1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 //===----------------------------------------------------------------------===// 80 // Argument Implementation 81 //===----------------------------------------------------------------------===// 82 83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 84 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 85 setName(Name); 86 } 87 88 void Argument::setParent(Function *parent) { 89 Parent = parent; 90 } 91 92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 93 if (!getType()->isPointerTy()) return false; 94 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 95 (AllowUndefOrPoison || 96 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 97 return true; 98 else if (getDereferenceableBytes() > 0 && 99 !NullPointerIsDefined(getParent(), 100 getType()->getPointerAddressSpace())) 101 return true; 102 return false; 103 } 104 105 bool Argument::hasByValAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 return hasAttribute(Attribute::ByVal); 108 } 109 110 bool Argument::hasByRefAttr() const { 111 if (!getType()->isPointerTy()) 112 return false; 113 return hasAttribute(Attribute::ByRef); 114 } 115 116 bool Argument::hasSwiftSelfAttr() const { 117 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 118 } 119 120 bool Argument::hasSwiftErrorAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 122 } 123 124 bool Argument::hasInAllocaAttr() const { 125 if (!getType()->isPointerTy()) return false; 126 return hasAttribute(Attribute::InAlloca); 127 } 128 129 bool Argument::hasPreallocatedAttr() const { 130 if (!getType()->isPointerTy()) 131 return false; 132 return hasAttribute(Attribute::Preallocated); 133 } 134 135 bool Argument::hasPassPointeeByValueCopyAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 AttributeList Attrs = getParent()->getAttributes(); 138 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 139 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 140 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 141 } 142 143 bool Argument::hasPointeeInMemoryValueAttr() const { 144 if (!getType()->isPointerTy()) 145 return false; 146 AttributeList Attrs = getParent()->getAttributes(); 147 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 148 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 149 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 150 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 151 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 152 } 153 154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 155 /// parameter type. 156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 157 // FIXME: All the type carrying attributes are mutually exclusive, so there 158 // should be a single query to get the stored type that handles any of them. 159 if (Type *ByValTy = ParamAttrs.getByValType()) 160 return ByValTy; 161 if (Type *ByRefTy = ParamAttrs.getByRefType()) 162 return ByRefTy; 163 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 164 return PreAllocTy; 165 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 166 return InAllocaTy; 167 168 // FIXME: sret and inalloca always depends on pointee element type. It's also 169 // possible for byval to miss it. 170 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 171 ParamAttrs.hasAttribute(Attribute::ByVal) || 172 ParamAttrs.hasAttribute(Attribute::StructRet) || 173 ParamAttrs.hasAttribute(Attribute::Preallocated)) 174 return cast<PointerType>(ArgTy)->getElementType(); 175 176 return nullptr; 177 } 178 179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 180 AttributeSet ParamAttrs = 181 getParent()->getAttributes().getParamAttributes(getArgNo()); 182 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 183 return DL.getTypeAllocSize(MemTy); 184 return 0; 185 } 186 187 Type *Argument::getPointeeInMemoryValueType() const { 188 AttributeSet ParamAttrs = 189 getParent()->getAttributes().getParamAttributes(getArgNo()); 190 return getMemoryParamAllocType(ParamAttrs, getType()); 191 } 192 193 unsigned Argument::getParamAlignment() const { 194 assert(getType()->isPointerTy() && "Only pointers have alignments"); 195 return getParent()->getParamAlignment(getArgNo()); 196 } 197 198 MaybeAlign Argument::getParamAlign() const { 199 assert(getType()->isPointerTy() && "Only pointers have alignments"); 200 return getParent()->getParamAlign(getArgNo()); 201 } 202 203 MaybeAlign Argument::getParamStackAlign() const { 204 return getParent()->getParamStackAlign(getArgNo()); 205 } 206 207 Type *Argument::getParamByValType() const { 208 assert(getType()->isPointerTy() && "Only pointers have byval types"); 209 return getParent()->getParamByValType(getArgNo()); 210 } 211 212 Type *Argument::getParamStructRetType() const { 213 assert(getType()->isPointerTy() && "Only pointers have sret types"); 214 return getParent()->getParamStructRetType(getArgNo()); 215 } 216 217 Type *Argument::getParamByRefType() const { 218 assert(getType()->isPointerTy() && "Only pointers have byref types"); 219 return getParent()->getParamByRefType(getArgNo()); 220 } 221 222 Type *Argument::getParamInAllocaType() const { 223 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 224 return getParent()->getParamInAllocaType(getArgNo()); 225 } 226 227 uint64_t Argument::getDereferenceableBytes() const { 228 assert(getType()->isPointerTy() && 229 "Only pointers have dereferenceable bytes"); 230 return getParent()->getParamDereferenceableBytes(getArgNo()); 231 } 232 233 uint64_t Argument::getDereferenceableOrNullBytes() const { 234 assert(getType()->isPointerTy() && 235 "Only pointers have dereferenceable bytes"); 236 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 237 } 238 239 bool Argument::hasNestAttr() const { 240 if (!getType()->isPointerTy()) return false; 241 return hasAttribute(Attribute::Nest); 242 } 243 244 bool Argument::hasNoAliasAttr() const { 245 if (!getType()->isPointerTy()) return false; 246 return hasAttribute(Attribute::NoAlias); 247 } 248 249 bool Argument::hasNoCaptureAttr() const { 250 if (!getType()->isPointerTy()) return false; 251 return hasAttribute(Attribute::NoCapture); 252 } 253 254 bool Argument::hasNoFreeAttr() const { 255 if (!getType()->isPointerTy()) return false; 256 return hasAttribute(Attribute::NoFree); 257 } 258 259 bool Argument::hasStructRetAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::StructRet); 262 } 263 264 bool Argument::hasInRegAttr() const { 265 return hasAttribute(Attribute::InReg); 266 } 267 268 bool Argument::hasReturnedAttr() const { 269 return hasAttribute(Attribute::Returned); 270 } 271 272 bool Argument::hasZExtAttr() const { 273 return hasAttribute(Attribute::ZExt); 274 } 275 276 bool Argument::hasSExtAttr() const { 277 return hasAttribute(Attribute::SExt); 278 } 279 280 bool Argument::onlyReadsMemory() const { 281 AttributeList Attrs = getParent()->getAttributes(); 282 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 283 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 284 } 285 286 void Argument::addAttrs(AttrBuilder &B) { 287 AttributeList AL = getParent()->getAttributes(); 288 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 289 getParent()->setAttributes(AL); 290 } 291 292 void Argument::addAttr(Attribute::AttrKind Kind) { 293 getParent()->addParamAttr(getArgNo(), Kind); 294 } 295 296 void Argument::addAttr(Attribute Attr) { 297 getParent()->addParamAttr(getArgNo(), Attr); 298 } 299 300 void Argument::removeAttr(Attribute::AttrKind Kind) { 301 getParent()->removeParamAttr(getArgNo(), Kind); 302 } 303 304 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 305 return getParent()->hasParamAttribute(getArgNo(), Kind); 306 } 307 308 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 