xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 775a9483e55efb365691bc425ed107568ad6daf8)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
166     return InAllocaTy;
167 
168   // FIXME: sret and inalloca always depends on pointee element type. It's also
169   // possible for byval to miss it.
170   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
171       ParamAttrs.hasAttribute(Attribute::ByVal) ||
172       ParamAttrs.hasAttribute(Attribute::StructRet) ||
173       ParamAttrs.hasAttribute(Attribute::Preallocated))
174     return cast<PointerType>(ArgTy)->getElementType();
175 
176   return nullptr;
177 }
178 
179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
180   AttributeSet ParamAttrs =
181       getParent()->getAttributes().getParamAttributes(getArgNo());
182   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
183     return DL.getTypeAllocSize(MemTy);
184   return 0;
185 }
186 
187 Type *Argument::getPointeeInMemoryValueType() const {
188   AttributeSet ParamAttrs =
189       getParent()->getAttributes().getParamAttributes(getArgNo());
190   return getMemoryParamAllocType(ParamAttrs, getType());
191 }
192 
193 unsigned Argument::getParamAlignment() const {
194   assert(getType()->isPointerTy() && "Only pointers have alignments");
195   return getParent()->getParamAlignment(getArgNo());
196 }
197 
198 MaybeAlign Argument::getParamAlign() const {
199   assert(getType()->isPointerTy() && "Only pointers have alignments");
200   return getParent()->getParamAlign(getArgNo());
201 }
202 
203 MaybeAlign Argument::getParamStackAlign() const {
204   return getParent()->getParamStackAlign(getArgNo());
205 }
206 
207 Type *Argument::getParamByValType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByValType(getArgNo());
210 }
211 
212 Type *Argument::getParamStructRetType() const {
213   assert(getType()->isPointerTy() && "Only pointers have sret types");
214   return getParent()->getParamStructRetType(getArgNo());
215 }
216 
217 Type *Argument::getParamByRefType() const {
218   assert(getType()->isPointerTy() && "Only pointers have byref types");
219   return getParent()->getParamByRefType(getArgNo());
220 }
221 
222 Type *Argument::getParamInAllocaType() const {
223   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
224   return getParent()->getParamInAllocaType(getArgNo());
225 }
226 
227 uint64_t Argument::getDereferenceableBytes() const {
228   assert(getType()->isPointerTy() &&
229          "Only pointers have dereferenceable bytes");
230   return getParent()->getParamDereferenceableBytes(getArgNo());
231 }
232 
233 uint64_t Argument::getDereferenceableOrNullBytes() const {
234   assert(getType()->isPointerTy() &&
235          "Only pointers have dereferenceable bytes");
236   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
237 }
238 
239 bool Argument::hasNestAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::Nest);
242 }
243 
244 bool Argument::hasNoAliasAttr() const {
245   if (!getType()->isPointerTy()) return false;
246   return hasAttribute(Attribute::NoAlias);
247 }
248 
249 bool Argument::hasNoCaptureAttr() const {
250   if (!getType()->isPointerTy()) return false;
251   return hasAttribute(Attribute::NoCapture);
252 }
253 
254 bool Argument::hasNoFreeAttr() const {
255   if (!getType()->isPointerTy()) return false;
256   return hasAttribute(Attribute::NoFree);
257 }
258 
259 bool Argument::hasStructRetAttr() const {
260   if (!getType()->isPointerTy()) return false;
261   return hasAttribute(Attribute::StructRet);
262 }
263 
264 bool Argument::hasInRegAttr() const {
265   return hasAttribute(Attribute::InReg);
266 }
267 
268 bool Argument::hasReturnedAttr() const {
269   return hasAttribute(Attribute::Returned);
270 }
271 
272 bool Argument::hasZExtAttr() const {
273   return hasAttribute(Attribute::ZExt);
274 }
275 
276 bool Argument::hasSExtAttr() const {
277   return hasAttribute(Attribute::SExt);
278 }
279 
280 bool Argument::onlyReadsMemory() const {
281   AttributeList Attrs = getParent()->getAttributes();
282   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
283          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
284 }
285 
286 void Argument::addAttrs(AttrBuilder &B) {
287   AttributeList AL = getParent()->getAttributes();
288   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
289   getParent()->setAttributes(AL);
290 }
291 
292 void Argument::addAttr(Attribute::AttrKind Kind) {
293   getParent()->addParamAttr(getArgNo(), Kind);
294 }
295 
296 void Argument::addAttr(Attribute Attr) {
297   getParent()->addParamAttr(getArgNo(), Attr);
298 }
299 
300 void Argument::removeAttr(Attribute::AttrKind Kind) {
301   getParent()->removeParamAttr(getArgNo(), Kind);
302 }
303 
304 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
305   return getParent()->hasParamAttribute(getArgNo(), Kind);
306 }
307 
308 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->getParamAttribute(getArgNo(), Kind);
310 }
311 
312 //===----------------------------------------------------------------------===//
313 // Helper Methods in Function
314 //===----------------------------------------------------------------------===//
315 
316 LLVMContext &Function::getContext() const {
317   return getType()->getContext();
318 }
319 
320 unsigned Function::getInstructionCount() const {
321   unsigned NumInstrs = 0;
322   for (const BasicBlock &BB : BasicBlocks)
323     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
324                                BB.instructionsWithoutDebug().end());
325   return NumInstrs;
326 }
327 
328 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
329                            const Twine &N, Module &M) {
330   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
331 }
332 
333 Function *Function::createWithDefaultAttr(FunctionType *Ty,
334                                           LinkageTypes Linkage,
335                                           unsigned AddrSpace, const Twine &N,
336                                           Module *M) {
337   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
338   if (M->getUwtable())
339     F->addAttribute(AttributeList::FunctionIndex, Attribute::UWTable);
340   return F;
341 }
342 
343 void Function::removeFromParent() {
344   getParent()->getFunctionList().remove(getIterator());
345 }
346 
347 void Function::eraseFromParent() {
348   getParent()->getFunctionList().erase(getIterator());
349 }
350 
351 //===----------------------------------------------------------------------===//
352 // Function Implementation
353 //===----------------------------------------------------------------------===//
354 
355 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
356   // If AS == -1 and we are passed a valid module pointer we place the function
357   // in the program address space. Otherwise we default to AS0.
358   if (AddrSpace == static_cast<unsigned>(-1))
359     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
360   return AddrSpace;
361 }
362 
363 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
364                    const Twine &name, Module *ParentModule)
365     : GlobalObject(Ty, Value::FunctionVal,
366                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
367                    computeAddrSpace(AddrSpace, ParentModule)),
368       NumArgs(Ty->getNumParams()) {
369   assert(FunctionType::isValidReturnType(getReturnType()) &&
370          "invalid return type");
371   setGlobalObjectSubClassData(0);
372 
373   // We only need a symbol table for a function if the context keeps value names
374   if (!getContext().shouldDiscardValueNames())
375     SymTab = std::make_unique<ValueSymbolTable>();
376 
377   // If the function has arguments, mark them as lazily built.
