xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 89f8ba2855789c6c8b445af0e1aa82d5f5cf940a)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 void Function::convertToNewDbgValues() {
87   IsNewDbgInfoFormat = true;
88   for (auto &BB : *this) {
89     BB.convertToNewDbgValues();
90   }
91 }
92 
93 void Function::convertFromNewDbgValues() {
94   IsNewDbgInfoFormat = false;
95   for (auto &BB : *this) {
96     BB.convertFromNewDbgValues();
97   }
98 }
99 
100 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
101   if (NewFlag && !IsNewDbgInfoFormat)
102     convertToNewDbgValues();
103   else if (!NewFlag && IsNewDbgInfoFormat)
104     convertFromNewDbgValues();
105 }
106 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
107   for (auto &BB : *this) {
108     BB.setNewDbgInfoFormatFlag(NewFlag);
109   }
110   IsNewDbgInfoFormat = NewFlag;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Argument Implementation
115 //===----------------------------------------------------------------------===//
116 
117 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
118     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
119   setName(Name);
120 }
121 
122 void Argument::setParent(Function *parent) {
123   Parent = parent;
124 }
125 
126 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
127   if (!getType()->isPointerTy()) return false;
128   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
129       (AllowUndefOrPoison ||
130        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
131     return true;
132   else if (getDereferenceableBytes() > 0 &&
133            !NullPointerIsDefined(getParent(),
134                                  getType()->getPointerAddressSpace()))
135     return true;
136   return false;
137 }
138 
139 bool Argument::hasByValAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   return hasAttribute(Attribute::ByVal);
142 }
143 
144 bool Argument::hasByRefAttr() const {
145   if (!getType()->isPointerTy())
146     return false;
147   return hasAttribute(Attribute::ByRef);
148 }
149 
150 bool Argument::hasSwiftSelfAttr() const {
151   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
152 }
153 
154 bool Argument::hasSwiftErrorAttr() const {
155   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
156 }
157 
158 bool Argument::hasInAllocaAttr() const {
159   if (!getType()->isPointerTy()) return false;
160   return hasAttribute(Attribute::InAlloca);
161 }
162 
163 bool Argument::hasPreallocatedAttr() const {
164   if (!getType()->isPointerTy())
165     return false;
166   return hasAttribute(Attribute::Preallocated);
167 }
168 
169 bool Argument::hasPassPointeeByValueCopyAttr() const {
170   if (!getType()->isPointerTy()) return false;
171   AttributeList Attrs = getParent()->getAttributes();
172   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
173          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
174          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
175 }
176 
177 bool Argument::hasPointeeInMemoryValueAttr() const {
178   if (!getType()->isPointerTy())
179     return false;
180   AttributeList Attrs = getParent()->getAttributes();
181   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
182          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
183          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
186 }
187 
188 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
189 /// parameter type.
190 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
191   // FIXME: All the type carrying attributes are mutually exclusive, so there
192   // should be a single query to get the stored type that handles any of them.
193   if (Type *ByValTy = ParamAttrs.getByValType())
194     return ByValTy;
195   if (Type *ByRefTy = ParamAttrs.getByRefType())
196     return ByRefTy;
197   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
198     return PreAllocTy;
199   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
200     return InAllocaTy;
201   if (Type *SRetTy = ParamAttrs.getStructRetType())
202     return SRetTy;
203 
204   return nullptr;
205 }
206 
207 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
208   AttributeSet ParamAttrs =
209       getParent()->getAttributes().getParamAttrs(getArgNo());
210   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
211     return DL.getTypeAllocSize(MemTy);
212   return 0;
213 }
214 
215 Type *Argument::getPointeeInMemoryValueType() const {
216   AttributeSet ParamAttrs =
217       getParent()->getAttributes().getParamAttrs(getArgNo());
218   return getMemoryParamAllocType(ParamAttrs);
219 }
220 
221 MaybeAlign Argument::getParamAlign() const {
222   assert(getType()->isPointerTy() && "Only pointers have alignments");
223   return getParent()->getParamAlign(getArgNo());
224 }
225 
226 MaybeAlign Argument::getParamStackAlign() const {
227   return getParent()->getParamStackAlign(getArgNo());
228 }
229 
230 Type *Argument::getParamByValType() const {
231   assert(getType()->isPointerTy() && "Only pointers have byval types");
232   return getParent()->getParamByValType(getArgNo());
233 }
234 
235 Type *Argument::getParamStructRetType() const {
236   assert(getType()->isPointerTy() && "Only pointers have sret types");
237   return getParent()->getParamStructRetType(getArgNo());
238 }
239 
240 Type *Argument::getParamByRefType() const {
241   assert(getType()->isPointerTy() && "Only pointers have byref types");
242   return getParent()->getParamByRefType(getArgNo());
243 }
244 
245 Type *Argument::getParamInAllocaType() const {
246   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
247   return getParent()->getParamInAllocaType(getArgNo());
248 }
249 
250 uint64_t Argument::getDereferenceableBytes() const {
251   assert(getType()->isPointerTy() &&
252          "Only pointers have dereferenceable bytes");
253   return getParent()->getParamDereferenceableBytes(getArgNo());
254 }
255 
256 uint64_t Argument::getDereferenceableOrNullBytes() const {
257   assert(getType()->isPointerTy() &&
258          "Only pointers have dereferenceable bytes");
259   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
260 }
261 
262 FPClassTest Argument::getNoFPClass() const {
263   return getParent()->getParamNoFPClass(getArgNo());
264 }
265 
266 std::optional<ConstantRange> Argument::getRange() const {
267   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
268   if (RangeAttr.isValid())
269     return RangeAttr.getRange();
270   return std::nullopt;
271 }
272 
273 bool Argument::hasNestAttr() const {
274   if (!getType()->isPointerTy()) return false;
275   return hasAttribute(Attribute::Nest);
276 }
277 
278 bool Argument::hasNoAliasAttr() const {
279   if (!getType()->isPointerTy()) return false;
280   return hasAttribute(Attribute::NoAlias);
281 }
282 
283 bool Argument::hasNoCaptureAttr() const {
284   if (!getType()->isPointerTy()) return false;
285   return hasAttribute(Attribute::NoCapture);
286 }
287 
288 bool Argument::hasNoFreeAttr() const {
289   if (!getType()->isPointerTy()) return false;
290   return hasAttribute(Attribute::NoFree);
291 }
292 
293 bool Argument::hasStructRetAttr() const {
294   if (!getType()->isPointerTy()) return false;
295   return hasAttribute(Attribute::StructRet);
296 }
297 
298 bool Argument::hasInRegAttr() const {
299   return hasAttribute(Attribute::InReg);
300 }
301 
302 bool Argument::hasReturnedAttr() const {
303   return hasAttribute(Attribute::Returned);
304 }
305 
306 bool Argument::hasZExtAttr() const {
307   return hasAttribute(Attribute::ZExt);
308 }
309 
310 bool Argument::hasSExtAttr() const {
311   return hasAttribute(Attribute::SExt);
312 }
313 
314 bool Argument::onlyReadsMemory() const {
315   AttributeList Attrs = getParent()->getAttributes();
316   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
317          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
318 }
319 
320 void Argument::addAttrs(AttrBuilder &B) {
321   AttributeList AL = getParent()->getAttributes();
322   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
323   getParent()->setAttributes(AL);
324 }
325 
326 void Argument::addAttr(Attribute::AttrKind Kind) {
327   getParent()->addParamAttr(getArgNo(), Kind);
328 }
329 
330 void Argument::addAttr(Attribute Attr) {
331   getParent()->addParamAttr(getArgNo(), Attr);
332 }
333 
334 void Argument::removeAttr(Attribute::AttrKind Kind) {
335   getParent()->removeParamAttr(getArgNo(), Kind);
336 }
337 
338 void Argument::removeAttrs(const AttributeMask &AM) {
339   AttributeList AL = getParent()->getAttributes();
340   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
341   getParent()->setAttributes(AL);
342 }
343 
344 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
345   return getParent()->hasParamAttribute(getArgNo(), Kind);
346 }
347 
348 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
349   return getParent()->getParamAttribute(getArgNo(), Kind);
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // Helper Methods in Function
354 //===----------------------------------------------------------------------===//
355 
356 LLVMContext &Function::getContext() const {
357   return getType()->getContext();
358 }
359 
360 unsigned Function::getInstructionCount() const {
361   unsigned NumInstrs = 0;
362   for (const BasicBlock &BB : BasicBlocks)
363     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
364                                BB.instructionsWithoutDebug().end());
365   return NumInstrs;
366 }
367 
368 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
369                            const Twine &N, Module &M) {
370   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
371 }
372 
373 Function *Function::createWithDefaultAttr(FunctionType *Ty,
374                                           LinkageTypes Linkage,
375                                           unsigned AddrSpace, const Twine &N,
376                                           Module *M) {
377   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
378   AttrBuilder B(F->getContext());
379   UWTableKind UWTable = M->getUwtable();
380   if (UWTable != UWTableKind::None)
381     B.addUWTableAttr(UWTable);
382   switch (M->getFramePointer()) {
383   case FramePointerKind::None:
384     // 0 ("none") is the default.