309 return getParent()->getParamAttribute(getArgNo(), Kind); 310 } 311 312 //===----------------------------------------------------------------------===// 313 // Helper Methods in Function 314 //===----------------------------------------------------------------------===// 315 316 LLVMContext &Function::getContext() const { 317 return getType()->getContext(); 318 } 319 320 unsigned Function::getInstructionCount() const { 321 unsigned NumInstrs = 0; 322 for (const BasicBlock &BB : BasicBlocks) 323 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 324 BB.instructionsWithoutDebug().end()); 325 return NumInstrs; 326 } 327 328 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 329 const Twine &N, Module &M) { 330 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 331 } 332 333 Function *Function::createWithDefaultAttr(FunctionType *Ty, 334 LinkageTypes Linkage, 335 unsigned AddrSpace, const Twine &N, 336 Module *M) { 337 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 338 if (M->getUwtable()) 339 F->addAttribute(AttributeList::FunctionIndex, Attribute::UWTable); 340 return F; 341 } 342 343 void Function::removeFromParent() { 344 getParent()->getFunctionList().remove(getIterator()); 345 } 346 347 void Function::eraseFromParent() { 348 getParent()->getFunctionList().erase(getIterator()); 349 } 350 351 //===----------------------------------------------------------------------===// 352 // Function Implementation 353 //===----------------------------------------------------------------------===// 354 355 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 356 // If AS == -1 and we are passed a valid module pointer we place the function 357 // in the program address space. Otherwise we default to AS0. 358 if (AddrSpace == static_cast<unsigned>(-1)) 359 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 360 return AddrSpace; 361 } 362 363 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 364 const Twine &name, Module *ParentModule) 365 : GlobalObject(Ty, Value::FunctionVal, 366 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 367 computeAddrSpace(AddrSpace, ParentModule)), 368 NumArgs(Ty->getNumParams()) { 369 assert(FunctionType::isValidReturnType(getReturnType()) && 370 "invalid return type"); 371 setGlobalObjectSubClassData(0); 372 373 // We only need a symbol table for a function if the context keeps value names 374 if (!getContext().shouldDiscardValueNames()) 375 SymTab = std::make_unique<ValueSymbolTable>(); 376 377 // If the function has arguments, mark them as lazily built. 378 if (Ty->getNumParams()) 379 setValueSubclassData(1); // Set the "has lazy arguments" bit. 380 381 if (ParentModule) 382 ParentModule->getFunctionList().push_back(this); 383 384 HasLLVMReservedName = getName().startswith("llvm."); 385 // Ensure intrinsics have the right parameter attributes. 386 // Note, the IntID field will have been set in Value::setName if this function 387 // name is a valid intrinsic ID. 388 if (IntID) 389 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 390 } 391 392 Function::~Function() { 393 dropAllReferences(); // After this it is safe to delete instructions. 394 395 // Delete all of the method arguments and unlink from symbol table... 396 if (Arguments) 397 clearArguments(); 398 399 // Remove the function from the on-the-side GC table. 400 clearGC(); 401 } 402 403 void Function::BuildLazyArguments() const { 404 // Create the arguments vector, all arguments start out unnamed. 405 auto *FT = getFunctionType(); 406 if (NumArgs > 0) { 407 Arguments = std::allocator<Argument>().allocate(NumArgs); 408 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 409 Type *ArgTy = FT->getParamType(i); 410 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 411 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 412 } 413 } 414 415 // Clear the lazy arguments bit. 416 unsigned SDC = getSubclassDataFromValue(); 417 SDC &= ~(1 << 0); 418 const_cast<Function*>(this)->setValueSubclassData(SDC); 419 assert(!hasLazyArguments()); 420 } 421 422 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 423 return MutableArrayRef<Argument>(Args, Count); 424 } 425 426 bool Function::isConstrainedFPIntrinsic() const { 427 switch (getIntrinsicID()) { 428 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 429 case Intrinsic::INTRINSIC: 430 #include "llvm/IR/ConstrainedOps.def" 431 return true; 432 #undef INSTRUCTION 433 default: 434 return false; 435 } 436 } 437 438 void Function::clearArguments() { 439 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 440 A.setName(""); 441 A.~Argument(); 442 } 443 std::allocator<Argument>().deallocate(Arguments, NumArgs); 444 Arguments = nullptr; 445 } 446 447 void Function::stealArgumentListFrom(Function &Src) { 448 assert(isDeclaration() && "Expected no references to current arguments"); 449 450 // Drop the current arguments, if any, and set the lazy argument bit. 451 if (!hasLazyArguments()) { 452 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 453 [](const Argument &A) { return A.use_empty(); }) && 454 "Expected arguments to be unused in declaration"); 455 clearArguments(); 456 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 457 } 458 459 // Nothing to steal if Src has lazy arguments. 460 if (Src.hasLazyArguments()) 461 return; 462 463 // Steal arguments from Src, and fix the lazy argument bits. 464 assert(arg_size() == Src.arg_size()); 465 Arguments = Src.Arguments; 466 Src.Arguments = nullptr; 467 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 468 // FIXME: This does the work of transferNodesFromList inefficiently. 469 SmallString<128> Name; 470 if (A.hasName()) 471 Name = A.getName(); 472 if (!Name.empty()) 473 A.setName(""); 474 A.setParent(this); 475 if (!Name.empty()) 476 A.setName(Name); 477 } 478 479 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 480 assert(!hasLazyArguments()); 481 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 482 } 483 484 // dropAllReferences() - This function causes all the subinstructions to "let 485 // go" of all references that they are maintaining. This allows one to 486 // 'delete' a whole class at a time, even though there may be circular 487 // references... first all references are dropped, and all use counts go to 488 // zero. Then everything is deleted for real. Note that no operations are 489 // valid on an object that has "dropped all references", except operator 490 // delete. 491 // 492 void Function::dropAllReferences() { 493 setIsMaterializable(false); 494 495 for (BasicBlock &BB : *this) 496 BB.dropAllReferences(); 497 498 // Delete all basic blocks. They are now unused, except possibly by 499 // blockaddresses, but BasicBlock's destructor takes care of those. 500 while (!BasicBlocks.empty()) 501 BasicBlocks.begin()->eraseFromParent(); 502 503 // Drop uses of any optional data (real or placeholder). 504 if (getNumOperands()) { 505 User::dropAllReferences(); 506 setNumHungOffUseOperands(0); 507 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 508 } 509 510 // Metadata is stored in a side-table. 