378   if (Ty->getNumParams())
379     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
380 
381   if (ParentModule)
382     ParentModule->getFunctionList().push_back(this);
383 
384   HasLLVMReservedName = getName().startswith("llvm.");
385   // Ensure intrinsics have the right parameter attributes.
386   // Note, the IntID field will have been set in Value::setName if this function
387   // name is a valid intrinsic ID.
388   if (IntID)
389     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
390 }
391 
392 Function::~Function() {
393   dropAllReferences();    // After this it is safe to delete instructions.
394 
395   // Delete all of the method arguments and unlink from symbol table...
396   if (Arguments)
397     clearArguments();
398 
399   // Remove the function from the on-the-side GC table.
400   clearGC();
401 }
402 
403 void Function::BuildLazyArguments() const {
404   // Create the arguments vector, all arguments start out unnamed.
405   auto *FT = getFunctionType();
406   if (NumArgs > 0) {
407     Arguments = std::allocator<Argument>().allocate(NumArgs);
408     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
409       Type *ArgTy = FT->getParamType(i);
410       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
411       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
412     }
413   }
414 
415   // Clear the lazy arguments bit.
416   unsigned SDC = getSubclassDataFromValue();
417   SDC &= ~(1 << 0);
418   const_cast<Function*>(this)->setValueSubclassData(SDC);
419   assert(!hasLazyArguments());
420 }
421 
422 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
423   return MutableArrayRef<Argument>(Args, Count);
424 }
425 
426 bool Function::isConstrainedFPIntrinsic() const {
427   switch (getIntrinsicID()) {
428 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
429   case Intrinsic::INTRINSIC:
430 #include "llvm/IR/ConstrainedOps.def"
431     return true;
432 #undef INSTRUCTION
433   default:
434     return false;
435   }
436 }
437 
438 void Function::clearArguments() {
439   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
440     A.setName("");
441     A.~Argument();
442   }
443   std::allocator<Argument>().deallocate(Arguments, NumArgs);
444   Arguments = nullptr;
445 }
446 
447 void Function::stealArgumentListFrom(Function &Src) {
448   assert(isDeclaration() && "Expected no references to current arguments");
449 
450   // Drop the current arguments, if any, and set the lazy argument bit.
451   if (!hasLazyArguments()) {
452     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
453                         [](const Argument &A) { return A.use_empty(); }) &&
454            "Expected arguments to be unused in declaration");
455     clearArguments();
456     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
457   }
458 
459   // Nothing to steal if Src has lazy arguments.
460   if (Src.hasLazyArguments())
461     return;
462 
463   // Steal arguments from Src, and fix the lazy argument bits.
464   assert(arg_size() == Src.arg_size());
465   Arguments = Src.Arguments;
466   Src.Arguments = nullptr;
467   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
468     // FIXME: This does the work of transferNodesFromList inefficiently.
469     SmallString<128> Name;
470     if (A.hasName())
471       Name = A.getName();
472     if (!Name.empty())
473       A.setName("");
474     A.setParent(this);
475     if (!Name.empty())
476       A.setName(Name);
477   }
478 
479   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
480   assert(!hasLazyArguments());
481   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
482 }
483 
484 // dropAllReferences() - This function causes all the subinstructions to "let
485 // go" of all references that they are maintaining.  This allows one to
486 // 'delete' a whole class at a time, even though there may be circular
487 // references... first all references are dropped, and all use counts go to
488 // zero.  Then everything is deleted for real.  Note that no operations are
489 // valid on an object that has "dropped all references", except operator
490 // delete.
491 //
492 void Function::dropAllReferences() {
493   setIsMaterializable(false);
494 
495   for (BasicBlock &BB : *this)
496     BB.dropAllReferences();
497 
498   // Delete all basic blocks. They are now unused, except possibly by
499   // blockaddresses, but BasicBlock's destructor takes care of those.
500   while (!BasicBlocks.empty())
501     BasicBlocks.begin()->eraseFromParent();
502 
503   // Drop uses of any optional data (real or placeholder).
504   if (getNumOperands()) {
505     User::dropAllReferences();
506     setNumHungOffUseOperands(0);
507     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
508   }
509 
510   // Metadata is stored in a side-table.
511   clearMetadata();
512 }
513 
514 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
515   AttributeList PAL = getAttributes();
516   PAL = PAL.addAttribute(getContext(), i, Kind);
517   setAttributes(PAL);
518 }
519 
520 void Function::addAttribute(unsigned i, Attribute Attr) {
521   AttributeList PAL = getAttributes();
522   PAL = PAL.addAttribute(getContext(), i, Attr);
523   setAttributes(PAL);
524 }
525 
526 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
527   AttributeList PAL = getAttributes();
528   PAL = PAL.addAttributes(getContext(), i, Attrs);
529   setAttributes(PAL);
530 }
531 
532 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
535   setAttributes(PAL);
536 }
537 
538 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
541   setAttributes(PAL);
542 }
543 
544 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
547   setAttributes(PAL);
548 }
549 
550 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.removeAttribute(getContext(), i, Kind);
553   setAttributes(PAL);
554 }
555 
556 void Function::removeAttribute(unsigned i, StringRef Kind) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.removeAttribute(getContext(), i, Kind);
559   setAttributes(PAL);
560 }
561 
562 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.removeAttributes(getContext(), i, Attrs);
565   setAttributes(PAL);
566 }
567 
568 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
571   setAttributes(PAL);
572 }
573 
574 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
577   setAttributes(PAL);
578 }
579 
580 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
581   AttributeList PAL = getAttributes();
582   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
583   setAttributes(PAL);
584 }
585 
586 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
587   AttributeList PAL = getAttributes();
588   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
589   setAttributes(PAL);
590 }
591 
592 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
593   AttributeList PAL = getAttributes();
594   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
595   setAttributes(PAL);
596 }
597 
598 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
599   AttributeList PAL = getAttributes();
600   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
601   setAttributes(PAL);
602 }
603 
604 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
605   AttributeList PAL = getAttributes();
606   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
607   setAttributes(PAL);
608 }
609 
610 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
611                                                  uint64_t Bytes) {
612   AttributeList PAL = getAttributes();
613   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
614   setAttributes(PAL);
615 }
616 
617 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
618   if (&FPType == &APFloat::IEEEsingle()) {
619     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
620     StringRef Val = Attr.getValueAsString();
621     if (!Val.empty())
622       return parseDenormalFPAttribute(Val);
623 
624     // If the f32 variant of the attribute isn't specified, try to use the
625     // generic one.
