1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<int> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 extern cl::opt<bool> UseNewDbgInfoFormat; 87 88 void Function::convertToNewDbgValues() { 89 IsNewDbgInfoFormat = true; 90 for (auto &BB : *this) { 91 BB.convertToNewDbgValues(); 92 } 93 } 94 95 void Function::convertFromNewDbgValues() { 96 IsNewDbgInfoFormat = false; 97 for (auto &BB : *this) { 98 BB.convertFromNewDbgValues(); 99 } 100 } 101 102 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 103 if (NewFlag && !IsNewDbgInfoFormat) 104 convertToNewDbgValues(); 105 else if (!NewFlag && IsNewDbgInfoFormat) 106 convertFromNewDbgValues(); 107 } 108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 109 for (auto &BB : *this) { 110 BB.setNewDbgInfoFormatFlag(NewFlag); 111 } 112 IsNewDbgInfoFormat = NewFlag; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Argument Implementation 117 //===----------------------------------------------------------------------===// 118 119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 120 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 121 setName(Name); 122 } 123 124 void Argument::setParent(Function *parent) { 125 Parent = parent; 126 } 127 128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 129 if (!getType()->isPointerTy()) return false; 130 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 131 (AllowUndefOrPoison || 132 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 133 return true; 134 else if (getDereferenceableBytes() > 0 && 135 !NullPointerIsDefined(getParent(), 136 getType()->getPointerAddressSpace())) 137 return true; 138 return false; 139 } 140 141 bool Argument::hasByValAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::ByVal); 144 } 145 146 bool Argument::hasByRefAttr() const { 147 if (!getType()->isPointerTy()) 148 return false; 149 return hasAttribute(Attribute::ByRef); 150 } 151 152 bool Argument::hasSwiftSelfAttr() const { 153 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 154 } 155 156 bool Argument::hasSwiftErrorAttr() const { 157 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 158 } 159 160 bool Argument::hasInAllocaAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::InAlloca); 163 } 164 165 bool Argument::hasPreallocatedAttr() const { 166 if (!getType()->isPointerTy()) 167 return false; 168 return hasAttribute(Attribute::Preallocated); 169 } 170 171 bool Argument::hasPassPointeeByValueCopyAttr() const { 172 if (!getType()->isPointerTy()) return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 177 } 178 179 bool Argument::hasPointeeInMemoryValueAttr() const { 180 if (!getType()->isPointerTy()) 181 return false; 182 AttributeList Attrs = getParent()->getAttributes(); 183 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 186 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 187 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 188 } 189 190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 191 /// parameter type. 192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 193 // FIXME: All the type carrying attributes are mutually exclusive, so there 194 // should be a single query to get the stored type that handles any of them. 195 if (Type *ByValTy = ParamAttrs.getByValType()) 196 return ByValTy; 197 if (Type *ByRefTy = ParamAttrs.getByRefType()) 198 return ByRefTy; 199 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 200 return PreAllocTy; 201 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 202 return InAllocaTy; 203 if (Type *SRetTy = ParamAttrs.getStructRetType()) 204 return SRetTy; 205 206 return nullptr; 207 } 208 209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 213 return DL.getTypeAllocSize(MemTy); 214 return 0; 215 } 216 217 Type *Argument::getPointeeInMemoryValueType() const { 218 AttributeSet ParamAttrs = 219 getParent()->getAttributes().getParamAttrs(getArgNo()); 220 return getMemoryParamAllocType(ParamAttrs); 221 } 222 223 MaybeAlign Argument::getParamAlign() const { 224 assert(getType()->isPointerTy() && "Only pointers have alignments"); 225 return getParent()->getParamAlign(getArgNo()); 226 } 227 228 MaybeAlign Argument::getParamStackAlign() const { 229 return getParent()->getParamStackAlign(getArgNo()); 230 } 231 232 Type *Argument::getParamByValType() const { 233 assert(getType()->isPointerTy() && "Only pointers have byval types"); 234 return getParent()->getParamByValType(getArgNo()); 235 } 236 237 Type *Argument::getParamStructRetType() const { 238 assert(getType()->isPointerTy() && "Only pointers have sret types"); 239 return getParent()->getParamStructRetType(getArgNo()); 240 } 241 242 Type *Argument::getParamByRefType() const { 243 assert(getType()->isPointerTy() && "Only pointers have byref types"); 244 return getParent()->getParamByRefType(getArgNo()); 245 } 246 247 Type *Argument::getParamInAllocaType() const { 248 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 249 return getParent()->getParamInAllocaType(getArgNo()); 250 } 251 252 uint64_t Argument::getDereferenceableBytes() const { 253 assert(getType()->isPointerTy() && 254 "Only pointers have dereferenceable bytes"); 255 return getParent()->getParamDereferenceableBytes(getArgNo()); 256 } 257 258 uint64_t Argument::getDereferenceableOrNullBytes() const { 259 assert(getType()->isPointerTy() && 260 "Only pointers have dereferenceable bytes"); 261 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 262 } 263 264 FPClassTest Argument::getNoFPClass() const { 265 return getParent()->getParamNoFPClass(getArgNo()); 266 } 267 268 std::optional<ConstantRange> Argument::getRange() const { 269 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 270 if (RangeAttr.isValid()) 271 return RangeAttr.getRange(); 272 return std::nullopt; 273 } 274 275 bool Argument::hasNestAttr() const { 276 if (!getType()->isPointerTy()) return false; 277 return hasAttribute(Attribute::Nest); 278 } 279 280 bool Argument::hasNoAliasAttr() const { 281 if (!getType()->isPointerTy()) return false; 282 return hasAttribute(Attribute::NoAlias); 283 } 284 285 bool Argument::hasNoCaptureAttr() const { 286 if (!getType()->isPointerTy()) return false; 287 return hasAttribute(Attribute::NoCapture); 288 } 289 290 bool Argument::hasNoFreeAttr() const { 291 if (!getType()->isPointerTy()) return false; 292 return hasAttribute(Attribute::NoFree); 293 } 294 295 bool Argument::hasStructRetAttr() const { 296 if (!getType()->isPointerTy()) return false; 297 return hasAttribute(Attribute::StructRet); 298 } 299 300 bool Argument::hasInRegAttr() const { 301 return hasAttribute(Attribute::InReg); 302 } 303 304 bool Argument::hasReturnedAttr() const { 305 return hasAttribute(Attribute::Returned); 306 } 307 308 bool Argument::hasZExtAttr() const { 309 return hasAttribute(Attribute::ZExt); 310 } 311 312 bool Argument::hasSExtAttr() const { 313 return hasAttribute(Attribute::SExt); 314 } 315 316 bool Argument::onlyReadsMemory() const { 317 AttributeList Attrs = getParent()->getAttributes(); 318 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 319 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 320 } 321 322 void Argument::addAttrs(AttrBuilder &B) { 323 AttributeList AL = getParent()->getAttributes(); 324 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 325 getParent()->setAttributes(AL); 326 } 327 328 void Argument::addAttr(Attribute::AttrKind Kind) { 329 getParent()->addParamAttr(getArgNo(), Kind); 330 } 331 332 void Argument::addAttr(Attribute Attr) { 333 getParent()->addParamAttr(getArgNo(), Attr); 334 } 335 336 void Argument::removeAttr(Attribute::AttrKind Kind) { 337 getParent()->removeParamAttr(getArgNo(), Kind); 338 } 339 340 void Argument::removeAttrs(const AttributeMask &AM) { 341 AttributeList AL = getParent()->getAttributes(); 342 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 343 getParent()->setAttributes(AL); 344 } 345 346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 347 return getParent()->hasParamAttribute(getArgNo(), Kind); 348 } 349 350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 351 return getParent()->getParamAttribute(getArgNo(), Kind); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Helper Methods in Function 356 //===----------------------------------------------------------------------===// 357 358 LLVMContext &Function::getContext() const { 359 return getType()->getContext(); 360 } 361 362 unsigned Function::getInstructionCount() const { 363 unsigned NumInstrs = 0; 364 for (const BasicBlock &BB : BasicBlocks) 365 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 366 BB.instructionsWithoutDebug().end()); 367 return NumInstrs; 368 } 369 370 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 371 const Twine &N, Module &M) { 372 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 373 } 374 375 Function *Function::createWithDefaultAttr(FunctionType *Ty, 376 LinkageTypes Linkage, 377 unsigned AddrSpace, const Twine &N, 378 Module *M) { 379 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 380 AttrBuilder B(F->getContext()); 381 UWTableKind UWTable = M->getUwtable(); 382 if (UWTable != UWTableKind::None) 383 B.addUWTableAttr(UWTable); 384 switch (M->getFramePointer()) { 385 case FramePointerKind::None: 386 // 0 ("none") is the default. 