xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 751a6c5760b8de591cf241effbdad1b1cae67814)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsWebAssembly.h"
47 #include "llvm/IR/IntrinsicsX86.h"
48 #include "llvm/IR/IntrinsicsXCore.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/SymbolTableListTraits.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 // Explicit instantiations of SymbolTableListTraits since some of the methods
73 // are not in the public header file...
74 template class llvm::SymbolTableListTraits<BasicBlock>;
75 
76 //===----------------------------------------------------------------------===//
77 // Argument Implementation
78 //===----------------------------------------------------------------------===//
79 
80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
81     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
82   setName(Name);
83 }
84 
85 void Argument::setParent(Function *parent) {
86   Parent = parent;
87 }
88 
89 bool Argument::hasNonNullAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
92     return true;
93   else if (getDereferenceableBytes() > 0 &&
94            !NullPointerIsDefined(getParent(),
95                                  getType()->getPointerAddressSpace()))
96     return true;
97   return false;
98 }
99 
100 bool Argument::hasByValAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::ByVal);
103 }
104 
105 bool Argument::hasByRefAttr() const {
106   if (!getType()->isPointerTy())
107     return false;
108   return hasAttribute(Attribute::ByRef);
109 }
110 
111 bool Argument::hasSwiftSelfAttr() const {
112   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
113 }
114 
115 bool Argument::hasSwiftErrorAttr() const {
116   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
117 }
118 
119 bool Argument::hasInAllocaAttr() const {
120   if (!getType()->isPointerTy()) return false;
121   return hasAttribute(Attribute::InAlloca);
122 }
123 
124 bool Argument::hasPreallocatedAttr() const {
125   if (!getType()->isPointerTy())
126     return false;
127   return hasAttribute(Attribute::Preallocated);
128 }
129 
130 bool Argument::hasPassPointeeByValueCopyAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   AttributeList Attrs = getParent()->getAttributes();
133   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
134          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
136 }
137 
138 bool Argument::hasPointeeInMemoryValueAttr() const {
139   if (!getType()->isPointerTy())
140     return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
146 }
147 
148 /// For a byval, inalloca, or preallocated parameter, get the in-memory
149 /// parameter type.
150 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
151   // FIXME: All the type carrying attributes are mutually exclusive, so there
152   // should be a single query to get the stored type that handles any of them.
153   if (Type *ByValTy = ParamAttrs.getByValType())
154     return ByValTy;
155   if (Type *ByRefTy = ParamAttrs.getByRefType())
156     return ByRefTy;
157   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
158     return PreAllocTy;
159 
160   // FIXME: inalloca always depends on pointee element type. It's also possible
161   // for byval to miss it.
162   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
163       ParamAttrs.hasAttribute(Attribute::ByVal) ||
164       ParamAttrs.hasAttribute(Attribute::Preallocated))
165     return cast<PointerType>(ArgTy)->getElementType();
166 
167   return nullptr;
168 }
169 
170 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
171   AttributeSet ParamAttrs =
172       getParent()->getAttributes().getParamAttributes(getArgNo());
173   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
174     return DL.getTypeAllocSize(MemTy);
175   return 0;
176 }
177 
178 Type *Argument::getPointeeInMemoryValueType() const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttributes(getArgNo());
181   return getMemoryParamAllocType(ParamAttrs, getType());
182 }
183 
184 unsigned Argument::getParamAlignment() const {
185   assert(getType()->isPointerTy() && "Only pointers have alignments");
186   return getParent()->getParamAlignment(getArgNo());
187 }
188 
189 MaybeAlign Argument::getParamAlign() const {
190   assert(getType()->isPointerTy() && "Only pointers have alignments");
191   return getParent()->getParamAlign(getArgNo());
192 }
193 
194 Type *Argument::getParamByValType() const {
195   assert(getType()->isPointerTy() && "Only pointers have byval types");
196   return getParent()->getParamByValType(getArgNo());
197 }
198 
199 Type *Argument::getParamByRefType() const {
200   assert(getType()->isPointerTy() && "Only pointers have byval types");
201   return getParent()->getParamByRefType(getArgNo());
202 }
203 
204 uint64_t Argument::getDereferenceableBytes() const {
205   assert(getType()->isPointerTy() &&
206          "Only pointers have dereferenceable bytes");
207   return getParent()->getParamDereferenceableBytes(getArgNo());
208 }
209 
210 uint64_t Argument::getDereferenceableOrNullBytes() const {
211   assert(getType()->isPointerTy() &&
212          "Only pointers have dereferenceable bytes");
213   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
214 }
215 
216 bool Argument::hasNestAttr() const {
217   if (!getType()->isPointerTy()) return false;
218   return hasAttribute(Attribute::Nest);
219 }
220 
221 bool Argument::hasNoAliasAttr() const {
222   if (!getType()->isPointerTy()) return false;
223   return hasAttribute(Attribute::NoAlias);
224 }
225 
226 bool Argument::hasNoCaptureAttr() const {
227   if (!getType()->isPointerTy()) return false;
228   return hasAttribute(Attribute::NoCapture);
229 }
230 
231 bool Argument::hasStructRetAttr() const {
232   if (!getType()->isPointerTy()) return false;
233   return hasAttribute(Attribute::StructRet);
234 }
235 
236 bool Argument::hasInRegAttr() const {
237   return hasAttribute(Attribute::InReg);
238 }
239 
240 bool Argument::hasReturnedAttr() const {
241   return hasAttribute(Attribute::Returned);
242 }
243 
244 bool Argument::hasZExtAttr() const {
245   return hasAttribute(Attribute::ZExt);
246 }
247 
248 bool Argument::hasSExtAttr() const {
249   return hasAttribute(Attribute::SExt);
250 }
251 
252 bool Argument::onlyReadsMemory() const {
253   AttributeList Attrs = getParent()->getAttributes();
254   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
255          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
256 }
257 
258 void Argument::addAttrs(AttrBuilder &B) {
259   AttributeList AL = getParent()->getAttributes();
260   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
261   getParent()->setAttributes(AL);
262 }
263 
264 void Argument::addAttr(Attribute::AttrKind Kind) {
265   getParent()->addParamAttr(getArgNo(), Kind);
266 }
267 
268 void Argument::addAttr(Attribute Attr) {
269   getParent()->addParamAttr(getArgNo(), Attr);
270 }
271 
272 void Argument::removeAttr(Attribute::AttrKind Kind) {
273   getParent()->removeParamAttr(getArgNo(), Kind);
274 }
275 
276 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
277   return getParent()->hasParamAttribute(getArgNo(), Kind);
278 }
279 
280 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
281   return getParent()->getParamAttribute(getArgNo(), Kind);
282 }
283 
284 //===----------------------------------------------------------------------===//
285 // Helper Methods in Function
286 //===----------------------------------------------------------------------===//
287 
288 LLVMContext &Function::getContext() const {
289   return getType()->getContext();
290 }
291 
292 unsigned Function::getInstructionCount() const {
293   unsigned NumInstrs = 0;
294   for (const BasicBlock &BB : BasicBlocks)
295     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
296                                BB.instructionsWithoutDebug().end());
297   return NumInstrs;
298 }
299 
300 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
301                            const Twine &N, Module &M) {
302   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
303 }
304 
305 void Function::removeFromParent() {
306   getParent()->getFunctionList().remove(getIterator());
307 }
308 
309 void Function::eraseFromParent() {
310   getParent()->getFunctionList().erase(getIterator());
311 }
312 
313 //===----------------------------------------------------------------------===//
314 // Function Implementation
315 //===----------------------------------------------------------------------===//
316 
317 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
318   // If AS == -1 and we are passed a valid module pointer we place the function
319   // in the program address space. Otherwise we default to AS0.