626   }
627 
628   Attribute Attr = getFnAttribute("denormal-fp-math");
629   return parseDenormalFPAttribute(Attr.getValueAsString());
630 }
631 
632 const std::string &Function::getGC() const {
633   assert(hasGC() && "Function has no collector");
634   return getContext().getGC(*this);
635 }
636 
637 void Function::setGC(std::string Str) {
638   setValueSubclassDataBit(14, !Str.empty());
639   getContext().setGC(*this, std::move(Str));
640 }
641 
642 void Function::clearGC() {
643   if (!hasGC())
644     return;
645   getContext().deleteGC(*this);
646   setValueSubclassDataBit(14, false);
647 }
648 
649 bool Function::hasStackProtectorFnAttr() const {
650   return hasFnAttribute(Attribute::StackProtect) ||
651          hasFnAttribute(Attribute::StackProtectStrong) ||
652          hasFnAttribute(Attribute::StackProtectReq);
653 }
654 
655 /// Copy all additional attributes (those not needed to create a Function) from
656 /// the Function Src to this one.
657 void Function::copyAttributesFrom(const Function *Src) {
658   GlobalObject::copyAttributesFrom(Src);
659   setCallingConv(Src->getCallingConv());
660   setAttributes(Src->getAttributes());
661   if (Src->hasGC())
662     setGC(Src->getGC());
663   else
664     clearGC();
665   if (Src->hasPersonalityFn())
666     setPersonalityFn(Src->getPersonalityFn());
667   if (Src->hasPrefixData())
668     setPrefixData(Src->getPrefixData());
669   if (Src->hasPrologueData())
670     setPrologueData(Src->getPrologueData());
671 }
672 
673 /// Table of string intrinsic names indexed by enum value.
674 static const char * const IntrinsicNameTable[] = {
675   "not_intrinsic",
676 #define GET_INTRINSIC_NAME_TABLE
677 #include "llvm/IR/IntrinsicImpl.inc"
678 #undef GET_INTRINSIC_NAME_TABLE
679 };
680 
681 /// Table of per-target intrinsic name tables.
682 #define GET_INTRINSIC_TARGET_DATA
683 #include "llvm/IR/IntrinsicImpl.inc"
684 #undef GET_INTRINSIC_TARGET_DATA
685 
686 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
687   return IID > TargetInfos[0].Count;
688 }
689 
690 bool Function::isTargetIntrinsic() const {
691   return isTargetIntrinsic(IntID);
692 }
693 
694 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
695 /// target as \c Name, or the generic table if \c Name is not target specific.
696 ///
697 /// Returns the relevant slice of \c IntrinsicNameTable
698 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
699   assert(Name.startswith("llvm."));
700 
701   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
702   // Drop "llvm." and take the first dotted component. That will be the target
703   // if this is target specific.
704   StringRef Target = Name.drop_front(5).split('.').first;
705   auto It = partition_point(
706       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
707   // We've either found the target or just fall back to the generic set, which
708   // is always first.
709   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
710   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
711 }
712 
713 /// This does the actual lookup of an intrinsic ID which
714 /// matches the given function name.
715 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
716   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
717   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
718   if (Idx == -1)
719     return Intrinsic::not_intrinsic;
720 
721   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
722   // an index into a sub-table.
723   int Adjust = NameTable.data() - IntrinsicNameTable;
724   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
725 
726   // If the intrinsic is not overloaded, require an exact match. If it is
727   // overloaded, require either exact or prefix match.
728   const auto MatchSize = strlen(NameTable[Idx]);
729   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
730   bool IsExactMatch = Name.size() == MatchSize;
731   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
732                                                      : Intrinsic::not_intrinsic;
733 }
734 
735 void Function::recalculateIntrinsicID() {
736   StringRef Name = getName();
737   if (!Name.startswith("llvm.")) {
738     HasLLVMReservedName = false;
739     IntID = Intrinsic::not_intrinsic;
740     return;
741   }
742   HasLLVMReservedName = true;
743   IntID = lookupIntrinsicID(Name);
744 }
745 
746 /// Returns a stable mangling for the type specified for use in the name
747 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
748 /// of named types is simply their name.  Manglings for unnamed types consist
749 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
750 /// combined with the mangling of their component types.  A vararg function
751 /// type will have a suffix of 'vararg'.  Since function types can contain
752 /// other function types, we close a function type mangling with suffix 'f'
753 /// which can't be confused with it's prefix.  This ensures we don't have
754 /// collisions between two unrelated function types. Otherwise, you might
755 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
756 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
757 /// indicating that extra care must be taken to ensure a unique name.
758 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
759   std::string Result;
760   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
761     Result += "p" + utostr(PTyp->getAddressSpace()) +
762               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
763   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
764     Result += "a" + utostr(ATyp->getNumElements()) +
765               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
766   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
767     if (!STyp->isLiteral()) {
768       Result += "s_";
769       if (STyp->hasName())
770         Result += STyp->getName();
771       else
772         HasUnnamedType = true;
773     } else {
774       Result += "sl_";
775       for (auto Elem : STyp->elements())
776         Result += getMangledTypeStr(Elem, HasUnnamedType);
777     }
778     // Ensure nested structs are distinguishable.
779     Result += "s";
780   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
781     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
782     for (size_t i = 0; i < FT->getNumParams(); i++)
783       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
784     if (FT->isVarArg())
785       Result += "vararg";
786     // Ensure nested function types are distinguishable.
787     Result += "f";
788   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
789     ElementCount EC = VTy->getElementCount();
790     if (EC.isScalable())
791       Result += "nx";
792     Result += "v" + utostr(EC.getKnownMinValue()) +
793               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
794   } else if (Ty) {
795     switch (Ty->getTypeID()) {
796     default: llvm_unreachable("Unhandled type");
797     case Type::VoidTyID:      Result += "isVoid";   break;
798     case Type::MetadataTyID:  Result += "Metadata"; break;
799     case Type::HalfTyID:      Result += "f16";      break;
800     case Type::BFloatTyID:    Result += "bf16";     break;
801     case Type::FloatTyID:     Result += "f32";      break;
802     case Type::DoubleTyID:    Result += "f64";      break;
803     case Type::X86_FP80TyID:  Result += "f80";      break;
804     case Type::FP128TyID:     Result += "f128";     break;
805     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
806     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
807     case Type::X86_AMXTyID:   Result += "x86amx";   break;
808     case Type::IntegerTyID:
809       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
810       break;
811     }
812   }
813   return Result;
814 }
815 
816 StringRef Intrinsic::getName(ID id) {
817   assert(id < num_intrinsics && "Invalid intrinsic ID!");
818   assert(!Intrinsic::isOverloaded(id) &&
819          "This version of getName does not support overloading");
820   return IntrinsicNameTable[id];
821 }
822 
823 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
824                                FunctionType *FT) {
825   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
826   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
827          "This version of getName is for overloaded intrinsics only");
828   bool HasUnnamedType = false;
829   std::string Result(IntrinsicNameTable[Id]);
830   for (Type *Ty : Tys) {
831     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
832   }
833   assert((M || !HasUnnamedType) && "unnamed types need a module");
834   if (M && HasUnnamedType) {
835     if (!FT)
836       FT = getType(M->getContext(), Id, Tys);
837     else
838       assert((FT == getType(M->getContext(), Id, Tys)) &&
839              "Provided FunctionType must match arguments");
840     return M->getUniqueIntrinsicName(Result, Id, FT);
841   }
842   return Result;
843 }
844 
845 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
846   return getName(Id, Tys, nullptr, nullptr);
847 }
848 
849 /// IIT_Info - These are enumerators that describe the entries returned by the
850 /// getIntrinsicInfoTableEntries function.
