1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/SymbolTableListTraits.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Use.h" 43 #include "llvm/IR/User.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/IR/ValueSymbolTable.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/Compiler.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstddef> 52 #include <cstdint> 53 #include <cstring> 54 #include <string> 55 56 using namespace llvm; 57 using ProfileCount = Function::ProfileCount; 58 59 // Explicit instantiations of SymbolTableListTraits since some of the methods 60 // are not in the public header file... 61 template class llvm::SymbolTableListTraits<BasicBlock>; 62 63 //===----------------------------------------------------------------------===// 64 // Argument Implementation 65 //===----------------------------------------------------------------------===// 66 67 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 68 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 69 setName(Name); 70 } 71 72 void Argument::setParent(Function *parent) { 73 Parent = parent; 74 } 75 76 bool Argument::hasNonNullAttr() const { 77 if (!getType()->isPointerTy()) return false; 78 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 79 return true; 80 else if (getDereferenceableBytes() > 0 && 81 !NullPointerIsDefined(getParent(), 82 getType()->getPointerAddressSpace())) 83 return true; 84 return false; 85 } 86 87 bool Argument::hasByValAttr() const { 88 if (!getType()->isPointerTy()) return false; 89 return hasAttribute(Attribute::ByVal); 90 } 91 92 bool Argument::hasSwiftSelfAttr() const { 93 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 94 } 95 96 bool Argument::hasSwiftErrorAttr() const { 97 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 98 } 99 100 bool Argument::hasInAllocaAttr() const { 101 if (!getType()->isPointerTy()) return false; 102 return hasAttribute(Attribute::InAlloca); 103 } 104 105 bool Argument::hasByValOrInAllocaAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 AttributeList Attrs = getParent()->getAttributes(); 108 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 109 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 110 } 111 112 unsigned Argument::getParamAlignment() const { 113 assert(getType()->isPointerTy() && "Only pointers have alignments"); 114 return getParent()->getParamAlignment(getArgNo()); 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getParamDereferenceableBytes(getArgNo()); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 127 } 128 129 bool Argument::hasNestAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::Nest); 132 } 133 134 bool Argument::hasNoAliasAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::NoAlias); 137 } 138 139 bool Argument::hasNoCaptureAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::NoCapture); 142 } 143 144 bool Argument::hasStructRetAttr() const { 145 if (!getType()->isPointerTy()) return false; 146 return hasAttribute(Attribute::StructRet); 147 } 148 149 bool Argument::hasReturnedAttr() const { 150 return hasAttribute(Attribute::Returned); 151 } 152 153 bool Argument::hasZExtAttr() const { 154 return hasAttribute(Attribute::ZExt); 155 } 156 157 bool Argument::hasSExtAttr() const { 158 return hasAttribute(Attribute::SExt); 159 } 160 161 bool Argument::onlyReadsMemory() const { 162 AttributeList Attrs = getParent()->getAttributes(); 163 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 164 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 165 } 166 167 void Argument::addAttrs(AttrBuilder &B) { 168 AttributeList AL = getParent()->getAttributes(); 169 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 170 getParent()->setAttributes(AL); 171 } 172 173 void Argument::addAttr(Attribute::AttrKind Kind) { 174 getParent()->addParamAttr(getArgNo(), Kind); 175 } 176 177 void Argument::addAttr(Attribute Attr) { 178 getParent()->addParamAttr(getArgNo(), Attr); 179 } 180 181 void Argument::removeAttr(Attribute::AttrKind Kind) { 182 getParent()->removeParamAttr(getArgNo(), Kind); 183 } 184 185 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 186 return getParent()->hasParamAttribute(getArgNo(), Kind); 187 } 188 189 //===----------------------------------------------------------------------===// 190 // Helper Methods in Function 191 //===----------------------------------------------------------------------===// 192 193 LLVMContext &Function::getContext() const { 194 return getType()->getContext(); 195 } 196 197 unsigned Function::getInstructionCount() const { 198 unsigned NumInstrs = 0; 199 for (const BasicBlock &BB : BasicBlocks) 200 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 201 BB.instructionsWithoutDebug().end()); 202 return NumInstrs; 203 } 204 205 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 206 const Twine &N, Module &M) { 207 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 208 } 209 210 void Function::removeFromParent() { 211 getParent()->getFunctionList().remove(getIterator()); 212 } 213 214 void Function::eraseFromParent() { 215 getParent()->getFunctionList().erase(getIterator()); 216 } 217 218 //===----------------------------------------------------------------------===// 219 // Function Implementation 220 //===----------------------------------------------------------------------===// 221 222 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 223 // If AS == -1 and we are passed a valid module pointer we place the function 224 // in the program address space. Otherwise we default to AS0. 225 if (AddrSpace == static_cast<unsigned>(-1)) 226 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 227 return AddrSpace; 228 } 229 230 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 231 const Twine &name, Module *ParentModule) 232 : GlobalObject(Ty, Value::FunctionVal, 233 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 234 computeAddrSpace(AddrSpace, ParentModule)), 235 NumArgs(Ty->getNumParams()) { 236 assert(FunctionType::isValidReturnType(getReturnType()) && 237 "invalid return type"); 238 setGlobalObjectSubClassData(0); 239 240 // We only need a symbol table for a function if the context keeps value names 241 if (!getContext().shouldDiscardValueNames()) 242 SymTab = make_unique<ValueSymbolTable>(); 243 244 // If the function has arguments, mark them as lazily built. 