1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsHexagon.h" 39 #include "llvm/IR/IntrinsicsMips.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsRISCV.h" 44 #include "llvm/IR/IntrinsicsS390.h" 45 #include "llvm/IR/IntrinsicsWebAssembly.h" 46 #include "llvm/IR/IntrinsicsX86.h" 47 #include "llvm/IR/IntrinsicsXCore.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/SymbolTableListTraits.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 // Explicit instantiations of SymbolTableListTraits since some of the methods 72 // are not in the public header file... 73 template class llvm::SymbolTableListTraits<BasicBlock>; 74 75 //===----------------------------------------------------------------------===// 76 // Argument Implementation 77 //===----------------------------------------------------------------------===// 78 79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 80 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 81 setName(Name); 82 } 83 84 void Argument::setParent(Function *parent) { 85 Parent = parent; 86 } 87 88 bool Argument::hasNonNullAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 91 return true; 92 else if (getDereferenceableBytes() > 0 && 93 !NullPointerIsDefined(getParent(), 94 getType()->getPointerAddressSpace())) 95 return true; 96 return false; 97 } 98 99 bool Argument::hasByValAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::ByVal); 102 } 103 104 bool Argument::hasSwiftSelfAttr() const { 105 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 106 } 107 108 bool Argument::hasSwiftErrorAttr() const { 109 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 110 } 111 112 bool Argument::hasInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::InAlloca); 115 } 116 117 bool Argument::hasPreallocatedAttr() const { 118 if (!getType()->isPointerTy()) 119 return false; 120 return hasAttribute(Attribute::Preallocated); 121 } 122 123 bool Argument::hasPassPointeeByValueAttr() const { 124 if (!getType()->isPointerTy()) return false; 125 AttributeList Attrs = getParent()->getAttributes(); 126 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 127 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 128 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 129 } 130 131 unsigned Argument::getParamAlignment() const { 132 assert(getType()->isPointerTy() && "Only pointers have alignments"); 133 return getParent()->getParamAlignment(getArgNo()); 134 } 135 136 MaybeAlign Argument::getParamAlign() const { 137 assert(getType()->isPointerTy() && "Only pointers have alignments"); 138 return getParent()->getParamAlign(getArgNo()); 139 } 140 141 Type *Argument::getParamByValType() const { 142 assert(getType()->isPointerTy() && "Only pointers have byval types"); 143 return getParent()->getParamByValType(getArgNo()); 144 } 145 146 uint64_t Argument::getDereferenceableBytes() const { 147 assert(getType()->isPointerTy() && 148 "Only pointers have dereferenceable bytes"); 149 return getParent()->getParamDereferenceableBytes(getArgNo()); 150 } 151 152 uint64_t Argument::getDereferenceableOrNullBytes() const { 153 assert(getType()->isPointerTy() && 154 "Only pointers have dereferenceable bytes"); 155 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 156 } 157 158 bool Argument::hasNestAttr() const { 159 if (!getType()->isPointerTy()) return false; 160 return hasAttribute(Attribute::Nest); 161 } 162 163 bool Argument::hasNoAliasAttr() const { 164 if (!getType()->isPointerTy()) return false; 165 return hasAttribute(Attribute::NoAlias); 166 } 167 168 bool Argument::hasNoCaptureAttr() const { 169 if (!getType()->isPointerTy()) return false; 170 return hasAttribute(Attribute::NoCapture); 171 } 172 173 bool Argument::hasStructRetAttr() const { 174 if (!getType()->isPointerTy()) return false; 175 return hasAttribute(Attribute::StructRet); 176 } 177 178 bool Argument::hasInRegAttr() const { 179 return hasAttribute(Attribute::InReg); 180 } 181 182 bool Argument::hasReturnedAttr() const { 183 return hasAttribute(Attribute::Returned); 184 } 185 186 bool Argument::hasZExtAttr() const { 187 return hasAttribute(Attribute::ZExt); 188 } 189 190 bool Argument::hasSExtAttr() const { 191 return hasAttribute(Attribute::SExt); 192 } 193 194 bool Argument::onlyReadsMemory() const { 195 AttributeList Attrs = getParent()->getAttributes(); 196 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 197 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 198 } 199 200 void Argument::addAttrs(AttrBuilder &B) { 201 AttributeList AL = getParent()->getAttributes(); 202 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 203 getParent()->setAttributes(AL); 204 } 205 206 void Argument::addAttr(Attribute::AttrKind Kind) { 207 getParent()->addParamAttr(getArgNo(), Kind); 208 } 209 210 void Argument::addAttr(Attribute Attr) { 211 getParent()->addParamAttr(getArgNo(), Attr); 212 } 213 214 void Argument::removeAttr(Attribute::AttrKind Kind) { 215 getParent()->removeParamAttr(getArgNo(), Kind); 216 } 217 218 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 219 return getParent()->hasParamAttribute(getArgNo(), Kind); 220 } 221 222 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 223 return getParent()->getParamAttribute(getArgNo(), Kind); 224 } 225 226 //===----------------------------------------------------------------------===// 227 // Helper Methods in Function 228 //===----------------------------------------------------------------------===// 229 230 LLVMContext &Function::getContext() const { 231 return getType()->getContext(); 232 } 233 234 unsigned Function::getInstructionCount() const { 235 unsigned NumInstrs = 0; 236 for (const BasicBlock &BB : BasicBlocks) 237 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 238 BB.instructionsWithoutDebug().end()); 239 return NumInstrs; 240 } 241 242 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 243 const Twine &N, Module &M) { 244 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 245 } 246 247 void Function::removeFromParent() { 248 getParent()->getFunctionList().remove(getIterator()); 249 } 250 251 void Function::eraseFromParent() { 252 getParent()->getFunctionList().erase(getIterator()); 253 } 254 255 //===----------------------------------------------------------------------===// 256 // Function Implementation 257 //===----------------------------------------------------------------------===// 258 259 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 260 // If AS == -1 and we are passed a valid module pointer we place the function 261 // in the program address space. Otherwise we default to AS0. 