851 ///
852 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
853 enum IIT_Info {
854   // Common values should be encoded with 0-15.
855   IIT_Done = 0,
856   IIT_I1   = 1,
857   IIT_I8   = 2,
858   IIT_I16  = 3,
859   IIT_I32  = 4,
860   IIT_I64  = 5,
861   IIT_F16  = 6,
862   IIT_F32  = 7,
863   IIT_F64  = 8,
864   IIT_V2   = 9,
865   IIT_V4   = 10,
866   IIT_V8   = 11,
867   IIT_V16  = 12,
868   IIT_V32  = 13,
869   IIT_PTR  = 14,
870   IIT_ARG  = 15,
871 
872   // Values from 16+ are only encodable with the inefficient encoding.
873   IIT_V64  = 16,
874   IIT_MMX  = 17,
875   IIT_TOKEN = 18,
876   IIT_METADATA = 19,
877   IIT_EMPTYSTRUCT = 20,
878   IIT_STRUCT2 = 21,
879   IIT_STRUCT3 = 22,
880   IIT_STRUCT4 = 23,
881   IIT_STRUCT5 = 24,
882   IIT_EXTEND_ARG = 25,
883   IIT_TRUNC_ARG = 26,
884   IIT_ANYPTR = 27,
885   IIT_V1   = 28,
886   IIT_VARARG = 29,
887   IIT_HALF_VEC_ARG = 30,
888   IIT_SAME_VEC_WIDTH_ARG = 31,
889   IIT_PTR_TO_ARG = 32,
890   IIT_PTR_TO_ELT = 33,
891   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
892   IIT_I128 = 35,
893   IIT_V512 = 36,
894   IIT_V1024 = 37,
895   IIT_STRUCT6 = 38,
896   IIT_STRUCT7 = 39,
897   IIT_STRUCT8 = 40,
898   IIT_F128 = 41,
899   IIT_VEC_ELEMENT = 42,
900   IIT_SCALABLE_VEC = 43,
901   IIT_SUBDIVIDE2_ARG = 44,
902   IIT_SUBDIVIDE4_ARG = 45,
903   IIT_VEC_OF_BITCASTS_TO_INT = 46,
904   IIT_V128 = 47,
905   IIT_BF16 = 48,
906   IIT_STRUCT9 = 49,
907   IIT_V256 = 50,
908   IIT_AMX  = 51
909 };
910 
911 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
912                       IIT_Info LastInfo,
913                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
914   using namespace Intrinsic;
915 
916   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
917 
918   IIT_Info Info = IIT_Info(Infos[NextElt++]);
919   unsigned StructElts = 2;
920 
921   switch (Info) {
922   case IIT_Done:
923     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
924     return;
925   case IIT_VARARG:
926     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
927     return;
928   case IIT_MMX:
929     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
930     return;
931   case IIT_AMX:
932     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
933     return;
934   case IIT_TOKEN:
935     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
936     return;
937   case IIT_METADATA:
938     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
939     return;
940   case IIT_F16:
941     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
942     return;
943   case IIT_BF16:
944     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
945     return;
946   case IIT_F32:
947     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
948     return;
949   case IIT_F64:
950     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
951     return;
952   case IIT_F128:
953     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
954     return;
955   case IIT_I1:
956     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
957     return;
958   case IIT_I8:
959     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
960     return;
961   case IIT_I16:
962     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
963     return;
964   case IIT_I32:
965     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
966     return;
967   case IIT_I64:
968     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
969     return;
970   case IIT_I128:
971     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
972     return;
973   case IIT_V1:
974     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
975     DecodeIITType(NextElt, Infos, Info, OutputTable);
976     return;
977   case IIT_V2:
978     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
979     DecodeIITType(NextElt, Infos, Info, OutputTable);
980     return;
981   case IIT_V4:
982     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
983     DecodeIITType(NextElt, Infos, Info, OutputTable);
984     return;
985   case IIT_V8:
986     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
987     DecodeIITType(NextElt, Infos, Info, OutputTable);
988     return;
989   case IIT_V16:
990     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
991     DecodeIITType(NextElt, Infos, Info, OutputTable);
992     return;
993   case IIT_V32:
994     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
995     DecodeIITType(NextElt, Infos, Info, OutputTable);
996     return;
997   case IIT_V64:
998     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
999     DecodeIITType(NextElt, Infos, Info, OutputTable);
1000     return;
1001   case IIT_V128:
1002     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1003     DecodeIITType(NextElt, Infos, Info, OutputTable);
1004     return;
1005   case IIT_V256:
1006     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1007     DecodeIITType(NextElt, Infos, Info, OutputTable);
1008     return;
1009   case IIT_V512:
1010     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1011     DecodeIITType(NextElt, Infos, Info, OutputTable);
1012     return;
1013   case IIT_V1024:
1014     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1015     DecodeIITType(NextElt, Infos, Info, OutputTable);
1016     return;
1017   case IIT_PTR:
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1019     DecodeIITType(NextElt, Infos, Info, OutputTable);
1020     return;
1021   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1022     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1023                                              Infos[NextElt++]));
1024     DecodeIITType(NextElt, Infos, Info, OutputTable);
1025     return;
1026   }
1027   case IIT_ARG: {
1028     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1029     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1030     return;
1031   }
1032   case IIT_EXTEND_ARG: {
1033     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1034     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1035                                              ArgInfo));
1036     return;
1037   }
1038   case IIT_TRUNC_ARG: {
1039     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1040     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1041                                              ArgInfo));
1042     return;
1043   }
1044   case IIT_HALF_VEC_ARG: {
1045     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1046     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1047                                              ArgInfo));
1048     return;
1049   }
1050   case IIT_SAME_VEC_WIDTH_ARG: {
1051     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1052     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1053                                              ArgInfo));
1054     return;
1055   }
1056   case IIT_PTR_TO_ARG: {
1057     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1058     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1059                                              ArgInfo));
1060     return;
1061   }
1062   case IIT_PTR_TO_ELT: {
1063     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1064     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1065     return;
1066   }
1067   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1068     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1069     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1070     OutputTable.push_back(
1071         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1072     return;
1073   }
1074   case IIT_EMPTYSTRUCT:
1075     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1076     return;
1077   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1078   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1079   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1080   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1081   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1082   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1083   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1084   case IIT_STRUCT2: {
1085     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1086 
1087     for (unsigned i = 0; i != StructElts; ++i)
1088       DecodeIITType(NextElt, Infos, Info, OutputTable);
1089     return;
1090   }
1091   case IIT_SUBDIVIDE2_ARG: {
1092     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1093     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1094                                              ArgInfo));
1095     return;
1096   }
1097   case IIT_SUBDIVIDE4_ARG: {
1098     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1099     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1100                                              ArgInfo));
1101     return;
1102   }
1103   case IIT_VEC_ELEMENT: {
1104     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1106                                              ArgInfo));
1107     return;
1108   }
1109   case IIT_SCALABLE_VEC: {
1110     DecodeIITType(NextElt, Infos, Info, OutputTable);
1111     return;
1112   }
1113   case IIT_VEC_OF_BITCASTS_TO_INT: {
1114     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1115     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1116                                              ArgInfo));
1117     return;
1118   }
1119   }
1120   llvm_unreachable("unhandled");
1121 }
1122 
1123 #define GET_INTRINSIC_GENERATOR_GLOBAL
1124 #include "llvm/IR/IntrinsicImpl.inc"
1125 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1126 
1127 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1128                                              SmallVectorImpl<IITDescriptor> &T){
1129   // Check to see if the intrinsic's type was expressible by the table.
