ++i) 762 DecodeIITType(NextElt, Infos, OutputTable); 763 return; 764 } 765 } 766 llvm_unreachable("unhandled"); 767 } 768 769 #define GET_INTRINSIC_GENERATOR_GLOBAL 770 #include "llvm/IR/Intrinsics.gen" 771 #undef GET_INTRINSIC_GENERATOR_GLOBAL 772 773 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 774 SmallVectorImpl<IITDescriptor> &T){ 775 // Check to see if the intrinsic's type was expressible by the table. 776 unsigned TableVal = IIT_Table[id-1]; 777 778 // Decode the TableVal into an array of IITValues. 779 SmallVector<unsigned char, 8> IITValues; 780 ArrayRef<unsigned char> IITEntries; 781 unsigned NextElt = 0; 782 if ((TableVal >> 31) != 0) { 783 // This is an offset into the IIT_LongEncodingTable. 784 IITEntries = IIT_LongEncodingTable; 785 786 // Strip sentinel bit. 787 NextElt = (TableVal << 1) >> 1; 788 } else { 789 // Decode the TableVal into an array of IITValues. If the entry was encoded 790 // into a single word in the table itself, decode it now. 791 do { 792 IITValues.push_back(TableVal & 0xF); 793 TableVal >>= 4; 794 } while (TableVal); 795 796 IITEntries = IITValues; 797 NextElt = 0; 798 } 799 800 // Okay, decode the table into the output vector of IITDescriptors. 801 DecodeIITType(NextElt, IITEntries, T); 802 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 803 DecodeIITType(NextElt, IITEntries, T); 804 } 805 806 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 807 ArrayRef<Type*> Tys, LLVMContext &Context) { 808 using namespace Intrinsic; 809 810 IITDescriptor D = Infos.front(); 811 Infos = Infos.slice(1); 812 813 switch (D.Kind) { 814 case IITDescriptor::Void: return Type::getVoidTy(Context); 815 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 816 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 817 case IITDescriptor::Token: return Type::getTokenTy(Context); 818 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 819 case IITDescriptor::Half: return Type::getHalfTy(Context); 820 case IITDescriptor::Float: return Type::getFloatTy(Context); 821 case IITDescriptor::Double: return Type::getDoubleTy(Context); 822 823 case IITDescriptor::Integer: 824 return IntegerType::get(Context, D.Integer_Width); 825 case IITDescriptor::Vector: 826 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 827 case IITDescriptor::Pointer: 828 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 829 D.Pointer_AddressSpace); 830 case IITDescriptor::Struct: { 831 Type *Elts[5]; 832 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 833 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 834 Elts[i] = DecodeFixedType(Infos, Tys, Context); 835 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 836 } 837 case IITDescriptor::Argument: 838 return Tys[D.getArgumentNumber()]; 839 case IITDescriptor::ExtendArgument: { 840 Type *Ty = Tys[D.getArgumentNumber()]; 841 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 842 return VectorType::getExtendedElementVectorType(VTy); 843 844 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 845 } 846 case IITDescriptor::TruncArgument: { 847 Type *Ty = Tys[D.getArgumentNumber()]; 848 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 849 return VectorType::getTruncatedElementVectorType(VTy); 850 851 IntegerType *ITy = cast<IntegerType>(Ty); 852 assert(ITy->getBitWidth() % 2 == 0); 853 return IntegerType::get(Context, ITy->getBitWidth() / 2); 854 } 855 case IITDescriptor::HalfVecArgument: 856 return VectorType::getHalfElementsVectorType(cast<VectorType>( 857 Tys[D.getArgumentNumber()])); 858 case IITDescriptor::SameVecWidthArgument: { 859 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 860 Type *Ty = Tys[D.getArgumentNumber()]; 861 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 862 return VectorType::get(EltTy, VTy->getNumElements()); 863 } 864 llvm_unreachable("unhandled"); 865 } 866 case IITDescriptor::PtrToArgument: { 867 Type *Ty = Tys[D.getArgumentNumber()]; 868 return PointerType::getUnqual(Ty); 869 } 870 case IITDescriptor::PtrToElt: { 871 Type *Ty = Tys[D.getArgumentNumber()]; 872 VectorType *VTy = dyn_cast<VectorType>(Ty); 873 if (!VTy) 874 llvm_unreachable("Expected an argument of Vector Type"); 875 Type *EltTy = VTy->getVectorElementType(); 876 return PointerType::getUnqual(EltTy); 877 } 878 case IITDescriptor::VecOfAnyPtrsToElt: 879 // Return the overloaded type (which determines the pointers address space) 880 return Tys[D.getOverloadArgNumber()]; 881 } 882 llvm_unreachable("unhandled"); 883 } 884 885 FunctionType *Intrinsic::getType(LLVMContext &Context, 886 ID id, ArrayRef<Type*> Tys) { 887 SmallVector<IITDescriptor, 8> Table; 888 getIntrinsicInfoTableEntries(id, Table); 889 890 ArrayRef<IITDescriptor> TableRef = Table; 891 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 892 893 SmallVector<Type*, 8> ArgTys; 894 while (!TableRef.empty()) 895 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 896 897 