1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 173 // FIXME: sret and inalloca always depends on pointee element type. It's also 174 // possible for byval to miss it. 175 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 176 ParamAttrs.hasAttribute(Attribute::ByVal) || 177 ParamAttrs.hasAttribute(Attribute::StructRet) || 178 ParamAttrs.hasAttribute(Attribute::Preallocated)) 179 return cast<PointerType>(ArgTy)->getElementType(); 180 181 return nullptr; 182 } 183 184 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 185 AttributeSet ParamAttrs = 186 getParent()->getAttributes().getParamAttributes(getArgNo()); 187 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 188 return DL.getTypeAllocSize(MemTy); 189 return 0; 190 } 191 192 Type *Argument::getPointeeInMemoryValueType() const { 193 AttributeSet ParamAttrs = 194 getParent()->getAttributes().getParamAttributes(getArgNo()); 195 return getMemoryParamAllocType(ParamAttrs, getType()); 196 } 197 198 unsigned Argument::getParamAlignment() const { 199 assert(getType()->isPointerTy() && "Only pointers have alignments"); 200 return getParent()->getParamAlignment(getArgNo()); 201 } 202 203 MaybeAlign Argument::getParamAlign() const { 204 assert(getType()->isPointerTy() && "Only pointers have alignments"); 205 return getParent()->getParamAlign(getArgNo()); 206 } 207 208 MaybeAlign Argument::getParamStackAlign() const { 209 return getParent()->getParamStackAlign(getArgNo()); 210 } 211 212 Type *Argument::getParamByValType() const { 213 assert(getType()->isPointerTy() && "Only pointers have byval types"); 214 return getParent()->getParamByValType(getArgNo()); 215 } 216 217 Type *Argument::getParamStructRetType() const { 218 assert(getType()->isPointerTy() && "Only pointers have sret types"); 219 return getParent()->getParamStructRetType(getArgNo()); 220 } 221 222 Type *Argument::getParamByRefType() const { 223 assert(getType()->isPointerTy() && "Only pointers have byref types"); 224 return getParent()->getParamByRefType(getArgNo()); 225 } 226 227 Type *Argument::getParamInAllocaType() const { 228 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 229 return getParent()->getParamInAllocaType(getArgNo()); 230 } 231 232 uint64_t Argument::getDereferenceableBytes() const { 233 assert(getType()->isPointerTy() && 234 "Only pointers have dereferenceable bytes"); 235 return getParent()->getParamDereferenceableBytes(getArgNo()); 236 } 237 238 uint64_t Argument::getDereferenceableOrNullBytes() const { 239 assert(getType()->isPointerTy() && 240 "Only pointers have dereferenceable bytes"); 241 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 242 } 243 244 bool Argument::hasNestAttr() const { 245 if (!getType()->isPointerTy()) return false; 246 return hasAttribute(Attribute::Nest); 247 } 248 249 bool Argument::hasNoAliasAttr() const { 250 if (!getType()->isPointerTy()) return false; 251 return hasAttribute(Attribute::NoAlias); 252 } 253 254 bool Argument::hasNoCaptureAttr() const { 255 if (!getType()->isPointerTy()) return false; 256 return hasAttribute(Attribute::NoCapture); 257 } 258 259 bool Argument::hasNoFreeAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::NoFree); 262 } 263 264 bool Argument::hasStructRetAttr() const { 265 if (!getType()->isPointerTy()) return false; 266 return hasAttribute(Attribute::StructRet); 267 } 268 269 bool Argument::hasInRegAttr() const { 270 return hasAttribute(Attribute::InReg); 271 } 272 273 bool Argument::hasReturnedAttr() const { 274 return hasAttribute(Attribute::Returned); 275 } 276 277 bool Argument::hasZExtAttr() const { 278 return hasAttribute(Attribute::ZExt); 279 } 280 281 bool Argument::hasSExtAttr() const { 282 return hasAttribute(Attribute::SExt); 283 } 284 285 bool Argument::onlyReadsMemory() const { 286 AttributeList Attrs = getParent()->getAttributes(); 287 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 288 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 289 } 290 291 void Argument::addAttrs(AttrBuilder &B) { 292 AttributeList AL = getParent()->getAttributes(); 293 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 294 getParent()->setAttributes(AL); 295 } 296 297 void Argument::addAttr(Attribute::AttrKind Kind) { 298 getParent()->addParamAttr(getArgNo(), Kind); 299 } 300 301 void Argument::addAttr(Attribute Attr) { 302 getParent()->addParamAttr(getArgNo(), Attr); 303 } 304 305 void Argument::removeAttr(Attribute::AttrKind Kind) { 306 getParent()->removeParamAttr(getArgNo(), Kind); 307 } 308 309 void Argument::removeAttrs(const AttrBuilder &B) { 310 AttributeList AL = getParent()->getAttributes(); 311 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 312 getParent()->setAttributes(AL); 313 } 314 315 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 316 return getParent()->hasParamAttribute(getArgNo(), Kind); 317 } 318 319 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 320 return getParent()->getParamAttribute(getArgNo(), Kind); 321 } 322 323 //===----------------------------------------------------------------------===// 324 // Helper Methods in Function 325 //===----------------------------------------------------------------------===// 326 327 LLVMContext &Function::getContext() const { 328 return getType()->getContext(); 329 } 330 331 unsigned Function::getInstructionCount() const { 332 unsigned NumInstrs = 0; 333 for (const BasicBlock &BB : BasicBlocks) 334 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 335 BB.instructionsWithoutDebug().end()); 336 return NumInstrs; 337 } 338 339 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 340 const Twine &N, Module &M) { 341 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 342 } 343 344 Function *Function::createWithDefaultAttr(FunctionType *Ty, 345 LinkageTypes Linkage, 346 unsigned AddrSpace, const Twine &N, 347 Module *M) { 348 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 349 AttrBuilder B; 350 if (M->getUwtable()) 351 B.addAttribute(Attribute::UWTable); 352 switch (M->getFramePointer()) { 353 case FramePointerKind::None: 354 // 0 ("none") is the default. 355 break; 356 case FramePointerKind::NonLeaf: 357 B.addAttribute("frame-pointer", "non-leaf"); 358 break; 359 case FramePointerKind::All: 360 B.addAttribute("frame-pointer", "all"); 361 break; 362 } 363 F->addAttributes(AttributeList::FunctionIndex, B); 364 return F; 365 } 366 367 void Function::removeFromParent() { 368 getParent()->getFunctionList().remove(getIterator()); 369 } 370 371 void Function::eraseFromParent() { 372 getParent()->getFunctionList().erase(getIterator()); 373 } 374 375 //===----------------------------------------------------------------------===// 376 // Function Implementation 377 //===----------------------------------------------------------------------===// 378 379 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 380 // If AS == -1 and we are passed a valid module pointer we place the function 381 // in the program address space. Otherwise we default to AS0. 382 if (AddrSpace == static_cast<unsigned>(-1)) 383 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 384 return AddrSpace; 385 } 386 387 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 388 const Twine &name, Module *ParentModule) 389 : GlobalObject(Ty, Value::FunctionVal, 390 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 391 computeAddrSpace(AddrSpace, ParentModule)), 392 NumArgs(Ty->getNumParams()) { 393 assert(FunctionType::isValidReturnType(getReturnType()) && 394 "invalid return type"); 395 setGlobalObjectSubClassData(0); 396 397 // We only need a symbol table for a function if the context keeps value names 398 if (!getContext().shouldDiscardValueNames()) 399 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 400 401 // If the function has arguments, mark them as lazily built. 