320   if (AddrSpace == static_cast<unsigned>(-1))
321     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
322   return AddrSpace;
323 }
324 
325 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
326                    const Twine &name, Module *ParentModule)
327     : GlobalObject(Ty, Value::FunctionVal,
328                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
329                    computeAddrSpace(AddrSpace, ParentModule)),
330       NumArgs(Ty->getNumParams()) {
331   assert(FunctionType::isValidReturnType(getReturnType()) &&
332          "invalid return type");
333   setGlobalObjectSubClassData(0);
334 
335   // We only need a symbol table for a function if the context keeps value names
336   if (!getContext().shouldDiscardValueNames())
337     SymTab = std::make_unique<ValueSymbolTable>();
338 
339   // If the function has arguments, mark them as lazily built.
340   if (Ty->getNumParams())
341     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
342 
343   if (ParentModule)
344     ParentModule->getFunctionList().push_back(this);
345 
346   HasLLVMReservedName = getName().startswith("llvm.");
347   // Ensure intrinsics have the right parameter attributes.
348   // Note, the IntID field will have been set in Value::setName if this function
349   // name is a valid intrinsic ID.
350   if (IntID)
351     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
352 }
353 
354 Function::~Function() {
355   dropAllReferences();    // After this it is safe to delete instructions.
356 
357   // Delete all of the method arguments and unlink from symbol table...
358   if (Arguments)
359     clearArguments();
360 
361   // Remove the function from the on-the-side GC table.
362   clearGC();
363 }
364 
365 void Function::BuildLazyArguments() const {
366   // Create the arguments vector, all arguments start out unnamed.
367   auto *FT = getFunctionType();
368   if (NumArgs > 0) {
369     Arguments = std::allocator<Argument>().allocate(NumArgs);
370     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
371       Type *ArgTy = FT->getParamType(i);
372       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
373       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
374     }
375   }
376 
377   // Clear the lazy arguments bit.
378   unsigned SDC = getSubclassDataFromValue();
379   SDC &= ~(1 << 0);
380   const_cast<Function*>(this)->setValueSubclassData(SDC);
381   assert(!hasLazyArguments());
382 }
383 
384 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
385   return MutableArrayRef<Argument>(Args, Count);
386 }
387 
388 bool Function::isConstrainedFPIntrinsic() const {
389   switch (getIntrinsicID()) {
390 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
391   case Intrinsic::INTRINSIC:
392 #include "llvm/IR/ConstrainedOps.def"
393     return true;
394 #undef INSTRUCTION
395   default:
396     return false;
397   }
398 }
399 
400 void Function::clearArguments() {
401   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
402     A.setName("");
403     A.~Argument();
404   }
405   std::allocator<Argument>().deallocate(Arguments, NumArgs);
406   Arguments = nullptr;
407 }
408 
409 void Function::stealArgumentListFrom(Function &Src) {
410   assert(isDeclaration() && "Expected no references to current arguments");
411 
412   // Drop the current arguments, if any, and set the lazy argument bit.
413   if (!hasLazyArguments()) {
414     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
415                         [](const Argument &A) { return A.use_empty(); }) &&
416            "Expected arguments to be unused in declaration");
417     clearArguments();
418     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
419   }
420 
421   // Nothing to steal if Src has lazy arguments.
422   if (Src.hasLazyArguments())
423     return;
424 
425   // Steal arguments from Src, and fix the lazy argument bits.
426   assert(arg_size() == Src.arg_size());
427   Arguments = Src.Arguments;
428   Src.Arguments = nullptr;
429   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
430     // FIXME: This does the work of transferNodesFromList inefficiently.
431     SmallString<128> Name;
432     if (A.hasName())
433       Name = A.getName();
434     if (!Name.empty())
435       A.setName("");
436     A.setParent(this);
437     if (!Name.empty())
438       A.setName(Name);
439   }
440 
441   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
442   assert(!hasLazyArguments());
443   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
444 }
445 
446 // dropAllReferences() - This function causes all the subinstructions to "let
447 // go" of all references that they are maintaining.  This allows one to
448 // 'delete' a whole class at a time, even though there may be circular
449 // references... first all references are dropped, and all use counts go to
450 // zero.  Then everything is deleted for real.  Note that no operations are
451 // valid on an object that has "dropped all references", except operator
452 // delete.
453 //
454 void Function::dropAllReferences() {
455   setIsMaterializable(false);
456 
457   for (BasicBlock &BB : *this)
458     BB.dropAllReferences();
459 
460   // Delete all basic blocks. They are now unused, except possibly by
461   // blockaddresses, but BasicBlock's destructor takes care of those.
462   while (!BasicBlocks.empty())
463     BasicBlocks.begin()->eraseFromParent();
464 
465   // Drop uses of any optional data (real or placeholder).
466   if (getNumOperands()) {
467     User::dropAllReferences();
468     setNumHungOffUseOperands(0);
469     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
470   }
471 
472   // Metadata is stored in a side-table.
