1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsHexagon.h" 39 #include "llvm/IR/IntrinsicsMips.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsRISCV.h" 44 #include "llvm/IR/IntrinsicsS390.h" 45 #include "llvm/IR/IntrinsicsWebAssembly.h" 46 #include "llvm/IR/IntrinsicsX86.h" 47 #include "llvm/IR/IntrinsicsXCore.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/SymbolTableListTraits.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 // Explicit instantiations of SymbolTableListTraits since some of the methods 72 // are not in the public header file... 73 template class llvm::SymbolTableListTraits<BasicBlock>; 74 75 //===----------------------------------------------------------------------===// 76 // Argument Implementation 77 //===----------------------------------------------------------------------===// 78 79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 80 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 81 setName(Name); 82 } 83 84 void Argument::setParent(Function *parent) { 85 Parent = parent; 86 } 87 88 bool Argument::hasNonNullAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 91 return true; 92 else if (getDereferenceableBytes() > 0 && 93 !NullPointerIsDefined(getParent(), 94 getType()->getPointerAddressSpace())) 95 return true; 96 return false; 97 } 98 99 bool Argument::hasByValAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::ByVal); 102 } 103 104 bool Argument::hasSwiftSelfAttr() const { 105 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 106 } 107 108 bool Argument::hasSwiftErrorAttr() const { 109 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 110 } 111 112 bool Argument::hasInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::InAlloca); 115 } 116 117 bool Argument::hasPreallocatedAttr() const { 118 if (!getType()->isPointerTy()) 119 return false; 120 return hasAttribute(Attribute::Preallocated); 121 } 122 123 bool Argument::hasPassPointeeByValueAttr() const { 124 if (!getType()->isPointerTy()) return false; 125 AttributeList Attrs = getParent()->getAttributes(); 126 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 127 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 128 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 129 } 130 131 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 132 AttributeSet ParamAttrs 133 = getParent()->getAttributes().getParamAttributes(getArgNo()); 134 135 // FIXME: All the type carrying attributes are mutually exclusive, so there 136 // should be a single query to get the stored type that handles any of them. 137 if (Type *ByValTy = ParamAttrs.getByValType()) 138 return DL.getTypeAllocSize(ByValTy); 139 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 140 return DL.getTypeAllocSize(PreAllocTy); 141 142 // FIXME: inalloca always depends on pointee element type. It's also possible 143 // for byval to miss it. 144 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 145 ParamAttrs.hasAttribute(Attribute::ByVal) || 146 ParamAttrs.hasAttribute(Attribute::Preallocated)) 147 return DL.getTypeAllocSize(cast<PointerType>(getType())->getElementType()); 148 149 return 0; 150 } 151 152 unsigned Argument::getParamAlignment() const { 153 assert(getType()->isPointerTy() && "Only pointers have alignments"); 154 return getParent()->getParamAlignment(getArgNo()); 155 } 156 157 MaybeAlign Argument::getParamAlign() const { 158 assert(getType()->isPointerTy() && "Only pointers have alignments"); 159 return getParent()->getParamAlign(getArgNo()); 160 } 161 162 Type *Argument::getParamByValType() const { 163 assert(getType()->isPointerTy() && "Only pointers have byval types"); 164 return getParent()->getParamByValType(getArgNo()); 165 } 166 167 uint64_t Argument::getDereferenceableBytes() const { 168 assert(getType()->isPointerTy() && 169 "Only pointers have dereferenceable bytes"); 170 return getParent()->getParamDereferenceableBytes(getArgNo()); 171 } 172 173 uint64_t Argument::getDereferenceableOrNullBytes() const { 174 assert(getType()->isPointerTy() && 175 "Only pointers have dereferenceable bytes"); 176 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 177 } 178 179 bool Argument::hasNestAttr() const { 180 if (!getType()->isPointerTy()) return false; 181 return hasAttribute(Attribute::Nest); 182 } 183 184 bool Argument::hasNoAliasAttr() const { 185 if (!getType()->isPointerTy()) return false; 186 return hasAttribute(Attribute::NoAlias); 187 } 