245 if (Ty->getNumParams()) 246 setValueSubclassData(1); // Set the "has lazy arguments" bit. 247 248 if (ParentModule) 249 ParentModule->getFunctionList().push_back(this); 250 251 HasLLVMReservedName = getName().startswith("llvm."); 252 // Ensure intrinsics have the right parameter attributes. 253 // Note, the IntID field will have been set in Value::setName if this function 254 // name is a valid intrinsic ID. 255 if (IntID) 256 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 257 } 258 259 Function::~Function() { 260 dropAllReferences(); // After this it is safe to delete instructions. 261 262 // Delete all of the method arguments and unlink from symbol table... 263 if (Arguments) 264 clearArguments(); 265 266 // Remove the function from the on-the-side GC table. 267 clearGC(); 268 } 269 270 void Function::BuildLazyArguments() const { 271 // Create the arguments vector, all arguments start out unnamed. 272 auto *FT = getFunctionType(); 273 if (NumArgs > 0) { 274 Arguments = std::allocator<Argument>().allocate(NumArgs); 275 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 276 Type *ArgTy = FT->getParamType(i); 277 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 278 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 279 } 280 } 281 282 // Clear the lazy arguments bit. 283 unsigned SDC = getSubclassDataFromValue(); 284 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 285 assert(!hasLazyArguments()); 286 } 287 288 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 289 return MutableArrayRef<Argument>(Args, Count); 290 } 291 292 void Function::clearArguments() { 293 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 294 A.setName(""); 295 A.~Argument(); 296 } 297 std::allocator<Argument>().deallocate(Arguments, NumArgs); 298 Arguments = nullptr; 299 } 300 301 void Function::stealArgumentListFrom(Function &Src) { 302 assert(isDeclaration() && "Expected no references to current arguments"); 303 304 // Drop the current arguments, if any, and set the lazy argument bit. 305 if (!hasLazyArguments()) { 306 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 307 [](const Argument &A) { return A.use_empty(); }) && 308 "Expected arguments to be unused in declaration"); 309 clearArguments(); 310 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 311 } 312 313 // Nothing to steal if Src has lazy arguments. 314 if (Src.hasLazyArguments()) 315 return; 316 317 // Steal arguments from Src, and fix the lazy argument bits. 318 assert(arg_size() == Src.arg_size()); 319 Arguments = Src.Arguments; 320 Src.Arguments = nullptr; 321 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 322 // FIXME: This does the work of transferNodesFromList inefficiently. 323 SmallString<128> Name; 324 if (A.hasName()) 325 Name = A.getName(); 326 if (!Name.empty()) 327 A.setName(""); 328 A.setParent(this); 329 if (!Name.empty()) 330 A.setName(Name); 331 } 332 333 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 334 assert(!hasLazyArguments()); 335 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 336 } 337 338 // dropAllReferences() - This function causes all the subinstructions to "let 339 // go" of all references that they are maintaining. This allows one to 340 // 'delete' a whole class at a time, even though there may be circular 341 // references... first all references are dropped, and all use counts go to 342 // zero. Then everything is deleted for real. Note that no operations are 343 // valid on an object that has "dropped all references", except operator 344 // delete. 345 // 346 void Function::dropAllReferences() { 347 setIsMaterializable(false); 348 349 for (BasicBlock &BB : *this) 350 BB.dropAllReferences(); 351 352 // Delete all basic blocks. They are now unused, except possibly by 353 // blockaddresses, but BasicBlock's destructor takes care of those. 354 while (!BasicBlocks.empty()) 355 BasicBlocks.begin()->eraseFromParent(); 356 357 // Drop uses of any optional data (real or placeholder). 358 if (getNumOperands()) { 359 User::dropAllReferences(); 360 setNumHungOffUseOperands(0); 361 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 362 } 363 364 // Metadata is stored in a side-table. 365 clearMetadata(); 366 } 367 368 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 369 AttributeList PAL = getAttributes(); 370 PAL = PAL.addAttribute(getContext(), i, Kind); 371 setAttributes(PAL); 372 } 373 374 void Function::addAttribute(unsigned i, Attribute Attr) { 375 AttributeList PAL = getAttributes(); 376 PAL = PAL.addAttribute(getContext(), i, Attr); 377 setAttributes(PAL); 378 } 379 380 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 381 AttributeList PAL = getAttributes(); 382 PAL = PAL.addAttributes(getContext(), i, Attrs); 383 setAttributes(PAL); 384 } 385 386 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 387 AttributeList PAL = getAttributes(); 388 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 389 setAttributes(PAL); 390 } 391 392 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 393 AttributeList PAL = getAttributes(); 394 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 395 setAttributes(PAL); 396 } 397 398 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 399 AttributeList PAL = getAttributes(); 400 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 401 setAttributes(PAL); 402 } 403 404 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 405 AttributeList PAL = getAttributes(); 406 PAL = PAL.removeAttribute(getContext(), i, Kind); 407 setAttributes(PAL); 408 } 409 410 void