473   clearMetadata();
474 }
475 
476 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
477   AttributeList PAL = getAttributes();
478   PAL = PAL.addAttribute(getContext(), i, Kind);
479   setAttributes(PAL);
480 }
481 
482 void Function::addAttribute(unsigned i, Attribute Attr) {
483   AttributeList PAL = getAttributes();
484   PAL = PAL.addAttribute(getContext(), i, Attr);
485   setAttributes(PAL);
486 }
487 
488 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
489   AttributeList PAL = getAttributes();
490   PAL = PAL.addAttributes(getContext(), i, Attrs);
491   setAttributes(PAL);
492 }
493 
494 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
495   AttributeList PAL = getAttributes();
496   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
497   setAttributes(PAL);
498 }
499 
500 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
503   setAttributes(PAL);
504 }
505 
506 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
509   setAttributes(PAL);
510 }
511 
512 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.removeAttribute(getContext(), i, Kind);
515   setAttributes(PAL);
516 }
517 
518 void Function::removeAttribute(unsigned i, StringRef Kind) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.removeAttribute(getContext(), i, Kind);
521   setAttributes(PAL);
522 }
523 
524 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.removeAttributes(getContext(), i, Attrs);
527   setAttributes(PAL);
528 }
529 
530 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
531   AttributeList PAL = getAttributes();
532   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
533   setAttributes(PAL);
534 }
535 
536 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
537   AttributeList PAL = getAttributes();
538   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
539   setAttributes(PAL);
540 }
541 
542 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
543   AttributeList PAL = getAttributes();
544   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
545   setAttributes(PAL);
546 }
547 
548 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
549   AttributeList PAL = getAttributes();
550   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
551   setAttributes(PAL);
552 }
553 
554 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
555   AttributeList PAL = getAttributes();
556   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
557   setAttributes(PAL);
558 }
559 
560 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
561   AttributeList PAL = getAttributes();
562   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
563   setAttributes(PAL);
564 }
565 
566 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
567                                                  uint64_t Bytes) {
568   AttributeList PAL = getAttributes();
569   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
570   setAttributes(PAL);
571 }
572 
573 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
574   if (&FPType == &APFloat::IEEEsingle()) {
575     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
576     StringRef Val = Attr.getValueAsString();
577     if (!Val.empty())
578       return parseDenormalFPAttribute(Val);
579 
580     // If the f32 variant of the attribute isn't specified, try to use the
581     // generic one.
582   }
583 
584   Attribute Attr = getFnAttribute("denormal-fp-math");
585   return parseDenormalFPAttribute(Attr.getValueAsString());
586 }
587 
588 const std::string &Function::getGC() const {
589   assert(hasGC() && "Function has no collector");
590   return getContext().getGC(*this);
591 }
592 
593 void Function::setGC(std::string Str) {
594   setValueSubclassDataBit(14, !Str.empty());
595   getContext().setGC(*this, std::move(Str));
596 }
597 
598 void Function::clearGC() {
599   if (!hasGC())
600     return;
601   getContext().deleteGC(*this);
602   setValueSubclassDataBit(14, false);
603 }
604 
605 /// Copy all additional attributes (those not needed to create a Function) from
606 /// the Function Src to this one.
607 void Function::copyAttributesFrom(const Function *Src) {
608   GlobalObject::copyAttributesFrom(Src);
609   setCallingConv(Src->getCallingConv());
610   setAttributes(Src->getAttributes());
611   if (Src->hasGC())
612     setGC(Src->getGC());
613   else
614     clearGC();
615   if (Src->hasPersonalityFn())
616     setPersonalityFn(Src->getPersonalityFn());
617   if (Src->hasPrefixData())
618     setPrefixData(Src->getPrefixData());
619   if (Src->hasPrologueData())
620     setPrologueData(Src->getPrologueData());
621 }
622 
623 /// Table of string intrinsic names indexed by enum value.
624 static const char * const IntrinsicNameTable[] = {
625   "not_intrinsic",
626 #define GET_INTRINSIC_NAME_TABLE
627 #include "llvm/IR/IntrinsicImpl.inc"
628 #undef GET_INTRINSIC_NAME_TABLE
629 };
630 
631 /// Table of per-target intrinsic name tables.
632 #define GET_INTRINSIC_TARGET_DATA
633 #include "llvm/IR/IntrinsicImpl.inc"
634 #undef GET_INTRINSIC_TARGET_DATA
635 
636 bool Function::isTargetIntrinsic() const {
637   return IntID > TargetInfos[0].Count;
638 }
639 
640 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
641 /// target as \c Name, or the generic table if \c Name is not target specific.
642 ///
643 /// Returns the relevant slice of \c IntrinsicNameTable
644 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
645   assert(Name.startswith("llvm."));
646 
647   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
648   // Drop "llvm." and take the first dotted component. That will be the target
649   // if this is target specific.
650   StringRef Target = Name.drop_front(5).split('.').first;
651   auto It = partition_point(
652       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
653   // We've either found the target or just fall back to the generic set, which
654   // is always first.
655   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
656   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
657 }
658 
659 /// This does the actual lookup of an intrinsic ID which
660 /// matches the given function name.
661 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
662   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
663   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
664   if (Idx == -1)
665     return Intrinsic::not_intrinsic;
666 
667   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
668   // an index into a sub-table.
669   int Adjust = NameTable.data() - IntrinsicNameTable;
670   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
671 
672   // If the intrinsic is not overloaded, require an exact match. If it is
673   // overloaded, require either exact or prefix match.
674   const auto MatchSize = strlen(NameTable[Idx]);
675   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
676   bool IsExactMatch = Name.size() == MatchSize;
677   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
678                                                      : Intrinsic::not_intrinsic;
679 }
680 
681 void Function::recalculateIntrinsicID() {
682   StringRef Name = getName();
683   if (!Name.startswith("llvm.")) {
684     HasLLVMReservedName = false;
685     IntID = Intrinsic::not_intrinsic;
686     return;
687   }
688   HasLLVMReservedName = true;
689   IntID = lookupIntrinsicID(Name);
690 }
691 
692 /// Returns a stable mangling for the type specified for use in the name
693 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
694 /// of named types is simply their name.  Manglings for unnamed types consist
695 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
696 /// combined with the mangling of their component types.  A vararg function
697 /// type will have a suffix of 'vararg'.  Since function types can contain
698 /// other function types, we close a function type mangling with suffix 'f'
699 /// which can't be confused with it's prefix.  This ensures we don't have
700 /// collisions between two unrelated function types. Otherwise, you might
701 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
702 ///
703 static std::string getMangledTypeStr(Type* Ty) {
704   std::string Result;
705   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
706     Result += "p" + utostr(PTyp->getAddressSpace()) +
707       getMangledTypeStr(PTyp->getElementType());
708   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
709     Result += "a" + utostr(ATyp->getNumElements()) +
710       getMangledTypeStr(ATyp->getElementType());
711   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
712     if (!STyp->isLiteral()) {
713       Result += "s_";
714       Result += STyp->getName();
715     } else {
716       Result += "sl_";
717       for (auto Elem : STyp->elements())
718         Result += getMangledTypeStr(Elem);
719     }
720     // Ensure nested structs are distinguishable.