385     break;
386   case FramePointerKind::NonLeaf:
387     B.addAttribute("frame-pointer", "non-leaf");
388     break;
389   case FramePointerKind::All:
390     B.addAttribute("frame-pointer", "all");
391     break;
392   }
393   if (M->getModuleFlag("function_return_thunk_extern"))
394     B.addAttribute(Attribute::FnRetThunkExtern);
395   F->addFnAttrs(B);
396   return F;
397 }
398 
399 void Function::removeFromParent() {
400   getParent()->getFunctionList().remove(getIterator());
401 }
402 
403 void Function::eraseFromParent() {
404   getParent()->getFunctionList().erase(getIterator());
405 }
406 
407 void Function::splice(Function::iterator ToIt, Function *FromF,
408                       Function::iterator FromBeginIt,
409                       Function::iterator FromEndIt) {
410 #ifdef EXPENSIVE_CHECKS
411   // Check that FromBeginIt is before FromEndIt.
412   auto FromFEnd = FromF->end();
413   for (auto It = FromBeginIt; It != FromEndIt; ++It)
414     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
415 #endif // EXPENSIVE_CHECKS
416   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
417 }
418 
419 Function::iterator Function::erase(Function::iterator FromIt,
420                                    Function::iterator ToIt) {
421   return BasicBlocks.erase(FromIt, ToIt);
422 }
423 
424 //===----------------------------------------------------------------------===//
425 // Function Implementation
426 //===----------------------------------------------------------------------===//
427 
428 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
429   // If AS == -1 and we are passed a valid module pointer we place the function
430   // in the program address space. Otherwise we default to AS0.
431   if (AddrSpace == static_cast<unsigned>(-1))
432     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
433   return AddrSpace;
434 }
435 
436 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
437                    const Twine &name, Module *ParentModule)
438     : GlobalObject(Ty, Value::FunctionVal,
439                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
440                    computeAddrSpace(AddrSpace, ParentModule)),
441       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) {
442   assert(FunctionType::isValidReturnType(getReturnType()) &&
443          "invalid return type");
444   setGlobalObjectSubClassData(0);
445 
446   // We only need a symbol table for a function if the context keeps value names
447   if (!getContext().shouldDiscardValueNames())
448     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
449 
450   // If the function has arguments, mark them as lazily built.
451   if (Ty->getNumParams())
452     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
453 
454   if (ParentModule) {
455     ParentModule->getFunctionList().push_back(this);
456     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
457   }
458 
459   HasLLVMReservedName = getName().starts_with("llvm.");
460   // Ensure intrinsics have the right parameter attributes.
461   // Note, the IntID field will have been set in Value::setName if this function
462   // name is a valid intrinsic ID.
463   if (IntID)
464     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
465 }
466 
467 Function::~Function() {
468   dropAllReferences();    // After this it is safe to delete instructions.
469 
470   // Delete all of the method arguments and unlink from symbol table...
471   if (Arguments)
472     clearArguments();
473 
474   // Remove the function from the on-the-side GC table.
475   clearGC();
476 }
477 
478 void Function::BuildLazyArguments() const {
479   // Create the arguments vector, all arguments start out unnamed.
480   auto *FT = getFunctionType();
481   if (NumArgs > 0) {
482     Arguments = std::allocator<Argument>().allocate(NumArgs);
483     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
484       Type *ArgTy = FT->getParamType(i);
485       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
486       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
487     }
488   }
489 
490   // Clear the lazy arguments bit.
491   unsigned SDC = getSubclassDataFromValue();
492   SDC &= ~(1 << 0);
493   const_cast<Function*>(this)->setValueSubclassData(SDC);
494   assert(!hasLazyArguments());
495 }
496 
497 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
498   return MutableArrayRef<Argument>(Args, Count);
499 }
500 
501 bool Function::isConstrainedFPIntrinsic() const {
502   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
503 }
504 
505 void Function::clearArguments() {
506   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
507     A.setName("");
508     A.~Argument();
509   }
510   std::allocator<Argument>().deallocate(Arguments, NumArgs);
511   Arguments = nullptr;
512 }
513 
514 void Function::stealArgumentListFrom(Function &Src) {
515   assert(isDeclaration() && "Expected no references to current arguments");
516 
517   // Drop the current arguments, if any, and set the lazy argument bit.
518   if (!hasLazyArguments()) {
519     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
520                         [](const Argument &A) { return A.use_empty(); }) &&
521            "Expected arguments to be unused in declaration");
522     clearArguments();
523     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
524   }
525 
526   // Nothing to steal if Src has lazy arguments.
527   if (Src.hasLazyArguments())
528     return;
529 
530   // Steal arguments from Src, and fix the lazy argument bits.
531   assert(arg_size() == Src.arg_size());
532   Arguments = Src.Arguments;
533   Src.Arguments = nullptr;
534   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
535     // FIXME: This does the work of transferNodesFromList inefficiently.
536     SmallString<128> Name;
537     if (A.hasName())
538       Name = A.getName();
539     if (!Name.empty())
540       A.setName("");
541     A.setParent(this);
542     if (!Name.empty())
543       A.setName(Name);
544   }
545 
546   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
547   assert(!hasLazyArguments());
548   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
549 }
550 
551 void Function::deleteBodyImpl(bool ShouldDrop) {
552   setIsMaterializable(false);
553 
554   for (BasicBlock &BB : *this)
555     BB.dropAllReferences();
556 
557   // Delete all basic blocks. They are now unused, except possibly by
558   // blockaddresses, but BasicBlock's destructor takes care of those.
559   while (!BasicBlocks.empty())
560     BasicBlocks.begin()->eraseFromParent();
561 
562   if (getNumOperands()) {
563     if (ShouldDrop) {
564       // Drop uses of any optional data (real or placeholder).
565       User::dropAllReferences();
566       setNumHungOffUseOperands(0);
567     } else {
568       // The code needs to match Function::allocHungoffUselist().