Function::removeAttribute(unsigned i, StringRef Kind) { 411 AttributeList PAL = getAttributes(); 412 PAL = PAL.removeAttribute(getContext(), i, Kind); 413 setAttributes(PAL); 414 } 415 416 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 417 AttributeList PAL = getAttributes(); 418 PAL = PAL.removeAttributes(getContext(), i, Attrs); 419 setAttributes(PAL); 420 } 421 422 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 423 AttributeList PAL = getAttributes(); 424 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 425 setAttributes(PAL); 426 } 427 428 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 429 AttributeList PAL = getAttributes(); 430 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 431 setAttributes(PAL); 432 } 433 434 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 435 AttributeList PAL = getAttributes(); 436 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 437 setAttributes(PAL); 438 } 439 440 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 441 AttributeList PAL = getAttributes(); 442 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 443 setAttributes(PAL); 444 } 445 446 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 447 AttributeList PAL = getAttributes(); 448 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 449 setAttributes(PAL); 450 } 451 452 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 453 AttributeList PAL = getAttributes(); 454 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 455 setAttributes(PAL); 456 } 457 458 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 459 uint64_t Bytes) { 460 AttributeList PAL = getAttributes(); 461 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 462 setAttributes(PAL); 463 } 464 465 const std::string &Function::getGC() const { 466 assert(hasGC() && "Function has no collector"); 467 return getContext().getGC(*this); 468 } 469 470 void Function::setGC(std::string Str) { 471 setValueSubclassDataBit(14, !Str.empty()); 472 getContext().setGC(*this, std::move(Str)); 473 } 474 475 void Function::clearGC() { 476 if (!hasGC()) 477 return; 478 getContext().deleteGC(*this); 479 setValueSubclassDataBit(14, false); 480 } 481 482 /// Copy all additional attributes (those not needed to create a Function) from 483 /// the Function Src to this one. 484 void Function::copyAttributesFrom(const Function *Src) { 485 GlobalObject::copyAttributesFrom(Src); 486 setCallingConv(Src->getCallingConv()); 487 setAttributes(Src->getAttributes()); 488 if (Src->hasGC()) 489 setGC(Src->getGC()); 490 else 491 clearGC(); 492 if (Src->hasPersonalityFn()) 493 setPersonalityFn(Src->getPersonalityFn()); 494 if (Src->hasPrefixData()) 495 setPrefixData(Src->getPrefixData()); 496 if (Src->hasPrologueData()) 497 setPrologueData(Src->getPrologueData()); 498 } 499 500 /// Table of string intrinsic names indexed by enum value. 501 static const char * const IntrinsicNameTable[] = { 502 "not_intrinsic", 503 #define GET_INTRINSIC_NAME_TABLE 504 #include "llvm/IR/IntrinsicImpl.inc" 505 #undef GET_INTRINSIC_NAME_TABLE 506 }; 507 508 /// Table of per-target intrinsic name tables. 509 #define GET_INTRINSIC_TARGET_DATA 510 #include "llvm/IR/IntrinsicImpl.inc" 511 #undef GET_INTRINSIC_TARGET_DATA 512 513 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 514 /// target as \c Name, or the generic table if \c Name is not target specific. 515 /// 516 /// Returns the relevant slice of \c IntrinsicNameTable 517 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 518 assert(Name.startswith("llvm.")); 519 520 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 521 // Drop "llvm." and take the first dotted component. That will be the target 522 // if this is target specific. 523 StringRef Target = Name.drop_front(5).split('.').first; 524 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 525 [](const IntrinsicTargetInfo &TI, 526 StringRef Target) { return TI.Name < Target; }); 527 // We've either found the target or just fall back to the generic set, which 528 // is always first. 529 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 530 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 531 } 532 533 /// This does the actual lookup of an intrinsic ID which 534 /// matches the given function name. 535 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 536 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 537 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 538 if (Idx == -1) 539 return Intrinsic::not_intrinsic; 540 541 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 542 // an index into a sub-table. 543 int Adjust = NameTable.data() - IntrinsicNameTable; 544 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 545 546 // If the intrinsic is not overloaded, require an exact match. If it is 547 // overloaded, require either exact or prefix match. 548 const auto MatchSize = strlen(NameTable[Idx]); 549 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 550 bool IsExactMatch = Name.size() == MatchSize; 551 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 552 } 553 554 void Function::recalculateIntrinsicID() { 555 StringRef Name = getName(); 556 if (!Name.startswith("llvm.")) { 557 HasLLVMReservedName = false; 558 IntID = Intrinsic::not_intrinsic; 559 return; 560 } 561 HasLLVMReservedName = true; 562 IntID = lookupIntrinsicID(Name); 563 } 564 565 /// Returns a stable mangling for the type specified for use in the name 566 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 567 /// of named types is simply their name. Manglings for unnamed types consist 568 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 569 /// combined with the mangling of their component types. A vararg function 570 /// type will have a suffix of 'vararg'. Since function types can contain 571 /// other function types, we close a function type mangling with suffix 'f' 572 /// which can't be confused with it's prefix. This ensures we don't have 573 /// collisions between two unrelated function types. Otherwise, you might 574 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 575 /// 576 static std::string getMangledTypeStr(Type* Ty) { 577 std::string Result; 578 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 579 Result += "p" + utostr(PTyp->getAddressSpace()) + 580 getMangledTypeStr(PTyp->getElementType()); 581 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 582 Result += "a" + utostr(ATyp->getNumElements()) + 583 getMangledTypeStr(ATyp->getElementType()); 584 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 585 if (!STyp->isLiteral()) { 586 Result += "s_"; 587 Result += STyp->getName(); 588 } else { 589 Result += "sl_"; 590 for (auto Elem : STyp->elements()) 591 Result += getMangledTypeStr(Elem); 592 } 593 // Ensure nested structs are distinguishable. 