262 if (AddrSpace == static_cast<unsigned>(-1)) 263 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 264 return AddrSpace; 265 } 266 267 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 268 const Twine &name, Module *ParentModule) 269 : GlobalObject(Ty, Value::FunctionVal, 270 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 271 computeAddrSpace(AddrSpace, ParentModule)), 272 NumArgs(Ty->getNumParams()) { 273 assert(FunctionType::isValidReturnType(getReturnType()) && 274 "invalid return type"); 275 setGlobalObjectSubClassData(0); 276 277 // We only need a symbol table for a function if the context keeps value names 278 if (!getContext().shouldDiscardValueNames()) 279 SymTab = std::make_unique<ValueSymbolTable>(); 280 281 // If the function has arguments, mark them as lazily built. 282 if (Ty->getNumParams()) 283 setValueSubclassData(1); // Set the "has lazy arguments" bit. 284 285 if (ParentModule) 286 ParentModule->getFunctionList().push_back(this); 287 288 HasLLVMReservedName = getName().startswith("llvm."); 289 // Ensure intrinsics have the right parameter attributes. 290 // Note, the IntID field will have been set in Value::setName if this function 291 // name is a valid intrinsic ID. 292 if (IntID) 293 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 294 } 295 296 Function::~Function() { 297 dropAllReferences(); // After this it is safe to delete instructions. 298 299 // Delete all of the method arguments and unlink from symbol table... 300 if (Arguments) 301 clearArguments(); 302 303 // Remove the function from the on-the-side GC table. 304 clearGC(); 305 } 306 307 void Function::BuildLazyArguments() const { 308 // Create the arguments vector, all arguments start out unnamed. 309 auto *FT = getFunctionType(); 310 if (NumArgs > 0) { 311 Arguments = std::allocator<Argument>().allocate(NumArgs); 312 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 313 Type *ArgTy = FT->getParamType(i); 314 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 315 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 316 } 317 } 318 319 // Clear the lazy arguments bit. 320 unsigned SDC = getSubclassDataFromValue(); 321 SDC &= ~(1 << 0); 322 const_cast<Function*>(this)->setValueSubclassData(SDC); 323 assert(!hasLazyArguments()); 324 } 325 326 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 327 return MutableArrayRef<Argument>(Args, Count); 328 } 329 330 bool Function::isConstrainedFPIntrinsic() const { 331 switch (getIntrinsicID()) { 332 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 333 case Intrinsic::INTRINSIC: 334 #include "llvm/IR/ConstrainedOps.def" 335 return true; 336 #undef INSTRUCTION 337 default: 338 return false; 339 } 340 } 341 342 void Function::clearArguments() { 343 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 344 A.setName(""); 345 A.~Argument(); 346 } 347 std::allocator<Argument>().deallocate(Arguments, NumArgs); 348 Arguments = nullptr; 349 } 350 351 void Function::stealArgumentListFrom(Function &Src) { 352 assert(isDeclaration() && "Expected no references to current arguments"); 353 354 // Drop the current arguments, if any, and set the lazy argument bit. 355 if (!hasLazyArguments()) { 356 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 357 [](const Argument &A) { return A.use_empty(); }) && 358 "Expected arguments to be unused in declaration"); 359 clearArguments(); 360 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 361 } 362 363 // Nothing to steal if Src has lazy arguments. 364 if (Src.hasLazyArguments()) 365 return; 366 367 // Steal arguments from Src, and fix the lazy argument bits. 368 assert(arg_size() == Src.arg_size()); 369 Arguments = Src.Arguments; 370 Src.Arguments = nullptr; 371 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 372 // FIXME: This does the work of transferNodesFromList inefficiently. 373 SmallString<128> Name; 374 if (A.hasName()) 375 Name = A.getName(); 376 if (!Name.empty()) 377 A.setName(""); 378 A.setParent(this); 379 if (!Name.empty()) 380 A.setName(Name); 381 } 382 383 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 384 assert(!hasLazyArguments()); 385 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 386 } 387 388 // dropAllReferences() - This function causes all the subinstructions to "let 389 // go" of all references that they are maintaining. This allows one to 390 // 'delete' a whole class at a time, even though there may be circular 391 // references... first all references are dropped, and all use counts go to 392 // zero. Then everything is deleted for real. Note that no operations are 393 // valid on an object that has "dropped all references", except operator 394 // delete. 395 // 396 void Function::dropAllReferences() { 397 setIsMaterializable(false); 398 399 for (BasicBlock &BB : *this) 400 BB.dropAllReferences(); 401 402 // Delete all basic blocks. They are now unused, except possibly by 403 // blockaddresses, but BasicBlock's destructor takes care of those. 404 while (!BasicBlocks.empty()) 405 BasicBlocks.begin()->eraseFromParent(); 406 407 // Drop uses of any optional data (real or placeholder). 408 if (getNumOperands()) { 409 User::dropAllReferences(); 410 setNumHungOffUseOperands(0); 411 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 412 } 413 414 // Metadata is stored in a side-table. 415 clearMetadata(); 416 } 417 418 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 419 AttributeList PAL = getAttributes(); 420 PAL = PAL.addAttribute(getContext(), i, Kind); 421 setAttributes(PAL); 422 } 423 424 void Function::addAttribute(unsigned i, Attribute Attr) { 425 AttributeList PAL = getAttributes(); 426 PAL = PAL.addAttribute(getContext(), i, Attr); 427 setAttributes(PAL); 428 } 429 430 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 431 AttributeList PAL = getAttributes(); 432 PAL = PAL.addAttributes(getContext(), i, Attrs); 433 setAttributes(PAL); 434 } 435 436 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 437 AttributeList PAL = getAttributes(); 438 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 439 setAttributes(PAL); 440 } 441 442 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 443 AttributeList PAL = getAttributes(); 444 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 445 setAttributes(PAL); 446 } 447 448 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 449 AttributeList PAL = getAttributes(); 450 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 451 setAttributes(PAL); 452 } 453 454 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 455 AttributeList PAL = getAttributes(); 456 PAL = PAL.removeAttribute(getContext(), i, Kind); 457 setAttributes(PAL); 458 } 459 460 void Function::removeAttribute(unsigned i, StringRef Kind) { 461 AttributeList PAL = getAttributes(); 462 PAL = PAL.removeAttribute(getContext(), i, Kind); 463 setAttributes(PAL); 464 } 465 466 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 467 AttributeList PAL = getAttributes(); 468 PAL = PAL.removeAttributes(getContext(), i, Attrs); 469 setAttributes(PAL); 470 } 471 472 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 473 AttributeList PAL = getAttributes(); 474 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 