188 189 bool Argument::hasNoCaptureAttr() const { 190 if (!getType()->isPointerTy()) return false; 191 return hasAttribute(Attribute::NoCapture); 192 } 193 194 bool Argument::hasStructRetAttr() const { 195 if (!getType()->isPointerTy()) return false; 196 return hasAttribute(Attribute::StructRet); 197 } 198 199 bool Argument::hasInRegAttr() const { 200 return hasAttribute(Attribute::InReg); 201 } 202 203 bool Argument::hasReturnedAttr() const { 204 return hasAttribute(Attribute::Returned); 205 } 206 207 bool Argument::hasZExtAttr() const { 208 return hasAttribute(Attribute::ZExt); 209 } 210 211 bool Argument::hasSExtAttr() const { 212 return hasAttribute(Attribute::SExt); 213 } 214 215 bool Argument::onlyReadsMemory() const { 216 AttributeList Attrs = getParent()->getAttributes(); 217 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 218 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 219 } 220 221 void Argument::addAttrs(AttrBuilder &B) { 222 AttributeList AL = getParent()->getAttributes(); 223 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 224 getParent()->setAttributes(AL); 225 } 226 227 void Argument::addAttr(Attribute::AttrKind Kind) { 228 getParent()->addParamAttr(getArgNo(), Kind); 229 } 230 231 void Argument::addAttr(Attribute Attr) { 232 getParent()->addParamAttr(getArgNo(), Attr); 233 } 234 235 void Argument::removeAttr(Attribute::AttrKind Kind) { 236 getParent()->removeParamAttr(getArgNo(), Kind); 237 } 238 239 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 240 return getParent()->hasParamAttribute(getArgNo(), Kind); 241 } 242 243 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 244 return getParent()->getParamAttribute(getArgNo(), Kind); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Helper Methods in Function 249 //===----------------------------------------------------------------------===// 250 251 LLVMContext &Function::getContext() const { 252 return getType()->getContext(); 253 } 254 255 unsigned Function::getInstructionCount() const { 256 unsigned NumInstrs = 0; 257 for (const BasicBlock &BB : BasicBlocks) 258 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 259 BB.instructionsWithoutDebug().end()); 260 return NumInstrs; 261 } 262 263 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 264 const Twine &N, Module &M) { 265 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 266 } 267 268 void Function::removeFromParent() { 269 getParent()->getFunctionList().remove(getIterator()); 270 } 271 272 void Function::eraseFromParent() { 273 getParent()->getFunctionList().erase(getIterator()); 274 } 275 276 //===----------------------------------------------------------------------===// 277 // Function Implementation 278 //===----------------------------------------------------------------------===// 279 280 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 281 // If AS == -1 and we are passed a valid module pointer we place the function 282 // in the program address space. Otherwise we default to AS0. 283 if (AddrSpace == static_cast<unsigned>(-1)) 284 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 285 return AddrSpace; 286 } 287 288 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 289 const Twine &name, Module *ParentModule) 290 : GlobalObject(Ty, Value::FunctionVal, 291 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 292 computeAddrSpace(AddrSpace, ParentModule)), 293 NumArgs(Ty->getNumParams()) { 294 assert(FunctionType::isValidReturnType(getReturnType()) && 295 "invalid return type"); 296 setGlobalObjectSubClassData(0); 297 298 // We only need a symbol table for a function if the context keeps value names 299 if (!getContext().shouldDiscardValueNames()) 300 SymTab = std::make_unique<ValueSymbolTable>(); 301 302 // If the function has arguments, mark them as lazily built. 303 if (Ty->getNumParams()) 304 setValueSubclassData(1); // Set the "has lazy arguments" bit. 305 306 if (ParentModule) 307 ParentModule->getFunctionList().push_back(this); 308 309 HasLLVMReservedName = getName().startswith("llvm."); 310 // Ensure intrinsics have the right parameter attributes. 311 // Note, the IntID field will have been set in Value::setName if this function 312 // name is a valid intrinsic ID. 313 if (IntID) 314 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 315 } 316 317 Function::~Function() { 318 dropAllReferences(); // After this it is safe to delete instructions. 