402 if (Ty->getNumParams()) 403 setValueSubclassData(1); // Set the "has lazy arguments" bit. 404 405 if (ParentModule) 406 ParentModule->getFunctionList().push_back(this); 407 408 HasLLVMReservedName = getName().startswith("llvm."); 409 // Ensure intrinsics have the right parameter attributes. 410 // Note, the IntID field will have been set in Value::setName if this function 411 // name is a valid intrinsic ID. 412 if (IntID) 413 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 414 } 415 416 Function::~Function() { 417 dropAllReferences(); // After this it is safe to delete instructions. 418 419 // Delete all of the method arguments and unlink from symbol table... 420 if (Arguments) 421 clearArguments(); 422 423 // Remove the function from the on-the-side GC table. 424 clearGC(); 425 } 426 427 void Function::BuildLazyArguments() const { 428 // Create the arguments vector, all arguments start out unnamed. 429 auto *FT = getFunctionType(); 430 if (NumArgs > 0) { 431 Arguments = std::allocator<Argument>().allocate(NumArgs); 432 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 433 Type *ArgTy = FT->getParamType(i); 434 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 435 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 436 } 437 } 438 439 // Clear the lazy arguments bit. 440 unsigned SDC = getSubclassDataFromValue(); 441 SDC &= ~(1 << 0); 442 const_cast<Function*>(this)->setValueSubclassData(SDC); 443 assert(!hasLazyArguments()); 444 } 445 446 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 447 return MutableArrayRef<Argument>(Args, Count); 448 } 449 450 bool Function::isConstrainedFPIntrinsic() const { 451 switch (getIntrinsicID()) { 452 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 453 case Intrinsic::INTRINSIC: 454 #include "llvm/IR/ConstrainedOps.def" 455 return true; 456 #undef INSTRUCTION 457 default: 458 return false; 459 } 460 } 461 462 void Function::clearArguments() { 463 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 464 A.setName(""); 465 A.~Argument(); 466 } 467 std::allocator<Argument>().deallocate(Arguments, NumArgs); 468 Arguments = nullptr; 469 } 470 471 void Function::stealArgumentListFrom(Function &Src) { 472 assert(isDeclaration() && "Expected no references to current arguments"); 473 474 // Drop the current arguments, if any, and set the lazy argument bit. 475 if (!hasLazyArguments()) { 476 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 477 [](const Argument &A) { return A.use_empty(); }) && 478 "Expected arguments to be unused in declaration"); 479 clearArguments(); 480 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 481 } 482 483 // Nothing to steal if Src has lazy arguments. 484 if (Src.hasLazyArguments()) 485 return; 486 487 // Steal arguments from Src, and fix the lazy argument bits. 488 assert(arg_size() == Src.arg_size()); 489 Arguments = Src.Arguments; 490 Src.Arguments = nullptr; 491 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 492 // FIXME: This does the work of transferNodesFromList inefficiently. 493 SmallString<128> Name; 494 if (A.hasName()) 495 Name = A.getName(); 496 if (!Name.empty()) 497 A.setName(""); 498 A.setParent(this); 499 if (!Name.empty()) 500 A.setName(Name); 501 } 502 503 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 504 assert(!hasLazyArguments()); 505 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 506 } 507 508 // dropAllReferences() - This function causes all the subinstructions to "let 509 // go" of all references that they are maintaining. This allows one to 510 // 'delete' a whole class at a time, even though there may be circular 511 // references... first all references are dropped, and all use counts go to 512 // zero. Then everything is deleted for real. Note that no operations are 513 // valid on an object that has "dropped all references", except operator 514 // delete. 515 // 516 void Function::dropAllReferences() { 517 setIsMaterializable(false); 518 519 for (BasicBlock &BB : *this) 520 BB.dropAllReferences(); 521 522 // Delete all basic blocks. They are now unused, except possibly by 523 // blockaddresses, but BasicBlock's destructor takes care of those. 524 while (!BasicBlocks.empty()) 525 BasicBlocks.begin()->eraseFromParent(); 526 527 // Drop uses of any optional data (real or placeholder). 528 if (getNumOperands()) { 529 User::dropAllReferences(); 530 setNumHungOffUseOperands(0); 531 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 532 } 533 534 // Metadata is stored in a side-table. 535 clearMetadata(); 536 } 537 538 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 539 AttributeList PAL = getAttributes(); 540 PAL = PAL.addAttribute(getContext(), i, Kind); 541 setAttributes(PAL); 542 } 543 544 void Function::addAttribute(unsigned i, Attribute Attr) { 545 AttributeList PAL = getAttributes(); 546 PAL = PAL.addAttribute(getContext(), i, Attr); 547 setAttributes(PAL); 548 } 549 550 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 551 AttributeList PAL = getAttributes(); 552 PAL = PAL.addAttributes(getContext(), i, Attrs); 553 setAttributes(PAL); 554 } 555 556 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 557 AttributeList PAL = getAttributes(); 558 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 559 setAttributes(PAL); 560 } 561 562 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 563 AttributeList PAL = getAttributes(); 564 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 565 setAttributes(PAL); 566 } 567 568 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 569 AttributeList PAL = getAttributes(); 570 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 571 setAttributes(PAL); 572 } 573 574 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 575 AttributeList PAL = getAttributes(); 576 PAL = PAL.removeAttribute(getContext(), i, Kind); 577 setAttributes(PAL); 578 } 579 580 void Function::removeAttribute(unsigned i, StringRef Kind) { 581 AttributeList PAL = getAttributes(); 582 PAL = PAL.removeAttribute(getContext(), i, Kind); 583 setAttributes(PAL); 584 } 585 586 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 587 AttributeList PAL = getAttributes(); 588 PAL = PAL.removeAttributes(getContext(), i, Attrs); 589 setAttributes(PAL); 590 } 591 592 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 593 AttributeList PAL = getAttributes(); 594 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 595 setAttributes(PAL); 596 } 597 598 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 599 AttributeList PAL = getAttributes(); 600 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 601 setAttributes(PAL); 602 } 603 604 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 605 AttributeList PAL = getAttributes(); 606 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 607 setAttributes(PAL); 608 } 609 610 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) { 611 AttributeList PAL = getAttributes(); 612 PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo); 613 setAttributes(PAL); 614 } 615 616 