594 Result += "s"; 595 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 596 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 597 for (size_t i = 0; i < FT->getNumParams(); i++) 598 Result += getMangledTypeStr(FT->getParamType(i)); 599 if (FT->isVarArg()) 600 Result += "vararg"; 601 // Ensure nested function types are distinguishable. 602 Result += "f"; 603 } else if (isa<VectorType>(Ty)) { 604 Result += "v" + utostr(Ty->getVectorNumElements()) + 605 getMangledTypeStr(Ty->getVectorElementType()); 606 } else if (Ty) { 607 switch (Ty->getTypeID()) { 608 default: llvm_unreachable("Unhandled type"); 609 case Type::VoidTyID: Result += "isVoid"; break; 610 case Type::MetadataTyID: Result += "Metadata"; break; 611 case Type::HalfTyID: Result += "f16"; break; 612 case Type::FloatTyID: Result += "f32"; break; 613 case Type::DoubleTyID: Result += "f64"; break; 614 case Type::X86_FP80TyID: Result += "f80"; break; 615 case Type::FP128TyID: Result += "f128"; break; 616 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 617 case Type::X86_MMXTyID: Result += "x86mmx"; break; 618 case Type::IntegerTyID: 619 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 620 break; 621 } 622 } 623 return Result; 624 } 625 626 StringRef Intrinsic::getName(ID id) { 627 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 628 assert(!isOverloaded(id) && 629 "This version of getName does not support overloading"); 630 return IntrinsicNameTable[id]; 631 } 632 633 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 634 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 635 std::string Result(IntrinsicNameTable[id]); 636 for (Type *Ty : Tys) { 637 Result += "." + getMangledTypeStr(Ty); 638 } 639 return Result; 640 } 641 642 /// IIT_Info - These are enumerators that describe the entries returned by the 643 /// getIntrinsicInfoTableEntries function. 644 /// 645 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 646 enum IIT_Info { 647 // Common values should be encoded with 0-15. 648 IIT_Done = 0, 649 IIT_I1 = 1, 650 IIT_I8 = 2, 651 IIT_I16 = 3, 652 IIT_I32 = 4, 653 IIT_I64 = 5, 654 IIT_F16 = 6, 655 IIT_F32 = 7, 656 IIT_F64 = 8, 657 IIT_V2 = 9, 658 IIT_V4 = 10, 659 IIT_V8 = 11, 660 IIT_V16 = 12, 661 IIT_V32 = 13, 662 IIT_PTR = 14, 663 IIT_ARG = 15, 664 665 // Values from 16+ are only encodable with the inefficient encoding. 666 IIT_V64 = 16, 667 IIT_MMX = 17, 668 IIT_TOKEN = 18, 669 IIT_METADATA = 19, 670 IIT_EMPTYSTRUCT = 20, 671 IIT_STRUCT2 = 21, 672 IIT_STRUCT3 = 22, 673 IIT_STRUCT4 = 23, 674 IIT_STRUCT5 = 24, 675 IIT_EXTEND_ARG = 25, 676 IIT_TRUNC_ARG = 26, 677 IIT_ANYPTR = 27, 678 IIT_V1 = 28, 679 IIT_VARARG = 29, 680 IIT_HALF_VEC_ARG = 30, 681 IIT_SAME_VEC_WIDTH_ARG = 31, 682 IIT_PTR_TO_ARG = 32, 683 IIT_PTR_TO_ELT = 33, 684 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 685 IIT_I128 = 35, 686 IIT_V512 = 36, 687 IIT_V1024 = 37, 688 IIT_STRUCT6 = 38, 689 IIT_STRUCT7 = 39, 690 IIT_STRUCT8 = 40, 691 IIT_F128 = 41 692 }; 693 694 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 695 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 696 using namespace Intrinsic; 697 698 IIT_Info Info = IIT_Info(Infos[NextElt++]); 699 unsigned StructElts = 2; 700 701 switch (Info) { 702 case IIT_Done: 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 704 return; 705 case IIT_VARARG: 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 707 return; 708 case IIT_MMX: 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 710 return; 711 case IIT_TOKEN: 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 713 return; 714 case IIT_METADATA: 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 716 return; 717 case IIT_F16: 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 719 return; 720 case IIT_F32: 721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 722 return; 723 case IIT_F64: 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 725 return; 726 case IIT_F128: 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 728 return; 729 case IIT_I1: 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 731 return; 732 case IIT_I8: 733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 734 return; 735 case IIT_I16: 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 737 return; 738 case IIT_I32: 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 740 return; 741 case IIT_I64: 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 743 return; 744 case IIT_I128: 745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 746 return; 747 case IIT_V1: 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 749 DecodeIITType(NextElt, Infos, OutputTable); 750 return; 751 case IIT_V2: 752 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 753 DecodeIITType(NextElt, Infos, OutputTable); 754 return; 755 case IIT_V4: 756 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 757 DecodeIITType(NextElt, Infos, OutputTable); 758 return; 759 case IIT_V8: 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 761 DecodeIITType(NextElt, Infos, OutputTable); 762 return; 763 case IIT_V16: 764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 765 DecodeIITType(NextElt, Infos, OutputTable); 