1130   unsigned TableVal = IIT_Table[id-1];
1131 
1132   // Decode the TableVal into an array of IITValues.
1133   SmallVector<unsigned char, 8> IITValues;
1134   ArrayRef<unsigned char> IITEntries;
1135   unsigned NextElt = 0;
1136   if ((TableVal >> 31) != 0) {
1137     // This is an offset into the IIT_LongEncodingTable.
1138     IITEntries = IIT_LongEncodingTable;
1139 
1140     // Strip sentinel bit.
1141     NextElt = (TableVal << 1) >> 1;
1142   } else {
1143     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1144     // into a single word in the table itself, decode it now.
1145     do {
1146       IITValues.push_back(TableVal & 0xF);
1147       TableVal >>= 4;
1148     } while (TableVal);
1149 
1150     IITEntries = IITValues;
1151     NextElt = 0;
1152   }
1153 
1154   // Okay, decode the table into the output vector of IITDescriptors.
1155   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1156   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1157     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1158 }
1159 
1160 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1161                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1162   using namespace Intrinsic;
1163 
1164   IITDescriptor D = Infos.front();
1165   Infos = Infos.slice(1);
1166 
1167   switch (D.Kind) {
1168   case IITDescriptor::Void: return Type::getVoidTy(Context);
1169   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1170   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1171   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1172   case IITDescriptor::Token: return Type::getTokenTy(Context);
1173   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1174   case IITDescriptor::Half: return Type::getHalfTy(Context);
1175   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1176   case IITDescriptor::Float: return Type::getFloatTy(Context);
1177   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1178   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1179 
1180   case IITDescriptor::Integer:
1181     return IntegerType::get(Context, D.Integer_Width);
1182   case IITDescriptor::Vector:
1183     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1184                            D.Vector_Width);
1185   case IITDescriptor::Pointer:
1186     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1187                             D.Pointer_AddressSpace);
1188   case IITDescriptor::Struct: {
1189     SmallVector<Type *, 8> Elts;
1190     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1191       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1192     return StructType::get(Context, Elts);
1193   }
1194   case IITDescriptor::Argument:
1195     return Tys[D.getArgumentNumber()];
1196   case IITDescriptor::ExtendArgument: {
1197     Type *Ty = Tys[D.getArgumentNumber()];
1198     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1199       return VectorType::getExtendedElementVectorType(VTy);
1200 
1201     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1202   }
1203   case IITDescriptor::TruncArgument: {
1204     Type *Ty = Tys[D.getArgumentNumber()];
1205     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1206       return VectorType::getTruncatedElementVectorType(VTy);
1207 
1208     IntegerType *ITy = cast<IntegerType>(Ty);
1209     assert(ITy->getBitWidth() % 2 == 0);
1210     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1211   }
1212   case IITDescriptor::Subdivide2Argument:
1213   case IITDescriptor::Subdivide4Argument: {
1214     Type *Ty = Tys[D.getArgumentNumber()];
1215     VectorType *VTy = dyn_cast<VectorType>(Ty);
1216     assert(VTy && "Expected an argument of Vector Type");
1217     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1218     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1219   }
1220   case IITDescriptor::HalfVecArgument:
1221     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1222                                                   Tys[D.getArgumentNumber()]));
1223   case IITDescriptor::SameVecWidthArgument: {
1224     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1225     Type *Ty = Tys[D.getArgumentNumber()];
1226     if (auto *VTy = dyn_cast<VectorType>(Ty))
1227       return VectorType::get(EltTy, VTy->getElementCount());
1228     return EltTy;
1229   }
1230   case IITDescriptor::PtrToArgument: {
1231     Type *Ty = Tys[D.getArgumentNumber()];
1232     return PointerType::getUnqual(Ty);
1233   }
1234   case IITDescriptor::PtrToElt: {
1235     Type *Ty = Tys[D.getArgumentNumber()];
1236     VectorType *VTy = dyn_cast<VectorType>(Ty);
1237     if (!VTy)
1238       llvm_unreachable("Expected an argument of Vector Type");
1239     Type *EltTy = VTy->getElementType();
1240     return PointerType::getUnqual(EltTy);
1241   }
1242   case IITDescriptor::VecElementArgument: {
1243     Type *Ty = Tys[D.getArgumentNumber()];
1244     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1245       return VTy->getElementType();
1246     llvm_unreachable("Expected an argument of Vector Type");
1247   }
1248   case IITDescriptor::VecOfBitcastsToInt: {
1249     Type *Ty = Tys[D.getArgumentNumber()];
1250     VectorType *VTy = dyn_cast<VectorType>(Ty);
1251     assert(VTy && "Expected an argument of Vector Type");
1252     return VectorType::getInteger(VTy);
1253   }
1254   case IITDescriptor::VecOfAnyPtrsToElt:
1255     // Return the overloaded type (which determines the pointers address space)
1256     return Tys[D.getOverloadArgNumber()];
1257   }
1258   llvm_unreachable("unhandled");
1259 }
1260 
1261 FunctionType *Intrinsic::getType(LLVMContext &Context,
1262                                  ID id, ArrayRef<Type*> Tys) {
1263   SmallVector<IITDescriptor, 8> Table;
1264   getIntrinsicInfoTableEntries(id, Table);
1265 
1266   ArrayRef<IITDescriptor> TableRef = Table;
1267   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1268 
1269   SmallVector<Type*, 8> ArgTys;
1270   while (!TableRef.empty())
1271     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1272 
1273   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1274   // If we see void type as the type of the last argument, it is vararg intrinsic
1275   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1276     ArgTys.pop_back();
1277     return FunctionType::get(ResultTy, ArgTys, true);
1278   }
1279   return FunctionType::get(ResultTy, ArgTys, false);
1280 }
1281 
1282 bool Intrinsic::isOverloaded(ID id) {
1283 #define GET_INTRINSIC_OVERLOAD_TABLE
1284 #include "llvm/IR/IntrinsicImpl.inc"
1285 #undef GET_INTRINSIC_OVERLOAD_TABLE
1286 }
1287 
1288 bool Intrinsic::isLeaf(ID id) {
1289   switch (id) {
1290   default:
1291     return true;
1292 
1293   case Intrinsic::experimental_gc_statepoint:
1294   case Intrinsic::experimental_patchpoint_void:
1295   case Intrinsic::experimental_patchpoint_i64:
1296     return false;
1297   }
1298 }
1299 
1300 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1301 #define GET_INTRINSIC_ATTRIBUTES
1302 #include "llvm/IR/IntrinsicImpl.inc"
1303 #undef GET_INTRINSIC_ATTRIBUTES
1304 
1305 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1306   // There can never be multiple globals with the same name of different types,
1307   // because intrinsics must be a specific type.