511 clearMetadata(); 512 } 513 514 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 515 AttributeList PAL = getAttributes(); 516 PAL = PAL.addAttribute(getContext(), i, Kind); 517 setAttributes(PAL); 518 } 519 520 void Function::addAttribute(unsigned i, Attribute Attr) { 521 AttributeList PAL = getAttributes(); 522 PAL = PAL.addAttribute(getContext(), i, Attr); 523 setAttributes(PAL); 524 } 525 526 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 527 AttributeList PAL = getAttributes(); 528 PAL = PAL.addAttributes(getContext(), i, Attrs); 529 setAttributes(PAL); 530 } 531 532 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 533 AttributeList PAL = getAttributes(); 534 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 535 setAttributes(PAL); 536 } 537 538 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 539 AttributeList PAL = getAttributes(); 540 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 541 setAttributes(PAL); 542 } 543 544 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 545 AttributeList PAL = getAttributes(); 546 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 547 setAttributes(PAL); 548 } 549 550 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 551 AttributeList PAL = getAttributes(); 552 PAL = PAL.removeAttribute(getContext(), i, Kind); 553 setAttributes(PAL); 554 } 555 556 void Function::removeAttribute(unsigned i, StringRef Kind) { 557 AttributeList PAL = getAttributes(); 558 PAL = PAL.removeAttribute(getContext(), i, Kind); 559 setAttributes(PAL); 560 } 561 562 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 563 AttributeList PAL = getAttributes(); 564 PAL = PAL.removeAttributes(getContext(), i, Attrs); 565 setAttributes(PAL); 566 } 567 568 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 569 AttributeList PAL = getAttributes(); 570 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 571 setAttributes(PAL); 572 } 573 574 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 575 AttributeList PAL = getAttributes(); 576 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 577 setAttributes(PAL); 578 } 579 580 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 581 AttributeList PAL = getAttributes(); 582 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 583 setAttributes(PAL); 584 } 585 586 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) { 587 AttributeList PAL = getAttributes(); 588 PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo); 589 setAttributes(PAL); 590 } 591 592 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 593 AttributeList PAL = getAttributes(); 594 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 595 setAttributes(PAL); 596 } 597 598 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 599 AttributeList PAL = getAttributes(); 600 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 601 setAttributes(PAL); 602 } 603 604 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 605 AttributeList PAL = getAttributes(); 606 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 607 setAttributes(PAL); 608 } 609 610 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 611 uint64_t Bytes) { 612 AttributeList PAL = getAttributes(); 613 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 614 setAttributes(PAL); 615 } 616 617 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 618 if (&FPType == &APFloat::IEEEsingle()) { 619 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 620 StringRef Val = Attr.getValueAsString(); 621 if (!Val.empty()) 622 return parseDenormalFPAttribute(Val); 623 624 // If the f32 variant of the attribute isn't specified, try to use the 625 // generic one. 626 } 627 628 Attribute Attr = getFnAttribute("denormal-fp-math"); 629 return parseDenormalFPAttribute(Attr.getValueAsString()); 630 } 631 632 const std::string &Function::getGC() const { 633 assert(hasGC() && "Function has no collector"); 634 return getContext().getGC(*this); 635 } 636 637 void Function::setGC(std::string Str) { 638 setValueSubclassDataBit(14, !Str.empty()); 639 getContext().setGC(*this, std::move(Str)); 640 } 641 642 void Function::clearGC() { 643 if (!hasGC()) 644 return; 645 getContext().deleteGC(*this); 646 setValueSubclassDataBit(14, false); 647 } 648 649 bool Function::hasStackProtectorFnAttr() const { 650 return hasFnAttribute(Attribute::StackProtect) || 651 hasFnAttribute(Attribute::StackProtectStrong) || 652 hasFnAttribute(Attribute::StackProtectReq); 653 } 654 655 /// Copy all additional attributes (those not needed to create a Function) from 656 /// the Function Src to this one. 657 void Function::copyAttributesFrom(const Function *Src) { 658 GlobalObject::copyAttributesFrom(Src); 659 setCallingConv(Src->getCallingConv()); 660 setAttributes(Src->getAttributes()); 661 if (Src->hasGC()) 662 setGC(Src->getGC()); 663 else 664 clearGC(); 665 if (Src->hasPersonalityFn()) 666 setPersonalityFn(Src->getPersonalityFn()); 667 if (Src->hasPrefixData()) 668 setPrefixData(Src->getPrefixData()); 669 if (Src->hasPrologueData()) 670 setPrologueData(Src->getPrologueData()); 671 } 672 673 /// Table of string intrinsic names indexed by enum value. 674 static const char * const IntrinsicNameTable[] = { 675 "not_intrinsic", 676 #define GET_INTRINSIC_NAME_TABLE 677 #include "llvm/IR/IntrinsicImpl.inc" 678 #undef GET_INTRINSIC_NAME_TABLE 679 }; 680 681 /// Table of per-target intrinsic name tables. 682 #define GET_INTRINSIC_TARGET_DATA 683 #include "llvm/IR/IntrinsicImpl.inc" 684 #undef GET_INTRINSIC_TARGET_DATA 685 686 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 687 return IID > TargetInfos[0].Count; 688 } 689 690 bool Function::isTargetIntrinsic() const { 691 return isTargetIntrinsic(IntID); 692 } 693 694 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 695 /// target as \c Name, or the generic table if \c Name is not target specific. 696 /// 697 /// Returns the relevant slice of \c IntrinsicNameTable 698 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 699 assert(Name.startswith("llvm.")); 700 701 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 702 // Drop "llvm." and take the first dotted component. That will be the target 703 // if this is target specific. 704 StringRef Target = Name.drop_front(5).split('.').first; 705 auto It = partition_point( 706 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 707 // We've either found the target or just fall back to the generic set, which 708 // is always first. 709 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 710 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 711 } 712 713 /// This does the actual lookup of an intrinsic ID which 714 /// matches the given function name. 715 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 716 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 717 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 718 if (Idx == -1) 719 return Intrinsic::not_intrinsic; 720 721 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 722 // an index into a sub-table. 723 int Adjust = NameTable.data() - IntrinsicNameTable; 724 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 725 726 // If the intrinsic is not overloaded, require an exact match. If it is 727 // overloaded, require either exact or prefix match. 728 const auto MatchSize = strlen(NameTable[Idx]); 729 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 730 bool IsExactMatch = Name.size() == MatchSize; 731 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 732 : Intrinsic::not_intrinsic; 733 } 734 735 void Function::recalculateIntrinsicID() { 736 StringRef Name = getName(); 737 if (!Name.startswith("llvm.")) { 738 HasLLVMReservedName = false; 739 IntID = Intrinsic::not_intrinsic; 740 return; 741 } 742 HasLLVMReservedName = true; 743 IntID = lookupIntrinsicID(Name); 744 } 745 746 /// Returns a stable mangling for the type specified for use in the name 747 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 748 /// of named types is simply their name. Manglings for unnamed types consist 749 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 750 /// combined with the mangling of their component types. A vararg function 751 /// type will have a suffix of 'vararg'. Since function types can contain 752 /// other function types, we close a function type mangling with suffix 'f' 753 /// which can't be confused with it's prefix. This ensures we don't have 754 /// collisions between two unrelated function types. Otherwise, you might 755 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 756 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 757 /// indicating that extra care must be taken to ensure a unique name. 758 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 759 std::string Result; 760 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 761 Result += "p" + utostr(PTyp->getAddressSpace()) + 762 getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 763 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 764 Result += "a" + utostr(ATyp->getNumElements()) + 765 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 766 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 767 if (!STyp->isLiteral()) { 768 Result += "s_"; 769 if (STyp->hasName()) 770 Result += STyp->getName(); 771 else 772 HasUnnamedType = true; 773 } else { 774 Result += "sl_"; 775 for (auto Elem : STyp->elements()) 776 Result += getMangledTypeStr(Elem, HasUnnamedType); 777 } 778 // Ensure nested structs are distinguishable. 