319 320 // Delete all of the method arguments and unlink from symbol table... 321 if (Arguments) 322 clearArguments(); 323 324 // Remove the function from the on-the-side GC table. 325 clearGC(); 326 } 327 328 void Function::BuildLazyArguments() const { 329 // Create the arguments vector, all arguments start out unnamed. 330 auto *FT = getFunctionType(); 331 if (NumArgs > 0) { 332 Arguments = std::allocator<Argument>().allocate(NumArgs); 333 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 334 Type *ArgTy = FT->getParamType(i); 335 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 336 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 337 } 338 } 339 340 // Clear the lazy arguments bit. 341 unsigned SDC = getSubclassDataFromValue(); 342 SDC &= ~(1 << 0); 343 const_cast<Function*>(this)->setValueSubclassData(SDC); 344 assert(!hasLazyArguments()); 345 } 346 347 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 348 return MutableArrayRef<Argument>(Args, Count); 349 } 350 351 bool Function::isConstrainedFPIntrinsic() const { 352 switch (getIntrinsicID()) { 353 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 354 case Intrinsic::INTRINSIC: 355 #include "llvm/IR/ConstrainedOps.def" 356 return true; 357 #undef INSTRUCTION 358 default: 359 return false; 360 } 361 } 362 363 void Function::clearArguments() { 364 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 365 A.setName(""); 366 A.~Argument(); 367 } 368 std::allocator<Argument>().deallocate(Arguments, NumArgs); 369 Arguments = nullptr; 370 } 371 372 void Function::stealArgumentListFrom(Function &Src) { 373 assert(isDeclaration() && "Expected no references to current arguments"); 374 375 // Drop the current arguments, if any, and set the lazy argument bit. 376 if (!hasLazyArguments()) { 377 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 378 [](const Argument &A) { return A.use_empty(); }) && 379 "Expected arguments to be unused in declaration"); 380 clearArguments(); 381 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 382 } 383 384 // Nothing to steal if Src has lazy arguments. 385 if (Src.hasLazyArguments()) 386 return; 387 388 // Steal arguments from Src, and fix the lazy argument bits. 389 assert(arg_size() == Src.arg_size()); 390 Arguments = Src.Arguments; 391 Src.Arguments = nullptr; 392 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 393 // FIXME: This does the work of transferNodesFromList inefficiently. 394 SmallString<128> Name; 395 if (A.hasName()) 396 Name = A.getName(); 397 if (!Name.empty()) 398 A.setName(""); 399 A.setParent(this); 400 if (!Name.empty()) 401 A.setName(Name); 402 } 403 404 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 405 assert(!hasLazyArguments()); 406 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 407 } 408 409 // dropAllReferences() - This function causes all the subinstructions to "let 410 // go" of all references that they are maintaining. This allows one to 411 // 'delete' a whole class at a time, even though there may be circular 412 // references... first all references are dropped, and all use counts go to 413 // zero. Then everything is deleted for real. Note that no operations are 414 // valid on an object that has "dropped all references", except operator 415 // delete. 416 // 417 void Function::dropAllReferences() { 418 setIsMaterializable(false); 419 420 for (BasicBlock &BB : *this) 421 BB.dropAllReferences(); 422 423 // Delete all basic blocks. They are now unused, except possibly by 424 // blockaddresses, but BasicBlock's destructor takes care of those. 425 while (!BasicBlocks.empty()) 426 BasicBlocks.begin()->eraseFromParent(); 427 428 // Drop uses of any optional data (real or placeholder). 429 if (getNumOperands()) { 430 User::dropAllReferences(); 431 setNumHungOffUseOperands(0); 432 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 433 } 434 435 // Metadata is stored in a side-table. 