1308   auto *FT = getType(M->getContext(), id, Tys);
1309   return cast<Function>(
1310       M->getOrInsertFunction(Tys.empty() ? getName(id)
1311                                          : getName(id, Tys, M, FT),
1312                              getType(M->getContext(), id, Tys))
1313           .getCallee());
1314 }
1315 
1316 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1317 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1318 #include "llvm/IR/IntrinsicImpl.inc"
1319 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1320 
1321 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1322 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1323 #include "llvm/IR/IntrinsicImpl.inc"
1324 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1325 
1326 using DeferredIntrinsicMatchPair =
1327     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1328 
1329 static bool matchIntrinsicType(
1330     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1331     SmallVectorImpl<Type *> &ArgTys,
1332     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1333     bool IsDeferredCheck) {
1334   using namespace Intrinsic;
1335 
1336   // If we ran out of descriptors, there are too many arguments.
1337   if (Infos.empty()) return true;
1338 
1339   // Do this before slicing off the 'front' part
1340   auto InfosRef = Infos;
1341   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1342     DeferredChecks.emplace_back(T, InfosRef);
1343     return false;
1344   };
1345 
1346   IITDescriptor D = Infos.front();
1347   Infos = Infos.slice(1);
1348 
1349   switch (D.Kind) {
1350     case IITDescriptor::Void: return !Ty->isVoidTy();
1351     case IITDescriptor::VarArg: return true;
1352     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1353     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1354     case IITDescriptor::Token: return !Ty->isTokenTy();
1355     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1356     case IITDescriptor::Half: return !Ty->isHalfTy();
1357     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1358     case IITDescriptor::Float: return !Ty->isFloatTy();
1359     case IITDescriptor::Double: return !Ty->isDoubleTy();
1360     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1361     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1362     case IITDescriptor::Vector: {
1363       VectorType *VT = dyn_cast<VectorType>(Ty);
1364       return !VT || VT->getElementCount() != D.Vector_Width ||
1365              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1366                                 DeferredChecks, IsDeferredCheck);
1367     }
1368     case IITDescriptor::Pointer: {
1369       PointerType *PT = dyn_cast<PointerType>(Ty);
1370       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1371              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1372                                 DeferredChecks, IsDeferredCheck);
1373     }
1374 
1375     case IITDescriptor::Struct: {
1376       StructType *ST = dyn_cast<StructType>(Ty);
1377       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1378         return true;
1379 
1380       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1381         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1382                                DeferredChecks, IsDeferredCheck))
1383           return true;
1384       return false;
1385     }
1386 
1387     case IITDescriptor::Argument:
1388       // If this is the second occurrence of an argument,
1389       // verify that the later instance matches the previous instance.
1390       if (D.getArgumentNumber() < ArgTys.size())
1391         return Ty != ArgTys[D.getArgumentNumber()];
1392 
1393       if (D.getArgumentNumber() > ArgTys.size() ||
1394           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1395         return IsDeferredCheck || DeferCheck(Ty);
1396 
1397       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1398              "Table consistency error");
1399       ArgTys.push_back(Ty);
1400 
1401       switch (D.getArgumentKind()) {
1402         case IITDescriptor::AK_Any:        return false; // Success
1403         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1404         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1405         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1406         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1407         default:                           break;
1408       }
1409       llvm_unreachable("all argument kinds not covered");
1410 
1411     case IITDescriptor::ExtendArgument: {
1412       // If this is a forward reference, defer the check for later.
1413       if (D.getArgumentNumber() >= ArgTys.size())
1414         return IsDeferredCheck || DeferCheck(Ty);
1415 
1416       Type *NewTy = ArgTys[D.getArgumentNumber()];
1417       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1418         NewTy = VectorType::getExtendedElementVectorType(VTy);
1419       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1420         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1421       else
1422         return true;
1423 
1424       return Ty != NewTy;
1425     }
1426     case IITDescriptor::TruncArgument: {
1427       // If this is a forward reference, defer the check for later.
1428       if (D.getArgumentNumber() >= ArgTys.size())
1429         return IsDeferredCheck || DeferCheck(Ty);
1430 
1431       Type *NewTy = ArgTys[D.getArgumentNumber()];
1432       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1433         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1434       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1435         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1436       else
1437         return true;
1438 
1439       return Ty != NewTy;
1440     }
1441     case IITDescriptor::HalfVecArgument:
1442       // If this is a forward reference, defer the check for later.
1443       if (D.getArgumentNumber() >= ArgTys.size())
1444         return IsDeferredCheck || DeferCheck(Ty);
1445       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1446              VectorType::getHalfElementsVectorType(
1447                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1448     case IITDescriptor::SameVecWidthArgument: {
1449       if (D.getArgumentNumber() >= ArgTys.size()) {
1450         // Defer check and subsequent check for the vector element type.