475 setAttributes(PAL); 476 } 477 478 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 479 AttributeList PAL = getAttributes(); 480 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 481 setAttributes(PAL); 482 } 483 484 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 485 AttributeList PAL = getAttributes(); 486 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 487 setAttributes(PAL); 488 } 489 490 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 491 AttributeList PAL = getAttributes(); 492 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 493 setAttributes(PAL); 494 } 495 496 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 497 AttributeList PAL = getAttributes(); 498 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 499 setAttributes(PAL); 500 } 501 502 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 503 AttributeList PAL = getAttributes(); 504 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 505 setAttributes(PAL); 506 } 507 508 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 509 uint64_t Bytes) { 510 AttributeList PAL = getAttributes(); 511 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 512 setAttributes(PAL); 513 } 514 515 const std::string &Function::getGC() const { 516 assert(hasGC() && "Function has no collector"); 517 return getContext().getGC(*this); 518 } 519 520 void Function::setGC(std::string Str) { 521 setValueSubclassDataBit(14, !Str.empty()); 522 getContext().setGC(*this, std::move(Str)); 523 } 524 525 void Function::clearGC() { 526 if (!hasGC()) 527 return; 528 getContext().deleteGC(*this); 529 setValueSubclassDataBit(14, false); 530 } 531 532 /// Copy all additional attributes (those not needed to create a Function) from 533 /// the Function Src to this one. 534 void Function::copyAttributesFrom(const Function *Src) { 535 GlobalObject::copyAttributesFrom(Src); 536 setCallingConv(Src->getCallingConv()); 537 setAttributes(Src->getAttributes()); 538 if (Src->hasGC()) 539 setGC(Src->getGC()); 540 else 541 clearGC(); 542 if (Src->hasPersonalityFn()) 543 setPersonalityFn(Src->getPersonalityFn()); 544 if (Src->hasPrefixData()) 545 setPrefixData(Src->getPrefixData()); 546 if (Src->hasPrologueData()) 547 setPrologueData(Src->getPrologueData()); 548 } 549 550 /// Table of string intrinsic names indexed by enum value. 551 static const char * const IntrinsicNameTable[] = { 552 "not_intrinsic", 553 #define GET_INTRINSIC_NAME_TABLE 554 #include "llvm/IR/IntrinsicImpl.inc" 555 #undef GET_INTRINSIC_NAME_TABLE 556 }; 557 558 /// Table of per-target intrinsic name tables. 559 #define GET_INTRINSIC_TARGET_DATA 560 #include "llvm/IR/IntrinsicImpl.inc" 561 #undef GET_INTRINSIC_TARGET_DATA 562 563 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 564 /// target as \c Name, or the generic table if \c Name is not target specific. 565 /// 566 /// Returns the relevant slice of \c IntrinsicNameTable 567 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 568 assert(Name.startswith("llvm.")); 569 570 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 571 // Drop "llvm." and take the first dotted component. That will be the target 572 // if this is target specific. 573 StringRef Target = Name.drop_front(5).split('.').first; 574 auto It = partition_point( 575 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 576 // We've either found the target or just fall back to the generic set, which 577 // is always first. 578 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 579 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 580 } 581 582 /// This does the actual lookup of an intrinsic ID which 583 /// matches the given function name. 584 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 585 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 586 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 587 if (Idx == -1) 588 return Intrinsic::not_intrinsic; 589 590 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 591 // an index into a sub-table. 592 int Adjust = NameTable.data() - IntrinsicNameTable; 593 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 594 595 // If the intrinsic is not overloaded, require an exact match. If it is 596 // overloaded, require either exact or prefix match. 597 const auto MatchSize = strlen(NameTable[Idx]); 598 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 599 bool IsExactMatch = Name.size() == MatchSize; 600 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 601 : Intrinsic::not_intrinsic; 602 } 603 604 void Function::recalculateIntrinsicID() { 605 StringRef Name = getName(); 606 if (!Name.startswith("llvm.")) { 607 HasLLVMReservedName = false; 608 IntID = Intrinsic::not_intrinsic; 609 return; 610 } 611 HasLLVMReservedName = true; 612 IntID = lookupIntrinsicID(Name); 613 } 614 615 /// Returns a stable mangling for the type specified for use in the name 616 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 617 /// of named types is simply their name. Manglings for unnamed types consist 618 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 619 /// combined with the mangling of their component types. A vararg function 620 /// type will have a suffix of 'vararg'. Since function types can contain 621 /// other function types, we close a function type mangling with suffix 'f' 622 /// which can't be confused with it's prefix. This ensures we don't have 623 /// collisions between two unrelated function types. Otherwise, you might 624 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 625 /// 626 static std::string getMangledTypeStr(Type* Ty) { 627 std::string Result; 628 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 629 Result += "p" + utostr(PTyp->getAddressSpace()) + 630 getMangledTypeStr(PTyp->getElementType()); 631 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 632 Result += "a" + utostr(ATyp->getNumElements()) + 633 getMangledTypeStr(ATyp->getElementType()); 634 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 635 if (!STyp->isLiteral()) { 636 Result += "s_"; 637 Result += STyp->getName(); 638 } else { 639 Result += "sl_"; 640 for (auto Elem : STyp->elements()) 641 Result += getMangledTypeStr(Elem); 642 } 643 // Ensure nested structs are distinguishable. 644 Result += "s"; 645 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 646 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 647 for (size_t i = 0; i < FT->getNumParams(); i++) 648 Result += getMangledTypeStr(FT->getParamType(i)); 649 if (FT->isVarArg()) 650 Result += "vararg"; 651 // Ensure nested function types are distinguishable. 