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 898 // If we see void type as the type of the last argument, it is vararg intrinsic 899 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 900 ArgTys.pop_back(); 901 return FunctionType::get(ResultTy, ArgTys, true); 902 } 903 return FunctionType::get(ResultTy, ArgTys, false); 904 } 905 906 bool Intrinsic::isOverloaded(ID id) { 907 #define GET_INTRINSIC_OVERLOAD_TABLE 908 #include "llvm/IR/Intrinsics.gen" 909 #undef GET_INTRINSIC_OVERLOAD_TABLE 910 } 911 912 bool Intrinsic::isLeaf(ID id) { 913 switch (id) { 914 default: 915 return true; 916 917 case Intrinsic::experimental_gc_statepoint: 918 case Intrinsic::experimental_patchpoint_void: 919 case Intrinsic::experimental_patchpoint_i64: 920 return false; 921 } 922 } 923 924 /// This defines the "Intrinsic::getAttributes(ID id)" method. 925 #define GET_INTRINSIC_ATTRIBUTES 926 #include "llvm/IR/Intrinsics.gen" 927 #undef GET_INTRINSIC_ATTRIBUTES 928 929 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 930 // There can never be multiple globals with the same name of different types, 931 // because intrinsics must be a specific type. 932 return 933 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 934 getType(M->getContext(), id, Tys))); 935 } 936 937 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 938 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 939 #include "llvm/IR/Intrinsics.gen" 940 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 941 942 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 943 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 944 #include "llvm/IR/Intrinsics.gen" 945 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 946 947 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 948 SmallVectorImpl<Type*> &ArgTys) { 949 using namespace Intrinsic; 950 951 // If we ran out of descriptors, there are too many arguments. 952 if (Infos.empty()) return true; 953 IITDescriptor D = Infos.front(); 954 Infos = Infos.slice(1); 955 956 switch (D.Kind) { 957 case IITDescriptor::Void: return !Ty->isVoidTy(); 958 case IITDescriptor::VarArg: return true; 959 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 960 case IITDescriptor::Token: return !Ty->isTokenTy(); 961 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 962 case IITDescriptor::Half: return !Ty->isHalfTy(); 963 case IITDescriptor::Float: return !Ty->isFloatTy(); 964 case IITDescriptor::Double: return !Ty->isDoubleTy(); 965 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 966 case IITDescriptor::Vector: { 967 VectorType *VT = dyn_cast<VectorType>(Ty); 968 return !VT || VT->getNumElements() != D.Vector_Width || 969 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 970 } 971 case IITDescriptor::Pointer: { 972 PointerType *PT = dyn_cast<PointerType>(Ty); 973 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 974 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 975 } 976 977 case IITDescriptor::Struct: { 978 StructType *ST = dyn_cast<StructType>(Ty); 979 if (!ST || ST->getNumElements() != D.Struct_NumElements) 980 return true; 981 982 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 983 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 984 return true; 985 return false; 986 } 987 988 case IITDescriptor::Argument: 989 // Two cases here - If this is the second occurrence of an argument, verify 990 // that the later instance matches the previous instance. 991 if (D.getArgumentNumber() < ArgTys.size()) 992 return Ty != ArgTys[D.getArgumentNumber()]; 993 994 // Otherwise, if this is the first instance of an argument, record it and 995 // verify the "Any" kind. 996 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 997 ArgTys.push_back(Ty); 998 999 switch (D.getArgumentKind()) { 1000 case IITDescriptor::AK_Any: return false; // Success 1001 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1002 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1003 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1004 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1005 } 1006 llvm_unreachable("all argument kinds not covered"); 1007 1008 case IITDescriptor::ExtendArgument: { 1009 // This may only be used when referring to a previous vector argument. 1010 if (D.getArgumentNumber() >= ArgTys.size()) 1011 return true; 1012 1013 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1014 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1015 NewTy = VectorType::getExtendedElementVectorType(VTy); 1016 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1017 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1018 else 1019 return true; 1020 1021 return Ty != NewTy; 1022 } 1023 case IITDescriptor::TruncArgument: { 1024 // This may only be used when referring to a previous vector argument. 