766 return; 767 case IIT_V32: 768 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 769 DecodeIITType(NextElt, Infos, OutputTable); 770 return; 771 case IIT_V64: 772 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 773 DecodeIITType(NextElt, Infos, OutputTable); 774 return; 775 case IIT_V512: 776 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 777 DecodeIITType(NextElt, Infos, OutputTable); 778 return; 779 case IIT_V1024: 780 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 781 DecodeIITType(NextElt, Infos, OutputTable); 782 return; 783 case IIT_PTR: 784 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 785 DecodeIITType(NextElt, Infos, OutputTable); 786 return; 787 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 788 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 789 Infos[NextElt++])); 790 DecodeIITType(NextElt, Infos, OutputTable); 791 return; 792 } 793 case IIT_ARG: { 794 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 795 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 796 return; 797 } 798 case IIT_EXTEND_ARG: { 799 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 800 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 801 ArgInfo)); 802 return; 803 } 804 case IIT_TRUNC_ARG: { 805 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 806 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 807 ArgInfo)); 808 return; 809 } 810 case IIT_HALF_VEC_ARG: { 811 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 812 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 813 ArgInfo)); 814 return; 815 } 816 case IIT_SAME_VEC_WIDTH_ARG: { 817 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 818 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 819 ArgInfo)); 820 return; 821 } 822 case IIT_PTR_TO_ARG: { 823 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 824 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 825 ArgInfo)); 826 return; 827 } 828 case IIT_PTR_TO_ELT: { 829 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 830 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 831 return; 832 } 833 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 834 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 835 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 836 OutputTable.push_back( 837 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 838 return; 839 } 840 case IIT_EMPTYSTRUCT: 841 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 842 return; 843 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 844 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 845 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 846 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 847 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 848 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 849 case IIT_STRUCT2: { 850 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 851 852 for (unsigned i = 0; i != StructElts; ++i) 853 DecodeIITType(NextElt, Infos, OutputTable); 854 return; 855 } 856 } 857 llvm_unreachable("unhandled"); 858 } 859 860 #define GET_INTRINSIC_GENERATOR_GLOBAL 861 #include "llvm/IR/IntrinsicImpl.inc" 862 #undef GET_INTRINSIC_GENERATOR_GLOBAL 863 864 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 865 SmallVectorImpl<IITDescriptor> &T){ 866 // Check to see if the intrinsic's type was expressible by the table. 867 unsigned TableVal = IIT_Table[id-1]; 868 869 // Decode the TableVal into an array of IITValues. 870 SmallVector<unsigned char, 8> IITValues; 871 ArrayRef<unsigned char> IITEntries; 872 unsigned NextElt = 0; 873 if ((TableVal >> 31) != 0) { 874 // This is an offset into the IIT_LongEncodingTable. 875 IITEntries = IIT_LongEncodingTable; 876 877 // Strip sentinel bit. 878 NextElt = (TableVal << 1) >> 1; 879 } else { 880 // Decode the TableVal into an array of IITValues. If the entry was encoded 881 // into a single word in the table itself, decode it now. 882 do { 883 IITValues.push_back(TableVal & 0xF); 884 TableVal >>= 4; 885 } while (TableVal); 886 887 IITEntries = IITValues; 888 NextElt = 0; 889 } 890 891 // Okay, decode the table into the output vector of IITDescriptors. 892 DecodeIITType(NextElt, IITEntries, T); 893 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 894 DecodeIITType(NextElt, IITEntries, T); 895 } 896 897 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 898 ArrayRef<Type*> Tys, LLVMContext &Context) { 899 using namespace Intrinsic; 900 901 IITDescriptor D = Infos.front(); 902 Infos = Infos.slice(1); 903 904 switch (D.Kind) { 905 case IITDescriptor::Void: return Type::getVoidTy(Context); 906 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 907 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 908 case IITDescriptor::Token: return Type::getTokenTy(Context); 909 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 910 case IITDescriptor::Half: return Type::getHalfTy(Context); 911 case IITDescriptor::Float: return Type::getFloatTy(Context); 912 case IITDescriptor::Double: return Type::getDoubleTy(Context); 913 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 914 915 case IITDescriptor::Integer: 916 return IntegerType::get(Context, D.Integer_Width); 917 case IITDescriptor::Vector: 918 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 919 case IITDescriptor::Pointer: 920 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 921 D.Pointer_AddressSpace); 922 case IITDescriptor::Struct: { 923 SmallVector<Type *, 8> Elts; 924 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 925 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 926 return StructType::get(Context, Elts); 927 } 928 case IITDescriptor::Argument: 929 return Tys[D.getArgumentNumber()]; 930 case IITDescriptor::ExtendArgument: { 931 Type *Ty = Tys[D.getArgumentNumber()]; 932 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 933 return VectorType::getExtendedElementVectorType(VTy); 934 935 