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 617 AttributeList PAL = getAttributes(); 618 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 619 setAttributes(PAL); 620 } 621 622 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 623 AttributeList PAL = getAttributes(); 624 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 625 setAttributes(PAL); 626 } 627 628 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 629 AttributeList PAL = getAttributes(); 630 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 631 setAttributes(PAL); 632 } 633 634 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 635 uint64_t Bytes) { 636 AttributeList PAL = getAttributes(); 637 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 638 setAttributes(PAL); 639 } 640 641 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 642 if (&FPType == &APFloat::IEEEsingle()) { 643 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 644 StringRef Val = Attr.getValueAsString(); 645 if (!Val.empty()) 646 return parseDenormalFPAttribute(Val); 647 648 // If the f32 variant of the attribute isn't specified, try to use the 649 // generic one. 650 } 651 652 Attribute Attr = getFnAttribute("denormal-fp-math"); 653 return parseDenormalFPAttribute(Attr.getValueAsString()); 654 } 655 656 const std::string &Function::getGC() const { 657 assert(hasGC() && "Function has no collector"); 658 return getContext().getGC(*this); 659 } 660 661 void Function::setGC(std::string Str) { 662 setValueSubclassDataBit(14, !Str.empty()); 663 getContext().setGC(*this, std::move(Str)); 664 } 665 666 void Function::clearGC() { 667 if (!hasGC()) 668 return; 669 getContext().deleteGC(*this); 670 setValueSubclassDataBit(14, false); 671 } 672 673 bool Function::hasStackProtectorFnAttr() const { 674 return hasFnAttribute(Attribute::StackProtect) || 675 hasFnAttribute(Attribute::StackProtectStrong) || 676 hasFnAttribute(Attribute::StackProtectReq); 677 } 678 679 /// Copy all additional attributes (those not needed to create a Function) from 680 /// the Function Src to this one. 681 void Function::copyAttributesFrom(const Function *Src) { 682 GlobalObject::copyAttributesFrom(Src); 683 setCallingConv(Src->getCallingConv()); 684 setAttributes(Src->getAttributes()); 685 if (Src->hasGC()) 686 setGC(Src->getGC()); 687 else 688 clearGC(); 689 if (Src->hasPersonalityFn()) 690 setPersonalityFn(Src->getPersonalityFn()); 691 if (Src->hasPrefixData()) 692 setPrefixData(Src->getPrefixData()); 693 if (Src->hasPrologueData()) 694 setPrologueData(Src->getPrologueData()); 695 } 696 697 /// Table of string intrinsic names indexed by enum value. 698 static const char * const IntrinsicNameTable[] = { 699 "not_intrinsic", 700 #define GET_INTRINSIC_NAME_TABLE 701 #include "llvm/IR/IntrinsicImpl.inc" 702 #undef GET_INTRINSIC_NAME_TABLE 703 }; 704 705 /// Table of per-target intrinsic name tables. 706 #define GET_INTRINSIC_TARGET_DATA 707 #include "llvm/IR/IntrinsicImpl.inc" 708 #undef GET_INTRINSIC_TARGET_DATA 709 710 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 711 return IID > TargetInfos[0].Count; 712 } 713 714 bool Function::isTargetIntrinsic() const { 715 return isTargetIntrinsic(IntID); 716 } 717 718 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 719 /// target as \c Name, or the generic table if \c Name is not target specific. 720 /// 721 /// Returns the relevant slice of \c IntrinsicNameTable 722 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 723 assert(Name.startswith("llvm.")); 724 725 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 726 // Drop "llvm." and take the first dotted component. That will be the target 727 // if this is target specific. 728 StringRef Target = Name.drop_front(5).split('.').first; 729 auto It = partition_point( 730 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 731 // We've either found the target or just fall back to the generic set, which 732 // is always first. 733 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 734 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 735 } 736 737 /// This does the actual lookup of an intrinsic ID which 738 /// matches the given function name. 739 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 740 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 741 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 742 if (Idx == -1) 743 return Intrinsic::not_intrinsic; 744 745 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 746 // an index into a sub-table. 747 int Adjust = NameTable.data() - IntrinsicNameTable; 748 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 749 750 // If the intrinsic is not overloaded, require an exact match. If it is 751 // overloaded, require either exact or prefix match. 752 const auto MatchSize = strlen(NameTable[Idx]); 753 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 754 bool IsExactMatch = Name.size() == MatchSize; 755 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 756 : Intrinsic::not_intrinsic; 757 } 758 759 void Function::recalculateIntrinsicID() { 760 StringRef Name = getName(); 761 if (!Name.startswith("llvm.")) { 762 HasLLVMReservedName = false; 763 IntID = Intrinsic::not_intrinsic; 764 return; 765 } 766 HasLLVMReservedName = true; 767 IntID = lookupIntrinsicID(Name); 768 } 769 770 /// Returns a stable mangling for the type specified for use in the name 771 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 772 /// of named types is simply their name. Manglings for unnamed types consist 773 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 774 /// combined with the mangling of their component types. A vararg function 775 /// type will have a suffix of 'vararg'. Since function types can contain 776 /// other function types, we close a function type mangling with suffix 'f' 777 /// which can't be confused with it's prefix. This ensures we don't have 778 /// collisions between two unrelated function types. Otherwise, you might 779 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 780 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 781 /// indicating that extra care must be taken to ensure a unique name. 782 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 783 std::string Result; 784 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 785 Result += "p" + utostr(PTyp->getAddressSpace()) + 786 getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 787 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 788 Result += "a" + utostr(ATyp->getNumElements()) + 789 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 790 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 791 if (!STyp->isLiteral()) { 792 Result += "s_"; 793 if (STyp->hasName()) 794 Result += STyp->getName(); 795 else 796 HasUnnamedType = true; 797 } else { 798 Result += "sl_"; 799 for (auto Elem : STyp->elements()) 800 Result += getMangledTypeStr(Elem, HasUnnamedType); 801 } 802 // Ensure nested structs are distinguishable. 803 Result += "s"; 804 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 805 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 806 for (size_t i = 0; i < FT->getNumParams(); i++) 807 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 808 if (FT->isVarArg()) 809 Result += "vararg"; 810 // Ensure nested function types are distinguishable. 