652 Result += "f"; 653 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 654 ElementCount EC = VTy->getElementCount(); 655 if (EC.Scalable) 656 Result += "nx"; 657 Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType()); 658 } else if (Ty) { 659 switch (Ty->getTypeID()) { 660 default: llvm_unreachable("Unhandled type"); 661 case Type::VoidTyID: Result += "isVoid"; break; 662 case Type::MetadataTyID: Result += "Metadata"; break; 663 case Type::HalfTyID: Result += "f16"; break; 664 case Type::BFloatTyID: Result += "bf16"; break; 665 case Type::FloatTyID: Result += "f32"; break; 666 case Type::DoubleTyID: Result += "f64"; break; 667 case Type::X86_FP80TyID: Result += "f80"; break; 668 case Type::FP128TyID: Result += "f128"; break; 669 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 670 case Type::X86_MMXTyID: Result += "x86mmx"; break; 671 case Type::IntegerTyID: 672 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 673 break; 674 } 675 } 676 return Result; 677 } 678 679 StringRef Intrinsic::getName(ID id) { 680 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 681 assert(!Intrinsic::isOverloaded(id) && 682 "This version of getName does not support overloading"); 683 return IntrinsicNameTable[id]; 684 } 685 686 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 687 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 688 std::string Result(IntrinsicNameTable[id]); 689 for (Type *Ty : Tys) { 690 Result += "." + getMangledTypeStr(Ty); 691 } 692 return Result; 693 } 694 695 /// IIT_Info - These are enumerators that describe the entries returned by the 696 /// getIntrinsicInfoTableEntries function. 697 /// 698 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 699 enum IIT_Info { 700 // Common values should be encoded with 0-15. 701 IIT_Done = 0, 702 IIT_I1 = 1, 703 IIT_I8 = 2, 704 IIT_I16 = 3, 705 IIT_I32 = 4, 706 IIT_I64 = 5, 707 IIT_F16 = 6, 708 IIT_F32 = 7, 709 IIT_F64 = 8, 710 IIT_V2 = 9, 711 IIT_V4 = 10, 712 IIT_V8 = 11, 713 IIT_V16 = 12, 714 IIT_V32 = 13, 715 IIT_PTR = 14, 716 IIT_ARG = 15, 717 718 // Values from 16+ are only encodable with the inefficient encoding. 719 IIT_V64 = 16, 720 IIT_MMX = 17, 721 IIT_TOKEN = 18, 722 IIT_METADATA = 19, 723 IIT_EMPTYSTRUCT = 20, 724 IIT_STRUCT2 = 21, 725 IIT_STRUCT3 = 22, 726 IIT_STRUCT4 = 23, 727 IIT_STRUCT5 = 24, 728 IIT_EXTEND_ARG = 25, 729 IIT_TRUNC_ARG = 26, 730 IIT_ANYPTR = 27, 731 IIT_V1 = 28, 732 IIT_VARARG = 29, 733 IIT_HALF_VEC_ARG = 30, 734 IIT_SAME_VEC_WIDTH_ARG = 31, 735 IIT_PTR_TO_ARG = 32, 736 IIT_PTR_TO_ELT = 33, 737 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 738 IIT_I128 = 35, 739 IIT_V512 = 36, 740 IIT_V1024 = 37, 741 IIT_STRUCT6 = 38, 742 IIT_STRUCT7 = 39, 743 IIT_STRUCT8 = 40, 744 IIT_F128 = 41, 745 IIT_VEC_ELEMENT = 42, 746 IIT_SCALABLE_VEC = 43, 747 IIT_SUBDIVIDE2_ARG = 44, 748 IIT_SUBDIVIDE4_ARG = 45, 749 IIT_VEC_OF_BITCASTS_TO_INT = 46, 750 IIT_V128 = 47 751 }; 752 753 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 754 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 755 using namespace Intrinsic; 756 757 IIT_Info Info = IIT_Info(Infos[NextElt++]); 758 unsigned StructElts = 2; 759 760 switch (Info) { 761 case IIT_Done: 762 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 763 return; 764 case IIT_VARARG: 765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 766 return; 767 case IIT_MMX: 768 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 769 return; 770 case IIT_TOKEN: 771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 772 return; 773 case IIT_METADATA: 774 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 775 return; 776 case IIT_F16: 777 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 778 return; 779 case IIT_F32: 780 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 781 return; 782 case IIT_F64: 783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 784 return; 785 case IIT_F128: 786 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 787 return; 788 case IIT_I1: 789 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 790 return; 791 case IIT_I8: 792 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 793 return; 794 case IIT_I16: 795 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 796 return; 797 case IIT_I32: 798 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 799 return; 800 case IIT_I64: 801 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 802 return; 803 case IIT_I128: 804 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 805 return; 806 case IIT_V1: 807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 808 DecodeIITType(NextElt, Infos, OutputTable); 809 return; 810 case IIT_V2: 811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 812 DecodeIITType(NextElt, Infos, OutputTable); 813 return; 814 case IIT_V4: 815 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 816 DecodeIITType(NextElt, Infos, OutputTable); 817 return; 818 case IIT_V8: 819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 820 DecodeIITType(NextElt, Infos, OutputTable); 821 return; 822 case IIT_V16: 823 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 824 DecodeIITType(NextElt, Infos, OutputTable); 825 return; 826 case IIT_V32: 827 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 828 DecodeIITType(NextElt, Infos, OutputTable); 829 return; 830 case IIT_V64: 831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 832 DecodeIITType(NextElt, Infos, OutputTable); 833 return; 834 case IIT_V128: 835 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 128)); 836 DecodeIITType(NextElt, Infos, OutputTable); 837 return; 838 case IIT_V512: 839 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 840 DecodeIITType(NextElt, Infos, OutputTable); 841 return; 842 case IIT_V1024: 843 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 844 DecodeIITType(NextElt, Infos, OutputTable); 845 return; 846 case IIT_PTR: 847 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 848 DecodeIITType(NextElt, Infos, OutputTable); 849 return; 850 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 851 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 852 Infos[NextElt++])); 853 DecodeIITType(NextElt, Infos, OutputTable); 854 return; 855 } 856 case IIT_ARG: { 857 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 858 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 859 return; 860 } 861 case IIT_EXTEND_ARG: { 862 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 863 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 864 ArgInfo)); 865 return; 866 } 867 case IIT_TRUNC_ARG: { 868 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 869 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 870 ArgInfo)); 871 return; 872 } 873 case IIT_HALF_VEC_ARG: { 874 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 875 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 876 ArgInfo)); 877 return; 878 } 879 case IIT_SAME_VEC_WIDTH_ARG: { 880 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 881 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 882 ArgInfo)); 883 return; 884 } 885 case IIT_PTR_TO_ARG: { 886 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 887 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 888 