387 break; 388 case FramePointerKind::Reserved: 389 B.addAttribute("frame-pointer", "reserved"); 390 break; 391 case FramePointerKind::NonLeaf: 392 B.addAttribute("frame-pointer", "non-leaf"); 393 break; 394 case FramePointerKind::All: 395 B.addAttribute("frame-pointer", "all"); 396 break; 397 } 398 if (M->getModuleFlag("function_return_thunk_extern")) 399 B.addAttribute(Attribute::FnRetThunkExtern); 400 StringRef DefaultCPU = F->getContext().getDefaultTargetCPU(); 401 if (!DefaultCPU.empty()) 402 B.addAttribute("target-cpu", DefaultCPU); 403 StringRef DefaultFeatures = F->getContext().getDefaultTargetFeatures(); 404 if (!DefaultFeatures.empty()) 405 B.addAttribute("target-features", DefaultFeatures); 406 F->addFnAttrs(B); 407 return F; 408 } 409 410 void Function::removeFromParent() { 411 getParent()->getFunctionList().remove(getIterator()); 412 } 413 414 void Function::eraseFromParent() { 415 getParent()->getFunctionList().erase(getIterator()); 416 } 417 418 void Function::splice(Function::iterator ToIt, Function *FromF, 419 Function::iterator FromBeginIt, 420 Function::iterator FromEndIt) { 421 #ifdef EXPENSIVE_CHECKS 422 // Check that FromBeginIt is before FromEndIt. 423 auto FromFEnd = FromF->end(); 424 for (auto It = FromBeginIt; It != FromEndIt; ++It) 425 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 426 #endif // EXPENSIVE_CHECKS 427 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 428 } 429 430 Function::iterator Function::erase(Function::iterator FromIt, 431 Function::iterator ToIt) { 432 return BasicBlocks.erase(FromIt, ToIt); 433 } 434 435 //===----------------------------------------------------------------------===// 436 // Function Implementation 437 //===----------------------------------------------------------------------===// 438 439 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 440 // If AS == -1 and we are passed a valid module pointer we place the function 441 // in the program address space. Otherwise we default to AS0. 442 if (AddrSpace == static_cast<unsigned>(-1)) 443 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 444 return AddrSpace; 445 } 446 447 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 448 const Twine &name, Module *ParentModule) 449 : GlobalObject(Ty, Value::FunctionVal, 450 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 451 computeAddrSpace(AddrSpace, ParentModule)), 452 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) { 453 assert(FunctionType::isValidReturnType(getReturnType()) && 454 "invalid return type"); 455 setGlobalObjectSubClassData(0); 456 457 // We only need a symbol table for a function if the context keeps value names 458 if (!getContext().shouldDiscardValueNames()) 459 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 460 461 // If the function has arguments, mark them as lazily built. 462 if (Ty->getNumParams()) 463 setValueSubclassData(1); // Set the "has lazy arguments" bit. 464 465 if (ParentModule) { 466 ParentModule->getFunctionList().push_back(this); 467 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 468 } 469 470 HasLLVMReservedName = getName().starts_with("llvm."); 471 // Ensure intrinsics have the right parameter attributes. 472 // Note, the IntID field will have been set in Value::setName if this function 473 // name is a valid intrinsic ID. 474 if (IntID) 475 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 476 } 477 478 Function::~Function() { 479 dropAllReferences(); // After this it is safe to delete instructions. 480 481 // Delete all of the method arguments and unlink from symbol table... 482 if (Arguments) 483 clearArguments(); 484 485 // Remove the function from the on-the-side GC table. 486 clearGC(); 487 } 488 489 void Function::BuildLazyArguments() const { 490 // Create the arguments vector, all arguments start out unnamed. 491 auto *FT = getFunctionType(); 492 if (NumArgs > 0) { 493 Arguments = std::allocator<Argument>().allocate(NumArgs); 494 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 495 Type *ArgTy = FT->getParamType(i); 496 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 497 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 498 } 499 } 500 501 // Clear the lazy arguments bit. 502 unsigned SDC = getSubclassDataFromValue(); 503 SDC &= ~(1 << 0); 504 const_cast<Function*>(this)->setValueSubclassData(SDC); 505 assert(!hasLazyArguments()); 506 } 507 508 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 509 return MutableArrayRef<Argument>(Args, Count); 510 } 511 512 bool Function::isConstrainedFPIntrinsic() const { 513 return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID()); 514 } 515 516 void Function::clearArguments() { 517 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 518 A.setName(""); 519 A.~Argument(); 520 } 521 std::allocator<Argument>().deallocate(Arguments, NumArgs); 522 Arguments = nullptr; 523 } 524 525 void Function::stealArgumentListFrom(Function &Src) { 526 assert(isDeclaration() && "Expected no references to current arguments"); 527 528 // Drop the current arguments, if any, and set the lazy argument bit. 529 if (!hasLazyArguments()) { 530 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 531 [](const Argument &A) { return A.use_empty(); }) && 532 "Expected arguments to be unused in declaration"); 533 clearArguments(); 534 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 535 } 536 537 // Nothing to steal if Src has lazy arguments. 538 if (Src.hasLazyArguments()) 539 return; 540 541 // Steal arguments from Src, and fix the lazy argument bits. 542 assert(arg_size() == Src.arg_size()); 543 Arguments = Src.Arguments; 544 Src.Arguments = nullptr; 545 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 546 // FIXME: This does the work of transferNodesFromList inefficiently. 547 SmallString<128> Name; 548 if (A.hasName()) 549 Name = A.getName(); 550 if (!Name.empty()) 551 A.setName(""); 552 A.setParent(this); 553 if (!Name.empty()) 554 A.setName(Name); 555 } 556 557 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 558 assert(!hasLazyArguments()); 559 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 560 } 561 562 void Function::deleteBodyImpl(bool ShouldDrop) { 563 setIsMaterializable(false); 564 565 for (BasicBlock &BB : *this) 566 BB.dropAllReferences(); 567 568 // Delete all basic blocks. They are now unused, except possibly by 569 // blockaddresses, but BasicBlock's destructor takes care of those. 570 while (!BasicBlocks.empty()) 571 BasicBlocks.begin()->eraseFromParent(); 572 573 if (getNumOperands()) { 574 if (ShouldDrop) { 575 // Drop uses of any optional data (real or placeholder). 576 User::dropAllReferences(); 577 setNumHungOffUseOperands(0); 578 } else { 579 // The code needs to match Function::allocHungoffUselist(). 580 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 581 Op<0>().set(CPN); 582 Op<1>().set(CPN); 583 Op<2>().set(CPN); 584 } 585 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 586 } 587 588 // Metadata is stored in a side-table. 