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 936 } 937 case IITDescriptor::TruncArgument: { 938 Type *Ty = Tys[D.getArgumentNumber()]; 939 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 940 return VectorType::getTruncatedElementVectorType(VTy); 941 942 IntegerType *ITy = cast<IntegerType>(Ty); 943 assert(ITy->getBitWidth() % 2 == 0); 944 return IntegerType::get(Context, ITy->getBitWidth() / 2); 945 } 946 case IITDescriptor::HalfVecArgument: 947 return VectorType::getHalfElementsVectorType(cast<VectorType>( 948 Tys[D.getArgumentNumber()])); 949 case IITDescriptor::SameVecWidthArgument: { 950 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 951 Type *Ty = Tys[D.getArgumentNumber()]; 952 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 953 return VectorType::get(EltTy, VTy->getNumElements()); 954 } 955 llvm_unreachable("unhandled"); 956 } 957 case IITDescriptor::PtrToArgument: { 958 Type *Ty = Tys[D.getArgumentNumber()]; 959 return PointerType::getUnqual(Ty); 960 } 961 case IITDescriptor::PtrToElt: { 962 Type *Ty = Tys[D.getArgumentNumber()]; 963 VectorType *VTy = dyn_cast<VectorType>(Ty); 964 if (!VTy) 965 llvm_unreachable("Expected an argument of Vector Type"); 966 Type *EltTy = VTy->getVectorElementType(); 967 return PointerType::getUnqual(EltTy); 968 } 969 case IITDescriptor::VecOfAnyPtrsToElt: 970 // Return the overloaded type (which determines the pointers address space) 971 return Tys[D.getOverloadArgNumber()]; 972 } 973 llvm_unreachable("unhandled"); 974 } 975 976 FunctionType *Intrinsic::getType(LLVMContext &Context, 977 ID id, ArrayRef<Type*> Tys) { 978 SmallVector<IITDescriptor, 8> Table; 979 getIntrinsicInfoTableEntries(id, Table); 980 981 ArrayRef<IITDescriptor> TableRef = Table; 982 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 983 984 SmallVector<Type*, 8> ArgTys; 985 while (!TableRef.empty()) 986 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 987 988 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 989 // If we see void type as the type of the last argument, it is vararg intrinsic 990 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 991 ArgTys.pop_back(); 992 return FunctionType::get(ResultTy, ArgTys, true); 993 } 994 return FunctionType::get(ResultTy, ArgTys, false); 995 } 996 997 bool Intrinsic::isOverloaded(ID id) { 998 #define GET_INTRINSIC_OVERLOAD_TABLE 999 #include "llvm/IR/IntrinsicImpl.inc" 1000 #undef GET_INTRINSIC_OVERLOAD_TABLE 1001 } 1002 1003 bool Intrinsic::isLeaf(ID id) { 1004 switch (id) { 1005 default: 1006 return true; 1007 1008 case Intrinsic::experimental_gc_statepoint: 1009 case Intrinsic::experimental_patchpoint_void: 1010 case Intrinsic::experimental_patchpoint_i64: 1011 return false; 1012 } 1013 } 1014 1015 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1016 #define GET_INTRINSIC_ATTRIBUTES 1017 #include "llvm/IR/IntrinsicImpl.inc" 1018 #undef GET_INTRINSIC_ATTRIBUTES 1019 1020 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1021 // There can never be multiple globals with the same name of different types, 1022 // because intrinsics must be a specific type. 1023 return 1024 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 1025 getType(M->getContext(), id, Tys))); 1026 } 1027 1028 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1029 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1030 #include "llvm/IR/IntrinsicImpl.inc" 1031 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1032 1033 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1034 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1035 #include "llvm/IR/IntrinsicImpl.inc" 1036 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1037 1038 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1039 SmallVectorImpl<Type*> &ArgTys) { 1040 using namespace Intrinsic; 1041 1042 // If we ran out of descriptors, there are too many arguments. 1043 if (Infos.empty()) return true; 1044 IITDescriptor D = Infos.front(); 1045 Infos = Infos.slice(1); 1046 1047 switch (D.Kind) { 1048 case IITDescriptor::Void: return !Ty->isVoidTy(); 1049 case IITDescriptor::VarArg: return true; 1050 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1051 case IITDescriptor::Token: return !Ty->isTokenTy(); 1052 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1053 case IITDescriptor::Half: return !Ty->isHalfTy(); 1054 case IITDescriptor::Float: return !Ty->isFloatTy(); 1055 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1056 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1057 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1058 case IITDescriptor::Vector: { 1059 VectorType *VT = dyn_cast<VectorType>(Ty); 1060 return !VT || VT->getNumElements() != D.Vector_Width || 1061 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1062 } 1063 case IITDescriptor::Pointer: { 1064 PointerType *PT = dyn_cast<PointerType>(Ty); 1065 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1066 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1067 } 1068 1069 case IITDescriptor::Struct: { 1070 StructType *ST = dyn_cast<StructType>(Ty); 1071 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1072 return true; 1073 1074 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1075 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1076 return true; 1077 return false; 1078 } 1079 1080 case IITDescriptor::Argument: 1081 // Two cases here - If this is the second occurrence of an argument, verify 1082 // that the later instance matches the previous instance. 1083 if (D.getArgumentNumber() < ArgTys.size()) 1084 return Ty != ArgTys[D.getArgumentNumber()]; 1085 1086 // Otherwise, if this is the first instance of an argument, record it and 1087 // verify the "Any" kind. 1088 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1089 ArgTys.push_back(Ty); 1090 1091 switch (D.getArgumentKind()) { 1092 case IITDescriptor::AK_Any: return false; // Success 1093 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1094 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1095 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1096 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1097 } 1098 llvm_unreachable("all argument kinds not covered"); 1099 1100 case IITDescriptor::ExtendArgument: { 1101 // This may only be used when referring to a previous vector argument. 