1025 if (D.getArgumentNumber() >= ArgTys.size()) 1026 return true; 1027 1028 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1029 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1030 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1031 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1032 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1033 else 1034 return true; 1035 1036 return Ty != NewTy; 1037 } 1038 case IITDescriptor::HalfVecArgument: 1039 // This may only be used when referring to a previous vector argument. 1040 return D.getArgumentNumber() >= ArgTys.size() || 1041 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1042 VectorType::getHalfElementsVectorType( 1043 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1044 case IITDescriptor::SameVecWidthArgument: { 1045 if (D.getArgumentNumber() >= ArgTys.size()) 1046 return true; 1047 VectorType * ReferenceType = 1048 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1049 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1050 if (!ThisArgType || !ReferenceType || 1051 (ReferenceType->getVectorNumElements() != 1052 ThisArgType->getVectorNumElements())) 1053 return true; 1054 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1055 Infos, ArgTys); 1056 } 1057 case IITDescriptor::PtrToArgument: { 1058 if (D.getArgumentNumber() >= ArgTys.size()) 1059 return true; 1060 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1061 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1062 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1063 } 1064 case IITDescriptor::PtrToElt: { 1065 if (D.getArgumentNumber() >= ArgTys.size()) 1066 return true; 1067 VectorType * ReferenceType = 1068 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1069 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1070 1071 return (!ThisArgType || !ReferenceType || 1072 ThisArgType->getElementType() != ReferenceType->getElementType()); 1073 } 1074 case IITDescriptor::VecOfAnyPtrsToElt: { 1075 unsigned RefArgNumber = D.getRefArgNumber(); 1076 1077 // This may only be used when referring to a previous argument. 1078 if (RefArgNumber >= ArgTys.size()) 1079 return true; 1080 1081 // Record the overloaded type 1082 assert(D.getOverloadArgNumber() == ArgTys.size() && 1083 "Table consistency error"); 1084 ArgTys.push_back(Ty); 1085 1086 // Verify the overloaded type "matches" the Ref type. 1087 // i.e. Ty is a vector with the same width as Ref. 1088 // Composed of pointers to the same element type as Ref. 1089 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1090 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1091 if (!ThisArgVecTy || !ReferenceType || 1092 (ReferenceType->getVectorNumElements() != 1093 ThisArgVecTy->getVectorNumElements())) 1094 return true; 1095 PointerType *ThisArgEltTy = 1096 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1097 if (!ThisArgEltTy) 1098 return true; 1099 return ThisArgEltTy->getElementType() != 1100 ReferenceType->getVectorElementType(); 1101 } 1102 } 1103 llvm_unreachable("unhandled"); 1104 } 1105 1106 bool 1107 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1108 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1109 // If there are no descriptors left, then it can't be a vararg. 1110 if (Infos.empty()) 1111 return isVarArg; 1112 1113 // There should be only one descriptor remaining at this point. 1114 if (Infos.size() != 1) 1115 return true; 1116 1117 // Check and verify the descriptor. 1118 IITDescriptor D = Infos.front(); 1119 Infos = Infos.slice(1); 1120 if (D.Kind == IITDescriptor::VarArg) 1121 return !isVarArg; 1122 1123 return true; 1124 } 1125 1126 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1127 Intrinsic::ID ID = F->getIntrinsicID(); 1128 if (!ID) 1129 return None; 1130 1131 FunctionType *FTy = F->getFunctionType(); 1132 // Accumulate an array of overloaded types for the given intrinsic 1133 SmallVector<Type *, 4> ArgTys; 1134 { 1135 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1136 getIntrinsicInfoTableEntries(ID, Table); 1137 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1138 1139 // If we encounter any problems matching the signature with the descriptor 1140 // just give up remangling. It's up to verifier to report the discrepancy. 1141 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1142 return None; 1143 for (auto Ty : FTy->params()) 1144 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1145 return None; 1146 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1147 return None; 1148 } 1149 1150 StringRef Name = F->getName(); 1151 if (Name == Intrinsic::getName(ID, ArgTys)) 1152 return None; 1153 1154 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1155 NewDecl->setCallingConv(F->getCallingConv()); 1156 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1157 return NewDecl; 1158 } 1159 1160 /// hasAddressTaken - returns true if there are any uses of this function 1161 /// other than direct calls or invokes to it. 1162 bool Function::hasAddressTaken(const