779 Result += "s"; 780 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 781 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 782 for (size_t i = 0; i < FT->getNumParams(); i++) 783 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 784 if (FT->isVarArg()) 785 Result += "vararg"; 786 // Ensure nested function types are distinguishable. 787 Result += "f"; 788 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 789 ElementCount EC = VTy->getElementCount(); 790 if (EC.isScalable()) 791 Result += "nx"; 792 Result += "v" + utostr(EC.getKnownMinValue()) + 793 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 794 } else if (Ty) { 795 switch (Ty->getTypeID()) { 796 default: llvm_unreachable("Unhandled type"); 797 case Type::VoidTyID: Result += "isVoid"; break; 798 case Type::MetadataTyID: Result += "Metadata"; break; 799 case Type::HalfTyID: Result += "f16"; break; 800 case Type::BFloatTyID: Result += "bf16"; break; 801 case Type::FloatTyID: Result += "f32"; break; 802 case Type::DoubleTyID: Result += "f64"; break; 803 case Type::X86_FP80TyID: Result += "f80"; break; 804 case Type::FP128TyID: Result += "f128"; break; 805 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 806 case Type::X86_MMXTyID: Result += "x86mmx"; break; 807 case Type::X86_AMXTyID: Result += "x86amx"; break; 808 case Type::IntegerTyID: 809 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 810 break; 811 } 812 } 813 return Result; 814 } 815 816 StringRef Intrinsic::getName(ID id) { 817 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 818 assert(!Intrinsic::isOverloaded(id) && 819 "This version of getName does not support overloading"); 820 return IntrinsicNameTable[id]; 821 } 822 823 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 824 FunctionType *FT) { 825 assert(Id < num_intrinsics && "Invalid intrinsic ID!"); 826 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 827 "This version of getName is for overloaded intrinsics only"); 828 bool HasUnnamedType = false; 829 std::string Result(IntrinsicNameTable[Id]); 830 for (Type *Ty : Tys) { 831 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 832 } 833 assert((M || !HasUnnamedType) && "unnamed types need a module"); 834 if (M && HasUnnamedType) { 835 if (!FT) 836 FT = getType(M->getContext(), Id, Tys); 837 else 838 assert((FT == getType(M->getContext(), Id, Tys)) && 839 "Provided FunctionType must match arguments"); 840 return M->getUniqueIntrinsicName(Result, Id, FT); 841 } 842 return Result; 843 } 844 845 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) { 846 return getName(Id, Tys, nullptr, nullptr); 847 } 848 849 /// IIT_Info - These are enumerators that describe the entries returned by the 850 /// getIntrinsicInfoTableEntries function. 851 /// 852 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 853 enum IIT_Info { 854 // Common values should be encoded with 0-15. 855 IIT_Done = 0, 856 IIT_I1 = 1, 857 IIT_I8 = 2, 858 IIT_I16 = 3, 859 IIT_I32 = 4, 860 IIT_I64 = 5, 861 IIT_F16 = 6, 862 IIT_F32 = 7, 863 IIT_F64 = 8, 864 IIT_V2 = 9, 865 IIT_V4 = 10, 866 IIT_V8 = 11, 867 IIT_V16 = 12, 868 IIT_V32 = 13, 869 IIT_PTR = 14, 870 IIT_ARG = 15, 871 872 // Values from 16+ are only encodable with the inefficient encoding. 873 IIT_V64 = 16, 874 IIT_MMX = 17, 875 IIT_TOKEN = 18, 876 IIT_METADATA = 19, 877 IIT_EMPTYSTRUCT = 20, 878 IIT_STRUCT2 = 21, 879 IIT_STRUCT3 = 22, 880 IIT_STRUCT4 = 23, 881 IIT_STRUCT5 = 24, 882 IIT_EXTEND_ARG = 25, 883 IIT_TRUNC_ARG = 26, 884 IIT_ANYPTR = 27, 885 IIT_V1 = 28, 886 IIT_VARARG = 29, 887 IIT_HALF_VEC_ARG = 30, 888 IIT_SAME_VEC_WIDTH_ARG = 31, 889 IIT_PTR_TO_ARG = 32, 890 IIT_PTR_TO_ELT = 33, 891 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 892 IIT_I128 = 35, 893 IIT_V512 = 36, 894 IIT_V1024 = 37, 895 IIT_STRUCT6 = 38, 896 IIT_STRUCT7 = 39, 897 IIT_STRUCT8 = 40, 898 IIT_F128 = 41, 899 IIT_VEC_ELEMENT = 42, 900 IIT_SCALABLE_VEC = 43, 901 IIT_SUBDIVIDE2_ARG = 44, 902 IIT_SUBDIVIDE4_ARG = 45, 903 IIT_VEC_OF_BITCASTS_TO_INT = 46, 904 IIT_V128 = 47, 905 IIT_BF16 = 48, 906 IIT_STRUCT9 = 49, 907 IIT_V256 = 50, 908 IIT_AMX = 51 909 }; 910 911 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 912 IIT_Info LastInfo, 913 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 914 using namespace Intrinsic; 915 916 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 917 918 IIT_Info Info = IIT_Info(Infos[NextElt++]); 919 unsigned StructElts = 2; 920 921 switch (Info) { 922 case IIT_Done: 923 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 924 return; 925 case IIT_VARARG: 926 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 927 return; 928 case IIT_MMX: 929 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 930 return; 931 case IIT_AMX: 932 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 933 return; 934 case IIT_TOKEN: 935 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 936 return; 937 case IIT_METADATA: 938 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 939 return; 940 case IIT_F16: 941 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 942 return; 943 case IIT_BF16: 944 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 945 return; 946 case IIT_F32: 947 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 948 return; 949 case IIT_F64: 950 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 951 return; 952 case IIT_F128: 953 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 954 return; 955 case IIT_I1: 956 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 957 return; 958 case IIT_I8: 959 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 960 return; 961 case IIT_I16: 962 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 963 return; 964 case IIT_I32: 965 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 966 return; 967 case IIT_I64: 968 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 969 return; 970 case IIT_I128: 971 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 972 return; 973 case IIT_V1: 974 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 975 DecodeIITType(NextElt, Infos, Info, OutputTable); 976 return; 977 case IIT_V2: 978 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 979 DecodeIITType(NextElt, Infos, Info, OutputTable); 980 return; 981 case IIT_V4: 982 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 983 DecodeIITType(NextElt, Infos, Info, OutputTable); 984 return; 985 case IIT_V8: 986 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 987 DecodeIITType(NextElt, Infos, Info, OutputTable); 988 return; 989 case IIT_V16: 990 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 991 DecodeIITType(NextElt, Infos, Info, OutputTable); 992 return; 993 