1451         Infos = Infos.slice(1);
1452         return IsDeferredCheck || DeferCheck(Ty);
1453       }
1454       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1455       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1456       // Both must be vectors of the same number of elements or neither.
1457       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1458         return true;
1459       Type *EltTy = Ty;
1460       if (ThisArgType) {
1461         if (ReferenceType->getElementCount() !=
1462             ThisArgType->getElementCount())
1463           return true;
1464         EltTy = ThisArgType->getElementType();
1465       }
1466       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1467                                 IsDeferredCheck);
1468     }
1469     case IITDescriptor::PtrToArgument: {
1470       if (D.getArgumentNumber() >= ArgTys.size())
1471         return IsDeferredCheck || DeferCheck(Ty);
1472       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1473       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1474       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1475     }
1476     case IITDescriptor::PtrToElt: {
1477       if (D.getArgumentNumber() >= ArgTys.size())
1478         return IsDeferredCheck || DeferCheck(Ty);
1479       VectorType * ReferenceType =
1480         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1481       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1482 
1483       return (!ThisArgType || !ReferenceType ||
1484               ThisArgType->getElementType() != ReferenceType->getElementType());
1485     }
1486     case IITDescriptor::VecOfAnyPtrsToElt: {
1487       unsigned RefArgNumber = D.getRefArgNumber();
1488       if (RefArgNumber >= ArgTys.size()) {
1489         if (IsDeferredCheck)
1490           return true;
1491         // If forward referencing, already add the pointer-vector type and
1492         // defer the checks for later.
1493         ArgTys.push_back(Ty);
1494         return DeferCheck(Ty);
1495       }
1496 
1497       if (!IsDeferredCheck){
1498         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1499                "Table consistency error");
1500         ArgTys.push_back(Ty);
1501       }
1502 
1503       // Verify the overloaded type "matches" the Ref type.
1504       // i.e. Ty is a vector with the same width as Ref.
1505       // Composed of pointers to the same element type as Ref.
1506       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1507       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1508       if (!ThisArgVecTy || !ReferenceType ||
1509           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1510         return true;
1511       PointerType *ThisArgEltTy =
1512           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1513       if (!ThisArgEltTy)
1514         return true;
1515       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1516     }
1517     case IITDescriptor::VecElementArgument: {
1518       if (D.getArgumentNumber() >= ArgTys.size())
1519         return IsDeferredCheck ? true : DeferCheck(Ty);
1520       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1521       return !ReferenceType || Ty != ReferenceType->getElementType();
1522     }
1523     case IITDescriptor::Subdivide2Argument:
1524     case IITDescriptor::Subdivide4Argument: {
1525       // If this is a forward reference, defer the check for later.
1526       if (D.getArgumentNumber() >= ArgTys.size())
1527         return IsDeferredCheck || DeferCheck(Ty);
1528 
1529       Type *NewTy = ArgTys[D.getArgumentNumber()];
1530       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1531         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1532         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1533         return Ty != NewTy;
1534       }
1535       return true;
1536     }
1537     case IITDescriptor::VecOfBitcastsToInt: {
1538       if (D.getArgumentNumber() >= ArgTys.size())
1539         return IsDeferredCheck || DeferCheck(Ty);
1540       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1541       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1542       if (!ThisArgVecTy || !ReferenceType)
1543         return true;
1544       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1545     }
1546   }
1547   llvm_unreachable("unhandled");
1548 }
1549 
1550 Intrinsic::MatchIntrinsicTypesResult
1551 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1552                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1553                                    SmallVectorImpl<Type *> &ArgTys) {
1554   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1555   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1556                          false))
1557     return MatchIntrinsicTypes_NoMatchRet;
1558 
1559   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1560 
1561   for (auto Ty : FTy->params())
1562     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1563       return MatchIntrinsicTypes_NoMatchArg;
1564 
1565   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1566     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1567     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1568                            true))
1569       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1570                                          : MatchIntrinsicTypes_NoMatchArg;
1571   }
1572 
1573   return MatchIntrinsicTypes_Match;
1574 }
1575 
1576 bool
1577 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1578                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1579   // If there are no descriptors left, then it can't be a vararg.
1580   if (Infos.empty())
1581     return isVarArg;
1582 
1583   // There should be only one descriptor remaining at this point.
1584   if (Infos.size() != 1)
1585     return true;
1586 
1587   // Check and verify the descriptor.
1588   IITDescriptor D = Infos.front();
1589   Infos = Infos.slice(1);
1590   if (D.Kind == IITDescriptor::VarArg)
1591     return !isVarArg;
1592 
1593   return true;
1594 }
1595 
1596 bool Intrinsic::getIntrinsicSignature(Function *F,
1597                                       SmallVectorImpl<Type *> &ArgTys) {
1598   Intrinsic::ID ID = F->getIntrinsicID();
1599   if (!ID)
1600     return false;
1601 
1602   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1603   getIntrinsicInfoTableEntries(ID, Table);
1604   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1605 
1606   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1607                                          ArgTys) !=
1608       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1609     return false;
1610   }
1611   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1612                                       TableRef))
1613     return false;
1614   return true;
1615 }
1616 
1617 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1618   SmallVector<Type *, 4> ArgTys;
1619   if (!getIntrinsicSignature(F, ArgTys))
1620     return None;
1621 
1622   Intrinsic::ID ID = F->getIntrinsicID();
1623   StringRef Name = F->getName();
1624   if (Name ==
1625       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1626     return None;
1627 
1628   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1629   NewDecl->setCallingConv(F->getCallingConv());
1630   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1631          "Shouldn't change the signature");
1632   return NewDecl;
1633 }
1634 
1635 /// hasAddressTaken - returns true if there are any uses of this function
1636 /// other than direct calls or invokes to it. Optionally ignores callback
1637 /// uses, assume like pointer annotation calls, and references in llvm.used
1638 /// and llvm.compiler.used variables.