User* *PutOffender) const { 1163 for (const Use &U : uses()) { 1164 const User *FU = U.getUser(); 1165 if (isa<BlockAddress>(FU)) 1166 continue; 1167 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1168 if (PutOffender) 1169 *PutOffender = FU; 1170 return true; 1171 } 1172 ImmutableCallSite CS(cast<Instruction>(FU)); 1173 if (!CS.isCallee(&U)) { 1174 if (PutOffender) 1175 *PutOffender = FU; 1176 return true; 1177 } 1178 } 1179 return false; 1180 } 1181 1182 bool Function::isDefTriviallyDead() const { 1183 // Check the linkage 1184 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1185 !hasAvailableExternallyLinkage()) 1186 return false; 1187 1188 // Check if the function is used by anything other than a blockaddress. 1189 for (const User *U : users()) 1190 if (!isa<BlockAddress>(U)) 1191 return false; 1192 1193 return true; 1194 } 1195 1196 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1197 /// setjmp or other function that gcc recognizes as "returning twice". 1198 bool Function::callsFunctionThatReturnsTwice() const { 1199 for (const_inst_iterator 1200 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1201 ImmutableCallSite CS(&*I); 1202 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1203 return true; 1204 } 1205 1206 return false; 1207 } 1208 1209 Constant *Function::getPersonalityFn() const { 1210 assert(hasPersonalityFn() && getNumOperands()); 1211 return cast<Constant>(Op<0>()); 1212 } 1213 1214 void Function::setPersonalityFn(Constant *Fn) { 1215 setHungoffOperand<0>(Fn); 1216 setValueSubclassDataBit(3, Fn != nullptr); 1217 } 1218 1219 Constant *Function::getPrefixData() const { 1220 assert(hasPrefixData() && getNumOperands()); 1221 return cast<Constant>(Op<1>()); 1222 } 1223 1224 void Function::setPrefixData(Constant *PrefixData) { 1225 setHungoffOperand<1>(PrefixData); 1226 setValueSubclassDataBit(1, PrefixData != nullptr); 1227 } 1228 1229 Constant *Function::getPrologueData() const { 1230 assert(hasPrologueData() && getNumOperands()); 1231 return cast<Constant>(Op<2>()); 1232 } 1233 1234 void Function::setPrologueData(Constant *PrologueData) { 1235 setHungoffOperand<2>(PrologueData); 1236 setValueSubclassDataBit(2, PrologueData != nullptr); 1237 } 1238 1239 void Function::allocHungoffUselist() { 1240 // If we've already allocated a uselist, stop here. 1241 if (getNumOperands()) 1242 return; 1243 1244 allocHungoffUses(3, /*IsPhi=*/ false); 1245 setNumHungOffUseOperands(3); 1246 1247 // Initialize the uselist with placeholder operands to allow traversal. 1248 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1249 Op<0>().set(CPN); 1250 Op<1>().set(CPN); 1251 Op<2>().set(CPN); 1252 } 1253 1254 template <int Idx> 1255 void Function::setHungoffOperand(Constant *C) { 1256 if (C) { 1257 allocHungoffUselist(); 1258 Op<Idx>().set(C); 1259 } else if (getNumOperands()) { 1260 Op<Idx>().set( 1261 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1262 } 1263 } 1264 1265 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1266 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1267 if (On) 1268 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1269 else 1270 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1271 } 1272 1273 void Function::setEntryCount(uint64_t Count, 1274 const DenseSet<GlobalValue::GUID> *S) { 1275 MDBuilder MDB(getContext()); 1276 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1277 } 1278 1279 Optional<uint64_t> Function::getEntryCount() const { 1280 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1281 if (MD && MD->getOperand(0)) 1282 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1283 if (MDS->getString().equals("function_entry_count")) { 1284 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1285 uint64_t Count = CI->getValue().getZExtValue(); 1286 if (Count == 0) 1287 return None; 1288 return Count; 1289 } 1290 return None; 1291 } 1292 1293 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1294 DenseSet<GlobalValue::GUID> R; 1295 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1296 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1297 if (MDS->getString().equals("function_entry_count")) 1298 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1299 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1300 ->getValue() 1301 .getZExtValue()); 1302 return R; 1303 } 1304 1305 void Function::setSectionPrefix(StringRef Prefix) { 1306 MDBuilder MDB(getContext()); 1307 setMetadata(LLVMContext::MD_section_prefix, 1308 MDB.createFunctionSectionPrefix(Prefix)); 1309 } 1310 1311 Optional<StringRef> Function::getSectionPrefix() const { 1312 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1313 assert(dyn_cast<MDString>(MD->getOperand(0)) 1314 ->getString() 1315 .equals("function_section_prefix") && 1316 "Metadata not match"); 1317 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1318 } 1319 return None; 1320 } 1321