ArgInfo)); 889 return; 890 } 891 case IIT_PTR_TO_ELT: { 892 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 893 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 894 return; 895 } 896 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 897 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 898 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 899 OutputTable.push_back( 900 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 901 return; 902 } 903 case IIT_EMPTYSTRUCT: 904 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 905 return; 906 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 907 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 908 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 909 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 910 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 911 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 912 case IIT_STRUCT2: { 913 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 914 915 for (unsigned i = 0; i != StructElts; ++i) 916 DecodeIITType(NextElt, Infos, OutputTable); 917 return; 918 } 919 case IIT_SUBDIVIDE2_ARG: { 920 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 921 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 922 ArgInfo)); 923 return; 924 } 925 case IIT_SUBDIVIDE4_ARG: { 926 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 927 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 928 ArgInfo)); 929 return; 930 } 931 case IIT_VEC_ELEMENT: { 932 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 933 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 934 ArgInfo)); 935 return; 936 } 937 case IIT_SCALABLE_VEC: { 938 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument, 939 0)); 940 DecodeIITType(NextElt, Infos, OutputTable); 941 return; 942 } 943 case IIT_VEC_OF_BITCASTS_TO_INT: { 944 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 945 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 946 ArgInfo)); 947 return; 948 } 949 } 950 llvm_unreachable("unhandled"); 951 } 952 953 #define GET_INTRINSIC_GENERATOR_GLOBAL 954 #include "llvm/IR/IntrinsicImpl.inc" 955 #undef GET_INTRINSIC_GENERATOR_GLOBAL 956 957 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 958 SmallVectorImpl<IITDescriptor> &T){ 959 // Check to see if the intrinsic's type was expressible by the table. 960 unsigned TableVal = IIT_Table[id-1]; 961 962 // Decode the TableVal into an array of IITValues. 963 SmallVector<unsigned char, 8> IITValues; 964 ArrayRef<unsigned char> IITEntries; 965 unsigned NextElt = 0; 966 if ((TableVal >> 31) != 0) { 967 // This is an offset into the IIT_LongEncodingTable. 968 IITEntries = IIT_LongEncodingTable; 969 970 // Strip sentinel bit. 971 NextElt = (TableVal << 1) >> 1; 972 } else { 973 // Decode the TableVal into an array of IITValues. If the entry was encoded 974 // into a single word in the table itself, decode it now. 975 do { 976 IITValues.push_back(TableVal & 0xF); 977 TableVal >>= 4; 978 } while (TableVal); 979 980 IITEntries = IITValues; 981 NextElt = 0; 982 } 983 984 // Okay, decode the table into the output vector of IITDescriptors. 985 DecodeIITType(NextElt, IITEntries, T); 986 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 987 DecodeIITType(NextElt, IITEntries, T); 988 } 989 990 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 991 ArrayRef<Type*> Tys, LLVMContext &Context) { 992 using namespace Intrinsic; 993 994 IITDescriptor D = Infos.front(); 995 Infos = Infos.slice(1); 996 997 switch (D.Kind) { 998 case IITDescriptor::Void: return Type::getVoidTy(Context); 999 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1000 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1001 case IITDescriptor::Token: return Type::getTokenTy(Context); 1002 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1003 case IITDescriptor::Half: return Type::getHalfTy(Context); 1004 case IITDescriptor::Float: return Type::getFloatTy(Context); 1005 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1006 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1007 1008 case IITDescriptor::Integer: 1009 return IntegerType::get(Context, D.Integer_Width); 1010 case IITDescriptor::Vector: 1011 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 1012 case IITDescriptor::Pointer: 1013 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1014 D.Pointer_AddressSpace); 1015 case IITDescriptor::Struct: { 1016 SmallVector<Type *, 8> Elts; 1017 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1018 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1019 return StructType::get(Context, Elts); 1020 } 1021 case IITDescriptor::Argument: 1022 return Tys[D.getArgumentNumber()]; 1023 case IITDescriptor::ExtendArgument: { 1024 Type *Ty = Tys[D.getArgumentNumber()]; 1025 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1026 return VectorType::getExtendedElementVectorType(VTy); 1027 1028 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1029 } 1030 case IITDescriptor::TruncArgument: { 1031 Type *Ty = Tys[D.getArgumentNumber()]; 1032 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1033 return VectorType::getTruncatedElementVectorType(VTy); 1034 1035 IntegerType *ITy = cast<IntegerType>(Ty); 1036 assert(ITy->getBitWidth() % 2 == 0); 1037 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1038 } 1039 case IITDescriptor::Subdivide2Argument: 1040 case IITDescriptor::Subdivide4Argument: { 1041 Type *Ty = Tys[D.getArgumentNumber()]; 1042 VectorType *VTy = dyn_cast<VectorType>(Ty); 1043 assert(VTy && "Expected an argument of Vector Type"); 1044 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1045 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1046 } 1047 case IITDescriptor::HalfVecArgument: 1048 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1049 Tys[D.getArgumentNumber()])); 1050 case IITDescriptor::SameVecWidthArgument: { 1051 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1052 Type *Ty = Tys[D.getArgumentNumber()]; 1053 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1054 return VectorType::get(EltTy, VTy->getElementCount()); 1055 return EltTy; 1056 } 1057 case IITDescriptor::PtrToArgument: { 1058 Type *Ty = Tys[D.getArgumentNumber()]; 1059 return PointerType::getUnqual(Ty); 1060 } 1061 case IITDescriptor::PtrToElt: { 1062 Type *Ty = Tys[D.getArgumentNumber()]; 1063 VectorType *VTy = dyn_cast<VectorType>(Ty); 1064 if (!VTy) 1065 llvm_unreachable("Expected an argument of Vector Type"); 1066 Type *EltTy = VTy->getElementType(); 1067 return PointerType::getUnqual(EltTy); 1068 } 1069 case IITDescriptor::VecElementArgument: { 1070 Type *Ty = Tys[D.getArgumentNumber()]; 1071 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1072 return VTy->getElementType(); 1073 llvm_unreachable("Expected an argument of Vector Type"); 1074 } 1075 case IITDescriptor::VecOfBitcastsToInt: { 1076 Type *Ty = Tys[D.getArgumentNumber()]; 