1639 bool Function::hasAddressTaken(const User **PutOffender,
1640                                bool IgnoreCallbackUses,
1641                                bool IgnoreAssumeLikeCalls,
1642                                bool IgnoreLLVMUsed) const {
1643   for (const Use &U : uses()) {
1644     const User *FU = U.getUser();
1645     if (isa<BlockAddress>(FU))
1646       continue;
1647 
1648     if (IgnoreCallbackUses) {
1649       AbstractCallSite ACS(&U);
1650       if (ACS && ACS.isCallbackCall())
1651         continue;
1652     }
1653 
1654     const auto *Call = dyn_cast<CallBase>(FU);
1655     if (!Call) {
1656       if (IgnoreAssumeLikeCalls) {
1657         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1658           if (FI->isCast() && !FI->user_empty() &&
1659               llvm::all_of(FU->users(), [](const User *U) {
1660                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1661                   return I->isAssumeLikeIntrinsic();
1662                 return false;
1663               }))
1664             continue;
1665         }
1666       }
1667       if (IgnoreLLVMUsed && !FU->user_empty()) {
1668         const User *FUU = FU;
1669         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1670             !FU->user_begin()->user_empty())
1671           FUU = *FU->user_begin();
1672         if (llvm::all_of(FUU->users(), [](const User *U) {
1673               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1674                 return GV->hasName() &&
1675                        (GV->getName().equals("llvm.compiler.used") ||
1676                         GV->getName().equals("llvm.used"));
1677               return false;
1678             }))
1679           continue;
1680       }
1681       if (PutOffender)
1682         *PutOffender = FU;
1683       return true;
1684     }
1685     if (!Call->isCallee(&U)) {
1686       if (PutOffender)
1687         *PutOffender = FU;
1688       return true;
1689     }
1690   }
1691   return false;
1692 }
1693 
1694 bool Function::isDefTriviallyDead() const {
1695   // Check the linkage
1696   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1697       !hasAvailableExternallyLinkage())
1698     return false;
1699 
1700   // Check if the function is used by anything other than a blockaddress.
1701   for (const User *U : users())
1702     if (!isa<BlockAddress>(U))
1703       return false;
1704 
1705   return true;
1706 }
1707 
1708 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1709 /// setjmp or other function that gcc recognizes as "returning twice".
1710 bool Function::callsFunctionThatReturnsTwice() const {
1711   for (const Instruction &I : instructions(this))
1712     if (const auto *Call = dyn_cast<CallBase>(&I))
1713       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1714         return true;
1715 
1716   return false;
1717 }
1718 
1719 Constant *Function::getPersonalityFn() const {
1720   assert(hasPersonalityFn() && getNumOperands());
1721   return cast<Constant>(Op<0>());
1722 }
1723 
1724 void Function::setPersonalityFn(Constant *Fn) {
1725   setHungoffOperand<0>(Fn);
1726   setValueSubclassDataBit(3, Fn != nullptr);
1727 }
1728 
1729 Constant *Function::getPrefixData() const {
1730   assert(hasPrefixData() && getNumOperands());
1731   return cast<Constant>(Op<1>());
1732 }
1733 
1734 void Function::setPrefixData(Constant *PrefixData) {
1735   setHungoffOperand<1>(PrefixData);
1736   setValueSubclassDataBit(1, PrefixData != nullptr);
1737 }
1738 
1739 Constant *Function::getPrologueData() const {
1740   assert(hasPrologueData() && getNumOperands());
1741   return cast<Constant>(Op<2>());
1742 }
1743 
1744 void Function::setPrologueData(Constant *PrologueData) {
1745   setHungoffOperand<2>(PrologueData);
1746   setValueSubclassDataBit(2, PrologueData != nullptr);
1747 }
1748 
1749 void Function::allocHungoffUselist() {
1750   // If we've already allocated a uselist, stop here.
1751   if (getNumOperands())
1752     return;
1753 
1754   allocHungoffUses(3, /*IsPhi=*/ false);
1755   setNumHungOffUseOperands(3);
1756 
1757   // Initialize the uselist with placeholder operands to allow traversal.
1758   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1759   Op<0>().set(CPN);
1760   Op<1>().set(CPN);
1761   Op<2>().set(CPN);
1762 }
1763 
1764 template <int Idx>
1765 void Function::setHungoffOperand(Constant *C) {
1766   if (C) {
1767     allocHungoffUselist();
1768     Op<Idx>().set(C);
1769   } else if (getNumOperands()) {
1770     Op<Idx>().set(
1771         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1772   }
1773 }
1774 
1775 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1776   assert(Bit < 16 && "SubclassData contains only 16 bits");
1777   if (On)
1778     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1779   else
1780     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1781 }
1782 
1783 void Function::setEntryCount(ProfileCount Count,
1784                              const DenseSet<GlobalValue::GUID> *S) {
1785   assert(Count.hasValue());
1786 #if !defined(NDEBUG)
1787   auto PrevCount = getEntryCount();
1788   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1789 #endif
1790 
1791   auto ImportGUIDs = getImportGUIDs();
1792   if (S == nullptr && ImportGUIDs.size())
1793     S = &ImportGUIDs;
1794 
1795   MDBuilder MDB(getContext());
1796   setMetadata(
1797       LLVMContext::MD_prof,
1798       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1799 }
1800 
1801 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1802                              const DenseSet<GlobalValue::GUID> *Imports) {
1803   setEntryCount(ProfileCount(Count, Type), Imports);
1804 }
1805 
1806 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1807   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1808   if (MD && MD->getOperand(0))
1809     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1810       if (MDS->getString().equals("function_entry_count")) {
1811         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1812         uint64_t Count = CI->getValue().getZExtValue();
1813         // A value of -1 is used for SamplePGO when there were no samples.
1814         // Treat this the same as unknown.
1815         if (Count == (uint64_t)-1)
1816           return ProfileCount::getInvalid();
1817         return ProfileCount(Count, PCT_Real);
1818       } else if (AllowSynthetic &&
1819                  MDS->getString().equals("synthetic_function_entry_count")) {
1820         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1821         uint64_t Count = CI->getValue().getZExtValue();
1822         return ProfileCount(Count, PCT_Synthetic);
1823       }
1824     }
1825   return ProfileCount::getInvalid();
1826 }
1827 
1828 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1829   DenseSet<GlobalValue::GUID> R;
1830   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1831     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1832       if (MDS->getString().equals("function_entry_count"))
1833         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1834           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1835                        ->getValue()
1836                        .getZExtValue());
1837   return R;
1838 }
1839 
1840 void Function::setSectionPrefix(StringRef Prefix) {
1841   MDBuilder MDB(getContext());
1842   setMetadata(LLVMContext::MD_section_prefix,
1843               MDB.createFunctionSectionPrefix(Prefix));
1844 }
1845 
1846 Optional<StringRef> Function::getSectionPrefix() const {
1847   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1848     assert(cast<MDString>(MD->getOperand(0))
1849                ->getString()
1850                .equals("function_section_prefix") &&
1851            "Metadata not match");
1852     return cast<MDString>(MD->getOperand(1))->getString();
1853   }
1854   return None;
1855 }
1856 
1857 bool Function::nullPointerIsDefined() const {
1858   return hasFnAttribute(Attribute::NullPointerIsValid);
1859 }
1860 
1861 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1862   if (F && F->nullPointerIsDefined())
1863     return true;
1864 
1865   if (AS != 0)
1866     return true;
1867 
1868   return false;
1869 }
1870