811 Result += "f"; 812 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 813 ElementCount EC = VTy->getElementCount(); 814 if (EC.isScalable()) 815 Result += "nx"; 816 Result += "v" + utostr(EC.getKnownMinValue()) + 817 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 818 } else if (Ty) { 819 switch (Ty->getTypeID()) { 820 default: llvm_unreachable("Unhandled type"); 821 case Type::VoidTyID: Result += "isVoid"; break; 822 case Type::MetadataTyID: Result += "Metadata"; break; 823 case Type::HalfTyID: Result += "f16"; break; 824 case Type::BFloatTyID: Result += "bf16"; break; 825 case Type::FloatTyID: Result += "f32"; break; 826 case Type::DoubleTyID: Result += "f64"; break; 827 case Type::X86_FP80TyID: Result += "f80"; break; 828 case Type::FP128TyID: Result += "f128"; break; 829 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 830 case Type::X86_MMXTyID: Result += "x86mmx"; break; 831 case Type::X86_AMXTyID: Result += "x86amx"; break; 832 case Type::IntegerTyID: 833 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 834 break; 835 } 836 } 837 return Result; 838 } 839 840 StringRef Intrinsic::getName(ID id) { 841 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 842 assert(!Intrinsic::isOverloaded(id) && 843 "This version of getName does not support overloading"); 844 return IntrinsicNameTable[id]; 845 } 846 847 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 848 FunctionType *FT) { 849 assert(Id < num_intrinsics && "Invalid intrinsic ID!"); 850 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 851 "This version of getName is for overloaded intrinsics only"); 852 bool HasUnnamedType = false; 853 std::string Result(IntrinsicNameTable[Id]); 854 for (Type *Ty : Tys) { 855 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 856 } 857 assert((M || !HasUnnamedType) && "unnamed types need a module"); 858 if (M && HasUnnamedType) { 859 if (!FT) 860 FT = getType(M->getContext(), Id, Tys); 861 else 862 assert((FT == getType(M->getContext(), Id, Tys)) && 863 "Provided FunctionType must match arguments"); 864 return M->getUniqueIntrinsicName(Result, Id, FT); 865 } 866 return Result; 867 } 868 869 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) { 870 return getName(Id, Tys, nullptr, nullptr); 871 } 872 873 /// IIT_Info - These are enumerators that describe the entries returned by the 874 /// getIntrinsicInfoTableEntries function. 875 /// 876 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 877 enum IIT_Info { 878 // Common values should be encoded with 0-15. 879 IIT_Done = 0, 880 IIT_I1 = 1, 881 IIT_I8 = 2, 882 IIT_I16 = 3, 883 IIT_I32 = 4, 884 IIT_I64 = 5, 885 IIT_F16 = 6, 886 IIT_F32 = 7, 887 IIT_F64 = 8, 888 IIT_V2 = 9, 889 IIT_V4 = 10, 890 IIT_V8 = 11, 891 IIT_V16 = 12, 892 IIT_V32 = 13, 893 IIT_PTR = 14, 894 IIT_ARG = 15, 895 896 // Values from 16+ are only encodable with the inefficient encoding. 897 IIT_V64 = 16, 898 IIT_MMX = 17, 899 IIT_TOKEN = 18, 900 IIT_METADATA = 19, 901 IIT_EMPTYSTRUCT = 20, 902 IIT_STRUCT2 = 21, 903 IIT_STRUCT3 = 22, 904 IIT_STRUCT4 = 23, 905 IIT_STRUCT5 = 24, 906 IIT_EXTEND_ARG = 25, 907 IIT_TRUNC_ARG = 26, 908 IIT_ANYPTR = 27, 909 IIT_V1 = 28, 910 IIT_VARARG = 29, 911 IIT_HALF_VEC_ARG = 30, 912 IIT_SAME_VEC_WIDTH_ARG = 31, 913 IIT_PTR_TO_ARG = 32, 914 IIT_PTR_TO_ELT = 33, 915 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 916 IIT_I128 = 35, 917 IIT_V512 = 36, 918 IIT_V1024 = 37, 919 IIT_STRUCT6 = 38, 920 IIT_STRUCT7 = 39, 921 IIT_STRUCT8 = 40, 922 IIT_F128 = 41, 923 IIT_VEC_ELEMENT = 42, 924 IIT_SCALABLE_VEC = 43, 925 IIT_SUBDIVIDE2_ARG = 44, 926 IIT_SUBDIVIDE4_ARG = 45, 927 IIT_VEC_OF_BITCASTS_TO_INT = 46, 928 IIT_V128 = 47, 929 IIT_BF16 = 48, 930 IIT_STRUCT9 = 49, 931 IIT_V256 = 50, 932 IIT_AMX = 51 933 }; 934 935 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 936 IIT_Info LastInfo, 937 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 938 using namespace Intrinsic; 939 940 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 941 942 IIT_Info Info = IIT_Info(Infos[NextElt++]); 943 unsigned StructElts = 2; 944 945 switch (Info) { 946 case IIT_Done: 947 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 948 return; 949 case IIT_VARARG: 950 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 951 return; 952 case IIT_MMX: 953 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 954 return; 955 case IIT_AMX: 956 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 957 return; 958 case IIT_TOKEN: 959 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 960 return; 961 case IIT_METADATA: 962 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 963 return; 964 case IIT_F16: 965 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 966 return; 967 case IIT_BF16: 968 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 969 return; 970 case IIT_F32: 971 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 972 return; 973 case IIT_F64: 974 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 975 return; 976 case IIT_F128: 977 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 978 return; 979 case IIT_I1: 980 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 981 return; 982 case IIT_I8: 983 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 984 return; 985 case IIT_I16: 986 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 987 return; 988 case IIT_I32: 989 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 990 return; 991 case IIT_I64: 992 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 993 return; 994 case IIT_I128: 995 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 996 return; 997 case IIT_V1: 998 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 999 DecodeIITType(NextElt, Infos, Info, OutputTable); 1000 return; 1001 case IIT_V2: 1002 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1003 DecodeIITType(NextElt, Infos, Info, OutputTable); 1004 return; 1005 case IIT_V4: 1006 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1007 DecodeIITType(NextElt, Infos, Info, OutputTable); 1008 return; 1009 case IIT_V8: 1010 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1011 DecodeIITType(NextElt, Infos, Info, OutputTable); 1012 return; 1013 case IIT_V16: 1014 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1015 DecodeIITType(NextElt, Infos, Info, OutputTable); 1016 return; 1017 case IIT_V32: 1018 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1019 DecodeIITType(NextElt, Infos, Info, OutputTable); 1020 return; 1021 case IIT_V64: 1022 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1023 DecodeIITType(NextElt, Infos, Info, OutputTable); 1024 return; 1025 case IIT_V128: 1026 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1027 DecodeIITType(NextElt, Infos, Info, OutputTable); 1028 return; 1029 case IIT_V256: 1030 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1031 DecodeIITType(NextElt, Infos, Info, OutputTable); 1032 return; 1033 case IIT_V512: 1034 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1035 DecodeIITType(NextElt, Infos, Info, OutputTable); 1036 return; 1037 case IIT_V1024: 1038 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1039 DecodeIITType(NextElt, Infos, Info, OutputTable); 1040 return; 1041 case IIT_PTR: 1042 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1043 DecodeIITType(NextElt, Infos, Info, OutputTable); 1044 return; 1045 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1046 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1047 Infos[NextElt++])); 1048 DecodeIITType(NextElt, Infos, Info, OutputTable); 1049 return; 1050 } 1051 