721     Result += "s";
722   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
723     Result += "f_" + getMangledTypeStr(FT->getReturnType());
724     for (size_t i = 0; i < FT->getNumParams(); i++)
725       Result += getMangledTypeStr(FT->getParamType(i));
726     if (FT->isVarArg())
727       Result += "vararg";
728     // Ensure nested function types are distinguishable.
729     Result += "f";
730   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
731     ElementCount EC = VTy->getElementCount();
732     if (EC.isScalable())
733       Result += "nx";
734     Result += "v" + utostr(EC.getKnownMinValue()) +
735               getMangledTypeStr(VTy->getElementType());
736   } else if (Ty) {
737     switch (Ty->getTypeID()) {
738     default: llvm_unreachable("Unhandled type");
739     case Type::VoidTyID:      Result += "isVoid";   break;
740     case Type::MetadataTyID:  Result += "Metadata"; break;
741     case Type::HalfTyID:      Result += "f16";      break;
742     case Type::BFloatTyID:    Result += "bf16";     break;
743     case Type::FloatTyID:     Result += "f32";      break;
744     case Type::DoubleTyID:    Result += "f64";      break;
745     case Type::X86_FP80TyID:  Result += "f80";      break;
746     case Type::FP128TyID:     Result += "f128";     break;
747     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
748     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
749     case Type::IntegerTyID:
750       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
751       break;
752     }
753   }
754   return Result;
755 }
756 
757 StringRef Intrinsic::getName(ID id) {
758   assert(id < num_intrinsics && "Invalid intrinsic ID!");
759   assert(!Intrinsic::isOverloaded(id) &&
760          "This version of getName does not support overloading");
761   return IntrinsicNameTable[id];
762 }
763 
764 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
765   assert(id < num_intrinsics && "Invalid intrinsic ID!");
766   std::string Result(IntrinsicNameTable[id]);
767   for (Type *Ty : Tys) {
768     Result += "." + getMangledTypeStr(Ty);
769   }
770   return Result;
771 }
772 
773 /// IIT_Info - These are enumerators that describe the entries returned by the
774 /// getIntrinsicInfoTableEntries function.
775 ///
776 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
777 enum IIT_Info {
778   // Common values should be encoded with 0-15.
779   IIT_Done = 0,
780   IIT_I1   = 1,
781   IIT_I8   = 2,
782   IIT_I16  = 3,
783   IIT_I32  = 4,
784   IIT_I64  = 5,
785   IIT_F16  = 6,
786   IIT_F32  = 7,
787   IIT_F64  = 8,
788   IIT_V2   = 9,
789   IIT_V4   = 10,
790   IIT_V8   = 11,
791   IIT_V16  = 12,
792   IIT_V32  = 13,
793   IIT_PTR  = 14,
794   IIT_ARG  = 15,
795 
796   // Values from 16+ are only encodable with the inefficient encoding.
797   IIT_V64  = 16,
798   IIT_MMX  = 17,
799   IIT_TOKEN = 18,
800   IIT_METADATA = 19,
801   IIT_EMPTYSTRUCT = 20,
802   IIT_STRUCT2 = 21,
803   IIT_STRUCT3 = 22,
804   IIT_STRUCT4 = 23,
805   IIT_STRUCT5 = 24,
806   IIT_EXTEND_ARG = 25,
807   IIT_TRUNC_ARG = 26,
808   IIT_ANYPTR = 27,
809   IIT_V1   = 28,
810   IIT_VARARG = 29,
811   IIT_HALF_VEC_ARG = 30,
812   IIT_SAME_VEC_WIDTH_ARG = 31,
813   IIT_PTR_TO_ARG = 32,
814   IIT_PTR_TO_ELT = 33,
815   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
816   IIT_I128 = 35,
817   IIT_V512 = 36,
818   IIT_V1024 = 37,
819   IIT_STRUCT6 = 38,
820   IIT_STRUCT7 = 39,
821   IIT_STRUCT8 = 40,
822   IIT_F128 = 41,
823   IIT_VEC_ELEMENT = 42,
824   IIT_SCALABLE_VEC = 43,
825   IIT_SUBDIVIDE2_ARG = 44,
826   IIT_SUBDIVIDE4_ARG = 45,
827   IIT_VEC_OF_BITCASTS_TO_INT = 46,
828   IIT_V128 = 47,
829   IIT_BF16 = 48
830 };
831 
832 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
833                       IIT_Info LastInfo,
834                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
835   using namespace Intrinsic;
836 
837   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
838 
839   IIT_Info Info = IIT_Info(Infos[NextElt++]);
840   unsigned StructElts = 2;
841 
842   switch (Info) {
843   case IIT_Done:
844     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
845     return;
846   case IIT_VARARG:
847     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
848     return;
849   case IIT_MMX:
850     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
851     return;
852   case IIT_TOKEN:
853     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
854     return;
855   case IIT_METADATA:
856     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
857     return;
858   case IIT_F16:
859     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
860     return;
861   case IIT_BF16:
862     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
863     return;
864   case IIT_F32:
865     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
866     return;
867   case IIT_F64:
868     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
869     return;
870   case IIT_F128:
871     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
872     return;
873   case IIT_I1:
874     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
875     return;
876   case IIT_I8:
877     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
878     return;
879   case IIT_I16:
880     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
881     return;
882   case IIT_I32:
883     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
884     return;
885   case IIT_I64:
886     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
887     return;
888   case IIT_I128:
889     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
890     return;
891   case IIT_V1:
892     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
893     DecodeIITType(NextElt, Infos, Info, OutputTable);
894     return;
895   case IIT_V2:
896     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
897     DecodeIITType(NextElt, Infos, Info, OutputTable);
898     return;
899   case IIT_V4:
900     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
901     DecodeIITType(NextElt, Infos, Info, OutputTable);
902     return;
903   case IIT_V8:
904     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
905     DecodeIITType(NextElt, Infos, Info, OutputTable);
906     return;
907   case IIT_V16:
908     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
909     DecodeIITType(NextElt, Infos, Info, OutputTable);
910     return;
911   case IIT_V32:
912     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
913     DecodeIITType(NextElt, Infos, Info, OutputTable);
914     return;
915   case IIT_V64:
916     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
917     DecodeIITType(NextElt, Infos, Info, OutputTable);
918     return;
919   case IIT_V128:
920     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
921     DecodeIITType(NextElt, Infos, Info, OutputTable);
922     return;
923   case IIT_V512:
924     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
925     DecodeIITType(NextElt, Infos, Info, OutputTable);
926     return;
927   case IIT_V1024:
928     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
929     DecodeIITType(NextElt, Infos, Info, OutputTable);
930     return;
931   case IIT_PTR:
932     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
933     DecodeIITType(NextElt, Infos, Info, OutputTable);
934     return;
935   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
936     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
937                                              Infos[NextElt++]));
938     DecodeIITType(NextElt, Infos, Info, OutputTable);
939     return;
940   }
941   case IIT_ARG: {
942     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
943     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
944     return;
945   }
946   case IIT_EXTEND_ARG: {