1077 VectorType *VTy = dyn_cast<VectorType>(Ty); 1078 assert(VTy && "Expected an argument of Vector Type"); 1079 return VectorType::getInteger(VTy); 1080 } 1081 case IITDescriptor::VecOfAnyPtrsToElt: 1082 // Return the overloaded type (which determines the pointers address space) 1083 return Tys[D.getOverloadArgNumber()]; 1084 case IITDescriptor::ScalableVecArgument: { 1085 auto *Ty = cast<FixedVectorType>(DecodeFixedType(Infos, Tys, Context)); 1086 return ScalableVectorType::get(Ty->getElementType(), Ty->getNumElements()); 1087 } 1088 } 1089 llvm_unreachable("unhandled"); 1090 } 1091 1092 FunctionType *Intrinsic::getType(LLVMContext &Context, 1093 ID id, ArrayRef<Type*> Tys) { 1094 SmallVector<IITDescriptor, 8> Table; 1095 getIntrinsicInfoTableEntries(id, Table); 1096 1097 ArrayRef<IITDescriptor> TableRef = Table; 1098 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1099 1100 SmallVector<Type*, 8> ArgTys; 1101 while (!TableRef.empty()) 1102 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1103 1104 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1105 // If we see void type as the type of the last argument, it is vararg intrinsic 1106 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1107 ArgTys.pop_back(); 1108 return FunctionType::get(ResultTy, ArgTys, true); 1109 } 1110 return FunctionType::get(ResultTy, ArgTys, false); 1111 } 1112 1113 bool Intrinsic::isOverloaded(ID id) { 1114 #define GET_INTRINSIC_OVERLOAD_TABLE 1115 #include "llvm/IR/IntrinsicImpl.inc" 1116 #undef GET_INTRINSIC_OVERLOAD_TABLE 1117 } 1118 1119 bool Intrinsic::isLeaf(ID id) { 1120 switch (id) { 1121 default: 1122 return true; 1123 1124 case Intrinsic::experimental_gc_statepoint: 1125 case Intrinsic::experimental_patchpoint_void: 1126 case Intrinsic::experimental_patchpoint_i64: 1127 return false; 1128 } 1129 } 1130 1131 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1132 #define GET_INTRINSIC_ATTRIBUTES 1133 #include "llvm/IR/IntrinsicImpl.inc" 1134 #undef GET_INTRINSIC_ATTRIBUTES 1135 1136 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1137 // There can never be multiple globals with the same name of different types, 1138 // because intrinsics must be a specific type. 1139 return cast<Function>( 1140 M->getOrInsertFunction(getName(id, Tys), 1141 getType(M->getContext(), id, Tys)) 1142 .getCallee()); 1143 } 1144 1145 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1146 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1147 #include "llvm/IR/IntrinsicImpl.inc" 1148 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1149 1150 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1151 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1152 #include "llvm/IR/IntrinsicImpl.inc" 1153 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1154 1155 using DeferredIntrinsicMatchPair = 1156 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1157 1158 static bool matchIntrinsicType( 1159 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1160 SmallVectorImpl<Type *> &ArgTys, 1161 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1162 bool IsDeferredCheck) { 1163 using namespace Intrinsic; 1164 1165 // If we ran out of descriptors, there are too many arguments. 1166 if (Infos.empty()) return true; 1167 1168 // Do this before slicing off the 'front' part 1169 auto InfosRef = Infos; 1170 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1171 DeferredChecks.emplace_back(T, InfosRef); 1172 return false; 1173 }; 1174 1175 IITDescriptor D = Infos.front(); 1176 Infos = Infos.slice(1); 1177 1178 switch (D.Kind) { 1179 case IITDescriptor::Void: return !Ty->isVoidTy(); 1180 case IITDescriptor::VarArg: return true; 1181 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1182 case IITDescriptor::Token: return !Ty->isTokenTy(); 1183 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1184 case IITDescriptor::Half: return !Ty->isHalfTy(); 1185 case IITDescriptor::Float: return !Ty->isFloatTy(); 1186 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1187 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1188 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1189 case IITDescriptor::Vector: { 1190 // FIXME: We shouldn't be assuming all Vector types are fixed width. 1191 // This will be fixed soon in another future patch. 1192 FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty); 1193 return !VT || VT->getNumElements() != D.Vector_Width || 1194 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1195 DeferredChecks, IsDeferredCheck); 1196 } 1197 case IITDescriptor::Pointer: { 1198 PointerType *PT = dyn_cast<PointerType>(Ty); 1199 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1200 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1201 DeferredChecks, IsDeferredCheck); 1202 } 1203 1204 case IITDescriptor::Struct: { 1205 StructType *ST = dyn_cast<StructType>(Ty); 1206 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1207 return true; 1208 1209 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1210 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1211 DeferredChecks, IsDeferredCheck)) 1212 return true; 1213 return false; 1214 } 1215 1216 case IITDescriptor::Argument: 1217 // If this is the second occurrence of an argument, 1218 // verify that the later instance matches the previous instance. 1219 if (D.getArgumentNumber() < ArgTys.size()) 1220 return Ty != ArgTys[D.getArgumentNumber()]; 1221 1222 if (D.getArgumentNumber() > ArgTys.size() || 1223 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1224 return IsDeferredCheck || DeferCheck(Ty); 1225 1226 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1227 "Table consistency error"); 1228 ArgTys.push_back(Ty); 1229 1230 switch (D.getArgumentKind()) { 1231 case IITDescriptor::AK_Any: return false; // Success 1232 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1233 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1234 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1235 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1236 default: break; 1237 } 1238 llvm_unreachable("all argument kinds not covered"); 1239 1240 case IITDescriptor::ExtendArgument: { 1241 // If this is a forward reference, defer the check for later. 1242 if (D.getArgumentNumber() >= ArgTys.size()) 1243 return IsDeferredCheck || DeferCheck(Ty); 1244 1245 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1246 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1247 NewTy = VectorType::getExtendedElementVectorType(VTy); 1248 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1249 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1250 else 1251 return true; 1252 1253 return Ty != NewTy; 1254 } 1255 case IITDescriptor::TruncArgument: { 1256 // If this is a forward reference, defer the check for later. 