569       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
570       Op<0>().set(CPN);
571       Op<1>().set(CPN);
572       Op<2>().set(CPN);
573     }
574     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
575   }
576 
577   // Metadata is stored in a side-table.
578   clearMetadata();
579 }
580 
581 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
582   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
583 }
584 
585 void Function::addFnAttr(Attribute::AttrKind Kind) {
586   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
587 }
588 
589 void Function::addFnAttr(StringRef Kind, StringRef Val) {
590   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
591 }
592 
593 void Function::addFnAttr(Attribute Attr) {
594   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
595 }
596 
597 void Function::addFnAttrs(const AttrBuilder &Attrs) {
598   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
599 }
600 
601 void Function::addRetAttr(Attribute::AttrKind Kind) {
602   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
603 }
604 
605 void Function::addRetAttr(Attribute Attr) {
606   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
607 }
608 
609 void Function::addRetAttrs(const AttrBuilder &Attrs) {
610   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
611 }
612 
613 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
614   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
615 }
616 
617 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
618   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
619 }
620 
621 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
622   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
623 }
624 
625 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
626   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
627 }
628 
629 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
630   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
631 }
632 
633 void Function::removeFnAttr(Attribute::AttrKind Kind) {
634   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
635 }
636 
637 void Function::removeFnAttr(StringRef Kind) {
638   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
639 }
640 
641 void Function::removeFnAttrs(const AttributeMask &AM) {
642   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
643 }
644 
645 void Function::removeRetAttr(Attribute::AttrKind Kind) {
646   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
647 }
648 
649 void Function::removeRetAttr(StringRef Kind) {
650   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
651 }
652 
653 void Function::removeRetAttrs(const AttributeMask &Attrs) {
654   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
655 }
656 
657 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
658   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
659 }
660 
661 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
662   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
663 }
664 
665 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
666   AttributeSets =
667       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
668 }
669 
670 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
671   AttributeSets =
672       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
673 }
674 
675 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
676   return AttributeSets.hasFnAttr(Kind);
677 }
678 
679 bool Function::hasFnAttribute(StringRef Kind) const {
680   return AttributeSets.hasFnAttr(Kind);
681 }
682 
683 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
684   return AttributeSets.hasRetAttr(Kind);
685 }
686 
687 bool Function::hasParamAttribute(unsigned ArgNo,
688                                  Attribute::AttrKind Kind) const {
689   return AttributeSets.hasParamAttr(ArgNo, Kind);
690 }
691 
692 Attribute Function::getAttributeAtIndex(unsigned i,
693                                         Attribute::AttrKind Kind) const {
694   return AttributeSets.getAttributeAtIndex(i, Kind);
695 }
696 
697 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
698   return AttributeSets.getAttributeAtIndex(i, Kind);
699 }
700 
701 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
702   return AttributeSets.getFnAttr(Kind);
703 }
704 
705 Attribute Function::getFnAttribute(StringRef Kind) const {
706   return AttributeSets.getFnAttr(Kind);
707 }
708 
709 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
710   return AttributeSets.getRetAttr(Kind);
711 }
712 
713 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
714                                                  uint64_t Default) const {
715   Attribute A = getFnAttribute(Name);
716   uint64_t Result = Default;
717   if (A.isStringAttribute()) {
718     StringRef Str = A.getValueAsString();
719     if (Str.getAsInteger(0, Result))
720       getContext().emitError("cannot parse integer attribute " + Name);
721   }
722 
723   return Result;
724 }
725 
726 /// gets the specified attribute from the list of attributes.
727 Attribute Function::getParamAttribute(unsigned ArgNo,
728                                       Attribute::AttrKind Kind) const {
729   return AttributeSets.getParamAttr(ArgNo, Kind);
730 }
731 
732 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
733                                                  uint64_t Bytes) {
734   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
735                                                                   ArgNo, Bytes);
736 }
737 
738 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
739   if (&FPType == &APFloat::IEEEsingle()) {
740     DenormalMode Mode = getDenormalModeF32Raw();
741     // If the f32 variant of the attribute isn't specified, try to use the
742     // generic one.
743     if (Mode.isValid())
744       return Mode;
745   }
746 
747   return getDenormalModeRaw();
748 }
749 
750 DenormalMode Function::getDenormalModeRaw() const {
751   Attribute Attr = getFnAttribute("denormal-fp-math");
752   StringRef Val = Attr.getValueAsString();
753   return parseDenormalFPAttribute(Val);
754 }
755 
756 DenormalMode Function::getDenormalModeF32Raw() const {
757   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
758   if (Attr.isValid()) {
759     StringRef Val = Attr.getValueAsString();
760     return parseDenormalFPAttribute(Val);
761   }
762 
763   return DenormalMode::getInvalid();
764 }
765 
766 const std::string &Function::getGC() const {
767   assert(hasGC() && "Function has no collector");
768   return getContext().getGC(*this);
769 }
770 
771 void Function::setGC(std::string Str) {
772   setValueSubclassDataBit(14, !Str.empty());
773   getContext().setGC(*this, std::move(Str));
774 }
775 
776 void Function::clearGC() {
777   if (!hasGC())
778     return;
779   getContext().deleteGC(*this);
780   setValueSubclassDataBit(14, false);
781 }
782 
783 bool Function::hasStackProtectorFnAttr() const {
784   return hasFnAttribute(Attribute::StackProtect) ||
785          hasFnAttribute(Attribute::StackProtectStrong) ||
786          hasFnAttribute(Attribute::StackProtectReq);
787 }
788 
789 /// Copy all additional attributes (those not needed to create a Function) from
790 /// the Function Src to this one.
791 void Function::copyAttributesFrom(const Function *Src) {
792   GlobalObject::copyAttributesFrom(Src);
793   setCallingConv(Src->getCallingConv());
794   setAttributes(Src->getAttributes());
795   if (Src->hasGC())
796     setGC(Src->getGC());
797   else
798     clearGC();
799   if (Src->hasPersonalityFn())
800     setPersonalityFn(Src->getPersonalityFn());
801   if (Src->hasPrefixData())
802     setPrefixData(Src->getPrefixData());
803   if (Src->hasPrologueData())
804     setPrologueData(Src->getPrologueData());
805 }
806 
807 MemoryEffects Function::getMemoryEffects() const {
808   return getAttributes().getMemoryEffects();
809 }
810 void Function::setMemoryEffects(MemoryEffects ME) {
811   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
812 }
813 
814 /// Determine if the function does not access memory.
815 bool Function::doesNotAccessMemory() const {
816   return getMemoryEffects().doesNotAccessMemory();
817 }
818 void Function::setDoesNotAccessMemory() {
819   setMemoryEffects(MemoryEffects::none());
820 }
821 
822 /// Determine if the function does not access or only reads memory.
823 bool Function::onlyReadsMemory() const {
824   return getMemoryEffects().onlyReadsMemory();
825 }
826 void Function::setOnlyReadsMemory() {
827   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
828 }
829 
830 /// Determine if the function does not access or only writes memory.
831 bool Function::onlyWritesMemory() const {
832   return getMemoryEffects().onlyWritesMemory();
833 }
834 void Function::setOnlyWritesMemory() {
835   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
836 }
837 
838 /// Determine if the call can access memmory only using pointers based
839 /// on its arguments.
840 bool Function::onlyAccessesArgMemory() const {
841   return getMemoryEffects().onlyAccessesArgPointees();
842 }
843 void Function::setOnlyAccessesArgMemory() {
844   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
845 }
846 
847 /// Determine if the function may only access memory that is
848 ///  inaccessible from the IR.