1102 if (D.getArgumentNumber() >= ArgTys.size()) 1103 return true; 1104 1105 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1106 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1107 NewTy = VectorType::getExtendedElementVectorType(VTy); 1108 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1109 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1110 else 1111 return true; 1112 1113 return Ty != NewTy; 1114 } 1115 case IITDescriptor::TruncArgument: { 1116 // This may only be used when referring to a previous vector argument. 1117 if (D.getArgumentNumber() >= ArgTys.size()) 1118 return true; 1119 1120 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1121 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1122 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1123 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1124 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1125 else 1126 return true; 1127 1128 return Ty != NewTy; 1129 } 1130 case IITDescriptor::HalfVecArgument: 1131 // This may only be used when referring to a previous vector argument. 1132 return D.getArgumentNumber() >= ArgTys.size() || 1133 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1134 VectorType::getHalfElementsVectorType( 1135 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1136 case IITDescriptor::SameVecWidthArgument: { 1137 if (D.getArgumentNumber() >= ArgTys.size()) 1138 return true; 1139 VectorType * ReferenceType = 1140 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1141 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1142 if (!ThisArgType || !ReferenceType || 1143 (ReferenceType->getVectorNumElements() != 1144 ThisArgType->getVectorNumElements())) 1145 return true; 1146 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1147 Infos, ArgTys); 1148 } 1149 case IITDescriptor::PtrToArgument: { 1150 if (D.getArgumentNumber() >= ArgTys.size()) 1151 return true; 1152 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1153 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1154 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1155 } 1156 case IITDescriptor::PtrToElt: { 1157 if (D.getArgumentNumber() >= ArgTys.size()) 1158 return true; 1159 VectorType * ReferenceType = 1160 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1161 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1162 1163 return (!ThisArgType || !ReferenceType || 1164 ThisArgType->getElementType() != ReferenceType->getElementType()); 1165 } 1166 case IITDescriptor::VecOfAnyPtrsToElt: { 1167 unsigned RefArgNumber = D.getRefArgNumber(); 1168 1169 // This may only be used when referring to a previous argument. 1170 if (RefArgNumber >= ArgTys.size()) 1171 return true; 1172 1173 // Record the overloaded type 1174 assert(D.getOverloadArgNumber() == ArgTys.size() && 1175 "Table consistency error"); 1176 ArgTys.push_back(Ty); 1177 1178 // Verify the overloaded type "matches" the Ref type. 1179 // i.e. Ty is a vector with the same width as Ref. 1180 // Composed of pointers to the same element type as Ref. 1181 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1182 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1183 if (!ThisArgVecTy || !ReferenceType || 1184 (ReferenceType->getVectorNumElements() != 1185 ThisArgVecTy->getVectorNumElements())) 1186 return true; 1187 PointerType *ThisArgEltTy = 1188 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1189 if (!ThisArgEltTy) 1190 return true; 1191 return ThisArgEltTy->getElementType() != 1192 ReferenceType->getVectorElementType(); 1193 } 1194 } 1195 llvm_unreachable("unhandled"); 1196 } 1197 1198 bool 1199 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1200 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1201 // If there are no descriptors left, then it can't be a vararg. 1202 if (Infos.empty()) 1203 return isVarArg; 1204 1205 // There should be only one descriptor remaining at this point. 1206 if (Infos.size() != 1) 1207 return true; 1208 1209 // Check and verify the descriptor. 1210 IITDescriptor D = Infos.front(); 1211 Infos = Infos.slice(1); 1212 if (D.Kind == IITDescriptor::VarArg) 1213 return !isVarArg; 1214 1215 return true; 1216 } 1217 1218 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1219 Intrinsic::ID ID = F->getIntrinsicID(); 1220 if (!ID) 1221 return None; 1222 1223 FunctionType *FTy = F->getFunctionType(); 1224 // Accumulate an array of overloaded types for the given intrinsic 1225 SmallVector<Type *, 4> ArgTys; 1226 { 1227 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1228 getIntrinsicInfoTableEntries(ID, Table); 1229 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1230 1231 // If we encounter any problems matching the signature with the descriptor 1232 // just give up remangling. It's up to verifier to report the discrepancy. 1233 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1234 return None; 1235 for (auto Ty : FTy->params()) 1236 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1237 return None; 1238 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1239 return None; 1240 } 1241 1242 StringRef Name = F->getName(); 1243 if (Name == Intrinsic::getName(ID, ArgTys)) 1244 return None; 1245 1246 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1247 NewDecl->setCallingConv(F->getCallingConv()); 1248 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1249 return NewDecl; 1250 } 1251 1252 /// hasAddressTaken - returns true if there are any uses of this function 1253 /// other than direct calls or invokes to it. 1254 bool Function::hasAddressTaken(const User* *PutOffender) const { 1255 for (const Use &U : uses()) { 1256 const User *FU = U.getUser(); 1257 if (isa<BlockAddress>(FU)) 1258 continue; 1259 const auto *Call = dyn_cast<CallBase>(FU); 1260 if (!Call) { 1261 if (PutOffender) 1262 *PutOffender = FU; 1263 return true; 1264 } 1265 if (!Call->isCallee(&U)) { 1266 if (PutOffender) 1267 *PutOffender = FU; 1268 return true; 1269 } 1270 } 1271 return false; 1272 } 1273 1274 bool Function::isDefTriviallyDead() const { 1275 // Check the linkage 1276 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1277 !hasAvailableExternallyLinkage()) 1278 return false; 1279 1280 // Check if the function is used by anything other than a blockaddress. 