1257 if (D.getArgumentNumber() >= ArgTys.size()) 1258 return IsDeferredCheck || DeferCheck(Ty); 1259 1260 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1261 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1262 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1263 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1264 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1265 else 1266 return true; 1267 1268 return Ty != NewTy; 1269 } 1270 case IITDescriptor::HalfVecArgument: 1271 // If this is a forward reference, defer the check for later. 1272 if (D.getArgumentNumber() >= ArgTys.size()) 1273 return IsDeferredCheck || DeferCheck(Ty); 1274 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1275 VectorType::getHalfElementsVectorType( 1276 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1277 case IITDescriptor::SameVecWidthArgument: { 1278 if (D.getArgumentNumber() >= ArgTys.size()) { 1279 // Defer check and subsequent check for the vector element type. 1280 Infos = Infos.slice(1); 1281 return IsDeferredCheck || DeferCheck(Ty); 1282 } 1283 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1284 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1285 // Both must be vectors of the same number of elements or neither. 1286 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1287 return true; 1288 Type *EltTy = Ty; 1289 if (ThisArgType) { 1290 if (ReferenceType->getElementCount() != 1291 ThisArgType->getElementCount()) 1292 return true; 1293 EltTy = ThisArgType->getElementType(); 1294 } 1295 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1296 IsDeferredCheck); 1297 } 1298 case IITDescriptor::PtrToArgument: { 1299 if (D.getArgumentNumber() >= ArgTys.size()) 1300 return IsDeferredCheck || DeferCheck(Ty); 1301 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1302 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1303 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1304 } 1305 case IITDescriptor::PtrToElt: { 1306 if (D.getArgumentNumber() >= ArgTys.size()) 1307 return IsDeferredCheck || DeferCheck(Ty); 1308 VectorType * ReferenceType = 1309 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1310 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1311 1312 return (!ThisArgType || !ReferenceType || 1313 ThisArgType->getElementType() != ReferenceType->getElementType()); 1314 } 1315 case IITDescriptor::VecOfAnyPtrsToElt: { 1316 unsigned RefArgNumber = D.getRefArgNumber(); 1317 if (RefArgNumber >= ArgTys.size()) { 1318 if (IsDeferredCheck) 1319 return true; 1320 // If forward referencing, already add the pointer-vector type and 1321 // defer the checks for later. 1322 ArgTys.push_back(Ty); 1323 return DeferCheck(Ty); 1324 } 1325 1326 if (!IsDeferredCheck){ 1327 assert(D.getOverloadArgNumber() == ArgTys.size() && 1328 "Table consistency error"); 1329 ArgTys.push_back(Ty); 1330 } 1331 1332 // Verify the overloaded type "matches" the Ref type. 1333 // i.e. Ty is a vector with the same width as Ref. 1334 // Composed of pointers to the same element type as Ref. 1335 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1336 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1337 if (!ThisArgVecTy || !ReferenceType || 1338 (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements())) 1339 return true; 1340 PointerType *ThisArgEltTy = 1341 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1342 if (!ThisArgEltTy) 1343 return true; 1344 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1345 } 1346 case IITDescriptor::VecElementArgument: { 1347 if (D.getArgumentNumber() >= ArgTys.size()) 1348 return IsDeferredCheck ? true : DeferCheck(Ty); 1349 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1350 return !ReferenceType || Ty != ReferenceType->getElementType(); 1351 } 1352 case IITDescriptor::Subdivide2Argument: 1353 case IITDescriptor::Subdivide4Argument: { 1354 // If this is a forward reference, defer the check for later. 1355 if (D.getArgumentNumber() >= ArgTys.size()) 1356 return IsDeferredCheck || DeferCheck(Ty); 1357 1358 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1359 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1360 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1361 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1362 return Ty != NewTy; 1363 } 1364 return true; 1365 } 1366 case IITDescriptor::ScalableVecArgument: { 1367 if (!isa<ScalableVectorType>(Ty)) 1368 return true; 1369 ScalableVectorType *STy = cast<ScalableVectorType>(Ty); 1370 unsigned MinElts = STy->getMinNumElements(); 1371 FixedVectorType *FVTy = 1372 FixedVectorType::get(STy->getElementType(), MinElts); 1373 return matchIntrinsicType(FVTy, Infos, ArgTys, DeferredChecks, 1374 IsDeferredCheck); 1375 } 1376 case IITDescriptor::VecOfBitcastsToInt: { 1377 if (D.getArgumentNumber() >= ArgTys.size()) 1378 return IsDeferredCheck || DeferCheck(Ty); 1379 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1380 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1381 if (!ThisArgVecTy || !ReferenceType) 1382 return true; 1383 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1384 } 1385 } 1386 llvm_unreachable("unhandled"); 1387 } 1388 1389 Intrinsic::MatchIntrinsicTypesResult 1390 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1391 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1392 SmallVectorImpl<Type *> &ArgTys) { 1393 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1394 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1395 false)) 1396 return MatchIntrinsicTypes_NoMatchRet; 1397 1398 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1399 1400 for (auto Ty : FTy->params()) 1401 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1402 return MatchIntrinsicTypes_NoMatchArg; 1403 1404 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1405 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1406 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1407 true)) 1408 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1409 : MatchIntrinsicTypes_NoMatchArg; 1410 } 1411 1412 return MatchIntrinsicTypes_Match; 1413 } 1414 1415 bool 1416 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1417 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1418 // If there are no descriptors left, then it can't be a vararg. 1419 if (Infos.empty()) 1420 return isVarArg; 1421 1422 // There should be only one descriptor remaining at this point. 1423 if (Infos.size() != 1) 1424 return true; 1425 1426 // Check and verify the descriptor. 