947     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
949                                              ArgInfo));
950     return;
951   }
952   case IIT_TRUNC_ARG: {
953     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
955                                              ArgInfo));
956     return;
957   }
958   case IIT_HALF_VEC_ARG: {
959     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
961                                              ArgInfo));
962     return;
963   }
964   case IIT_SAME_VEC_WIDTH_ARG: {
965     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
967                                              ArgInfo));
968     return;
969   }
970   case IIT_PTR_TO_ARG: {
971     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
973                                              ArgInfo));
974     return;
975   }
976   case IIT_PTR_TO_ELT: {
977     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
979     return;
980   }
981   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
982     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
983     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
984     OutputTable.push_back(
985         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
986     return;
987   }
988   case IIT_EMPTYSTRUCT:
989     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
990     return;
991   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
992   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
993   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
994   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
995   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
996   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
997   case IIT_STRUCT2: {
998     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
999 
1000     for (unsigned i = 0; i != StructElts; ++i)
1001       DecodeIITType(NextElt, Infos, Info, OutputTable);
1002     return;
1003   }
1004   case IIT_SUBDIVIDE2_ARG: {
1005     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1007                                              ArgInfo));
1008     return;
1009   }
1010   case IIT_SUBDIVIDE4_ARG: {
1011     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1013                                              ArgInfo));
1014     return;
1015   }
1016   case IIT_VEC_ELEMENT: {
1017     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1019                                              ArgInfo));
1020     return;
1021   }
1022   case IIT_SCALABLE_VEC: {
1023     DecodeIITType(NextElt, Infos, Info, OutputTable);
1024     return;
1025   }
1026   case IIT_VEC_OF_BITCASTS_TO_INT: {
1027     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1028     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1029                                              ArgInfo));
1030     return;
1031   }
1032   }
1033   llvm_unreachable("unhandled");
1034 }
1035 
1036 #define GET_INTRINSIC_GENERATOR_GLOBAL
1037 #include "llvm/IR/IntrinsicImpl.inc"
1038 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1039 
1040 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1041                                              SmallVectorImpl<IITDescriptor> &T){
1042   // Check to see if the intrinsic's type was expressible by the table.
1043   unsigned TableVal = IIT_Table[id-1];
1044 
1045   // Decode the TableVal into an array of IITValues.
1046   SmallVector<unsigned char, 8> IITValues;
1047   ArrayRef<unsigned char> IITEntries;
1048   unsigned NextElt = 0;
1049   if ((TableVal >> 31) != 0) {
1050     // This is an offset into the IIT_LongEncodingTable.
1051     IITEntries = IIT_LongEncodingTable;
1052 
1053     // Strip sentinel bit.
1054     NextElt = (TableVal << 1) >> 1;
1055   } else {
1056     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1057     // into a single word in the table itself, decode it now.
1058     do {
1059       IITValues.push_back(TableVal & 0xF);
1060       TableVal >>= 4;
1061     } while (TableVal);
1062 
1063     IITEntries = IITValues;
1064     NextElt = 0;
1065   }
1066 
1067   // Okay, decode the table into the output vector of IITDescriptors.
1068   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1069   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1070     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1071 }
1072 
1073 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1074                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1075   using namespace Intrinsic;
1076 
1077   IITDescriptor D = Infos.front();
1078   Infos = Infos.slice(1);
1079 
1080   switch (D.Kind) {
1081   case IITDescriptor::Void: return Type::getVoidTy(Context);
1082   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1083   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1084   case IITDescriptor::Token: return Type::getTokenTy(Context);
1085   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1086   case IITDescriptor::Half: return Type::getHalfTy(Context);
1087   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1088   case IITDescriptor::Float: return Type::getFloatTy(Context);
1089   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1090   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1091 
1092   case IITDescriptor::Integer:
1093     return IntegerType::get(Context, D.Integer_Width);
1094   case IITDescriptor::Vector:
1095     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1096                            D.Vector_Width);
1097   case IITDescriptor::Pointer:
1098     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1099                             D.Pointer_AddressSpace);
1100   case IITDescriptor::Struct: {
1101     SmallVector<Type *, 8> Elts;
1102     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1103       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1104     return StructType::get(Context, Elts);
1105   }
1106   case IITDescriptor::Argument:
1107     return Tys[D.getArgumentNumber()];
1108   case IITDescriptor::ExtendArgument: {
1109     Type *Ty = Tys[D.getArgumentNumber()];
1110     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1111       return VectorType::getExtendedElementVectorType(VTy);
1112 
1113     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1114   }
1115   case IITDescriptor::TruncArgument: {
1116     Type *Ty = Tys[D.getArgumentNumber()];
1117     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1118       return VectorType::getTruncatedElementVectorType(VTy);
1119 
1120     IntegerType *ITy = cast<IntegerType>(Ty);
1121     assert(ITy->getBitWidth() % 2 == 0);
1122     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1123   }
1124   case IITDescriptor::Subdivide2Argument:
1125   case IITDescriptor::Subdivide4Argument: {
1126     Type *Ty = Tys[D.getArgumentNumber()];
1127     VectorType *VTy = dyn_cast<VectorType>(Ty);
1128     assert(VTy && "Expected an argument of Vector Type");
1129     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1130     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1131   }
1132   case IITDescriptor::HalfVecArgument:
1133     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1134                                                   Tys[D.getArgumentNumber()]));
1135   case IITDescriptor::SameVecWidthArgument: {
1136     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1137     Type *Ty = Tys[D.getArgumentNumber()];
1138     if (auto *VTy = dyn_cast<VectorType>(Ty))
1139       return VectorType::get(EltTy, VTy->getElementCount());
1140     return EltTy;
1141   }
1142   case IITDescriptor::PtrToArgument: {
1143     Type *Ty = Tys[D.getArgumentNumber()];
1144     return PointerType::getUnqual(Ty);
1145   }
1146   case IITDescriptor::PtrToElt: {
1147     Type *Ty = Tys[D.getArgumentNumber()];