849 bool Function::onlyAccessesInaccessibleMemory() const {
850   return getMemoryEffects().onlyAccessesInaccessibleMem();
851 }
852 void Function::setOnlyAccessesInaccessibleMemory() {
853   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
854 }
855 
856 /// Determine if the function may only access memory that is
857 ///  either inaccessible from the IR or pointed to by its arguments.
858 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
859   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
860 }
861 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
862   setMemoryEffects(getMemoryEffects() &
863                    MemoryEffects::inaccessibleOrArgMemOnly());
864 }
865 
866 /// Table of string intrinsic names indexed by enum value.
867 static const char * const IntrinsicNameTable[] = {
868   "not_intrinsic",
869 #define GET_INTRINSIC_NAME_TABLE
870 #include "llvm/IR/IntrinsicImpl.inc"
871 #undef GET_INTRINSIC_NAME_TABLE
872 };
873 
874 /// Table of per-target intrinsic name tables.
875 #define GET_INTRINSIC_TARGET_DATA
876 #include "llvm/IR/IntrinsicImpl.inc"
877 #undef GET_INTRINSIC_TARGET_DATA
878 
879 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
880   return IID > TargetInfos[0].Count;
881 }
882 
883 bool Function::isTargetIntrinsic() const {
884   return isTargetIntrinsic(IntID);
885 }
886 
887 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
888 /// target as \c Name, or the generic table if \c Name is not target specific.
889 ///
890 /// Returns the relevant slice of \c IntrinsicNameTable
891 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
892   assert(Name.starts_with("llvm."));
893 
894   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
895   // Drop "llvm." and take the first dotted component. That will be the target
896   // if this is target specific.
897   StringRef Target = Name.drop_front(5).split('.').first;
898   auto It = partition_point(
899       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
900   // We've either found the target or just fall back to the generic set, which
901   // is always first.
902   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
903   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
904 }
905 
906 /// This does the actual lookup of an intrinsic ID which
907 /// matches the given function name.
908 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
909   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
910   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
911   if (Idx == -1)
912     return Intrinsic::not_intrinsic;
913 
914   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
915   // an index into a sub-table.
916   int Adjust = NameTable.data() - IntrinsicNameTable;
917   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
918 
919   // If the intrinsic is not overloaded, require an exact match. If it is
920   // overloaded, require either exact or prefix match.
921   const auto MatchSize = strlen(NameTable[Idx]);
922   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
923   bool IsExactMatch = Name.size() == MatchSize;
924   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
925                                                      : Intrinsic::not_intrinsic;
926 }
927 
928 void Function::updateAfterNameChange() {
929   LibFuncCache = UnknownLibFunc;
930   StringRef Name = getName();
931   if (!Name.starts_with("llvm.")) {
932     HasLLVMReservedName = false;
933     IntID = Intrinsic::not_intrinsic;
934     return;
935   }
936   HasLLVMReservedName = true;
937   IntID = lookupIntrinsicID(Name);
938 }
939 
940 /// Returns a stable mangling for the type specified for use in the name
941 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
942 /// of named types is simply their name.  Manglings for unnamed types consist
943 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
944 /// combined with the mangling of their component types.  A vararg function
945 /// type will have a suffix of 'vararg'.  Since function types can contain
946 /// other function types, we close a function type mangling with suffix 'f'
947 /// which can't be confused with it's prefix.  This ensures we don't have
948 /// collisions between two unrelated function types. Otherwise, you might
949 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
950 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
951 /// indicating that extra care must be taken to ensure a unique name.
952 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
953   std::string Result;
954   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
955     Result += "p" + utostr(PTyp->getAddressSpace());
956   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
957     Result += "a" + utostr(ATyp->getNumElements()) +
958               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
959   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
960     if (!STyp->isLiteral()) {
961       Result += "s_";
962       if (STyp->hasName())
963         Result += STyp->getName();
964       else
965         HasUnnamedType = true;
966     } else {
967       Result += "sl_";
968       for (auto *Elem : STyp->elements())
969         Result += getMangledTypeStr(Elem, HasUnnamedType);
970     }
971     // Ensure nested structs are distinguishable.
972     Result += "s";
973   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
974     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
975     for (size_t i = 0; i < FT->getNumParams(); i++)
976       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
977     if (FT->isVarArg())
978       Result += "vararg";
979     // Ensure nested function types are distinguishable.
980     Result += "f";
981   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
982     ElementCount EC = VTy->getElementCount();
983     if (EC.isScalable())
984       Result += "nx";
985     Result += "v" + utostr(EC.getKnownMinValue()) +
986               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
987   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
988     Result += "t";
989     Result += TETy->getName();
990     for (Type *ParamTy : TETy->type_params())
991       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
992     for (unsigned IntParam : TETy->int_params())
993       Result += "_" + utostr(IntParam);
994     // Ensure nested target extension types are distinguishable.
995     Result += "t";
996   } else if (Ty) {
997     switch (Ty->getTypeID()) {
998     default: llvm_unreachable("Unhandled type");
999     case Type::VoidTyID:      Result += "isVoid";   break;
1000     case Type::MetadataTyID:  Result += "Metadata"; break;
1001     case Type::HalfTyID:      Result += "f16";      break;
1002     case Type::BFloatTyID:    Result += "bf16";     break;
1003     case Type::FloatTyID:     Result += "f32";      break;
1004     case Type::DoubleTyID:    Result += "f64";      break;
1005     case Type::X86_FP80TyID:  Result += "f80";      break;
1006     case Type::FP128TyID:     Result += "f128";     break;
1007     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
1008     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
1009     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1010     case Type::IntegerTyID:
1011       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1012       break;
1013     }
1014   }
1015   return Result;
1016 }
1017 
1018 StringRef Intrinsic::getBaseName(ID id) {
1019   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1020   return IntrinsicNameTable[id];
1021 }
1022 
1023 StringRef Intrinsic::getName(ID id) {
1024   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1025   assert(!Intrinsic::isOverloaded(id) &&
1026          "This version of getName does not support overloading");
1027   return getBaseName(id);
1028 }
1029 
1030 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1031                                         Module *M, FunctionType *FT,
1032                                         bool EarlyModuleCheck) {
1033 
1034   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1035   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1036          "This version of getName is for overloaded intrinsics only");
1037   (void)EarlyModuleCheck;
1038   assert((!EarlyModuleCheck || M ||
1039           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1040          "Intrinsic overloading on pointer types need to provide a Module");
1041   bool HasUnnamedType = false;
1042   std::string Result(Intrinsic::getBaseName(Id));
1043   for (Type *Ty : Tys)
1044     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1045   if (HasUnnamedType) {
1046     assert(M && "unnamed types need a module");
1047     if (!FT)
1048       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1049     else
1050       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1051              "Provided FunctionType must match arguments");
1052     return M->getUniqueIntrinsicName(Result, Id, FT);
1053   }
1054   return Result;
1055 }
1056 
1057 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1058                                FunctionType *FT) {
1059   assert(M && "We need to have a Module");
1060   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1061 }
1062 
1063 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1064   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1065 }
1066 
1067 /// IIT_Info - These are enumerators that describe the entries returned by the
1068 /// getIntrinsicInfoTableEntries function.
1069 ///
1070 /// Defined in Intrinsics.td.