1281 for (const User *U : users()) 1282 if (!isa<BlockAddress>(U)) 1283 return false; 1284 1285 return true; 1286 } 1287 1288 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1289 /// setjmp or other function that gcc recognizes as "returning twice". 1290 bool Function::callsFunctionThatReturnsTwice() const { 1291 for (const Instruction &I : instructions(this)) 1292 if (const auto *Call = dyn_cast<CallBase>(&I)) 1293 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1294 return true; 1295 1296 return false; 1297 } 1298 1299 Constant *Function::getPersonalityFn() const { 1300 assert(hasPersonalityFn() && getNumOperands()); 1301 return cast<Constant>(Op<0>()); 1302 } 1303 1304 void Function::setPersonalityFn(Constant *Fn) { 1305 setHungoffOperand<0>(Fn); 1306 setValueSubclassDataBit(3, Fn != nullptr); 1307 } 1308 1309 Constant *Function::getPrefixData() const { 1310 assert(hasPrefixData() && getNumOperands()); 1311 return cast<Constant>(Op<1>()); 1312 } 1313 1314 void Function::setPrefixData(Constant *PrefixData) { 1315 setHungoffOperand<1>(PrefixData); 1316 setValueSubclassDataBit(1, PrefixData != nullptr); 1317 } 1318 1319 Constant *Function::getPrologueData() const { 1320 assert(hasPrologueData() && getNumOperands()); 1321 return cast<Constant>(Op<2>()); 1322 } 1323 1324 void Function::setPrologueData(Constant *PrologueData) { 1325 setHungoffOperand<2>(PrologueData); 1326 setValueSubclassDataBit(2, PrologueData != nullptr); 1327 } 1328 1329 void Function::allocHungoffUselist() { 1330 // If we've already allocated a uselist, stop here. 1331 if (getNumOperands()) 1332 return; 1333 1334 allocHungoffUses(3, /*IsPhi=*/ false); 1335 setNumHungOffUseOperands(3); 1336 1337 // Initialize the uselist with placeholder operands to allow traversal. 1338 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1339 Op<0>().set(CPN); 1340 Op<1>().set(CPN); 1341 Op<2>().set(CPN); 1342 } 1343 1344 template <int Idx> 1345 void Function::setHungoffOperand(Constant *C) { 1346 if (C) { 1347 allocHungoffUselist(); 1348 Op<Idx>().set(C); 1349 } else if (getNumOperands()) { 1350 Op<Idx>().set( 1351 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1352 } 1353 } 1354 1355 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1356 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1357 if (On) 1358 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1359 else 1360 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1361 } 1362 1363 void Function::setEntryCount(ProfileCount Count, 1364 const DenseSet<GlobalValue::GUID> *S) { 1365 assert(Count.hasValue()); 1366 #if !defined(NDEBUG) 1367 auto PrevCount = getEntryCount(); 1368 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1369 #endif 1370 MDBuilder MDB(getContext()); 1371 setMetadata( 1372 LLVMContext::MD_prof, 1373 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1374 } 1375 1376 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1377 const DenseSet<GlobalValue::GUID> *Imports) { 1378 setEntryCount(ProfileCount(Count, Type), Imports); 1379 } 1380 1381 ProfileCount Function::getEntryCount() const { 1382 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1383 if (MD && MD->getOperand(0)) 1384 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1385 if (MDS->getString().equals("function_entry_count")) { 1386 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1387 uint64_t Count = CI->getValue().getZExtValue(); 1388 // A value of -1 is used for SamplePGO when there were no samples. 1389 // Treat this the same as unknown. 1390 if (Count == (uint64_t)-1) 1391 return ProfileCount::getInvalid(); 1392 return ProfileCount(Count, PCT_Real); 1393 } else if (MDS->getString().equals("synthetic_function_entry_count")) { 1394 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1395 uint64_t Count = CI->getValue().getZExtValue(); 1396 return ProfileCount(Count, PCT_Synthetic); 1397 } 1398 } 1399 return ProfileCount::getInvalid(); 1400 } 1401 1402 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1403 DenseSet<GlobalValue::GUID> R; 1404 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1405 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1406 if (MDS->getString().equals("function_entry_count")) 1407 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1408 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1409 ->getValue() 1410 .getZExtValue()); 1411 return R; 1412 } 1413 1414 void Function::setSectionPrefix(StringRef Prefix) { 1415 MDBuilder MDB(getContext()); 1416 setMetadata(LLVMContext::MD_section_prefix, 1417 MDB.createFunctionSectionPrefix(Prefix)); 1418 } 1419 1420 Optional<StringRef> Function::getSectionPrefix() const { 1421 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1422 assert(cast<MDString>(MD->getOperand(0)) 1423 ->getString() 1424 .equals("function_section_prefix") && 1425 "Metadata not match"); 1426 return cast<MDString>(MD->getOperand(1))->getString(); 1427 } 1428 return None; 1429 } 1430 1431 bool Function::nullPointerIsDefined() const { 1432 return getFnAttribute("null-pointer-is-valid") 1433 .getValueAsString() 1434 .equals("true"); 1435 } 1436 1437 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1438 if (F && F->nullPointerIsDefined()) 1439 return true; 1440 1441 if (AS != 0) 1442 return true; 1443 1444 return false; 1445 } 1446