1148     VectorType *VTy = dyn_cast<VectorType>(Ty);
1149     if (!VTy)
1150       llvm_unreachable("Expected an argument of Vector Type");
1151     Type *EltTy = VTy->getElementType();
1152     return PointerType::getUnqual(EltTy);
1153   }
1154   case IITDescriptor::VecElementArgument: {
1155     Type *Ty = Tys[D.getArgumentNumber()];
1156     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1157       return VTy->getElementType();
1158     llvm_unreachable("Expected an argument of Vector Type");
1159   }
1160   case IITDescriptor::VecOfBitcastsToInt: {
1161     Type *Ty = Tys[D.getArgumentNumber()];
1162     VectorType *VTy = dyn_cast<VectorType>(Ty);
1163     assert(VTy && "Expected an argument of Vector Type");
1164     return VectorType::getInteger(VTy);
1165   }
1166   case IITDescriptor::VecOfAnyPtrsToElt:
1167     // Return the overloaded type (which determines the pointers address space)
1168     return Tys[D.getOverloadArgNumber()];
1169   }
1170   llvm_unreachable("unhandled");
1171 }
1172 
1173 FunctionType *Intrinsic::getType(LLVMContext &Context,
1174                                  ID id, ArrayRef<Type*> Tys) {
1175   SmallVector<IITDescriptor, 8> Table;
1176   getIntrinsicInfoTableEntries(id, Table);
1177 
1178   ArrayRef<IITDescriptor> TableRef = Table;
1179   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1180 
1181   SmallVector<Type*, 8> ArgTys;
1182   while (!TableRef.empty())
1183     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1184 
1185   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1186   // If we see void type as the type of the last argument, it is vararg intrinsic
1187   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1188     ArgTys.pop_back();
1189     return FunctionType::get(ResultTy, ArgTys, true);
1190   }
1191   return FunctionType::get(ResultTy, ArgTys, false);
1192 }
1193 
1194 bool Intrinsic::isOverloaded(ID id) {
1195 #define GET_INTRINSIC_OVERLOAD_TABLE
1196 #include "llvm/IR/IntrinsicImpl.inc"
1197 #undef GET_INTRINSIC_OVERLOAD_TABLE
1198 }
1199 
1200 bool Intrinsic::isLeaf(ID id) {
1201   switch (id) {
1202   default:
1203     return true;
1204 
1205   case Intrinsic::experimental_gc_statepoint:
1206   case Intrinsic::experimental_patchpoint_void:
1207   case Intrinsic::experimental_patchpoint_i64:
1208     return false;
1209   }
1210 }
1211 
1212 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1213 #define GET_INTRINSIC_ATTRIBUTES
1214 #include "llvm/IR/IntrinsicImpl.inc"
1215 #undef GET_INTRINSIC_ATTRIBUTES
1216 
1217 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1218   // There can never be multiple globals with the same name of different types,
1219   // because intrinsics must be a specific type.
1220   return cast<Function>(
1221       M->getOrInsertFunction(getName(id, Tys),
1222                              getType(M->getContext(), id, Tys))
1223           .getCallee());
1224 }
1225 
1226 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1227 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1228 #include "llvm/IR/IntrinsicImpl.inc"
1229 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1230 
1231 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1232 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1233 #include "llvm/IR/IntrinsicImpl.inc"
1234 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1235 
1236 using DeferredIntrinsicMatchPair =
1237     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1238 
1239 static bool matchIntrinsicType(
1240     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1241     SmallVectorImpl<Type *> &ArgTys,
1242     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1243     bool IsDeferredCheck) {
1244   using namespace Intrinsic;
1245 
1246   // If we ran out of descriptors, there are too many arguments.
1247   if (Infos.empty()) return true;
1248 
1249   // Do this before slicing off the 'front' part
1250   auto InfosRef = Infos;
1251   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1252     DeferredChecks.emplace_back(T, InfosRef);
1253     return false;
1254   };
1255 
1256   IITDescriptor D = Infos.front();
1257   Infos = Infos.slice(1);
1258 
1259   switch (D.Kind) {
1260     case IITDescriptor::Void: return !Ty->isVoidTy();
1261     case IITDescriptor::VarArg: return true;
1262     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1263     case IITDescriptor::Token: return !Ty->isTokenTy();
1264     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1265     case IITDescriptor::Half: return !Ty->isHalfTy();
1266     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1267     case IITDescriptor::Float: return !Ty->isFloatTy();
1268     case IITDescriptor::Double: return !Ty->isDoubleTy();
1269     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1270     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1271     case IITDescriptor::Vector: {
1272       VectorType *VT = dyn_cast<VectorType>(Ty);
1273       return !VT || VT->getElementCount() != D.Vector_Width ||
1274              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1275                                 DeferredChecks, IsDeferredCheck);
1276     }
1277     case IITDescriptor::Pointer: {
1278       PointerType *PT = dyn_cast<PointerType>(Ty);
1279       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1280              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1281                                 DeferredChecks, IsDeferredCheck);
1282     }
1283 
1284     case IITDescriptor::Struct: {
1285       StructType *ST = dyn_cast<StructType>(Ty);
1286       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1287         return true;
1288 
1289       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1290         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1291                                DeferredChecks, IsDeferredCheck))
1292           return true;
1293       return false;
1294     }
1295 
1296     case IITDescriptor::Argument:
1297       // If this is the second occurrence of an argument,
1298       // verify that the later instance matches the previous instance.
1299       if (D.getArgumentNumber() < ArgTys.size())
1300         return Ty != ArgTys[D.getArgumentNumber()];
1301 
1302       if (D.getArgumentNumber() > ArgTys.size() ||
1303           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1304         return IsDeferredCheck || DeferCheck(Ty);
1305 
1306       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1307              "Table consistency error");
1308       ArgTys.push_back(Ty);
1309 
1310       switch (D.getArgumentKind()) {
1311         case IITDescriptor::AK_Any:        return false; // Success
1312         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1313         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1314         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1315         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1316         default:                           break;
1317       }
1318       llvm_unreachable("all argument kinds not covered");
1319 
1320     case IITDescriptor::ExtendArgument: {
1321       // If this is a forward reference, defer the check for later.
1322       if (D.getArgumentNumber() >= ArgTys.size())
1323         return IsDeferredCheck || DeferCheck(Ty);
1324 
1325       Type *NewTy = ArgTys[D.getArgumentNumber()];
1326       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1327         NewTy = VectorType::getExtendedElementVectorType(VTy);
1328       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1329         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1330       else
1331         return true;
1332 
1333       return Ty != NewTy;
1334     }
1335     case IITDescriptor::TruncArgument: {
1336       // If this is a forward reference, defer the check for later.