436 clearMetadata(); 437 } 438 439 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 440 AttributeList PAL = getAttributes(); 441 PAL = PAL.addAttribute(getContext(), i, Kind); 442 setAttributes(PAL); 443 } 444 445 void Function::addAttribute(unsigned i, Attribute Attr) { 446 AttributeList PAL = getAttributes(); 447 PAL = PAL.addAttribute(getContext(), i, Attr); 448 setAttributes(PAL); 449 } 450 451 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 452 AttributeList PAL = getAttributes(); 453 PAL = PAL.addAttributes(getContext(), i, Attrs); 454 setAttributes(PAL); 455 } 456 457 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 458 AttributeList PAL = getAttributes(); 459 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 460 setAttributes(PAL); 461 } 462 463 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 464 AttributeList PAL = getAttributes(); 465 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 466 setAttributes(PAL); 467 } 468 469 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 470 AttributeList PAL = getAttributes(); 471 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 472 setAttributes(PAL); 473 } 474 475 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 476 AttributeList PAL = getAttributes(); 477 PAL = PAL.removeAttribute(getContext(), i, Kind); 478 setAttributes(PAL); 479 } 480 481 void Function::removeAttribute(unsigned i, StringRef Kind) { 482 AttributeList PAL = getAttributes(); 483 PAL = PAL.removeAttribute(getContext(), i, Kind); 484 setAttributes(PAL); 485 } 486 487 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 488 AttributeList PAL = getAttributes(); 489 PAL = PAL.removeAttributes(getContext(), i, Attrs); 490 setAttributes(PAL); 491 } 492 493 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 494 AttributeList PAL = getAttributes(); 495 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 496 setAttributes(PAL); 497 } 498 499 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 500 AttributeList PAL = getAttributes(); 501 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 502 setAttributes(PAL); 503 } 504 505 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 506 AttributeList PAL = getAttributes(); 507 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 508 setAttributes(PAL); 509 } 510 511 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 512 AttributeList PAL = getAttributes(); 513 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 514 setAttributes(PAL); 515 } 516 517 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 518 AttributeList PAL = getAttributes(); 519 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 520 setAttributes(PAL); 521 } 522 523 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 524 AttributeList PAL = getAttributes(); 525 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 526 setAttributes(PAL); 527 } 528 529 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 530 uint64_t Bytes) { 531 AttributeList PAL = getAttributes(); 532 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 533 setAttributes(PAL); 534 } 535 536 const std::string &Function::getGC() const { 537 assert(hasGC() && "Function has no collector"); 538 return getContext().getGC(*this); 539 } 540 541 void Function::setGC(std::string Str) { 542 setValueSubclassDataBit(14, !Str.empty()); 543 getContext().setGC(*this, std::move(Str)); 544 } 545 546 void Function::clearGC() { 547 if (!hasGC()) 548 return; 549 getContext().deleteGC(*this); 550 setValueSubclassDataBit(14, false); 551 } 552 553 /// Copy all additional attributes (those not needed to create a Function) from 554 /// the Function Src to this one. 555 void Function::copyAttributesFrom(const Function *Src) { 556 GlobalObject::copyAttributesFrom(Src); 557 setCallingConv(Src->getCallingConv()); 558 setAttributes(Src->getAttributes()); 559 if (Src->hasGC()) 560 setGC(Src->getGC()); 561 else 562 clearGC(); 563 if (Src->hasPersonalityFn()) 564 setPersonalityFn(Src->getPersonalityFn()); 565 if (Src->hasPrefixData()) 566 setPrefixData(Src->getPrefixData()); 567 if (Src->hasPrologueData()) 568 setPrologueData(Src->getPrologueData()); 569 } 570 571 /// Table of string intrinsic names indexed by enum value. 572 static const char * const IntrinsicNameTable[] = { 573 "not_intrinsic", 574 #define GET_INTRINSIC_NAME_TABLE 575 #include "llvm/IR/IntrinsicImpl.inc" 576 #undef GET_INTRINSIC_NAME_TABLE 577 }; 578 579 /// Table of per-target intrinsic name tables. 580 #define GET_INTRINSIC_TARGET_DATA 581 #include "llvm/IR/IntrinsicImpl.inc" 582 #undef GET_INTRINSIC_TARGET_DATA 583 584 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 585 /// target as \c Name, or the generic table if \c Name is not target specific. 586 /// 587 /// Returns the relevant slice of \c IntrinsicNameTable 588 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 589 assert(Name.startswith("llvm.")); 590 591 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 592 // Drop "llvm." and take the first dotted component. That will be the target 593 // if this is target specific. 