589 clearMetadata(); 590 } 591 592 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 593 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 594 } 595 596 void Function::addFnAttr(Attribute::AttrKind Kind) { 597 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 598 } 599 600 void Function::addFnAttr(StringRef Kind, StringRef Val) { 601 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 602 } 603 604 void Function::addFnAttr(Attribute Attr) { 605 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 606 } 607 608 void Function::addFnAttrs(const AttrBuilder &Attrs) { 609 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 610 } 611 612 void Function::addRetAttr(Attribute::AttrKind Kind) { 613 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 614 } 615 616 void Function::addRetAttr(Attribute Attr) { 617 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 618 } 619 620 void Function::addRetAttrs(const AttrBuilder &Attrs) { 621 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 622 } 623 624 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 625 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 626 } 627 628 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 629 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 630 } 631 632 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 633 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 634 } 635 636 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 637 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 638 } 639 640 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 641 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 642 } 643 644 void Function::removeFnAttr(Attribute::AttrKind Kind) { 645 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 646 } 647 648 void Function::removeFnAttr(StringRef Kind) { 649 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 650 } 651 652 void Function::removeFnAttrs(const AttributeMask &AM) { 653 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 654 } 655 656 void Function::removeRetAttr(Attribute::AttrKind Kind) { 657 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 658 } 659 660 void Function::removeRetAttr(StringRef Kind) { 661 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 662 } 663 664 void Function::removeRetAttrs(const AttributeMask &Attrs) { 665 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 666 } 667 668 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 669 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 670 } 671 672 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 673 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 674 } 675 676 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 677 AttributeSets = 678 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 679 } 680 681 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 682 AttributeSets = 683 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 684 } 685 686 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 687 return AttributeSets.hasFnAttr(Kind); 688 } 689 690 bool Function::hasFnAttribute(StringRef Kind) const { 691 return AttributeSets.hasFnAttr(Kind); 692 } 693 694 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 695 return AttributeSets.hasRetAttr(Kind); 696 } 697 698 bool Function::hasParamAttribute(unsigned ArgNo, 699 Attribute::AttrKind Kind) const { 700 return AttributeSets.hasParamAttr(ArgNo, Kind); 701 } 702 703 Attribute Function::getAttributeAtIndex(unsigned i, 704 Attribute::AttrKind Kind) const { 705 return AttributeSets.getAttributeAtIndex(i, Kind); 706 } 707 708 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 709 return AttributeSets.getAttributeAtIndex(i, Kind); 710 } 711 712 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 713 return AttributeSets.getFnAttr(Kind); 714 } 715 716 Attribute Function::getFnAttribute(StringRef Kind) const { 717 return AttributeSets.getFnAttr(Kind); 718 } 719 720 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 721 return AttributeSets.getRetAttr(Kind); 722 } 723 724 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 725 uint64_t Default) const { 726 Attribute A = getFnAttribute(Name); 727 uint64_t Result = Default; 728 if (A.isStringAttribute()) { 729 StringRef Str = A.getValueAsString(); 730 if (Str.getAsInteger(0, Result)) 731 getContext().emitError("cannot parse integer attribute " + Name); 732 } 733 734 return Result; 735 } 736 737 /// gets the specified attribute from the list of attributes. 738 Attribute Function::getParamAttribute(unsigned ArgNo, 739 Attribute::AttrKind Kind) const { 740 return AttributeSets.getParamAttr(ArgNo, Kind); 741 } 742 743 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 744 uint64_t Bytes) { 745 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 746 ArgNo, Bytes); 747 } 748 749 void Function::addRangeRetAttr(const ConstantRange &CR) { 750 AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR); 751 } 752 753 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 754 if (&FPType == &APFloat::IEEEsingle()) { 755 DenormalMode Mode = getDenormalModeF32Raw(); 756 // If the f32 variant of the attribute isn't specified, try to use the 757 // generic one. 758 if (Mode.isValid()) 759 return Mode; 760 } 761 762 return getDenormalModeRaw(); 763 } 764 765 DenormalMode Function::getDenormalModeRaw() const { 766 Attribute Attr = getFnAttribute("denormal-fp-math"); 767 StringRef Val = Attr.getValueAsString(); 768 return parseDenormalFPAttribute(Val); 769 } 770 771 DenormalMode Function::getDenormalModeF32Raw() const { 772 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 773 if (Attr.isValid()) { 774 StringRef Val = Attr.getValueAsString(); 775 return parseDenormalFPAttribute(Val); 776 } 777 778 return DenormalMode::getInvalid(); 779 } 780 781 const std::string &Function::getGC() const { 782 assert(hasGC() && "Function has no collector"); 783 return getContext().getGC(*this); 784 } 785 786 void Function::setGC(std::string Str) { 787 setValueSubclassDataBit(14, !Str.empty()); 788 getContext().setGC(*this, std::move(Str)); 789 } 790 791 void Function::clearGC() { 792 if (!hasGC()) 793 return; 794 getContext().deleteGC(*this); 795 setValueSubclassDataBit(14, false); 796 } 797 798 bool Function::hasStackProtectorFnAttr() const { 799 return hasFnAttribute(Attribute::StackProtect) || 800 hasFnAttribute(Attribute::StackProtectStrong) || 801 hasFnAttribute(Attribute::StackProtectReq); 802 } 803 804 /// Copy all additional attributes (those not needed to create a Function) from 805 /// the Function Src to this one. 806 void Function::copyAttributesFrom(const Function *Src) { 807 GlobalObject::copyAttributesFrom(Src); 808 setCallingConv(Src->getCallingConv()); 809 setAttributes(Src->getAttributes()); 810 if (Src->hasGC()) 811 setGC(Src->getGC()); 812 else 813 clearGC(); 814 if (Src->hasPersonalityFn()) 815 setPersonalityFn(Src->getPersonalityFn()); 816 if (Src->hasPrefixData()) 817 setPrefixData(Src->getPrefixData()); 818 if (Src->hasPrologueData()) 819 setPrologueData(Src->getPrologueData()); 820 } 821 822 MemoryEffects Function::getMemoryEffects() const { 823 return getAttributes().getMemoryEffects(); 824 } 825 void Function::setMemoryEffects(MemoryEffects ME) { 826 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 827 } 828 829 /// Determine if the function does not access memory. 830 bool Function::doesNotAccessMemory() const { 831 return getMemoryEffects().doesNotAccessMemory(); 832 } 833 void Function::setDoesNotAccessMemory() { 834 setMemoryEffects(MemoryEffects::none()); 835 } 836 837 /// Determine if the function does not access or only reads memory. 838 bool Function::onlyReadsMemory() const { 839 return getMemoryEffects().onlyReadsMemory(); 840 } 841 void Function::setOnlyReadsMemory() { 842 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 843 } 844 845 /// Determine if the function does not access or only writes memory. 846 bool Function::onlyWritesMemory() const { 847 return getMemoryEffects().onlyWritesMemory(); 848 } 849 void Function::setOnlyWritesMemory() { 850 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 851 } 852 853 /// Determine if the call can access memmory only using pointers based 854 /// on its arguments. 855 bool Function::onlyAccessesArgMemory() const { 856 return getMemoryEffects().onlyAccessesArgPointees(); 857 } 858 void Function::setOnlyAccessesArgMemory() { 859 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 860 } 861 862 /// Determine if the function may only access memory that is 863 /// inaccessible from the IR. 864 bool Function::onlyAccessesInaccessibleMemory() const { 865 return getMemoryEffects().onlyAccessesInaccessibleMem(); 866 } 867 void Function::setOnlyAccessesInaccessibleMemory() { 868 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 869 } 870 871 /// Determine if the function may only access memory that is 872 /// either inaccessible from the IR or pointed to by its arguments. 873 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 874 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 875 } 876 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 877 setMemoryEffects(getMemoryEffects() & 878 MemoryEffects::inaccessibleOrArgMemOnly()); 879 } 880 881 /// Table of string intrinsic names indexed by enum value. 