1337       if (D.getArgumentNumber() >= ArgTys.size())
1338         return IsDeferredCheck || DeferCheck(Ty);
1339 
1340       Type *NewTy = ArgTys[D.getArgumentNumber()];
1341       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1342         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1343       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1344         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1345       else
1346         return true;
1347 
1348       return Ty != NewTy;
1349     }
1350     case IITDescriptor::HalfVecArgument:
1351       // If this is a forward reference, defer the check for later.
1352       if (D.getArgumentNumber() >= ArgTys.size())
1353         return IsDeferredCheck || DeferCheck(Ty);
1354       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1355              VectorType::getHalfElementsVectorType(
1356                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1357     case IITDescriptor::SameVecWidthArgument: {
1358       if (D.getArgumentNumber() >= ArgTys.size()) {
1359         // Defer check and subsequent check for the vector element type.
1360         Infos = Infos.slice(1);
1361         return IsDeferredCheck || DeferCheck(Ty);
1362       }
1363       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1364       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1365       // Both must be vectors of the same number of elements or neither.
1366       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1367         return true;
1368       Type *EltTy = Ty;
1369       if (ThisArgType) {
1370         if (ReferenceType->getElementCount() !=
1371             ThisArgType->getElementCount())
1372           return true;
1373         EltTy = ThisArgType->getElementType();
1374       }
1375       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1376                                 IsDeferredCheck);
1377     }
1378     case IITDescriptor::PtrToArgument: {
1379       if (D.getArgumentNumber() >= ArgTys.size())
1380         return IsDeferredCheck || DeferCheck(Ty);
1381       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1382       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1383       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1384     }
1385     case IITDescriptor::PtrToElt: {
1386       if (D.getArgumentNumber() >= ArgTys.size())
1387         return IsDeferredCheck || DeferCheck(Ty);
1388       VectorType * ReferenceType =
1389         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1390       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1391 
1392       return (!ThisArgType || !ReferenceType ||
1393               ThisArgType->getElementType() != ReferenceType->getElementType());
1394     }
1395     case IITDescriptor::VecOfAnyPtrsToElt: {
1396       unsigned RefArgNumber = D.getRefArgNumber();
1397       if (RefArgNumber >= ArgTys.size()) {
1398         if (IsDeferredCheck)
1399           return true;
1400         // If forward referencing, already add the pointer-vector type and
1401         // defer the checks for later.
1402         ArgTys.push_back(Ty);
1403         return DeferCheck(Ty);
1404       }
1405 
1406       if (!IsDeferredCheck){
1407         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1408                "Table consistency error");
1409         ArgTys.push_back(Ty);
1410       }
1411 
1412       // Verify the overloaded type "matches" the Ref type.
1413       // i.e. Ty is a vector with the same width as Ref.
1414       // Composed of pointers to the same element type as Ref.
1415       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1416       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1417       if (!ThisArgVecTy || !ReferenceType ||
1418           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1419         return true;
1420       PointerType *ThisArgEltTy =
1421           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1422       if (!ThisArgEltTy)
1423         return true;
1424       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1425     }
1426     case IITDescriptor::VecElementArgument: {
1427       if (D.getArgumentNumber() >= ArgTys.size())
1428         return IsDeferredCheck ? true : DeferCheck(Ty);
1429       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1430       return !ReferenceType || Ty != ReferenceType->getElementType();
1431     }
1432     case IITDescriptor::Subdivide2Argument:
1433     case IITDescriptor::Subdivide4Argument: {
1434       // If this is a forward reference, defer the check for later.
1435       if (D.getArgumentNumber() >= ArgTys.size())
1436         return IsDeferredCheck || DeferCheck(Ty);
1437 
1438       Type *NewTy = ArgTys[D.getArgumentNumber()];
1439       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1440         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1441         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1442         return Ty != NewTy;
1443       }
1444       return true;
1445     }
1446     case IITDescriptor::VecOfBitcastsToInt: {
1447       if (D.getArgumentNumber() >= ArgTys.size())
1448         return IsDeferredCheck || DeferCheck(Ty);
1449       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1450       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1451       if (!ThisArgVecTy || !ReferenceType)
1452         return true;
1453       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1454     }
1455   }
1456   llvm_unreachable("unhandled");
1457 }
1458 
1459 Intrinsic::MatchIntrinsicTypesResult
1460 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1461                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1462                                    SmallVectorImpl<Type *> &ArgTys) {
1463   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1464   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1465                          false))
1466     return MatchIntrinsicTypes_NoMatchRet;
1467 
1468   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1469 
1470   for (auto Ty : FTy->params())
1471     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1472       return MatchIntrinsicTypes_NoMatchArg;
1473 
1474   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1475     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1476     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1477                            true))
1478       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1479                                          : MatchIntrinsicTypes_NoMatchArg;
1480   }
1481 
1482   return MatchIntrinsicTypes_Match;
1483 }
1484 
1485 bool
1486 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1487                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1488   // If there are no descriptors left, then it can't be a vararg.
1489   if (Infos.empty())
1490     return isVarArg;
1491 
1492   // There should be only one descriptor remaining at this point.
1493   if (Infos.size() != 1)
1494     return true;
1495 
1496   // Check and verify the descriptor.
1497   IITDescriptor D = Infos.front();
1498   Infos = Infos.slice(1);
1499   if (D.Kind == IITDescriptor::VarArg)
1500     return !isVarArg;
1501 
1502   return true;
1503 }
1504 
1505 bool Intrinsic::getIntrinsicSignature(Function *F,
1506                                       SmallVectorImpl<Type *> &ArgTys) {
1507   Intrinsic::ID ID = F->getIntrinsicID();
1508   if (!ID)
1509     return false;
1510 
1511   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1512   getIntrinsicInfoTableEntries(ID, Table);
1513   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1514 
1515   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1516                                          ArgTys) !=
1517       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1518     return false;
1519   }
1520   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1521                                       TableRef))
1522     return false;
1523   return true;
1524 }
1525 
1526 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1527   SmallVector<Type *, 4> ArgTys;
1528   if (!getIntrinsicSignature(F, ArgTys))
1529     return None;
1530 
1531   Intrinsic::ID ID = F->getIntrinsicID();
1532   StringRef Name = F->getName();
1533   if (Name == Intrinsic::getName(ID, ArgTys))
1534     return None;
1535 
1536   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1537   NewDecl->setCallingConv(F->getCallingConv());
1538   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1539          "Shouldn't change the signature");
1540   return NewDecl;
1541 }
1542 
1543 /// hasAddressTaken - returns true if there are any uses of this function
1544 /// other than direct calls or invokes to it. Optionally ignores callback
1545 /// uses.