case IIT_ARG: { 1052 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1053 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1054 return; 1055 } 1056 case IIT_EXTEND_ARG: { 1057 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1058 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1059 ArgInfo)); 1060 return; 1061 } 1062 case IIT_TRUNC_ARG: { 1063 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1064 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1065 ArgInfo)); 1066 return; 1067 } 1068 case IIT_HALF_VEC_ARG: { 1069 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1070 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1071 ArgInfo)); 1072 return; 1073 } 1074 case IIT_SAME_VEC_WIDTH_ARG: { 1075 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1076 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1077 ArgInfo)); 1078 return; 1079 } 1080 case IIT_PTR_TO_ARG: { 1081 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1082 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1083 ArgInfo)); 1084 return; 1085 } 1086 case IIT_PTR_TO_ELT: { 1087 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1088 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1089 return; 1090 } 1091 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1092 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1093 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1094 OutputTable.push_back( 1095 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1096 return; 1097 } 1098 case IIT_EMPTYSTRUCT: 1099 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1100 return; 1101 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1102 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1103 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1104 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1105 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1106 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1107 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1108 case IIT_STRUCT2: { 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1110 1111 for (unsigned i = 0; i != StructElts; ++i) 1112 DecodeIITType(NextElt, Infos, Info, OutputTable); 1113 return; 1114 } 1115 case IIT_SUBDIVIDE2_ARG: { 1116 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1117 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1118 ArgInfo)); 1119 return; 1120 } 1121 case IIT_SUBDIVIDE4_ARG: { 1122 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1123 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1124 ArgInfo)); 1125 return; 1126 } 1127 case IIT_VEC_ELEMENT: { 1128 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1129 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1130 ArgInfo)); 1131 return; 1132 } 1133 case IIT_SCALABLE_VEC: { 1134 DecodeIITType(NextElt, Infos, Info, OutputTable); 1135 return; 1136 } 1137 case IIT_VEC_OF_BITCASTS_TO_INT: { 1138 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1140 ArgInfo)); 1141 return; 1142 } 1143 } 1144 llvm_unreachable("unhandled"); 1145 } 1146 1147 #define GET_INTRINSIC_GENERATOR_GLOBAL 1148 #include "llvm/IR/IntrinsicImpl.inc" 1149 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1150 1151 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1152 SmallVectorImpl<IITDescriptor> &T){ 1153 // Check to see if the intrinsic's type was expressible by the table. 1154 unsigned TableVal = IIT_Table[id-1]; 1155 1156 // Decode the TableVal into an array of IITValues. 1157 SmallVector<unsigned char, 8> IITValues; 1158 ArrayRef<unsigned char> IITEntries; 1159 unsigned NextElt = 0; 1160 if ((TableVal >> 31) != 0) { 1161 // This is an offset into the IIT_LongEncodingTable. 1162 IITEntries = IIT_LongEncodingTable; 1163 1164 // Strip sentinel bit. 1165 NextElt = (TableVal << 1) >> 1; 1166 } else { 1167 // Decode the TableVal into an array of IITValues. If the entry was encoded 1168 // into a single word in the table itself, decode it now. 1169 do { 1170 IITValues.push_back(TableVal & 0xF); 1171 TableVal >>= 4; 1172 } while (TableVal); 1173 1174 IITEntries = IITValues; 1175 NextElt = 0; 1176 } 1177 1178 // Okay, decode the table into the output vector of IITDescriptors. 1179 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1180 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1181 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1182 } 1183 1184 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1185 ArrayRef<Type*> Tys, LLVMContext &Context) { 1186 using namespace Intrinsic; 1187 1188 IITDescriptor D = Infos.front(); 1189 Infos = Infos.slice(1); 1190 1191 switch (D.Kind) { 1192 case IITDescriptor::Void: return Type::getVoidTy(Context); 1193 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1194 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1195 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1196 case IITDescriptor::Token: return Type::getTokenTy(Context); 1197 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1198 case IITDescriptor::Half: return Type::getHalfTy(Context); 1199 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1200 case IITDescriptor::Float: return Type::getFloatTy(Context); 1201 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1202 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1203 1204 case IITDescriptor::Integer: 1205 return IntegerType::get(Context, D.Integer_Width); 1206 case IITDescriptor::Vector: 1207 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1208 D.Vector_Width); 1209 case IITDescriptor::Pointer: 1210 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1211 D.Pointer_AddressSpace); 1212 case IITDescriptor::Struct: { 1213 SmallVector<Type *, 8> Elts; 1214 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1215 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1216 return StructType::get(Context, Elts); 1217 } 1218 case IITDescriptor::Argument: 1219 return Tys[D.getArgumentNumber()]; 1220 case IITDescriptor::ExtendArgument: { 1221 Type *Ty = Tys[D.getArgumentNumber()]; 1222 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1223 return VectorType::getExtendedElementVectorType(VTy); 1224 1225 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1226 } 1227 case IITDescriptor::TruncArgument: { 1228 Type *Ty = Tys[D.getArgumentNumber()]; 1229 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1230 return VectorType::getTruncatedElementVectorType(VTy); 1231 1232 IntegerType *ITy = cast<IntegerType>(Ty); 1233 assert(ITy->getBitWidth() % 2 == 0); 1234 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1235 } 1236 case IITDescriptor::Subdivide2Argument: 1237 case IITDescriptor::Subdivide4Argument: { 1238 Type *Ty = Tys[D.getArgumentNumber()]; 1239 VectorType *VTy = dyn_cast<VectorType>(Ty); 1240 assert(VTy && "Expected an argument of Vector Type"); 1241 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1242 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1243 } 1244 case IITDescriptor::HalfVecArgument: 1245 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1246 Tys[D.getArgumentNumber()])); 1247 case IITDescriptor::SameVecWidthArgument: { 1248 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1249 Type *Ty = Tys[D.getArgumentNumber()]; 1250 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1251 return VectorType::get(EltTy, VTy->getElementCount()); 1252 return EltTy; 1253 } 1254 case IITDescriptor::PtrToArgument: { 1255 Type *Ty = Tys[D.getArgumentNumber()]; 1256 return PointerType::getUnqual(Ty); 1257 } 1258 case IITDescriptor::PtrToElt: { 1259 Type *Ty = Tys[D.getArgumentNumber()]; 1260 VectorType *VTy = dyn_cast<VectorType>(Ty); 1261 if (!VTy) 1262 llvm_unreachable("Expected an argument of Vector Type"); 1263 Type *EltTy = VTy->getElementType(); 1264 return PointerType::getUnqual(EltTy); 1265 } 1266 case IITDescriptor::VecElementArgument: { 1267 Type *Ty = Tys[D.getArgumentNumber()]; 1268 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1269 return VTy->getElementType(); 1270 llvm_unreachable("Expected an argument of Vector Type"); 1271 } 1272 case IITDescriptor::VecOfBitcastsToInt: { 1273 Type *Ty = Tys[D.getArgumentNumber()]; 1274 VectorType *VTy = dyn_cast<VectorType>(Ty); 1275 assert(VTy && "Expected an argument of Vector Type"); 1276 return VectorType::getInteger(VTy); 1277 } 1278 case IITDescriptor::VecOfAnyPtrsToElt: 1279 // Return the overloaded type (which determines the pointers address space) 1280 return Tys[D.getOverloadArgNumber()]; 1281 } 1282 llvm_unreachable("unhandled"); 1283 } 1284 1285 FunctionType *Intrinsic::getType(LLVMContext &Context, 1286 ID id, ArrayRef<Type*> Tys) { 1287 SmallVector<IITDescriptor, 8> Table; 1288 getIntrinsicInfoTableEntries(id, Table); 1289 1290 ArrayRef<IITDescriptor> TableRef = Table; 1291 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1292 1293 SmallVector<Type*, 8> ArgTys; 1294 while (!TableRef.empty()) 1295 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1296 1297 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1298 // If we see void type as the type of the last argument, it is vararg intrinsic 1299 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1300 ArgTys.pop_back(); 1301 return FunctionType::get(ResultTy, ArgTys, true); 1302 } 1303 return FunctionType::get(ResultTy, ArgTys, false); 1304 } 1305 1306 bool Intrinsic::isOverloaded(ID id) { 1307 #define GET_INTRINSIC_OVERLOAD_TABLE 1308 #include "llvm/IR/IntrinsicImpl.inc" 1309 #undef GET_INTRINSIC_OVERLOAD_TABLE 1310 } 1311 1312 bool Intrinsic::isLeaf(ID id) { 1313 switch (id) { 1314 default: 1315 return true; 1316 1317 case Intrinsic::experimental_gc_statepoint: 1318 case Intrinsic::experimental_patchpoint_void: 1319 case Intrinsic::experimental_patchpoint_i64: 1320 return false; 1321 } 1322 } 1323 1324 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1325 #define GET_INTRINSIC_ATTRIBUTES 1326 #include "llvm/IR/IntrinsicImpl.inc" 1327 #undef GET_INTRINSIC_ATTRIBUTES 1328 1329 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1330 // There can never be multiple globals with the same name of different types, 1331 // because intrinsics must be a specific type. 1332 auto *FT = getType(M->getContext(), id, Tys); 1333 return cast<Function>( 1334 M->getOrInsertFunction(Tys.empty() ? getName(id) 1335 : getName(id, Tys, M, FT), 1336 getType(M->getContext(), id, Tys)) 1337 .getCallee()); 1338 } 1339 1340 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1341 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1342 #include "llvm/IR/IntrinsicImpl.inc" 1343 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1344 1345 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1346 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1347 #include "llvm/IR/IntrinsicImpl.inc" 1348 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1349 1350 using DeferredIntrinsicMatchPair = 1351 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1352 1353 static bool matchIntrinsicType( 1354 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1355 SmallVectorImpl<Type *> &ArgTys, 1356 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1357 bool IsDeferredCheck) { 1358 using namespace Intrinsic; 1359 1360 // If we ran out of descriptors, there are too many arguments. 1361 if (Infos.empty()) return true; 1362 1363 // Do this before slicing off the 'front' part 1364 auto InfosRef = Infos; 1365 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1366 DeferredChecks.emplace_back(T, InfosRef); 1367 return false; 1368 }; 1369 1370 IITDescriptor D = Infos.front(); 1371 Infos = Infos.slice(1); 1372 1373 switch (D.Kind) { 1374 case IITDescriptor::Void: return !Ty->isVoidTy(); 1375 case IITDescriptor::VarArg: return true; 1376 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1377 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1378 case IITDescriptor::Token: return !Ty->isTokenTy(); 1379 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1380 case IITDescriptor::Half: return !Ty->isHalfTy(); 1381 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1382 case IITDescriptor::Float: return !Ty->isFloatTy(); 1383 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1384 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1385 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1386 case IITDescriptor::Vector: { 1387 VectorType *VT = dyn_cast<VectorType>(Ty); 1388 return !VT || VT->getElementCount() != D.Vector_Width || 1389 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1390 DeferredChecks, IsDeferredCheck); 1391 } 1392 case IITDescriptor::Pointer: { 1393 PointerType *PT = dyn_cast<PointerType>(Ty); 1394 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1395 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1396 DeferredChecks, IsDeferredCheck); 1397 } 1398 1399 case IITDescriptor::Struct: { 1400 StructType *ST = dyn_cast<StructType>(Ty); 1401 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1402 return true; 1403 1404 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1405 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1406 DeferredChecks, IsDeferredCheck)) 1407 return true; 1408 return false; 1409 } 1410 1411 case IITDescriptor::Argument: 1412 // If this is the second occurrence of an argument, 1413 // verify that the later instance matches the previous instance. 1414 if (D.getArgumentNumber() < ArgTys.size()) 1415 return Ty != ArgTys[D.getArgumentNumber()]; 1416 1417 if (D.getArgumentNumber() > ArgTys.size() || 1418 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1419 return IsDeferredCheck || DeferCheck(Ty); 1420 1421 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1422 "Table consistency error"); 1423 ArgTys.push_back(Ty); 1424 1425 switch (D.getArgumentKind()) { 1426 case IITDescriptor::AK_Any: return false; // Success 1427 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1428 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1429 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1430 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1431 default: break; 1432 } 1433 llvm_unreachable("all argument kinds not covered"); 1434 1435 case IITDescriptor::ExtendArgument: { 1436 // If this is a forward reference, defer the check for later. 1437 if (D.getArgumentNumber() >= ArgTys.size()) 1438 return IsDeferredCheck || DeferCheck(Ty); 1439 1440 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1441 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1442 NewTy = VectorType::getExtendedElementVectorType(VTy); 1443 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1444 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1445 else 1446 return true; 1447 1448 return Ty != NewTy; 1449 } 1450 case IITDescriptor::TruncArgument: { 1451 // If this is a forward reference, defer the check for later. 