882 static const char * const IntrinsicNameTable[] = { 883 "not_intrinsic", 884 #define GET_INTRINSIC_NAME_TABLE 885 #include "llvm/IR/IntrinsicImpl.inc" 886 #undef GET_INTRINSIC_NAME_TABLE 887 }; 888 889 /// Table of per-target intrinsic name tables. 890 #define GET_INTRINSIC_TARGET_DATA 891 #include "llvm/IR/IntrinsicImpl.inc" 892 #undef GET_INTRINSIC_TARGET_DATA 893 894 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 895 return IID > TargetInfos[0].Count; 896 } 897 898 bool Function::isTargetIntrinsic() const { 899 return isTargetIntrinsic(IntID); 900 } 901 902 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 903 /// target as \c Name, or the generic table if \c Name is not target specific. 904 /// 905 /// Returns the relevant slice of \c IntrinsicNameTable 906 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 907 assert(Name.starts_with("llvm.")); 908 909 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 910 // Drop "llvm." and take the first dotted component. That will be the target 911 // if this is target specific. 912 StringRef Target = Name.drop_front(5).split('.').first; 913 auto It = partition_point( 914 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 915 // We've either found the target or just fall back to the generic set, which 916 // is always first. 917 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 918 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 919 } 920 921 /// This does the actual lookup of an intrinsic ID which 922 /// matches the given function name. 923 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 924 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 925 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 926 if (Idx == -1) 927 return Intrinsic::not_intrinsic; 928 929 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 930 // an index into a sub-table. 931 int Adjust = NameTable.data() - IntrinsicNameTable; 932 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 933 934 // If the intrinsic is not overloaded, require an exact match. If it is 935 // overloaded, require either exact or prefix match. 936 const auto MatchSize = strlen(NameTable[Idx]); 937 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 938 bool IsExactMatch = Name.size() == MatchSize; 939 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 940 : Intrinsic::not_intrinsic; 941 } 942 943 void Function::updateAfterNameChange() { 944 LibFuncCache = UnknownLibFunc; 945 StringRef Name = getName(); 946 if (!Name.starts_with("llvm.")) { 947 HasLLVMReservedName = false; 948 IntID = Intrinsic::not_intrinsic; 949 return; 950 } 951 HasLLVMReservedName = true; 952 IntID = lookupIntrinsicID(Name); 953 } 954 955 /// Returns a stable mangling for the type specified for use in the name 956 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 957 /// of named types is simply their name. Manglings for unnamed types consist 958 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 959 /// combined with the mangling of their component types. A vararg function 960 /// type will have a suffix of 'vararg'. Since function types can contain 961 /// other function types, we close a function type mangling with suffix 'f' 962 /// which can't be confused with it's prefix. This ensures we don't have 963 /// collisions between two unrelated function types. Otherwise, you might 964 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 965 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 966 /// indicating that extra care must be taken to ensure a unique name. 967 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 968 std::string Result; 969 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 970 Result += "p" + utostr(PTyp->getAddressSpace()); 971 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 972 Result += "a" + utostr(ATyp->getNumElements()) + 973 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 974 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 975 if (!STyp->isLiteral()) { 976 Result += "s_"; 977 if (STyp->hasName()) 978 Result += STyp->getName(); 979 else 980 HasUnnamedType = true; 981 } else { 982 Result += "sl_"; 983 for (auto *Elem : STyp->elements()) 984 Result += getMangledTypeStr(Elem, HasUnnamedType); 985 } 986 // Ensure nested structs are distinguishable. 987 Result += "s"; 988 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 989 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 990 for (size_t i = 0; i < FT->getNumParams(); i++) 991 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 992 if (FT->isVarArg()) 993 Result += "vararg"; 994 // Ensure nested function types are distinguishable. 995 Result += "f"; 996 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 997 ElementCount EC = VTy->getElementCount(); 998 if (EC.isScalable()) 999 Result += "nx"; 1000 Result += "v" + utostr(EC.getKnownMinValue()) + 1001 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 1002 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 1003 Result += "t"; 1004 Result += TETy->getName(); 1005 for (Type *ParamTy : TETy->type_params()) 1006 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 1007 for (unsigned IntParam : TETy->int_params()) 1008 Result += "_" + utostr(IntParam); 1009 // Ensure nested target extension types are distinguishable. 1010 Result += "t"; 1011 } else if (Ty) { 1012 switch (Ty->getTypeID()) { 1013 default: llvm_unreachable("Unhandled type"); 1014 case Type::VoidTyID: Result += "isVoid"; break; 1015 case Type::MetadataTyID: Result += "Metadata"; break; 1016 case Type::HalfTyID: Result += "f16"; break; 1017 case Type::BFloatTyID: Result += "bf16"; break; 1018 case Type::FloatTyID: Result += "f32"; break; 1019 case Type::DoubleTyID: Result += "f64"; break; 1020 case Type::X86_FP80TyID: Result += "f80"; break; 1021 case Type::FP128TyID: Result += "f128"; break; 1022 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1023 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1024 case Type::X86_AMXTyID: Result += "x86amx"; break; 1025 case Type::IntegerTyID: 1026 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1027 break; 1028 } 1029 } 1030 return Result; 1031 } 1032 1033 StringRef Intrinsic::getBaseName(ID id) { 1034 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1035 return IntrinsicNameTable[id]; 1036 } 1037 1038 StringRef Intrinsic::getName(ID id) { 1039 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1040 assert(!Intrinsic::isOverloaded(id) && 1041 "This version of getName does not support overloading"); 1042 return getBaseName(id); 1043 } 1044 1045 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1046 Module *M, FunctionType *FT, 1047 bool EarlyModuleCheck) { 1048 1049 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1050 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1051 "This version of getName is for overloaded intrinsics only"); 1052 (void)EarlyModuleCheck; 1053 assert((!EarlyModuleCheck || M || 1054 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1055 "Intrinsic overloading on pointer types need to provide a Module"); 1056 bool HasUnnamedType = false; 1057 std::string Result(Intrinsic::getBaseName(Id)); 1058 for (Type *Ty : Tys) 1059 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1060 if (HasUnnamedType) { 1061 assert(M && "unnamed types need a module"); 1062 if (!FT) 1063 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1064 else 1065 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1066 "Provided FunctionType must match arguments"); 1067 return M->getUniqueIntrinsicName(Result, Id, FT); 1068 } 1069 return Result; 1070 } 1071 1072 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1073 FunctionType *FT) { 1074 assert(M && "We need to have a Module"); 1075 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1076 } 1077 1078 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1079 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1080 } 1081 1082 /// IIT_Info - These are enumerators that describe the entries returned by the 1083 /// getIntrinsicInfoTableEntries function. 