case IIT_V32: 994 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 995 DecodeIITType(NextElt, Infos, Info, OutputTable); 996 return; 997 case IIT_V64: 998 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 999 DecodeIITType(NextElt, Infos, Info, OutputTable); 1000 return; 1001 case IIT_V128: 1002 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1003 DecodeIITType(NextElt, Infos, Info, OutputTable); 1004 return; 1005 case IIT_V256: 1006 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1007 DecodeIITType(NextElt, Infos, Info, OutputTable); 1008 return; 1009 case IIT_V512: 1010 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1011 DecodeIITType(NextElt, Infos, Info, OutputTable); 1012 return; 1013 case IIT_V1024: 1014 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1015 DecodeIITType(NextElt, Infos, Info, OutputTable); 1016 return; 1017 case IIT_PTR: 1018 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1019 DecodeIITType(NextElt, Infos, Info, OutputTable); 1020 return; 1021 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1022 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1023 Infos[NextElt++])); 1024 DecodeIITType(NextElt, Infos, Info, OutputTable); 1025 return; 1026 } 1027 case IIT_ARG: { 1028 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1029 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1030 return; 1031 } 1032 case IIT_EXTEND_ARG: { 1033 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1034 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1035 ArgInfo)); 1036 return; 1037 } 1038 case IIT_TRUNC_ARG: { 1039 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1040 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1041 ArgInfo)); 1042 return; 1043 } 1044 case IIT_HALF_VEC_ARG: { 1045 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1046 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1047 ArgInfo)); 1048 return; 1049 } 1050 case IIT_SAME_VEC_WIDTH_ARG: { 1051 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1052 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1053 ArgInfo)); 1054 return; 1055 } 1056 case IIT_PTR_TO_ARG: { 1057 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1058 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1059 ArgInfo)); 1060 return; 1061 } 1062 case IIT_PTR_TO_ELT: { 1063 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1064 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1065 return; 1066 } 1067 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1068 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1069 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1070 OutputTable.push_back( 1071 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1072 return; 1073 } 1074 case IIT_EMPTYSTRUCT: 1075 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1076 return; 1077 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1078 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1079 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1080 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1081 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1082 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1083 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1084 case IIT_STRUCT2: { 1085 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1086 1087 for (unsigned i = 0; i != StructElts; ++i) 1088 DecodeIITType(NextElt, Infos, Info, OutputTable); 1089 return; 1090 } 1091 case IIT_SUBDIVIDE2_ARG: { 1092 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1093 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1094 ArgInfo)); 1095 return; 1096 } 1097 case IIT_SUBDIVIDE4_ARG: { 1098 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1099 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1100 ArgInfo)); 1101 return; 1102 } 1103 case IIT_VEC_ELEMENT: { 1104 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1106 ArgInfo)); 1107 return; 1108 } 1109 case IIT_SCALABLE_VEC: { 1110 DecodeIITType(NextElt, Infos, Info, OutputTable); 1111 return; 1112 } 1113 case IIT_VEC_OF_BITCASTS_TO_INT: { 1114 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1116 ArgInfo)); 1117 return; 1118 } 1119 } 1120 llvm_unreachable("unhandled"); 1121 } 1122 1123 #define GET_INTRINSIC_GENERATOR_GLOBAL 1124 #include "llvm/IR/IntrinsicImpl.inc" 1125 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1126 1127 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1128 SmallVectorImpl<IITDescriptor> &T){ 1129 // Check to see if the intrinsic's type was expressible by the table. 1130 unsigned TableVal = IIT_Table[id-1]; 1131 1132 // Decode the TableVal into an array of IITValues. 1133 SmallVector<unsigned char, 8> IITValues; 1134 ArrayRef<unsigned char> IITEntries; 1135 unsigned NextElt = 0; 1136 if ((TableVal >> 31) != 0) { 1137 // This is an offset into the IIT_LongEncodingTable. 1138 IITEntries = IIT_LongEncodingTable; 1139 1140 // Strip sentinel bit. 1141 NextElt = (TableVal << 1) >> 1; 1142 } else { 1143 // Decode the TableVal into an array of IITValues. If the entry was encoded 1144 // into a single word in the table itself, decode it now. 1145 do { 1146 IITValues.push_back(TableVal & 0xF); 1147 TableVal >>= 4; 1148 } while (TableVal); 1149 1150 IITEntries = IITValues; 1151 NextElt = 0; 1152 } 1153 1154 // Okay, decode the table into the output vector of IITDescriptors. 1155 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1156 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1157 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1158 } 1159 1160 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1161 ArrayRef<Type*> Tys, LLVMContext &Context) { 1162 using namespace Intrinsic; 1163 1164 IITDescriptor D = Infos.front(); 1165 Infos = Infos.slice(1); 1166 1167 switch (D.Kind) { 1168 case IITDescriptor::Void: return Type::getVoidTy(Context); 1169 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1170 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1171 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1172 case IITDescriptor::Token: return Type::getTokenTy(Context); 1173 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1174 case IITDescriptor::Half: return Type::getHalfTy(Context); 1175 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1176 case IITDescriptor::Float: return Type::getFloatTy(Context); 1177 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1178 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1179 1180 case IITDescriptor::Integer: 1181 return IntegerType::get(Context, D.Integer_Width); 1182 case IITDescriptor::Vector: 1183 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1184 D.Vector_Width); 1185 case IITDescriptor::Pointer: 1186 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1187 D.Pointer_AddressSpace); 1188 case IITDescriptor::Struct: { 1189 SmallVector<Type *, 8> Elts; 1190 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1191 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1192 return StructType::get(Context, Elts); 1193 } 1194 case IITDescriptor::Argument: 1195 return Tys[D.getArgumentNumber()]; 1196 case IITDescriptor::ExtendArgument: { 1197 Type *Ty = Tys[D.getArgumentNumber()]; 1198 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1199 return VectorType::getExtendedElementVectorType(VTy); 1200 1201 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1202 } 1203 case IITDescriptor::TruncArgument: { 1204 Type *Ty = Tys[D.getArgumentNumber()]; 1205 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1206 return VectorType::getTruncatedElementVectorType(VTy); 1207 1208 IntegerType *ITy = cast<IntegerType>(Ty); 1209 assert(ITy->getBitWidth() % 2 == 0); 1210 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1211 } 1212 case IITDescriptor::Subdivide2Argument: 1213 case IITDescriptor::Subdivide4Argument: { 1214 Type *Ty = Tys[D.getArgumentNumber()]; 1215 VectorType *VTy = dyn_cast<VectorType>(Ty); 1216 assert(VTy && "Expected an argument of Vector Type"); 1217 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1218 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1219 } 1220 case IITDescriptor::HalfVecArgument: 1221 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1222 Tys[D.getArgumentNumber()])); 1223 case IITDescriptor::SameVecWidthArgument: { 1224 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1225 Type *Ty = Tys[D.getArgumentNumber()]; 1226 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1227 return VectorType::get(EltTy, VTy->getElementCount()); 1228 return EltTy; 1229 } 1230 case IITDescriptor::PtrToArgument: { 1231 Type *Ty = Tys[D.getArgumentNumber()]; 1232 return PointerType::getUnqual(Ty); 1233 } 1234 case IITDescriptor::PtrToElt: { 1235 Type *Ty = Tys[D.getArgumentNumber()]; 1236 VectorType *VTy = dyn_cast<VectorType>(Ty); 1237 if (!VTy) 1238 llvm_unreachable("Expected an argument of Vector Type"); 1239 Type *EltTy = VTy->getElementType(); 1240 return PointerType::getUnqual(EltTy); 1241 } 1242 case IITDescriptor::VecElementArgument: { 1243 Type *Ty = Tys[D.getArgumentNumber()]; 1244 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1245 return VTy->getElementType(); 1246 llvm_unreachable("Expected an argument of Vector Type"); 1247 } 1248 case IITDescriptor::VecOfBitcastsToInt: { 1249 Type *Ty = Tys[D.getArgumentNumber()]; 1250 VectorType *VTy = dyn_cast<VectorType>(Ty); 1251 assert(VTy && "Expected an argument of Vector Type"); 1252 return VectorType::getInteger(VTy); 1253 } 1254 case IITDescriptor::VecOfAnyPtrsToElt: 1255 // Return the overloaded type (which determines the pointers address space) 1256 return Tys[D.getOverloadArgNumber()]; 1257 } 1258 llvm_unreachable("unhandled"); 1259 } 1260 1261 FunctionType *Intrinsic::getType(LLVMContext &Context, 1262 ID id, ArrayRef<Type*> Tys) { 1263 SmallVector<IITDescriptor, 8> Table; 1264 getIntrinsicInfoTableEntries(id, Table); 1265 1266 ArrayRef<IITDescriptor> TableRef = Table; 1267 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1268 1269 SmallVector<Type*, 8> ArgTys; 1270 while (!TableRef.empty()) 1271 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1272 1273 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1274 // If we see void type as the type of the last argument, it is vararg intrinsic 1275 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1276 ArgTys.pop_back(); 1277 return FunctionType::get(ResultTy, ArgTys, true); 1278 } 1279 return FunctionType::get(ResultTy, ArgTys, false); 1280 } 1281 1282 bool Intrinsic::isOverloaded(ID id) { 1283 #define GET_INTRINSIC_OVERLOAD_TABLE 1284 #include "llvm/IR/IntrinsicImpl.inc" 1285 #undef GET_INTRINSIC_OVERLOAD_TABLE 1286 } 1287 1288 bool Intrinsic::isLeaf(ID id) { 1289 switch (id) { 1290 default: 1291 return true; 1292 1293 case Intrinsic::experimental_gc_statepoint: 1294 case Intrinsic::experimental_patchpoint_void: 1295 case Intrinsic::experimental_patchpoint_i64: 1296 return false; 1297 } 1298 } 1299 1300 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1301 #define GET_INTRINSIC_ATTRIBUTES 1302 #include "llvm/IR/IntrinsicImpl.inc" 1303 #undef GET_INTRINSIC_ATTRIBUTES 1304 1305 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1306 // There can never be multiple globals with the same name of different types, 1307 // because intrinsics must be a specific type. 1308 auto *FT = getType(M->getContext(), id, Tys); 1309 return cast<Function>( 1310 M->getOrInsertFunction(Tys.empty() ? getName(id) 1311 : getName(id, Tys, M, FT), 1312 getType(M->getContext(), id, Tys)) 1313 .getCallee()); 1314 } 1315 1316 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1317 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1318 #include "llvm/IR/IntrinsicImpl.inc" 1319 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1320 1321 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1322 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1323 #include "llvm/IR/IntrinsicImpl.inc" 1324 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1325 1326 using DeferredIntrinsicMatchPair = 1327 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1328 1329 static bool matchIntrinsicType( 1330 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1331 SmallVectorImpl<Type *> &ArgTys, 1332 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1333 bool IsDeferredCheck) { 1334 using namespace Intrinsic; 1335 1336 // If we ran out of descriptors, there are too many arguments. 1337 if (Infos.empty()) return true; 1338 1339 // Do this before slicing off the 'front' part 1340 auto InfosRef = Infos; 1341 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1342 DeferredChecks.emplace_back(T, InfosRef); 1343 return false; 1344 }; 1345 1346 IITDescriptor D = Infos.front(); 1347 Infos = Infos.slice(1); 1348 1349 switch (D.Kind) { 1350 case IITDescriptor::Void: return !Ty->isVoidTy(); 1351 case IITDescriptor::VarArg: return true; 1352 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1353 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1354 case IITDescriptor::Token: return !Ty->isTokenTy(); 1355 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1356 case IITDescriptor::Half: return !Ty->isHalfTy(); 1357 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1358 case IITDescriptor::Float: return !Ty->isFloatTy(); 1359 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1360 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1361 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1362 case IITDescriptor::Vector: { 1363 VectorType *VT = dyn_cast<VectorType>(Ty); 1364 return !VT || VT->getElementCount() != D.Vector_Width || 1365 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1366 DeferredChecks, IsDeferredCheck); 1367 } 1368 case IITDescriptor::Pointer: { 1369 PointerType *PT = dyn_cast<PointerType>(Ty); 1370 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1371 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1372 DeferredChecks, IsDeferredCheck); 1373 } 1374 1375 case IITDescriptor::Struct: { 1376 StructType *ST = dyn_cast<StructType>(Ty); 1377 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1378 return true; 1379 1380 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1381 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1382 DeferredChecks, IsDeferredCheck)) 1383 return true; 1384 return false; 1385 } 1386 1387 case IITDescriptor::Argument: 1388 // If this is the second occurrence of an argument, 1389 // verify that the later instance matches the previous instance. 1390 if (D.getArgumentNumber() < ArgTys.size()) 1391 return Ty != ArgTys[D.getArgumentNumber()]; 1392 1393 if (D.getArgumentNumber() > ArgTys.size() || 1394 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1395 return IsDeferredCheck || DeferCheck(Ty); 1396 1397 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1398 "Table consistency error"); 1399 ArgTys.push_back(Ty); 1400 1401 switch (D.getArgumentKind()) { 1402 case IITDescriptor::AK_Any: return false; // Success 1403 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1404 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1405 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1406 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1407 default: break; 1408 } 1409 llvm_unreachable("all argument kinds not covered"); 1410 1411 case IITDescriptor::ExtendArgument: { 1412 // If this is a forward reference, defer the check for later. 