1452 if (D.getArgumentNumber() >= ArgTys.size()) 1453 return IsDeferredCheck || DeferCheck(Ty); 1454 1455 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1456 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1457 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1458 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1459 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1460 else 1461 return true; 1462 1463 return Ty != NewTy; 1464 } 1465 case IITDescriptor::HalfVecArgument: 1466 // If this is a forward reference, defer the check for later. 1467 if (D.getArgumentNumber() >= ArgTys.size()) 1468 return IsDeferredCheck || DeferCheck(Ty); 1469 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1470 VectorType::getHalfElementsVectorType( 1471 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1472 case IITDescriptor::SameVecWidthArgument: { 1473 if (D.getArgumentNumber() >= ArgTys.size()) { 1474 // Defer check and subsequent check for the vector element type. 1475 Infos = Infos.slice(1); 1476 return IsDeferredCheck || DeferCheck(Ty); 1477 } 1478 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1479 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1480 // Both must be vectors of the same number of elements or neither. 1481 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1482 return true; 1483 Type *EltTy = Ty; 1484 if (ThisArgType) { 1485 if (ReferenceType->getElementCount() != 1486 ThisArgType->getElementCount()) 1487 return true; 1488 EltTy = ThisArgType->getElementType(); 1489 } 1490 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1491 IsDeferredCheck); 1492 } 1493 case IITDescriptor::PtrToArgument: { 1494 if (D.getArgumentNumber() >= ArgTys.size()) 1495 return IsDeferredCheck || DeferCheck(Ty); 1496 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1497 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1498 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1499 } 1500 case IITDescriptor::PtrToElt: { 1501 if (D.getArgumentNumber() >= ArgTys.size()) 1502 return IsDeferredCheck || DeferCheck(Ty); 1503 VectorType * ReferenceType = 1504 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1505 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1506 1507 return (!ThisArgType || !ReferenceType || 1508 ThisArgType->getElementType() != ReferenceType->getElementType()); 1509 } 1510 case IITDescriptor::VecOfAnyPtrsToElt: { 1511 unsigned RefArgNumber = D.getRefArgNumber(); 1512 if (RefArgNumber >= ArgTys.size()) { 1513 if (IsDeferredCheck) 1514 return true; 1515 // If forward referencing, already add the pointer-vector type and 1516 // defer the checks for later. 1517 ArgTys.push_back(Ty); 1518 return DeferCheck(Ty); 1519 } 1520 1521 if (!IsDeferredCheck){ 1522 assert(D.getOverloadArgNumber() == ArgTys.size() && 1523 "Table consistency error"); 1524 ArgTys.push_back(Ty); 1525 } 1526 1527 // Verify the overloaded type "matches" the Ref type. 1528 // i.e. Ty is a vector with the same width as Ref. 1529 // Composed of pointers to the same element type as Ref. 1530 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1531 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1532 if (!ThisArgVecTy || !ReferenceType || 1533 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1534 return true; 1535 PointerType *ThisArgEltTy = 1536 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1537 if (!ThisArgEltTy) 1538 return true; 1539 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1540 } 1541 case IITDescriptor::VecElementArgument: { 1542 if (D.getArgumentNumber() >= ArgTys.size()) 1543 return IsDeferredCheck ? true : DeferCheck(Ty); 1544 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1545 return !ReferenceType || Ty != ReferenceType->getElementType(); 1546 } 1547 case IITDescriptor::Subdivide2Argument: 1548 case IITDescriptor::Subdivide4Argument: { 1549 // If this is a forward reference, defer the check for later. 1550 if (D.getArgumentNumber() >= ArgTys.size()) 1551 return IsDeferredCheck || DeferCheck(Ty); 1552 1553 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1554 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1555 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1556 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1557 return Ty != NewTy; 1558 } 1559 return true; 1560 } 1561 case IITDescriptor::VecOfBitcastsToInt: { 1562 if (D.getArgumentNumber() >= ArgTys.size()) 1563 return IsDeferredCheck || DeferCheck(Ty); 1564 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1565 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1566 if (!ThisArgVecTy || !ReferenceType) 1567 return true; 1568 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1569 } 1570 } 1571 llvm_unreachable("unhandled"); 1572 } 1573 1574 Intrinsic::MatchIntrinsicTypesResult 1575 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1576 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1577 SmallVectorImpl<Type *> &ArgTys) { 1578 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1579 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1580 false)) 1581 return MatchIntrinsicTypes_NoMatchRet; 1582 1583 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1584 1585 for (auto Ty : FTy->params()) 1586 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1587 return MatchIntrinsicTypes_NoMatchArg; 1588 1589 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1590 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1591 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1592 true)) 1593 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1594 : MatchIntrinsicTypes_NoMatchArg; 1595 } 1596 1597 return MatchIntrinsicTypes_Match; 1598 } 1599 1600 bool 1601 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1602 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1603 // If there are no descriptors left, then it can't be a vararg. 1604 if (Infos.empty()) 1605 return isVarArg; 1606 1607 // There should be only one descriptor remaining at this point. 1608 if (Infos.size() != 1) 1609 return true; 1610 1611 // Check and verify the descriptor. 1612 IITDescriptor D = Infos.front(); 1613 Infos = Infos.slice(1); 1614 if (D.Kind == IITDescriptor::VarArg) 1615 return !isVarArg; 1616 1617 return true; 1618 } 1619 1620 bool Intrinsic::getIntrinsicSignature(Function *F, 1621 SmallVectorImpl<Type *> &ArgTys) { 1622 Intrinsic::ID ID = F->getIntrinsicID(); 1623 if (!ID) 1624 return false; 1625 1626 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1627 getIntrinsicInfoTableEntries(ID, Table); 1628 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1629 1630 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1631 ArgTys) != 1632 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1633 return false; 1634 } 1635 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1636 TableRef)) 1637 return false; 1638 return true; 1639 } 1640 1641 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1642 SmallVector<Type *, 4> ArgTys; 1643 if (!getIntrinsicSignature(F, ArgTys)) 1644 return None; 1645 1646 Intrinsic::ID ID = F->getIntrinsicID(); 1647 StringRef Name = F->getName(); 1648 if (Name == 1649 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType())) 1650 return None; 1651 1652 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1653 NewDecl->setCallingConv(F->getCallingConv()); 1654 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1655 "Shouldn't change the signature"); 1656 return NewDecl; 1657 } 1658 1659 /// hasAddressTaken - returns true if there are any uses of this function 1660 /// other than direct calls or invokes to it. Optionally ignores callback 1661 /// uses, assume like pointer annotation calls, and references in llvm.used 1662 /// and llvm.compiler.used variables. 