1071 enum IIT_Info {
1072 #define GET_INTRINSIC_IITINFO
1073 #include "llvm/IR/IntrinsicImpl.inc"
1074 #undef GET_INTRINSIC_IITINFO
1075 };
1076 
1077 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1078                       IIT_Info LastInfo,
1079                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1080   using namespace Intrinsic;
1081 
1082   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1083 
1084   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1085   unsigned StructElts = 2;
1086 
1087   switch (Info) {
1088   case IIT_Done:
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1090     return;
1091   case IIT_VARARG:
1092     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1093     return;
1094   case IIT_MMX:
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1096     return;
1097   case IIT_AMX:
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1099     return;
1100   case IIT_TOKEN:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1102     return;
1103   case IIT_METADATA:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1105     return;
1106   case IIT_F16:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1108     return;
1109   case IIT_BF16:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1111     return;
1112   case IIT_F32:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1114     return;
1115   case IIT_F64:
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1117     return;
1118   case IIT_F128:
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1120     return;
1121   case IIT_PPCF128:
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1123     return;
1124   case IIT_I1:
1125     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1126     return;
1127   case IIT_I2:
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1129     return;
1130   case IIT_I4:
1131     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1132     return;
1133   case IIT_AARCH64_SVCOUNT:
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1135     return;
1136   case IIT_I8:
1137     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1138     return;
1139   case IIT_I16:
1140     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1141     return;
1142   case IIT_I32:
1143     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1144     return;
1145   case IIT_I64:
1146     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1147     return;
1148   case IIT_I128:
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1150     return;
1151   case IIT_V1:
1152     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1153     DecodeIITType(NextElt, Infos, Info, OutputTable);
1154     return;
1155   case IIT_V2:
1156     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1157     DecodeIITType(NextElt, Infos, Info, OutputTable);
1158     return;
1159   case IIT_V3:
1160     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1161     DecodeIITType(NextElt, Infos, Info, OutputTable);
1162     return;
1163   case IIT_V4:
1164     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1165     DecodeIITType(NextElt, Infos, Info, OutputTable);
1166     return;
1167   case IIT_V6:
1168     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1169     DecodeIITType(NextElt, Infos, Info, OutputTable);
1170     return;
1171   case IIT_V8:
1172     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1173     DecodeIITType(NextElt, Infos, Info, OutputTable);
1174     return;
1175   case IIT_V16:
1176     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1177     DecodeIITType(NextElt, Infos, Info, OutputTable);
1178     return;
1179   case IIT_V32:
1180     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1181     DecodeIITType(NextElt, Infos, Info, OutputTable);
1182     return;
1183   case IIT_V64:
1184     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1185     DecodeIITType(NextElt, Infos, Info, OutputTable);
1186     return;
1187   case IIT_V128:
1188     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1189     DecodeIITType(NextElt, Infos, Info, OutputTable);
1190     return;
1191   case IIT_V256:
1192     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1193     DecodeIITType(NextElt, Infos, Info, OutputTable);
1194     return;
1195   case IIT_V512:
1196     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1197     DecodeIITType(NextElt, Infos, Info, OutputTable);
1198     return;
1199   case IIT_V1024:
1200     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1201     DecodeIITType(NextElt, Infos, Info, OutputTable);
1202     return;
1203   case IIT_EXTERNREF:
1204     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1205     return;
1206   case IIT_FUNCREF:
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1208     return;
1209   case IIT_PTR:
1210     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1211     return;
1212   case IIT_ANYPTR: // [ANYPTR addrspace]
1213     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1214                                              Infos[NextElt++]));
1215     return;
1216   case IIT_ARG: {
1217     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1218     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1219     return;
1220   }
1221   case IIT_EXTEND_ARG: {
1222     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1224                                              ArgInfo));
1225     return;
1226   }
1227   case IIT_TRUNC_ARG: {
1228     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1229     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1230                                              ArgInfo));
1231     return;
1232   }
1233   case IIT_HALF_VEC_ARG: {
1234     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1235     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1236                                              ArgInfo));
1237     return;
1238   }
1239   case IIT_SAME_VEC_WIDTH_ARG: {
1240     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1241     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1242                                              ArgInfo));
1243     return;
1244   }
1245   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1246     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1247     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1248     OutputTable.push_back(
1249         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1250     return;
1251   }
1252   case IIT_EMPTYSTRUCT:
1253     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1254     return;
1255   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1256   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1257   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1258   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1259   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1260   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1261   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1262   case IIT_STRUCT2: {
1263     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1264 
1265     for (unsigned i = 0; i != StructElts; ++i)
1266       DecodeIITType(NextElt, Infos, Info, OutputTable);
1267     return;
1268   }
1269   case IIT_SUBDIVIDE2_ARG: {
1270     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1271     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1272                                              ArgInfo));
1273     return;
1274   }
1275   case IIT_SUBDIVIDE4_ARG: {
1276     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1277     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1278                                              ArgInfo));
1279     return;
1280   }
1281   case IIT_VEC_ELEMENT: {
1282     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1283     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1284                                              ArgInfo));
1285     return;
1286   }
1287   case IIT_SCALABLE_VEC: {
1288     DecodeIITType(NextElt, Infos, Info, OutputTable);
1289     return;
1290   }
1291   case IIT_VEC_OF_BITCASTS_TO_INT: {
1292     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1293     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1294                                              ArgInfo));
1295     return;
1296   }
1297   }
1298   llvm_unreachable("unhandled");
1299 }
1300 
1301 #define GET_INTRINSIC_GENERATOR_GLOBAL
1302 #include "llvm/IR/IntrinsicImpl.inc"
1303 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1304 
1305 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1306                                              SmallVectorImpl<IITDescriptor> &T){
1307   // Check to see if the intrinsic's type was expressible by the table.
1308   unsigned TableVal = IIT_Table[id-1];
1309 
1310   // Decode the TableVal into an array of IITValues.
1311   SmallVector<unsigned char, 8> IITValues;
1312   ArrayRef<unsigned char> IITEntries;
1313   unsigned NextElt = 0;
1314   if ((TableVal >> 31) != 0) {
1315     // This is an offset into the IIT_LongEncodingTable.
1316     IITEntries = IIT_LongEncodingTable;
1317 
1318     // Strip sentinel bit.
1319     NextElt = (TableVal << 1) >> 1;
1320   } else {
1321     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1322     // into a single word in the table itself, decode it now.
1323     do {
1324       IITValues.push_back(TableVal & 0xF);
1325       TableVal >>= 4;
1326     } while (TableVal);
1327 
1328     IITEntries = IITValues;
1329     NextElt = 0;
1330   }
1331 
1332   // Okay, decode the table into the output vector of IITDescriptors.