1413 if (D.getArgumentNumber() >= ArgTys.size()) 1414 return IsDeferredCheck || DeferCheck(Ty); 1415 1416 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1417 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1418 NewTy = VectorType::getExtendedElementVectorType(VTy); 1419 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1420 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1421 else 1422 return true; 1423 1424 return Ty != NewTy; 1425 } 1426 case IITDescriptor::TruncArgument: { 1427 // If this is a forward reference, defer the check for later. 1428 if (D.getArgumentNumber() >= ArgTys.size()) 1429 return IsDeferredCheck || DeferCheck(Ty); 1430 1431 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1432 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1433 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1434 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1435 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1436 else 1437 return true; 1438 1439 return Ty != NewTy; 1440 } 1441 case IITDescriptor::HalfVecArgument: 1442 // If this is a forward reference, defer the check for later. 1443 if (D.getArgumentNumber() >= ArgTys.size()) 1444 return IsDeferredCheck || DeferCheck(Ty); 1445 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1446 VectorType::getHalfElementsVectorType( 1447 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1448 case IITDescriptor::SameVecWidthArgument: { 1449 if (D.getArgumentNumber() >= ArgTys.size()) { 1450 // Defer check and subsequent check for the vector element type. 1451 Infos = Infos.slice(1); 1452 return IsDeferredCheck || DeferCheck(Ty); 1453 } 1454 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1455 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1456 // Both must be vectors of the same number of elements or neither. 1457 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1458 return true; 1459 Type *EltTy = Ty; 1460 if (ThisArgType) { 1461 if (ReferenceType->getElementCount() != 1462 ThisArgType->getElementCount()) 1463 return true; 1464 EltTy = ThisArgType->getElementType(); 1465 } 1466 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1467 IsDeferredCheck); 1468 } 1469 case IITDescriptor::PtrToArgument: { 1470 if (D.getArgumentNumber() >= ArgTys.size()) 1471 return IsDeferredCheck || DeferCheck(Ty); 1472 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1473 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1474 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1475 } 1476 case IITDescriptor::PtrToElt: { 1477 if (D.getArgumentNumber() >= ArgTys.size()) 1478 return IsDeferredCheck || DeferCheck(Ty); 1479 VectorType * ReferenceType = 1480 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1481 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1482 1483 return (!ThisArgType || !ReferenceType || 1484 ThisArgType->getElementType() != ReferenceType->getElementType()); 1485 } 1486 case IITDescriptor::VecOfAnyPtrsToElt: { 1487 unsigned RefArgNumber = D.getRefArgNumber(); 1488 if (RefArgNumber >= ArgTys.size()) { 1489 if (IsDeferredCheck) 1490 return true; 1491 // If forward referencing, already add the pointer-vector type and 1492 // defer the checks for later. 1493 ArgTys.push_back(Ty); 1494 return DeferCheck(Ty); 1495 } 1496 1497 if (!IsDeferredCheck){ 1498 assert(D.getOverloadArgNumber() == ArgTys.size() && 1499 "Table consistency error"); 1500 ArgTys.push_back(Ty); 1501 } 1502 1503 // Verify the overloaded type "matches" the Ref type. 1504 // i.e. Ty is a vector with the same width as Ref. 1505 // Composed of pointers to the same element type as Ref. 1506 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1507 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1508 if (!ThisArgVecTy || !ReferenceType || 1509 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1510 return true; 1511 PointerType *ThisArgEltTy = 1512 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1513 if (!ThisArgEltTy) 1514 return true; 1515 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1516 } 1517 case IITDescriptor::VecElementArgument: { 1518 if (D.getArgumentNumber() >= ArgTys.size()) 1519 return IsDeferredCheck ? true : DeferCheck(Ty); 1520 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1521 return !ReferenceType || Ty != ReferenceType->getElementType(); 1522 } 1523 case IITDescriptor::Subdivide2Argument: 1524 case IITDescriptor::Subdivide4Argument: { 1525 // If this is a forward reference, defer the check for later. 1526 if (D.getArgumentNumber() >= ArgTys.size()) 1527 return IsDeferredCheck || DeferCheck(Ty); 1528 1529 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1530 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1531 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1532 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1533 return Ty != NewTy; 1534 } 1535 return true; 1536 } 1537 case IITDescriptor::VecOfBitcastsToInt: { 1538 if (D.getArgumentNumber() >= ArgTys.size()) 1539 return IsDeferredCheck || DeferCheck(Ty); 1540 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1541 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1542 if (!ThisArgVecTy || !ReferenceType) 1543 return true; 1544 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1545 } 1546 } 1547 llvm_unreachable("unhandled"); 1548 } 1549 1550 Intrinsic::MatchIntrinsicTypesResult 1551 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1552 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1553 SmallVectorImpl<Type *> &ArgTys) { 1554 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1555 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1556 false)) 1557 return MatchIntrinsicTypes_NoMatchRet; 1558 1559 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1560 1561 for (auto Ty : FTy->params()) 1562 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1563 return MatchIntrinsicTypes_NoMatchArg; 1564 1565 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1566 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1567 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1568 true)) 1569 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1570 : MatchIntrinsicTypes_NoMatchArg; 1571 } 1572 1573 return MatchIntrinsicTypes_Match; 1574 } 1575 1576 bool 1577 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1578 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1579 // If there are no descriptors left, then it can't be a vararg. 1580 if (Infos.empty()) 1581 return isVarArg; 1582 1583 // There should be only one descriptor remaining at this point. 1584 if (Infos.size() != 1) 1585 return true; 1586 1587 // Check and verify the descriptor. 1588 IITDescriptor D = Infos.front(); 1589 Infos = Infos.slice(1); 1590 if (D.Kind == IITDescriptor::VarArg) 1591 return !isVarArg; 1592 1593 return true; 1594 } 1595 1596 bool Intrinsic::getIntrinsicSignature(Function *F, 1597 SmallVectorImpl<Type *> &ArgTys) { 1598 Intrinsic::ID ID = F->getIntrinsicID(); 1599 if (!ID) 1600 return false; 1601 1602 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1603 getIntrinsicInfoTableEntries(ID, Table); 1604 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1605 1606 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1607 ArgTys) != 1608 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1609 return false; 1610 } 1611 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1612 TableRef)) 1613 return false; 1614 return true; 1615 } 1616 1617 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1618 SmallVector<Type *, 4> ArgTys; 1619 if (!getIntrinsicSignature(F, ArgTys)) 1620 return None; 1621 1622 Intrinsic::ID ID = F->getIntrinsicID(); 1623 StringRef Name = F->getName(); 1624 if (Name == 1625 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType())) 1626 return None; 1627 1628 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1629 NewDecl->setCallingConv(F->getCallingConv()); 1630 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1631 "Shouldn't change the signature"); 1632 return NewDecl; 1633 } 1634 1635 /// hasAddressTaken - returns true if there are any uses of this function 1636 /// other than direct calls or invokes to it. Optionally ignores callback 1637 /// uses, assume like pointer annotation calls, and references in llvm.used 1638 /// and llvm.compiler.used variables. 