1663 bool Function::hasAddressTaken(const User **PutOffender, 1664 bool IgnoreCallbackUses, 1665 bool IgnoreAssumeLikeCalls, 1666 bool IgnoreLLVMUsed) const { 1667 for (const Use &U : uses()) { 1668 const User *FU = U.getUser(); 1669 if (isa<BlockAddress>(FU)) 1670 continue; 1671 1672 if (IgnoreCallbackUses) { 1673 AbstractCallSite ACS(&U); 1674 if (ACS && ACS.isCallbackCall()) 1675 continue; 1676 } 1677 1678 const auto *Call = dyn_cast<CallBase>(FU); 1679 if (!Call) { 1680 if (IgnoreAssumeLikeCalls) { 1681 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1682 if (FI->isCast() && !FI->user_empty() && 1683 llvm::all_of(FU->users(), [](const User *U) { 1684 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1685 return I->isAssumeLikeIntrinsic(); 1686 return false; 1687 })) 1688 continue; 1689 } 1690 } 1691 if (IgnoreLLVMUsed && !FU->user_empty()) { 1692 const User *FUU = FU; 1693 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1694 !FU->user_begin()->user_empty()) 1695 FUU = *FU->user_begin(); 1696 if (llvm::all_of(FUU->users(), [](const User *U) { 1697 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1698 return GV->hasName() && 1699 (GV->getName().equals("llvm.compiler.used") || 1700 GV->getName().equals("llvm.used")); 1701 return false; 1702 })) 1703 continue; 1704 } 1705 if (PutOffender) 1706 *PutOffender = FU; 1707 return true; 1708 } 1709 if (!Call->isCallee(&U)) { 1710 if (PutOffender) 1711 *PutOffender = FU; 1712 return true; 1713 } 1714 } 1715 return false; 1716 } 1717 1718 bool Function::isDefTriviallyDead() const { 1719 // Check the linkage 1720 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1721 !hasAvailableExternallyLinkage()) 1722 return false; 1723 1724 // Check if the function is used by anything other than a blockaddress. 1725 for (const User *U : users()) 1726 if (!isa<BlockAddress>(U)) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1733 /// setjmp or other function that gcc recognizes as "returning twice". 1734 bool Function::callsFunctionThatReturnsTwice() const { 1735 for (const Instruction &I : instructions(this)) 1736 if (const auto *Call = dyn_cast<CallBase>(&I)) 1737 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1738 return true; 1739 1740 return false; 1741 } 1742 1743 Constant *Function::getPersonalityFn() const { 1744 assert(hasPersonalityFn() && getNumOperands()); 1745 return cast<Constant>(Op<0>()); 1746 } 1747 1748 void Function::setPersonalityFn(Constant *Fn) { 1749 setHungoffOperand<0>(Fn); 1750 setValueSubclassDataBit(3, Fn != nullptr); 1751 } 1752 1753 Constant *Function::getPrefixData() const { 1754 assert(hasPrefixData() && getNumOperands()); 1755 return cast<Constant>(Op<1>()); 1756 } 1757 1758 void Function::setPrefixData(Constant *PrefixData) { 1759 setHungoffOperand<1>(PrefixData); 1760 setValueSubclassDataBit(1, PrefixData != nullptr); 1761 } 1762 1763 Constant *Function::getPrologueData() const { 1764 assert(hasPrologueData() && getNumOperands()); 1765 return cast<Constant>(Op<2>()); 1766 } 1767 1768 void Function::setPrologueData(Constant *PrologueData) { 1769 setHungoffOperand<2>(PrologueData); 1770 setValueSubclassDataBit(2, PrologueData != nullptr); 1771 } 1772 1773 void Function::allocHungoffUselist() { 1774 // If we've already allocated a uselist, stop here. 1775 if (getNumOperands()) 1776 return; 1777 1778 allocHungoffUses(3, /*IsPhi=*/ false); 1779 setNumHungOffUseOperands(3); 1780 1781 // Initialize the uselist with placeholder operands to allow traversal. 1782 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1783 Op<0>().set(CPN); 1784 Op<1>().set(CPN); 1785 Op<2>().set(CPN); 1786 } 1787 1788 template <int Idx> 1789 void Function::setHungoffOperand(Constant *C) { 1790 if (C) { 1791 allocHungoffUselist(); 1792 Op<Idx>().set(C); 1793 } else if (getNumOperands()) { 1794 Op<Idx>().set( 1795 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1796 } 1797 } 1798 1799 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1800 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1801 if (On) 1802 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1803 else 1804 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1805 } 1806 1807 void Function::setEntryCount(ProfileCount Count, 1808 const DenseSet<GlobalValue::GUID> *S) { 1809 assert(Count.hasValue()); 1810 #if !defined(NDEBUG) 1811 auto PrevCount = getEntryCount(); 1812 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1813 #endif 1814 1815 auto ImportGUIDs = getImportGUIDs(); 1816 if (S == nullptr && ImportGUIDs.size()) 1817 S = &ImportGUIDs; 1818 1819 MDBuilder MDB(getContext()); 1820 setMetadata( 1821 LLVMContext::MD_prof, 1822 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1823 } 1824 1825 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1826 const DenseSet<GlobalValue::GUID> *Imports) { 1827 setEntryCount(ProfileCount(Count, Type), Imports); 1828 } 1829 1830 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1831 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1832 if (MD && MD->getOperand(0)) 1833 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1834 if (MDS->getString().equals("function_entry_count")) { 1835 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1836 uint64_t Count = CI->getValue().getZExtValue(); 1837 // A value of -1 is used for SamplePGO when there were no samples. 1838 // Treat this the same as unknown. 1839 if (Count == (uint64_t)-1) 1840 return ProfileCount::getInvalid(); 1841 return ProfileCount(Count, PCT_Real); 1842 } else if (AllowSynthetic && 1843 MDS->getString().equals("synthetic_function_entry_count")) { 1844 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1845 uint64_t Count = CI->getValue().getZExtValue(); 1846 return ProfileCount(Count, PCT_Synthetic); 1847 } 1848 } 1849 return ProfileCount::getInvalid(); 1850 } 1851 1852 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1853 DenseSet<GlobalValue::GUID> R; 1854 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1855 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1856 if (MDS->getString().equals("function_entry_count")) 1857 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1858 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1859 ->getValue() 1860 .getZExtValue()); 1861 return R; 1862 } 1863 1864 void Function::setSectionPrefix(StringRef Prefix) { 1865 MDBuilder MDB(getContext()); 1866 setMetadata(LLVMContext::MD_section_prefix, 1867 MDB.createFunctionSectionPrefix(Prefix)); 1868 } 1869 1870 Optional<StringRef> Function::getSectionPrefix() const { 1871 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1872 assert(cast<MDString>(MD->getOperand(0)) 1873 ->getString() 1874 .equals("function_section_prefix") && 1875 "Metadata not match"); 1876 return cast<MDString>(MD->getOperand(1))->getString(); 1877 } 1878 return None; 1879 } 1880 1881 bool Function::nullPointerIsDefined() const { 1882 return hasFnAttribute(Attribute::NullPointerIsValid); 1883 } 1884 1885 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1886 if (F && F->nullPointerIsDefined()) 1887 return true; 1888 1889 if (AS != 0) 1890 return true; 1891 1892 return false; 1893 } 1894