1333   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1334   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1335     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1336 }
1337 
1338 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1339                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1340   using namespace Intrinsic;
1341 
1342   IITDescriptor D = Infos.front();
1343   Infos = Infos.slice(1);
1344 
1345   switch (D.Kind) {
1346   case IITDescriptor::Void: return Type::getVoidTy(Context);
1347   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1348   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1349   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1350   case IITDescriptor::Token: return Type::getTokenTy(Context);
1351   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1352   case IITDescriptor::Half: return Type::getHalfTy(Context);
1353   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1354   case IITDescriptor::Float: return Type::getFloatTy(Context);
1355   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1356   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1357   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1358   case IITDescriptor::AArch64Svcount:
1359     return TargetExtType::get(Context, "aarch64.svcount");
1360 
1361   case IITDescriptor::Integer:
1362     return IntegerType::get(Context, D.Integer_Width);
1363   case IITDescriptor::Vector:
1364     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1365                            D.Vector_Width);
1366   case IITDescriptor::Pointer:
1367     return PointerType::get(Context, D.Pointer_AddressSpace);
1368   case IITDescriptor::Struct: {
1369     SmallVector<Type *, 8> Elts;
1370     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1371       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1372     return StructType::get(Context, Elts);
1373   }
1374   case IITDescriptor::Argument:
1375     return Tys[D.getArgumentNumber()];
1376   case IITDescriptor::ExtendArgument: {
1377     Type *Ty = Tys[D.getArgumentNumber()];
1378     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1379       return VectorType::getExtendedElementVectorType(VTy);
1380 
1381     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1382   }
1383   case IITDescriptor::TruncArgument: {
1384     Type *Ty = Tys[D.getArgumentNumber()];
1385     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1386       return VectorType::getTruncatedElementVectorType(VTy);
1387 
1388     IntegerType *ITy = cast<IntegerType>(Ty);
1389     assert(ITy->getBitWidth() % 2 == 0);
1390     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1391   }
1392   case IITDescriptor::Subdivide2Argument:
1393   case IITDescriptor::Subdivide4Argument: {
1394     Type *Ty = Tys[D.getArgumentNumber()];
1395     VectorType *VTy = dyn_cast<VectorType>(Ty);
1396     assert(VTy && "Expected an argument of Vector Type");
1397     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1398     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1399   }
1400   case IITDescriptor::HalfVecArgument:
1401     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1402                                                   Tys[D.getArgumentNumber()]));
1403   case IITDescriptor::SameVecWidthArgument: {
1404     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1405     Type *Ty = Tys[D.getArgumentNumber()];
1406     if (auto *VTy = dyn_cast<VectorType>(Ty))
1407       return VectorType::get(EltTy, VTy->getElementCount());
1408     return EltTy;
1409   }
1410   case IITDescriptor::VecElementArgument: {
1411     Type *Ty = Tys[D.getArgumentNumber()];
1412     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1413       return VTy->getElementType();
1414     llvm_unreachable("Expected an argument of Vector Type");
1415   }
1416   case IITDescriptor::VecOfBitcastsToInt: {
1417     Type *Ty = Tys[D.getArgumentNumber()];
1418     VectorType *VTy = dyn_cast<VectorType>(Ty);
1419     assert(VTy && "Expected an argument of Vector Type");
1420     return VectorType::getInteger(VTy);
1421   }
1422   case IITDescriptor::VecOfAnyPtrsToElt:
1423     // Return the overloaded type (which determines the pointers address space)
1424     return Tys[D.getOverloadArgNumber()];
1425   }
1426   llvm_unreachable("unhandled");
1427 }
1428 
1429 FunctionType *Intrinsic::getType(LLVMContext &Context,
1430                                  ID id, ArrayRef<Type*> Tys) {
1431   SmallVector<IITDescriptor, 8> Table;
1432   getIntrinsicInfoTableEntries(id, Table);
1433 
1434   ArrayRef<IITDescriptor> TableRef = Table;
1435   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1436 
1437   SmallVector<Type*, 8> ArgTys;
1438   while (!TableRef.empty())
1439     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1440 
1441   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1442   // If we see void type as the type of the last argument, it is vararg intrinsic
1443   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1444     ArgTys.pop_back();
1445     return FunctionType::get(ResultTy, ArgTys, true);
1446   }
1447   return FunctionType::get(ResultTy, ArgTys, false);
1448 }
1449 
1450 bool Intrinsic::isOverloaded(ID id) {
1451 #define GET_INTRINSIC_OVERLOAD_TABLE
1452 #include "llvm/IR/IntrinsicImpl.inc"
1453 #undef GET_INTRINSIC_OVERLOAD_TABLE
1454 }
1455 
1456 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1457 #define GET_INTRINSIC_ATTRIBUTES
1458 #include "llvm/IR/IntrinsicImpl.inc"
1459 #undef GET_INTRINSIC_ATTRIBUTES
1460 
1461 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1462   // There can never be multiple globals with the same name of different types,
1463   // because intrinsics must be a specific type.
1464   auto *FT = getType(M->getContext(), id, Tys);
1465   return cast<Function>(
1466       M->getOrInsertFunction(
1467            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1468           .getCallee());
1469 }
1470 
1471 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1472 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1473 #include "llvm/IR/IntrinsicImpl.inc"
1474 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1475 
1476 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1477 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1478 #include "llvm/IR/IntrinsicImpl.inc"
1479 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1480 
1481 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1482   switch (QID) {
1483 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1484   case Intrinsic::INTRINSIC:
1485 #include "llvm/IR/ConstrainedOps.def"
1486     return true;
1487 #undef INSTRUCTION
1488   default:
1489     return false;
1490   }
1491 }
1492 
1493 using DeferredIntrinsicMatchPair =
1494     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1495 
1496 static bool matchIntrinsicType(
1497     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1498     SmallVectorImpl<Type *> &ArgTys,
1499     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1500     bool IsDeferredCheck) {
1501   using namespace Intrinsic;
1502 
1503   // If we ran out of descriptors, there are too many arguments.
1504   if (Infos.empty()) return true;
1505 
1506   // Do this before slicing off the 'front' part
1507   auto InfosRef = Infos;
1508   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1509     DeferredChecks.emplace_back(T, InfosRef);
1510     return false;
1511   };
1512 
1513   IITDescriptor D = Infos.front();
1514   Infos = Infos.slice(1);
1515 
1516   switch (D.Kind) {
1517     case IITDescriptor::Void: return !Ty->isVoidTy();
1518     case IITDescriptor::VarArg: return true;
1519     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1520     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1521     case IITDescriptor::Token: return !Ty->isTokenTy();
1522     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1523     case IITDescriptor::Half: return !Ty->isHalfTy();
1524     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1525     case IITDescriptor::Float: return !Ty->isFloatTy();
1526     case IITDescriptor::Double: return !Ty->isDoubleTy();
1527     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1528     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1529     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1530     case IITDescriptor::AArch64Svcount:
1531       return !isa<TargetExtType>(Ty) ||
1532              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1533     case IITDescriptor::Vector: {
1534       VectorType *VT = dyn_cast<VectorType>(Ty);
1535       return !VT || VT->getElementCount() != D.Vector_Width ||
1536              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1537                                 DeferredChecks, IsDeferredCheck);
1538     }
1539     case IITDescriptor::Pointer: {
1540       PointerType *PT = dyn_cast<PointerType>(Ty);
1541       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1542     }
1543 
1544     case IITDescriptor::Struct: {
1545       StructType *ST = dyn_cast<StructType>(Ty);
1546       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1547           ST->getNumElements() != D.Struct_NumElements)
1548         return true;
1549 
1550       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1551         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1552                                DeferredChecks, IsDeferredCheck))
1553           return true;
1554       return false;
1555     }
1556 
1557     case IITDescriptor::Argument:
1558       // If this is the second occurrence of an argument,
1559       // verify that the later instance matches the previous instance.
1560       if (D.getArgumentNumber() < ArgTys.size())
1561         return Ty != ArgTys[D.getArgumentNumber()];
1562 
1563       if (D.getArgumentNumber() > ArgTys.size() ||
1564           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1565         return IsDeferredCheck || DeferCheck(Ty);
1566 
1567       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1568              "Table consistency error");
1569       ArgTys.push_back(Ty);
1570 
1571       switch (D.getArgumentKind()) {
1572         case IITDescriptor::AK_Any:        return false; // Success
1573         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1574         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1575         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1576         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1577         default:                           break;
1578       }
1579       llvm_unreachable("all argument kinds not covered");
1580 
1581     case IITDescriptor::ExtendArgument: {
1582       // If this is a forward reference, defer the check for later.