1639 bool Function::hasAddressTaken(const User **PutOffender, 1640 bool IgnoreCallbackUses, 1641 bool IgnoreAssumeLikeCalls, 1642 bool IgnoreLLVMUsed) const { 1643 for (const Use &U : uses()) { 1644 const User *FU = U.getUser(); 1645 if (isa<BlockAddress>(FU)) 1646 continue; 1647 1648 if (IgnoreCallbackUses) { 1649 AbstractCallSite ACS(&U); 1650 if (ACS && ACS.isCallbackCall()) 1651 continue; 1652 } 1653 1654 const auto *Call = dyn_cast<CallBase>(FU); 1655 if (!Call) { 1656 if (IgnoreAssumeLikeCalls) { 1657 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1658 if (FI->isCast() && !FI->user_empty() && 1659 llvm::all_of(FU->users(), [](const User *U) { 1660 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1661 return I->isAssumeLikeIntrinsic(); 1662 return false; 1663 })) 1664 continue; 1665 } 1666 } 1667 if (IgnoreLLVMUsed && !FU->user_empty()) { 1668 const User *FUU = FU; 1669 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1670 !FU->user_begin()->user_empty()) 1671 FUU = *FU->user_begin(); 1672 if (llvm::all_of(FUU->users(), [](const User *U) { 1673 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1674 return GV->hasName() && 1675 (GV->getName().equals("llvm.compiler.used") || 1676 GV->getName().equals("llvm.used")); 1677 return false; 1678 })) 1679 continue; 1680 } 1681 if (PutOffender) 1682 *PutOffender = FU; 1683 return true; 1684 } 1685 if (!Call->isCallee(&U)) { 1686 if (PutOffender) 1687 *PutOffender = FU; 1688 return true; 1689 } 1690 } 1691 return false; 1692 } 1693 1694 bool Function::isDefTriviallyDead() const { 1695 // Check the linkage 1696 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1697 !hasAvailableExternallyLinkage()) 1698 return false; 1699 1700 // Check if the function is used by anything other than a blockaddress. 1701 for (const User *U : users()) 1702 if (!isa<BlockAddress>(U)) 1703 return false; 1704 1705 return true; 1706 } 1707 1708 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1709 /// setjmp or other function that gcc recognizes as "returning twice". 1710 bool Function::callsFunctionThatReturnsTwice() const { 1711 for (const Instruction &I : instructions(this)) 1712 if (const auto *Call = dyn_cast<CallBase>(&I)) 1713 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1714 return true; 1715 1716 return false; 1717 } 1718 1719 Constant *Function::getPersonalityFn() const { 1720 assert(hasPersonalityFn() && getNumOperands()); 1721 return cast<Constant>(Op<0>()); 1722 } 1723 1724 void Function::setPersonalityFn(Constant *Fn) { 1725 setHungoffOperand<0>(Fn); 1726 setValueSubclassDataBit(3, Fn != nullptr); 1727 } 1728 1729 Constant *Function::getPrefixData() const { 1730 assert(hasPrefixData() && getNumOperands()); 1731 return cast<Constant>(Op<1>()); 1732 } 1733 1734 void Function::setPrefixData(Constant *PrefixData) { 1735 setHungoffOperand<1>(PrefixData); 1736 setValueSubclassDataBit(1, PrefixData != nullptr); 1737 } 1738 1739 Constant *Function::getPrologueData() const { 1740 assert(hasPrologueData() && getNumOperands()); 1741 return cast<Constant>(Op<2>()); 1742 } 1743 1744 void Function::setPrologueData(Constant *PrologueData) { 1745 setHungoffOperand<2>(PrologueData); 1746 setValueSubclassDataBit(2, PrologueData != nullptr); 1747 } 1748 1749 void Function::allocHungoffUselist() { 1750 // If we've already allocated a uselist, stop here. 1751 if (getNumOperands()) 1752 return; 1753 1754 allocHungoffUses(3, /*IsPhi=*/ false); 1755 setNumHungOffUseOperands(3); 1756 1757 // Initialize the uselist with placeholder operands to allow traversal. 1758 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1759 Op<0>().set(CPN); 1760 Op<1>().set(CPN); 1761 Op<2>().set(CPN); 1762 } 1763 1764 template <int Idx> 1765 void Function::setHungoffOperand(Constant *C) { 1766 if (C) { 1767 allocHungoffUselist(); 1768 Op<Idx>().set(C); 1769 } else if (getNumOperands()) { 1770 Op<Idx>().set( 1771 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1772 } 1773 } 1774 1775 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1776 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1777 if (On) 1778 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1779 else 1780 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1781 } 1782 1783 void Function::setEntryCount(ProfileCount Count, 1784 const DenseSet<GlobalValue::GUID> *S) { 1785 assert(Count.hasValue()); 1786 #if !defined(NDEBUG) 1787 auto PrevCount = getEntryCount(); 1788 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1789 #endif 1790 1791 auto ImportGUIDs = getImportGUIDs(); 1792 if (S == nullptr && ImportGUIDs.size()) 1793 S = &ImportGUIDs; 1794 1795 MDBuilder MDB(getContext()); 1796 setMetadata( 1797 LLVMContext::MD_prof, 1798 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1799 } 1800 1801 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1802 const DenseSet<GlobalValue::GUID> *Imports) { 1803 setEntryCount(ProfileCount(Count, Type), Imports); 1804 } 1805 1806 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1807 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1808 if (MD && MD->getOperand(0)) 1809 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1810 if (MDS->getString().equals("function_entry_count")) { 1811 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1812 uint64_t Count = CI->getValue().getZExtValue(); 1813 // A value of -1 is used for SamplePGO when there were no samples. 1814 // Treat this the same as unknown. 1815 if (Count == (uint64_t)-1) 1816 return ProfileCount::getInvalid(); 1817 return ProfileCount(Count, PCT_Real); 1818 } else if (AllowSynthetic && 1819 MDS->getString().equals("synthetic_function_entry_count")) { 1820 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1821 uint64_t Count = CI->getValue().getZExtValue(); 1822 return ProfileCount(Count, PCT_Synthetic); 1823 } 1824 } 1825 return ProfileCount::getInvalid(); 1826 } 1827 1828 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1829 DenseSet<GlobalValue::GUID> R; 1830 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1831 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1832 if (MDS->getString().equals("function_entry_count")) 1833 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1834 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1835 ->getValue() 1836 .getZExtValue()); 1837 return R; 1838 } 1839 1840 void Function::setSectionPrefix(StringRef Prefix) { 1841 MDBuilder MDB(getContext()); 1842 setMetadata(LLVMContext::MD_section_prefix, 1843 MDB.createFunctionSectionPrefix(Prefix)); 1844 } 1845 1846 Optional<StringRef> Function::getSectionPrefix() const { 1847 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1848 assert(cast<MDString>(MD->getOperand(0)) 1849 ->getString() 1850 .equals("function_section_prefix") && 1851 "Metadata not match"); 1852 return cast<MDString>(MD->getOperand(1))->getString(); 1853 } 1854 return None; 1855 } 1856 1857 bool Function::nullPointerIsDefined() const { 1858 return hasFnAttribute(Attribute::NullPointerIsValid); 1859 } 1860 1861 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1862 if (F && F->nullPointerIsDefined()) 1863 return true; 1864 1865 if (AS != 0) 1866 return true; 1867 1868 return false; 1869 } 1870