1427 IITDescriptor D = Infos.front(); 1428 Infos = Infos.slice(1); 1429 if (D.Kind == IITDescriptor::VarArg) 1430 return !isVarArg; 1431 1432 return true; 1433 } 1434 1435 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1436 Intrinsic::ID ID = F->getIntrinsicID(); 1437 if (!ID) 1438 return None; 1439 1440 FunctionType *FTy = F->getFunctionType(); 1441 // Accumulate an array of overloaded types for the given intrinsic 1442 SmallVector<Type *, 4> ArgTys; 1443 { 1444 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1445 getIntrinsicInfoTableEntries(ID, Table); 1446 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1447 1448 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1449 return None; 1450 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1451 return None; 1452 } 1453 1454 StringRef Name = F->getName(); 1455 if (Name == Intrinsic::getName(ID, ArgTys)) 1456 return None; 1457 1458 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1459 NewDecl->setCallingConv(F->getCallingConv()); 1460 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1461 return NewDecl; 1462 } 1463 1464 /// hasAddressTaken - returns true if there are any uses of this function 1465 /// other than direct calls or invokes to it. 1466 bool Function::hasAddressTaken(const User* *PutOffender) const { 1467 for (const Use &U : uses()) { 1468 const User *FU = U.getUser(); 1469 if (isa<BlockAddress>(FU)) 1470 continue; 1471 const auto *Call = dyn_cast<CallBase>(FU); 1472 if (!Call) { 1473 if (PutOffender) 1474 *PutOffender = FU; 1475 return true; 1476 } 1477 if (!Call->isCallee(&U)) { 1478 if (PutOffender) 1479 *PutOffender = FU; 1480 return true; 1481 } 1482 } 1483 return false; 1484 } 1485 1486 bool Function::isDefTriviallyDead() const { 1487 // Check the linkage 1488 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1489 !hasAvailableExternallyLinkage()) 1490 return false; 1491 1492 // Check if the function is used by anything other than a blockaddress. 1493 for (const User *U : users()) 1494 if (!isa<BlockAddress>(U)) 1495 return false; 1496 1497 return true; 1498 } 1499 1500 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1501 /// setjmp or other function that gcc recognizes as "returning twice". 1502 bool Function::callsFunctionThatReturnsTwice() const { 1503 for (const Instruction &I : instructions(this)) 1504 if (const auto *Call = dyn_cast<CallBase>(&I)) 1505 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1506 return true; 1507 1508 return false; 1509 } 1510 1511 Constant *Function::getPersonalityFn() const { 1512 assert(hasPersonalityFn() && getNumOperands()); 1513 return cast<Constant>(Op<0>()); 1514 } 1515 1516 void Function::setPersonalityFn(Constant *Fn) { 1517 setHungoffOperand<0>(Fn); 1518 setValueSubclassDataBit(3, Fn != nullptr); 1519 } 1520 1521 Constant *Function::getPrefixData() const { 1522 assert(hasPrefixData() && getNumOperands()); 1523 return cast<Constant>(Op<1>()); 1524 } 1525 1526 void Function::setPrefixData(Constant *PrefixData) { 1527 setHungoffOperand<1>(PrefixData); 1528 setValueSubclassDataBit(1, PrefixData != nullptr); 1529 } 1530 1531 Constant *Function::getPrologueData() const { 1532 assert(hasPrologueData() && getNumOperands()); 1533 return cast<Constant>(Op<2>()); 1534 } 1535 1536 void Function::setPrologueData(Constant *PrologueData) { 1537 setHungoffOperand<2>(PrologueData); 1538 setValueSubclassDataBit(2, PrologueData != nullptr); 1539 } 1540 1541 void Function::allocHungoffUselist() { 1542 // If we've already allocated a uselist, stop here. 1543 if (getNumOperands()) 1544 return; 1545 1546 allocHungoffUses(3, /*IsPhi=*/ false); 1547 setNumHungOffUseOperands(3); 1548 1549 // Initialize the uselist with placeholder operands to allow traversal. 1550 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1551 Op<0>().set(CPN); 1552 Op<1>().set(CPN); 1553 Op<2>().set(CPN); 1554 } 1555 1556 template <int Idx> 1557 void Function::setHungoffOperand(Constant *C) { 1558 if (C) { 1559 allocHungoffUselist(); 1560 Op<Idx>().set(C); 1561 } else if (getNumOperands()) { 1562 Op<Idx>().set( 1563 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1564 } 1565 } 1566 1567 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1568 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1569 if (On) 1570 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1571 else 1572 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1573 } 1574 1575 void Function::setEntryCount(ProfileCount Count, 1576 const DenseSet<GlobalValue::GUID> *S) { 1577 assert(Count.hasValue()); 1578 #if !defined(NDEBUG) 1579 auto PrevCount = getEntryCount(); 1580 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1581 #endif 1582 1583 auto ImportGUIDs = getImportGUIDs(); 1584 if (S == nullptr && ImportGUIDs.size()) 1585 S = &ImportGUIDs; 1586 1587 MDBuilder MDB(getContext()); 1588 setMetadata( 1589 LLVMContext::MD_prof, 1590 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1591 } 1592 1593 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1594 const DenseSet<GlobalValue::GUID> *Imports) { 1595 setEntryCount(ProfileCount(Count, Type), Imports); 1596 } 1597 1598 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1599 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1600 if (MD && MD->getOperand(0)) 1601 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1602 if (MDS->getString().equals("function_entry_count")) { 1603 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1604 uint64_t Count = CI->getValue().getZExtValue(); 1605 // A value of -1 is used for SamplePGO when there were no samples. 1606 // Treat this the same as unknown. 1607 if (Count == (uint64_t)-1) 1608 return ProfileCount::getInvalid(); 1609 return ProfileCount(Count, PCT_Real); 1610 } else if (AllowSynthetic && 1611 MDS->getString().equals("synthetic_function_entry_count")) { 1612 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1613 uint64_t Count = CI->getValue().getZExtValue(); 1614 return ProfileCount(Count, PCT_Synthetic); 1615 } 1616 } 1617 return ProfileCount::getInvalid(); 1618 } 1619 1620 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1621 DenseSet<GlobalValue::GUID> R; 1622 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1623 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1624 if (MDS->getString().equals("function_entry_count")) 1625 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1626 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1627 ->getValue() 1628 .getZExtValue()); 1629 return R; 1630 } 1631 1632 void Function::setSectionPrefix(StringRef Prefix) { 1633 MDBuilder MDB(getContext()); 1634 setMetadata(LLVMContext::MD_section_prefix, 1635 MDB.createFunctionSectionPrefix(Prefix)); 1636 } 1637 1638 Optional<StringRef> Function::getSectionPrefix() const { 1639 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1640 assert(cast<MDString>(MD->getOperand(0)) 1641 ->getString() 1642 .equals("function_section_prefix") && 1643 "Metadata not match"); 1644 return cast<MDString>(MD->getOperand(1))->getString(); 1645 } 1646 return None; 1647 } 1648 1649 bool Function::nullPointerIsDefined() const { 1650 return hasFnAttribute(Attribute::NullPointerIsValid); 1651 } 1652 1653 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1654 if (F && F->nullPointerIsDefined()) 1655 return true; 1656 1657 if (AS != 0) 1658 return true; 1659 1660 return false; 1661 } 1662