1583       if (D.getArgumentNumber() >= ArgTys.size())
1584         return IsDeferredCheck || DeferCheck(Ty);
1585 
1586       Type *NewTy = ArgTys[D.getArgumentNumber()];
1587       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1588         NewTy = VectorType::getExtendedElementVectorType(VTy);
1589       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1590         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1591       else
1592         return true;
1593 
1594       return Ty != NewTy;
1595     }
1596     case IITDescriptor::TruncArgument: {
1597       // If this is a forward reference, defer the check for later.
1598       if (D.getArgumentNumber() >= ArgTys.size())
1599         return IsDeferredCheck || DeferCheck(Ty);
1600 
1601       Type *NewTy = ArgTys[D.getArgumentNumber()];
1602       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1603         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1604       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1605         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1606       else
1607         return true;
1608 
1609       return Ty != NewTy;
1610     }
1611     case IITDescriptor::HalfVecArgument:
1612       // If this is a forward reference, defer the check for later.
1613       if (D.getArgumentNumber() >= ArgTys.size())
1614         return IsDeferredCheck || DeferCheck(Ty);
1615       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1616              VectorType::getHalfElementsVectorType(
1617                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1618     case IITDescriptor::SameVecWidthArgument: {
1619       if (D.getArgumentNumber() >= ArgTys.size()) {
1620         // Defer check and subsequent check for the vector element type.
1621         Infos = Infos.slice(1);
1622         return IsDeferredCheck || DeferCheck(Ty);
1623       }
1624       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1625       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1626       // Both must be vectors of the same number of elements or neither.
1627       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1628         return true;
1629       Type *EltTy = Ty;
1630       if (ThisArgType) {
1631         if (ReferenceType->getElementCount() !=
1632             ThisArgType->getElementCount())
1633           return true;
1634         EltTy = ThisArgType->getElementType();
1635       }
1636       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1637                                 IsDeferredCheck);
1638     }
1639     case IITDescriptor::VecOfAnyPtrsToElt: {
1640       unsigned RefArgNumber = D.getRefArgNumber();
1641       if (RefArgNumber >= ArgTys.size()) {
1642         if (IsDeferredCheck)
1643           return true;
1644         // If forward referencing, already add the pointer-vector type and
1645         // defer the checks for later.
1646         ArgTys.push_back(Ty);
1647         return DeferCheck(Ty);
1648       }
1649 
1650       if (!IsDeferredCheck){
1651         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1652                "Table consistency error");
1653         ArgTys.push_back(Ty);
1654       }
1655 
1656       // Verify the overloaded type "matches" the Ref type.
1657       // i.e. Ty is a vector with the same width as Ref.
1658       // Composed of pointers to the same element type as Ref.
1659       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1660       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1661       if (!ThisArgVecTy || !ReferenceType ||
1662           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1663         return true;
1664       return !ThisArgVecTy->getElementType()->isPointerTy();
1665     }
1666     case IITDescriptor::VecElementArgument: {
1667       if (D.getArgumentNumber() >= ArgTys.size())
1668         return IsDeferredCheck ? true : DeferCheck(Ty);
1669       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1670       return !ReferenceType || Ty != ReferenceType->getElementType();
1671     }
1672     case IITDescriptor::Subdivide2Argument:
1673     case IITDescriptor::Subdivide4Argument: {
1674       // If this is a forward reference, defer the check for later.
1675       if (D.getArgumentNumber() >= ArgTys.size())
1676         return IsDeferredCheck || DeferCheck(Ty);
1677 
1678       Type *NewTy = ArgTys[D.getArgumentNumber()];
1679       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1680         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1681         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1682         return Ty != NewTy;
1683       }
1684       return true;
1685     }
1686     case IITDescriptor::VecOfBitcastsToInt: {
1687       if (D.getArgumentNumber() >= ArgTys.size())
1688         return IsDeferredCheck || DeferCheck(Ty);
1689       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1690       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1691       if (!ThisArgVecTy || !ReferenceType)
1692         return true;
1693       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1694     }
1695   }
1696   llvm_unreachable("unhandled");
1697 }
1698 
1699 Intrinsic::MatchIntrinsicTypesResult
1700 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1701                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1702                                    SmallVectorImpl<Type *> &ArgTys) {
1703   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1704   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1705                          false))
1706     return MatchIntrinsicTypes_NoMatchRet;
1707 
1708   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1709 
1710   for (auto *Ty : FTy->params())
1711     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1712       return MatchIntrinsicTypes_NoMatchArg;
1713 
1714   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1715     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1716     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1717                            true))
1718       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1719                                          : MatchIntrinsicTypes_NoMatchArg;
1720   }
1721 
1722   return MatchIntrinsicTypes_Match;
1723 }
1724 
1725 bool
1726 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1727                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1728   // If there are no descriptors left, then it can't be a vararg.
1729   if (Infos.empty())
1730     return isVarArg;
1731 
1732   // There should be only one descriptor remaining at this point.
1733   if (Infos.size() != 1)
1734     return true;
1735 
1736   // Check and verify the descriptor.
1737   IITDescriptor D = Infos.front();
1738   Infos = Infos.slice(1);
1739   if (D.Kind == IITDescriptor::VarArg)
1740     return !isVarArg;
1741 
1742   return true;
1743 }
1744 
1745 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1746                                       SmallVectorImpl<Type *> &ArgTys) {
1747   if (!ID)
1748     return false;
1749 
1750   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1751   getIntrinsicInfoTableEntries(ID, Table);
1752   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1753 
1754   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1755       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1756     return false;
1757   }
1758   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1759     return false;
1760   return true;
1761 }
1762 
1763 bool Intrinsic::getIntrinsicSignature(Function *F,
1764                                       SmallVectorImpl<Type *> &ArgTys) {
1765   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1766                                ArgTys);
1767 }
1768 
1769 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1770   SmallVector<Type *, 4> ArgTys;
1771   if (!getIntrinsicSignature(F, ArgTys))
1772     return std::nullopt;
1773 
1774   Intrinsic::ID ID = F->getIntrinsicID();
1775   StringRef Name = F->getName();
1776   std::string WantedName =
1777       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1778   if (Name == WantedName)
1779     return std::nullopt;
1780 
1781   Function *NewDecl = [&] {
1782     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1783       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1784         if (ExistingF->getFunctionType() == F->getFunctionType())
1785           return ExistingF;
1786 
1787       // The name already exists, but is not a function or has the wrong
1788       // prototype. Make place for the new one by renaming the old version.
1789       // Either this old version will be removed later on or the module is
1790       // invalid and we'll get an error.
1791       ExistingGV->setName(WantedName + ".renamed");
1792     }
1793     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1794   }();
1795 
1796   NewDecl->setCallingConv(F->getCallingConv());
1797   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1798          "Shouldn't change the signature");
1799   return NewDecl;
1800 }
1801 
1802 /// hasAddressTaken - returns true if there are any uses of this function
1803 /// other than direct calls or invokes to it. Optionally ignores callback
1804 /// uses, assume like pointer annotation calls, and references in llvm.used
1805 /// and llvm.compiler.used variables.