1084 /// 1085 /// Defined in Intrinsics.td. 1086 enum IIT_Info { 1087 #define GET_INTRINSIC_IITINFO 1088 #include "llvm/IR/IntrinsicImpl.inc" 1089 #undef GET_INTRINSIC_IITINFO 1090 }; 1091 1092 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1093 IIT_Info LastInfo, 1094 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1095 using namespace Intrinsic; 1096 1097 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1098 1099 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1100 unsigned StructElts = 2; 1101 1102 switch (Info) { 1103 case IIT_Done: 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1105 return; 1106 case IIT_VARARG: 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1108 return; 1109 case IIT_MMX: 1110 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1111 return; 1112 case IIT_AMX: 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1114 return; 1115 case IIT_TOKEN: 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1117 return; 1118 case IIT_METADATA: 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1120 return; 1121 case IIT_F16: 1122 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1123 return; 1124 case IIT_BF16: 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1126 return; 1127 case IIT_F32: 1128 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1129 return; 1130 case IIT_F64: 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1132 return; 1133 case IIT_F128: 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1135 return; 1136 case IIT_PPCF128: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1138 return; 1139 case IIT_I1: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1141 return; 1142 case IIT_I2: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1144 return; 1145 case IIT_I4: 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1147 return; 1148 case IIT_AARCH64_SVCOUNT: 1149 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1150 return; 1151 case IIT_I8: 1152 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1153 return; 1154 case IIT_I16: 1155 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1156 return; 1157 case IIT_I32: 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1159 return; 1160 case IIT_I64: 1161 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1162 return; 1163 case IIT_I128: 1164 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1165 return; 1166 case IIT_V1: 1167 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1168 DecodeIITType(NextElt, Infos, Info, OutputTable); 1169 return; 1170 case IIT_V2: 1171 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1172 DecodeIITType(NextElt, Infos, Info, OutputTable); 1173 return; 1174 case IIT_V3: 1175 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1176 DecodeIITType(NextElt, Infos, Info, OutputTable); 1177 return; 1178 case IIT_V4: 1179 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1180 DecodeIITType(NextElt, Infos, Info, OutputTable); 1181 return; 1182 case IIT_V6: 1183 OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector)); 1184 DecodeIITType(NextElt, Infos, Info, OutputTable); 1185 return; 1186 case IIT_V8: 1187 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1188 DecodeIITType(NextElt, Infos, Info, OutputTable); 1189 return; 1190 case IIT_V10: 1191 OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector)); 1192 DecodeIITType(NextElt, Infos, Info, OutputTable); 1193 return; 1194 case IIT_V16: 1195 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1196 DecodeIITType(NextElt, Infos, Info, OutputTable); 1197 return; 1198 case IIT_V32: 1199 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1200 DecodeIITType(NextElt, Infos, Info, OutputTable); 1201 return; 1202 case IIT_V64: 1203 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1204 DecodeIITType(NextElt, Infos, Info, OutputTable); 1205 return; 1206 case IIT_V128: 1207 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1208 DecodeIITType(NextElt, Infos, Info, OutputTable); 1209 return; 1210 case IIT_V256: 1211 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1212 DecodeIITType(NextElt, Infos, Info, OutputTable); 1213 return; 1214 case IIT_V512: 1215 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1216 DecodeIITType(NextElt, Infos, Info, OutputTable); 1217 return; 1218 case IIT_V1024: 1219 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1220 DecodeIITType(NextElt, Infos, Info, OutputTable); 1221 return; 1222 case IIT_EXTERNREF: 1223 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1224 return; 1225 case IIT_FUNCREF: 1226 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1227 return; 1228 case IIT_PTR: 1229 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1230 return; 1231 case IIT_ANYPTR: // [ANYPTR addrspace] 1232 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1233 Infos[NextElt++])); 1234 return; 1235 case IIT_ARG: { 1236 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1237 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1238 return; 1239 } 1240 case IIT_EXTEND_ARG: { 1241 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1242 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1243 ArgInfo)); 1244 return; 1245 } 1246 case IIT_TRUNC_ARG: { 1247 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1248 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1249 ArgInfo)); 1250 return; 1251 } 1252 case IIT_HALF_VEC_ARG: { 1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1255 ArgInfo)); 1256 return; 1257 } 1258 case IIT_SAME_VEC_WIDTH_ARG: { 1259 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1260 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1261 ArgInfo)); 1262 return; 1263 } 1264 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1265 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1266 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1267 OutputTable.push_back( 1268 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1269 return; 1270 } 1271 case IIT_EMPTYSTRUCT: 1272 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1273 return; 1274 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1275 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1276 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1277 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1278 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1279 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1280 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1281 case IIT_STRUCT2: { 1282 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1283 1284 for (unsigned i = 0; i != StructElts; ++i) 1285 DecodeIITType(NextElt, Infos, Info, OutputTable); 1286 return; 1287 } 1288 case IIT_SUBDIVIDE2_ARG: { 1289 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1290 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1291 ArgInfo)); 1292 return; 1293 } 1294 case IIT_SUBDIVIDE4_ARG: { 1295 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1296 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1297 ArgInfo)); 1298 return; 1299 } 1300 case IIT_VEC_ELEMENT: { 1301 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1302 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1303 ArgInfo)); 1304 return; 1305 } 1306 case IIT_SCALABLE_VEC: { 1307 DecodeIITType(NextElt, Infos, Info, OutputTable); 1308 return; 1309 } 1310 case IIT_VEC_OF_BITCASTS_TO_INT: { 1311 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1312 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1313 ArgInfo)); 1314 return; 1315 } 1316 } 1317 llvm_unreachable("unhandled"); 1318 } 1319 1320 #define GET_INTRINSIC_GENERATOR_GLOBAL 1321 #include "llvm/IR/IntrinsicImpl.inc" 1322 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1323 1324 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1325 SmallVectorImpl<IITDescriptor> &T){ 1326 // Check to see if the intrinsic's type was expressible by the table. 1327 unsigned TableVal = IIT_Table[id-1]; 1328 1329 // Decode the TableVal into an array of IITValues. 1330 SmallVector<unsigned char, 8> IITValues; 1331 ArrayRef<unsigned char> IITEntries; 1332 unsigned NextElt = 0; 1333 if ((TableVal >> 31) != 0) { 1334 // This is an offset into the IIT_LongEncodingTable. 1335 IITEntries = IIT_LongEncodingTable; 1336 1337 // Strip sentinel bit. 1338 NextElt = (TableVal << 1) >> 1; 1339 } else { 1340 // Decode the TableVal into an array of IITValues. If the entry was encoded 1341 // into a single word in the table itself, decode it now. 1342 do { 1343 IITValues.push_back(TableVal & 0xF); 1344 TableVal >>= 4; 1345 } while (TableVal); 1346 1347 IITEntries = IITValues; 1348 NextElt = 0; 1349 } 1350 1351 // Okay, decode the table into the output vector of IITDescriptors. 