1546 bool Function::hasAddressTaken(const User **PutOffender,
1547                                bool IgnoreCallbackUses) const {
1548   for (const Use &U : uses()) {
1549     const User *FU = U.getUser();
1550     if (isa<BlockAddress>(FU))
1551       continue;
1552 
1553     if (IgnoreCallbackUses) {
1554       AbstractCallSite ACS(&U);
1555       if (ACS && ACS.isCallbackCall())
1556         continue;
1557     }
1558 
1559     const auto *Call = dyn_cast<CallBase>(FU);
1560     if (!Call) {
1561       if (PutOffender)
1562         *PutOffender = FU;
1563       return true;
1564     }
1565     if (!Call->isCallee(&U)) {
1566       if (PutOffender)
1567         *PutOffender = FU;
1568       return true;
1569     }
1570   }
1571   return false;
1572 }
1573 
1574 bool Function::isDefTriviallyDead() const {
1575   // Check the linkage
1576   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1577       !hasAvailableExternallyLinkage())
1578     return false;
1579 
1580   // Check if the function is used by anything other than a blockaddress.
1581   for (const User *U : users())
1582     if (!isa<BlockAddress>(U))
1583       return false;
1584 
1585   return true;
1586 }
1587 
1588 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1589 /// setjmp or other function that gcc recognizes as "returning twice".
1590 bool Function::callsFunctionThatReturnsTwice() const {
1591   for (const Instruction &I : instructions(this))
1592     if (const auto *Call = dyn_cast<CallBase>(&I))
1593       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1594         return true;
1595 
1596   return false;
1597 }
1598 
1599 Constant *Function::getPersonalityFn() const {
1600   assert(hasPersonalityFn() && getNumOperands());
1601   return cast<Constant>(Op<0>());
1602 }
1603 
1604 void Function::setPersonalityFn(Constant *Fn) {
1605   setHungoffOperand<0>(Fn);
1606   setValueSubclassDataBit(3, Fn != nullptr);
1607 }
1608 
1609 Constant *Function::getPrefixData() const {
1610   assert(hasPrefixData() && getNumOperands());
1611   return cast<Constant>(Op<1>());
1612 }
1613 
1614 void Function::setPrefixData(Constant *PrefixData) {
1615   setHungoffOperand<1>(PrefixData);
1616   setValueSubclassDataBit(1, PrefixData != nullptr);
1617 }
1618 
1619 Constant *Function::getPrologueData() const {
1620   assert(hasPrologueData() && getNumOperands());
1621   return cast<Constant>(Op<2>());
1622 }
1623 
1624 void Function::setPrologueData(Constant *PrologueData) {
1625   setHungoffOperand<2>(PrologueData);
1626   setValueSubclassDataBit(2, PrologueData != nullptr);
1627 }
1628 
1629 void Function::allocHungoffUselist() {
1630   // If we've already allocated a uselist, stop here.
1631   if (getNumOperands())
1632     return;
1633 
1634   allocHungoffUses(3, /*IsPhi=*/ false);
1635   setNumHungOffUseOperands(3);
1636 
1637   // Initialize the uselist with placeholder operands to allow traversal.
1638   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1639   Op<0>().set(CPN);
1640   Op<1>().set(CPN);
1641   Op<2>().set(CPN);
1642 }
1643 
1644 template <int Idx>
1645 void Function::setHungoffOperand(Constant *C) {
1646   if (C) {
1647     allocHungoffUselist();
1648     Op<Idx>().set(C);
1649   } else if (getNumOperands()) {
1650     Op<Idx>().set(
1651         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1652   }
1653 }
1654 
1655 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1656   assert(Bit < 16 && "SubclassData contains only 16 bits");
1657   if (On)
1658     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1659   else
1660     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1661 }
1662 
1663 void Function::setEntryCount(ProfileCount Count,
1664                              const DenseSet<GlobalValue::GUID> *S) {
1665   assert(Count.hasValue());
1666 #if !defined(NDEBUG)
1667   auto PrevCount = getEntryCount();
1668   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1669 #endif
1670 
1671   auto ImportGUIDs = getImportGUIDs();
1672   if (S == nullptr && ImportGUIDs.size())
1673     S = &ImportGUIDs;
1674 
1675   MDBuilder MDB(getContext());
1676   setMetadata(
1677       LLVMContext::MD_prof,
1678       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1679 }
1680 
1681 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1682                              const DenseSet<GlobalValue::GUID> *Imports) {
1683   setEntryCount(ProfileCount(Count, Type), Imports);
1684 }
1685 
1686 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1687   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1688   if (MD && MD->getOperand(0))
1689     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1690       if (MDS->getString().equals("function_entry_count")) {
1691         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1692         uint64_t Count = CI->getValue().getZExtValue();
1693         // A value of -1 is used for SamplePGO when there were no samples.
1694         // Treat this the same as unknown.
1695         if (Count == (uint64_t)-1)
1696           return ProfileCount::getInvalid();
1697         return ProfileCount(Count, PCT_Real);
1698       } else if (AllowSynthetic &&
1699                  MDS->getString().equals("synthetic_function_entry_count")) {
1700         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1701         uint64_t Count = CI->getValue().getZExtValue();
1702         return ProfileCount(Count, PCT_Synthetic);
1703       }
1704     }
1705   return ProfileCount::getInvalid();
1706 }
1707 
1708 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1709   DenseSet<GlobalValue::GUID> R;
1710   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1711     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1712       if (MDS->getString().equals("function_entry_count"))
1713         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1714           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1715                        ->getValue()
1716                        .getZExtValue());
1717   return R;
1718 }
1719 
1720 void Function::setSectionPrefix(StringRef Prefix) {
1721   MDBuilder MDB(getContext());
1722   setMetadata(LLVMContext::MD_section_prefix,
1723               MDB.createFunctionSectionPrefix(Prefix));
1724 }
1725 
1726 Optional<StringRef> Function::getSectionPrefix() const {
1727   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1728     assert(cast<MDString>(MD->getOperand(0))
1729                ->getString()
1730                .equals("function_section_prefix") &&
1731            "Metadata not match");
1732     return cast<MDString>(MD->getOperand(1))->getString();
1733   }
1734   return None;
1735 }
1736 
1737 bool Function::nullPointerIsDefined() const {
1738   return hasFnAttribute(Attribute::NullPointerIsValid);
1739 }
1740 
1741 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1742   if (F && F->nullPointerIsDefined())
1743     return true;
1744 
1745   if (AS != 0)
1746     return true;
1747 
1748   return false;
1749 }
1750