1806 bool Function::hasAddressTaken(const User **PutOffender,
1807                                bool IgnoreCallbackUses,
1808                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1809                                bool IgnoreARCAttachedCall,
1810                                bool IgnoreCastedDirectCall) const {
1811   for (const Use &U : uses()) {
1812     const User *FU = U.getUser();
1813     if (isa<BlockAddress>(FU))
1814       continue;
1815 
1816     if (IgnoreCallbackUses) {
1817       AbstractCallSite ACS(&U);
1818       if (ACS && ACS.isCallbackCall())
1819         continue;
1820     }
1821 
1822     const auto *Call = dyn_cast<CallBase>(FU);
1823     if (!Call) {
1824       if (IgnoreAssumeLikeCalls &&
1825           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1826           all_of(FU->users(), [](const User *U) {
1827             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1828               return I->isAssumeLikeIntrinsic();
1829             return false;
1830           })) {
1831         continue;
1832       }
1833 
1834       if (IgnoreLLVMUsed && !FU->user_empty()) {
1835         const User *FUU = FU;
1836         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1837             FU->hasOneUse() && !FU->user_begin()->user_empty())
1838           FUU = *FU->user_begin();
1839         if (llvm::all_of(FUU->users(), [](const User *U) {
1840               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1841                 return GV->hasName() &&
1842                        (GV->getName().equals("llvm.compiler.used") ||
1843                         GV->getName().equals("llvm.used"));
1844               return false;
1845             }))
1846           continue;
1847       }
1848       if (PutOffender)
1849         *PutOffender = FU;
1850       return true;
1851     }
1852 
1853     if (IgnoreAssumeLikeCalls) {
1854       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1855         if (I->isAssumeLikeIntrinsic())
1856           continue;
1857     }
1858 
1859     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1860                                 Call->getFunctionType() != getFunctionType())) {
1861       if (IgnoreARCAttachedCall &&
1862           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1863                                       U.getOperandNo()))
1864         continue;
1865 
1866       if (PutOffender)
1867         *PutOffender = FU;
1868       return true;
1869     }
1870   }
1871   return false;
1872 }
1873 
1874 bool Function::isDefTriviallyDead() const {
1875   // Check the linkage
1876   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1877       !hasAvailableExternallyLinkage())
1878     return false;
1879 
1880   // Check if the function is used by anything other than a blockaddress.
1881   for (const User *U : users())
1882     if (!isa<BlockAddress>(U))
1883       return false;
1884 
1885   return true;
1886 }
1887 
1888 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1889 /// setjmp or other function that gcc recognizes as "returning twice".
1890 bool Function::callsFunctionThatReturnsTwice() const {
1891   for (const Instruction &I : instructions(this))
1892     if (const auto *Call = dyn_cast<CallBase>(&I))
1893       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1894         return true;
1895 
1896   return false;
1897 }
1898 
1899 Constant *Function::getPersonalityFn() const {
1900   assert(hasPersonalityFn() && getNumOperands());
1901   return cast<Constant>(Op<0>());
1902 }
1903 
1904 void Function::setPersonalityFn(Constant *Fn) {
1905   setHungoffOperand<0>(Fn);
1906   setValueSubclassDataBit(3, Fn != nullptr);
1907 }
1908 
1909 Constant *Function::getPrefixData() const {
1910   assert(hasPrefixData() && getNumOperands());
1911   return cast<Constant>(Op<1>());
1912 }
1913 
1914 void Function::setPrefixData(Constant *PrefixData) {
1915   setHungoffOperand<1>(PrefixData);
1916   setValueSubclassDataBit(1, PrefixData != nullptr);
1917 }
1918 
1919 Constant *Function::getPrologueData() const {
1920   assert(hasPrologueData() && getNumOperands());
1921   return cast<Constant>(Op<2>());
1922 }
1923 
1924 void Function::setPrologueData(Constant *PrologueData) {
1925   setHungoffOperand<2>(PrologueData);
1926   setValueSubclassDataBit(2, PrologueData != nullptr);
1927 }
1928 
1929 void Function::allocHungoffUselist() {
1930   // If we've already allocated a uselist, stop here.
1931   if (getNumOperands())
1932     return;
1933 
1934   allocHungoffUses(3, /*IsPhi=*/ false);
1935   setNumHungOffUseOperands(3);
1936 
1937   // Initialize the uselist with placeholder operands to allow traversal.
1938   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1939   Op<0>().set(CPN);
1940   Op<1>().set(CPN);
1941   Op<2>().set(CPN);
1942 }
1943 
1944 template <int Idx>
1945 void Function::setHungoffOperand(Constant *C) {
1946   if (C) {
1947     allocHungoffUselist();
1948     Op<Idx>().set(C);
1949   } else if (getNumOperands()) {
1950     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1951   }
1952 }
1953 
1954 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1955   assert(Bit < 16 && "SubclassData contains only 16 bits");
1956   if (On)
1957     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1958   else
1959     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1960 }
1961 
1962 void Function::setEntryCount(ProfileCount Count,
1963                              const DenseSet<GlobalValue::GUID> *S) {
1964 #if !defined(NDEBUG)
1965   auto PrevCount = getEntryCount();
1966   assert(!PrevCount || PrevCount->getType() == Count.getType());
1967 #endif
1968 
1969   auto ImportGUIDs = getImportGUIDs();
1970   if (S == nullptr && ImportGUIDs.size())
1971     S = &ImportGUIDs;
1972 
1973   MDBuilder MDB(getContext());
1974   setMetadata(
1975       LLVMContext::MD_prof,
1976       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1977 }
1978 
1979 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1980                              const DenseSet<GlobalValue::GUID> *Imports) {
1981   setEntryCount(ProfileCount(Count, Type), Imports);
1982 }
1983 
1984 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1985   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1986   if (MD && MD->getOperand(0))
1987     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1988       if (MDS->getString().equals("function_entry_count")) {
1989         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1990         uint64_t Count = CI->getValue().getZExtValue();
1991         // A value of -1 is used for SamplePGO when there were no samples.
1992         // Treat this the same as unknown.
1993         if (Count == (uint64_t)-1)
1994           return std::nullopt;
1995         return ProfileCount(Count, PCT_Real);
1996       } else if (AllowSynthetic &&
1997                  MDS->getString().equals("synthetic_function_entry_count")) {
1998         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1999         uint64_t Count = CI->getValue().getZExtValue();
2000         return ProfileCount(Count, PCT_Synthetic);
2001       }
2002     }
2003   return std::nullopt;
2004 }
2005 
2006 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2007   DenseSet<GlobalValue::GUID> R;
2008   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2009     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2010       if (MDS->getString().equals("function_entry_count"))
2011         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2012           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2013                        ->getValue()
2014                        .getZExtValue());
2015   return R;
2016 }
2017 
2018 void Function::setSectionPrefix(StringRef Prefix) {
2019   MDBuilder MDB(getContext());
2020   setMetadata(LLVMContext::MD_section_prefix,
2021               MDB.createFunctionSectionPrefix(Prefix));
2022 }
2023 
2024 std::optional<StringRef> Function::getSectionPrefix() const {
2025   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2026     assert(cast<MDString>(MD->getOperand(0))
2027                ->getString()
2028                .equals("function_section_prefix") &&
2029            "Metadata not match");
2030     return cast<MDString>(MD->getOperand(1))->getString();
2031   }
2032   return std::nullopt;
2033 }
2034 
2035 bool Function::nullPointerIsDefined() const {
2036   return hasFnAttribute(Attribute::NullPointerIsValid);
2037 }
2038 
2039 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2040   if (F && F->nullPointerIsDefined())
2041     return true;
2042 
2043   if (AS != 0)
2044     return true;
2045 
2046   return false;
2047 }
2048