1352 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1353 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1354 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1355 } 1356 1357 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1358 ArrayRef<Type*> Tys, LLVMContext &Context) { 1359 using namespace Intrinsic; 1360 1361 IITDescriptor D = Infos.front(); 1362 Infos = Infos.slice(1); 1363 1364 switch (D.Kind) { 1365 case IITDescriptor::Void: return Type::getVoidTy(Context); 1366 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1367 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1368 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1369 case IITDescriptor::Token: return Type::getTokenTy(Context); 1370 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1371 case IITDescriptor::Half: return Type::getHalfTy(Context); 1372 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1373 case IITDescriptor::Float: return Type::getFloatTy(Context); 1374 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1375 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1376 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1377 case IITDescriptor::AArch64Svcount: 1378 return TargetExtType::get(Context, "aarch64.svcount"); 1379 1380 case IITDescriptor::Integer: 1381 return IntegerType::get(Context, D.Integer_Width); 1382 case IITDescriptor::Vector: 1383 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1384 D.Vector_Width); 1385 case IITDescriptor::Pointer: 1386 return PointerType::get(Context, D.Pointer_AddressSpace); 1387 case IITDescriptor::Struct: { 1388 SmallVector<Type *, 8> Elts; 1389 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1390 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1391 return StructType::get(Context, Elts); 1392 } 1393 case IITDescriptor::Argument: 1394 return Tys[D.getArgumentNumber()]; 1395 case IITDescriptor::ExtendArgument: { 1396 Type *Ty = Tys[D.getArgumentNumber()]; 1397 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1398 return VectorType::getExtendedElementVectorType(VTy); 1399 1400 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1401 } 1402 case IITDescriptor::TruncArgument: { 1403 Type *Ty = Tys[D.getArgumentNumber()]; 1404 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1405 return VectorType::getTruncatedElementVectorType(VTy); 1406 1407 IntegerType *ITy = cast<IntegerType>(Ty); 1408 assert(ITy->getBitWidth() % 2 == 0); 1409 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1410 } 1411 case IITDescriptor::Subdivide2Argument: 1412 case IITDescriptor::Subdivide4Argument: { 1413 Type *Ty = Tys[D.getArgumentNumber()]; 1414 VectorType *VTy = dyn_cast<VectorType>(Ty); 1415 assert(VTy && "Expected an argument of Vector Type"); 1416 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1417 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1418 } 1419 case IITDescriptor::HalfVecArgument: 1420 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1421 Tys[D.getArgumentNumber()])); 1422 case IITDescriptor::SameVecWidthArgument: { 1423 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1424 Type *Ty = Tys[D.getArgumentNumber()]; 1425 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1426 return VectorType::get(EltTy, VTy->getElementCount()); 1427 return EltTy; 1428 } 1429 case IITDescriptor::VecElementArgument: { 1430 Type *Ty = Tys[D.getArgumentNumber()]; 1431 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1432 return VTy->getElementType(); 1433 llvm_unreachable("Expected an argument of Vector Type"); 1434 } 1435 case IITDescriptor::VecOfBitcastsToInt: { 1436 Type *Ty = Tys[D.getArgumentNumber()]; 1437 VectorType *VTy = dyn_cast<VectorType>(Ty); 1438 assert(VTy && "Expected an argument of Vector Type"); 1439 return VectorType::getInteger(VTy); 1440 } 1441 case IITDescriptor::VecOfAnyPtrsToElt: 1442 // Return the overloaded type (which determines the pointers address space) 1443 return Tys[D.getOverloadArgNumber()]; 1444 } 1445 llvm_unreachable("unhandled"); 1446 } 1447 1448 FunctionType *Intrinsic::getType(LLVMContext &Context, 1449 ID id, ArrayRef<Type*> Tys) { 1450 SmallVector<IITDescriptor, 8> Table; 1451 getIntrinsicInfoTableEntries(id, Table); 1452 1453 ArrayRef<IITDescriptor> TableRef = Table; 1454 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1455 1456 SmallVector<Type*, 8> ArgTys; 1457 while (!TableRef.empty()) 1458 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1459 1460 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1461 // If we see void type as the type of the last argument, it is vararg intrinsic 1462 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1463 ArgTys.pop_back(); 1464 return FunctionType::get(ResultTy, ArgTys, true); 1465 } 1466 return FunctionType::get(ResultTy, ArgTys, false); 1467 } 1468 1469 bool Intrinsic::isOverloaded(ID id) { 1470 #define GET_INTRINSIC_OVERLOAD_TABLE 1471 #include "llvm/IR/IntrinsicImpl.inc" 1472 #undef GET_INTRINSIC_OVERLOAD_TABLE 1473 } 1474 1475 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1476 #define GET_INTRINSIC_ATTRIBUTES 1477 #include "llvm/IR/IntrinsicImpl.inc" 1478 #undef GET_INTRINSIC_ATTRIBUTES 1479 1480 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1481 // There can never be multiple globals with the same name of different types, 1482 // because intrinsics must be a specific type. 1483 auto *FT = getType(M->getContext(), id, Tys); 1484 return cast<Function>( 1485 M->getOrInsertFunction( 1486 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1487 .getCallee()); 1488 } 1489 1490 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1491 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1492 #include "llvm/IR/IntrinsicImpl.inc" 1493 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1494 1495 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1496 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1497 #include "llvm/IR/IntrinsicImpl.inc" 1498 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1499 1500 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) { 1501 switch (QID) { 1502 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1503 case Intrinsic::INTRINSIC: 1504 #include "llvm/IR/ConstrainedOps.def" 1505 #undef INSTRUCTION 1506 return true; 1507 default: 1508 return false; 1509 } 1510 } 1511 1512 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) { 1513 switch (QID) { 1514 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1515 case Intrinsic::INTRINSIC: \ 1516 return ROUND_MODE == 1; 1517 #include "llvm/IR/ConstrainedOps.def" 1518 #undef INSTRUCTION 1519 default: 1520 return false; 1521 } 1522 } 1523 1524 using DeferredIntrinsicMatchPair = 1525 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1526 1527 static bool matchIntrinsicType( 1528 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1529 SmallVectorImpl<Type *> &ArgTys, 1530 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1531 bool IsDeferredCheck) { 1532 using namespace Intrinsic; 1533 1534 // If we ran out of descriptors, there are too many arguments. 1535 if (Infos.empty()) return true; 1536 1537 // Do this before slicing off the 'front' part 1538 auto InfosRef = Infos; 1539 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1540 DeferredChecks.emplace_back(T, InfosRef); 1541 return false; 1542 }; 1543 1544 IITDescriptor D = Infos.front(); 1545 Infos = Infos.slice(1); 1546 1547 switch (D.Kind) { 1548 case IITDescriptor::Void: return !Ty->isVoidTy(); 1549 case IITDescriptor::VarArg: return true; 1550 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1551 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1552 case IITDescriptor::Token: return !Ty->isTokenTy(); 1553 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1554 case IITDescriptor::Half: return !Ty->isHalfTy(); 1555 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1556 case IITDescriptor::Float: return !Ty->isFloatTy(); 1557 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1558 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1559 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1560 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1561 case IITDescriptor::AArch64Svcount: 1562 return !isa<TargetExtType>(Ty) || 1563 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1564 case IITDescriptor::Vector: { 1565 VectorType *VT = dyn_cast<VectorType>(Ty); 1566 return !VT || VT->getElementCount() != D.Vector_Width || 1567 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1568 DeferredChecks, IsDeferredCheck); 1569 } 1570 case IITDescriptor::Pointer: { 1571 PointerType *PT = dyn_cast<PointerType>(Ty); 1572 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1573 } 1574 1575 case IITDescriptor::Struct: { 1576 StructType *ST = dyn_cast<StructType>(Ty); 1577 if (!ST || !ST->isLiteral() || ST->isPacked() || 1578 ST->getNumElements() != D.Struct_NumElements) 1579 return true; 1580 1581 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1582 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1583 DeferredChecks, IsDeferredCheck)) 1584 return true; 1585 return false; 1586 } 1587 1588 case IITDescriptor::Argument: 1589 // If this is the second occurrence of an argument, 1590 // verify that the later instance matches the previous instance. 1591 if (D.getArgumentNumber() < ArgTys.size()) 1592 return Ty != ArgTys[D.getArgumentNumber()]; 1593 1594 if (D.getArgumentNumber() > ArgTys.size() || 1595 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1596 return IsDeferredCheck || DeferCheck(Ty); 1597 1598 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1599 "Table consistency error"); 1600 ArgTys.push_back(Ty); 1601 1602 switch (D.getArgumentKind()) { 1603 case IITDescriptor::AK_Any: return false; // Success 1604 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1605 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1606 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1607 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1608 default: break; 1609 } 1610 llvm_unreachable("all argument kinds not covered"); 1611 1612 case IITDescriptor::ExtendArgument: { 1613 // If this is a forward reference, defer the check for later. 1614 if (D.getArgumentNumber() >= ArgTys.size()) 1615 return IsDeferredCheck || DeferCheck(Ty); 1616 1617 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1618 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1619 NewTy = VectorType::getExtendedElementVectorType(VTy); 1620 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1621 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1622 else 1623 return true; 1624 1625 return Ty != NewTy; 1626 } 1627 case IITDescriptor::TruncArgument: { 1628 // If this is a forward reference, defer the check for later. 1629 if (D.getArgumentNumber() >= ArgTys.size()) 1630 return IsDeferredCheck || DeferCheck(Ty); 1631 1632 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1633 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1634 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1635 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1636 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1637 else 1638 return true; 1639 1640 return Ty != NewTy; 1641 } 1642 case IITDescriptor::HalfVecArgument: 1643 // If this is a forward reference, defer the check for later. 1644 if (D.getArgumentNumber() >= ArgTys.size()) 1645 return IsDeferredCheck || DeferCheck(Ty); 1646 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1647 VectorType::getHalfElementsVectorType( 1648 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1649 case IITDescriptor::SameVecWidthArgument: { 1650 if (D.getArgumentNumber() >= ArgTys.size()) { 1651 // Defer check and subsequent check for the vector element type. 1652 Infos = Infos.slice(1); 1653 return IsDeferredCheck || DeferCheck(Ty); 1654 } 1655 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1656 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1657 // Both must be vectors of the same number of elements or neither. 1658 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1659 return true; 1660 Type *EltTy = Ty; 1661 if (ThisArgType) { 1662 if (ReferenceType->getElementCount() != 1663 ThisArgType->getElementCount()) 1664 return true; 1665 EltTy = ThisArgType->getElementType(); 1666 } 1667 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1668 IsDeferredCheck); 1669 } 1670 case IITDescriptor::VecOfAnyPtrsToElt: { 1671 unsigned RefArgNumber = D.getRefArgNumber(); 1672 if (RefArgNumber >= ArgTys.size()) { 1673 if (IsDeferredCheck) 1674 return true; 1675 // If forward referencing, already add the pointer-vector type and 1676 // defer the checks for later. 1677 ArgTys.push_back(Ty); 1678 return DeferCheck(Ty); 1679 } 1680 1681 if (!IsDeferredCheck){ 1682 assert(D.getOverloadArgNumber() == ArgTys.size() && 1683 "Table consistency error"); 1684 ArgTys.push_back(Ty); 1685 } 1686 1687 // Verify the overloaded type "matches" the Ref type. 1688 // i.e. Ty is a vector with the same width as Ref. 1689 // Composed of pointers to the same element type as Ref. 1690 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1691 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1692 if (!ThisArgVecTy || !ReferenceType || 1693 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1694 return true; 1695 return !ThisArgVecTy->getElementType()->isPointerTy(); 1696 } 1697 case IITDescriptor::VecElementArgument: { 1698 if (D.getArgumentNumber() >= ArgTys.size()) 1699 return IsDeferredCheck ? true : DeferCheck(Ty); 1700 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1701 return !ReferenceType || Ty != ReferenceType->getElementType(); 1702 } 1703 case IITDescriptor::Subdivide2Argument: 1704 case IITDescriptor::Subdivide4Argument: { 1705 // If this is a forward reference, defer the check for later. 1706 if (D.getArgumentNumber() >= ArgTys.size()) 1707 return IsDeferredCheck || DeferCheck(Ty); 1708 1709 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1710 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1711 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1712 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1713 return Ty != NewTy; 1714 } 1715 return true; 1716 } 1717 case IITDescriptor::VecOfBitcastsToInt: { 1718 if (D.getArgumentNumber() >= ArgTys.size()) 1719 return IsDeferredCheck || DeferCheck(Ty); 1720 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1721 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1722 if (!ThisArgVecTy || !ReferenceType) 1723 return true; 1724 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1725 } 1726 } 1727 llvm_unreachable("unhandled"); 1728 } 1729 1730 Intrinsic::MatchIntrinsicTypesResult 1731 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1732 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1733 SmallVectorImpl<Type *> &ArgTys) { 1734 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1735 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1736 false)) 1737 return MatchIntrinsicTypes_NoMatchRet; 1738 1739 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1740 1741 for (auto *Ty : FTy->params()) 1742 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1743 return MatchIntrinsicTypes_NoMatchArg; 1744 1745 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1746 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1747 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1748 true)) 1749 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1750 : MatchIntrinsicTypes_NoMatchArg; 1751 } 1752 1753 return MatchIntrinsicTypes_Match; 1754 } 1755 1756 bool 1757 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1758 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1759 // If there are no descriptors left, then it can't be a vararg. 1760 if (Infos.empty()) 1761 return isVarArg; 1762 1763 // There should be only one descriptor remaining at this point. 1764 if (Infos.size() != 1) 1765 return true; 1766 1767 // Check and verify the descriptor. 1768 IITDescriptor D = Infos.front(); 1769 Infos = Infos.slice(1); 1770 if (D.Kind == IITDescriptor::VarArg) 1771 return !isVarArg; 1772 1773 return true; 1774 } 1775 1776 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT, 1777 SmallVectorImpl<Type *> &ArgTys) { 1778 if (!ID) 1779 return false; 1780 1781 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1782 getIntrinsicInfoTableEntries(ID, Table); 1783 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1784 1785 if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) != 1786 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1787 return false; 1788 } 1789 if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef)) 1790 return false; 1791 return true; 1792 } 1793 1794 bool Intrinsic::getIntrinsicSignature(Function *F, 1795 SmallVectorImpl<Type *> &ArgTys) { 1796 return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(), 1797 ArgTys); 1798 } 1799 1800 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1801 SmallVector<Type *, 4> ArgTys; 1802 if (!getIntrinsicSignature(F, ArgTys)) 1803 return std::nullopt; 1804 1805 Intrinsic::ID ID = F->getIntrinsicID(); 1806 StringRef Name = F->getName(); 1807 std::string WantedName = 1808 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1809 if (Name == WantedName) 1810 return std::nullopt; 1811 1812 Function *NewDecl = [&] { 1813 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1814 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1815 if (ExistingF->getFunctionType() == F->getFunctionType()) 1816 return ExistingF; 1817 1818 // The name already exists, but is not a function or has the wrong 1819 // prototype. Make place for the new one by renaming the old version. 1820 // Either this old version will be removed later on or the module is 1821 // invalid and we'll get an error. 1822 ExistingGV->setName(WantedName + ".renamed"); 1823 } 1824 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1825 }(); 1826 1827 NewDecl->setCallingConv(F->getCallingConv()); 1828 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1829 "Shouldn't change the signature"); 1830 return NewDecl; 1831 } 1832 1833 /// hasAddressTaken - returns true if there are any uses of this function 1834 /// other than direct calls or invokes to it. Optionally ignores callback 1835 /// uses, assume like pointer annotation calls, and references in llvm.used 1836 /// and llvm.compiler.used variables. 1837 bool Function::hasAddressTaken(const User **PutOffender, 1838 bool IgnoreCallbackUses, 1839 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1840 bool IgnoreARCAttachedCall, 1841 bool IgnoreCastedDirectCall) const { 1842 for (const Use &U : uses()) { 1843 const User *FU = U.getUser(); 1844 if (isa<BlockAddress>(FU)) 1845 continue; 1846 1847 if (IgnoreCallbackUses) { 1848 AbstractCallSite ACS(&U); 1849 if (ACS && ACS.isCallbackCall()) 1850 continue; 1851 } 1852 1853 const auto *Call = dyn_cast<CallBase>(FU); 1854 if (!Call) { 1855 if (IgnoreAssumeLikeCalls && 1856 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1857 all_of(FU->users(), [](const User *U) { 1858 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1859 return I->isAssumeLikeIntrinsic(); 1860 return false; 1861 })) { 1862 continue; 1863 } 1864 1865 if (IgnoreLLVMUsed && !FU->user_empty()) { 1866 const User *FUU = FU; 1867 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1868 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1869 FUU = *FU->user_begin(); 1870 if (llvm::all_of(FUU->users(), [](const User *U) { 1871 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1872 return GV->hasName() && 1873 (GV->getName() == "llvm.compiler.used" || 1874 GV->getName() == "llvm.used"); 1875 return false; 1876 })) 1877 continue; 1878 } 1879 if (PutOffender) 1880 *PutOffender = FU; 1881 return true; 1882 } 1883 1884 if (IgnoreAssumeLikeCalls) { 1885 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1886 if (I->isAssumeLikeIntrinsic()) 1887 continue; 1888 } 1889 1890 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1891 Call->getFunctionType() != getFunctionType())) { 1892 if (IgnoreARCAttachedCall && 1893 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1894 U.getOperandNo())) 1895 continue; 1896 1897 if (PutOffender) 1898 *PutOffender = FU; 1899 return true; 1900 } 1901 } 1902 return false; 1903 } 1904 1905 bool Function::isDefTriviallyDead() const { 1906 // Check the linkage 1907 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1908 !hasAvailableExternallyLinkage()) 1909 return false; 1910 1911 // Check if the function is used by anything other than a blockaddress. 1912 for (const User *U : users()) 1913 if (!isa<BlockAddress>(U)) 1914 return false; 1915 1916 return true; 1917 } 1918 1919 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1920 /// setjmp or other function that gcc recognizes as "returning twice". 1921 bool Function::callsFunctionThatReturnsTwice() const { 1922 for (const Instruction &I : instructions(this)) 1923 if (const auto *Call = dyn_cast<CallBase>(&I)) 1924 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1925 return true; 1926 1927 return false; 1928 } 1929 1930 Constant *Function::getPersonalityFn() const { 1931 assert(hasPersonalityFn() && getNumOperands()); 1932 return cast<Constant>(Op<0>()); 1933 } 1934 1935 void Function::setPersonalityFn(Constant *Fn) { 1936 setHungoffOperand<0>(Fn); 1937 setValueSubclassDataBit(3, Fn != nullptr); 1938 } 1939 1940 Constant *Function::getPrefixData() const { 1941 assert(hasPrefixData() && getNumOperands()); 1942 return cast<Constant>(Op<1>()); 1943 } 1944 1945 void Function::setPrefixData(Constant *PrefixData) { 1946 setHungoffOperand<1>(PrefixData); 1947 setValueSubclassDataBit(1, PrefixData != nullptr); 1948 } 1949 1950 Constant *Function::getPrologueData() const { 1951 assert(hasPrologueData() && getNumOperands()); 1952 return cast<Constant>(Op<2>()); 1953 } 1954 1955 void Function::setPrologueData(Constant *PrologueData) { 1956 setHungoffOperand<2>(PrologueData); 1957 setValueSubclassDataBit(2, PrologueData != nullptr); 1958 } 1959 1960 void Function::allocHungoffUselist() { 1961 // If we've already allocated a uselist, stop here. 1962 if (getNumOperands()) 1963 return; 1964 1965 allocHungoffUses(3, /*IsPhi=*/ false); 1966 setNumHungOffUseOperands(3); 1967 1968 // Initialize the uselist with placeholder operands to allow traversal. 1969 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1970 Op<0>().set(CPN); 1971 Op<1>().set(CPN); 1972 Op<2>().set(CPN); 1973 } 1974 1975 template <int Idx> 1976 void Function::setHungoffOperand(Constant *C) { 1977 if (C) { 1978 allocHungoffUselist(); 1979 Op<Idx>().set(C); 1980 } else if (getNumOperands()) { 1981 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1982 } 1983 } 1984 1985 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1986 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1987 if (On) 1988 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1989 else 1990 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1991 } 1992 1993 void Function::setEntryCount(ProfileCount Count, 1994 const DenseSet<GlobalValue::GUID> *S) { 1995 #if !defined(NDEBUG) 1996 auto PrevCount = getEntryCount(); 1997 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1998 #endif 1999 2000 auto ImportGUIDs = getImportGUIDs(); 2001 if (S == nullptr && ImportGUIDs.size()) 2002 S = &ImportGUIDs; 2003 2004 MDBuilder MDB(getContext()); 2005 setMetadata( 2006 LLVMContext::MD_prof, 2007 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 2008 } 2009 2010 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 2011 const DenseSet<GlobalValue::GUID> *Imports) { 2012 setEntryCount(ProfileCount(Count, Type), Imports); 2013 } 2014 2015 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 2016 MDNode *MD = getMetadata(LLVMContext::MD_prof); 2017 if (MD && MD->getOperand(0)) 2018 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 2019 if (MDS->getString() == "function_entry_count") { 2020 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2021 uint64_t Count = CI->getValue().getZExtValue(); 2022 // A value of -1 is used for SamplePGO when there were no samples. 2023 // Treat this the same as unknown. 2024 if (Count == (uint64_t)-1) 2025 return std::nullopt; 2026 return ProfileCount(Count, PCT_Real); 2027 } else if (AllowSynthetic && 2028 MDS->getString() == "synthetic_function_entry_count") { 2029 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2030 uint64_t Count = CI->getValue().getZExtValue(); 2031 return ProfileCount(Count, PCT_Synthetic); 2032 } 2033 } 2034 return std::nullopt; 2035 } 2036 2037 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2038 DenseSet<GlobalValue::GUID> R; 2039 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2040 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2041 if (MDS->getString() == "function_entry_count") 2042 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2043 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2044 ->getValue() 2045 .getZExtValue()); 2046 return R; 2047 } 2048 2049 void Function::setSectionPrefix(StringRef Prefix) { 2050 MDBuilder MDB(getContext()); 2051 setMetadata(LLVMContext::MD_section_prefix, 2052 MDB.createFunctionSectionPrefix(Prefix)); 2053 } 2054 2055 std::optional<StringRef> Function::getSectionPrefix() const { 2056 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2057 assert(cast<MDString>(MD->getOperand(0))->getString() == 2058 "function_section_prefix" && 2059 "Metadata not match"); 2060 return cast<MDString>(MD->getOperand(1))->getString(); 2061 } 2062 return std::nullopt; 2063 } 2064 2065 bool Function::nullPointerIsDefined() const { 2066 return hasFnAttribute(Attribute::NullPointerIsValid); 2067 } 2068 2069 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2070 if (F && F->nullPointerIsDefined()) 2071 return true; 2072 2073 if (AS != 0) 2074 return true; 2075 2076 return false; 2077 } 2078