594 StringRef Target = Name.drop_front(5).split('.').first; 595 auto It = partition_point( 596 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 597 // We've either found the target or just fall back to the generic set, which 598 // is always first. 599 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 600 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 601 } 602 603 /// This does the actual lookup of an intrinsic ID which 604 /// matches the given function name. 605 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 606 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 607 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 608 if (Idx == -1) 609 return Intrinsic::not_intrinsic; 610 611 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 612 // an index into a sub-table. 613 int Adjust = NameTable.data() - IntrinsicNameTable; 614 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 615 616 // If the intrinsic is not overloaded, require an exact match. If it is 617 // overloaded, require either exact or prefix match. 618 const auto MatchSize = strlen(NameTable[Idx]); 619 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 620 bool IsExactMatch = Name.size() == MatchSize; 621 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 622 : Intrinsic::not_intrinsic; 623 } 624 625 void Function::recalculateIntrinsicID() { 626 StringRef Name = getName(); 627 if (!Name.startswith("llvm.")) { 628 HasLLVMReservedName = false; 629 IntID = Intrinsic::not_intrinsic; 630 return; 631 } 632 HasLLVMReservedName = true; 633 IntID = lookupIntrinsicID(Name); 634 } 635 636 /// Returns a stable mangling for the type specified for use in the name 637 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 638 /// of named types is simply their name. Manglings for unnamed types consist 639 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 640 /// combined with the mangling of their component types. A vararg function 641 /// type will have a suffix of 'vararg'. Since function types can contain 642 /// other function types, we close a function type mangling with suffix 'f' 643 /// which can't be confused with it's prefix. This ensures we don't have 644 /// collisions between two unrelated function types. Otherwise, you might 645 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 646 /// 647 static std::string getMangledTypeStr(Type* Ty) { 648 std::string Result; 649 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 650 Result += "p" + utostr(PTyp->getAddressSpace()) + 651 getMangledTypeStr(PTyp->getElementType()); 652 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 653 Result += "a" + utostr(ATyp->getNumElements()) + 654 getMangledTypeStr(ATyp->getElementType()); 655 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 656 if (!STyp->isLiteral()) { 657 Result += "s_"; 658 Result += STyp->getName(); 659 } else { 660 Result += "sl_"; 661 for (auto Elem : STyp->elements()) 662 Result += getMangledTypeStr(Elem); 663 } 664 // Ensure nested structs are distinguishable. 665 Result += "s"; 666 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 667 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 668 for (size_t i = 0; i < FT->getNumParams(); i++) 669 Result += getMangledTypeStr(FT->getParamType(i)); 670 if (FT->isVarArg()) 671 Result += "vararg"; 672 // Ensure nested function types are distinguishable. 673 Result += "f"; 674 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 675 ElementCount EC = VTy->getElementCount(); 676 if (EC.Scalable) 677 Result += "nx"; 678 Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType()); 679 } else if (Ty) { 680 switch (Ty->getTypeID()) { 681 default: llvm_unreachable("Unhandled type"); 682 case Type::VoidTyID: Result += "isVoid"; break; 683 case Type::MetadataTyID: Result += "Metadata"; break; 684 case Type::HalfTyID: Result += "f16"; break; 685 case Type::BFloatTyID: Result += "bf16"; break; 686 case Type::FloatTyID: Result += "f32"; break; 687 case Type::DoubleTyID: Result += "f64"; break; 688 case Type::X86_FP80TyID: Result += "f80"; break; 689 case Type::FP128TyID: Result += "f128"; break; 690 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 691 case Type::X86_MMXTyID: Result += "x86mmx"; break; 692 case Type::IntegerTyID: 693 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 694 break; 695 } 696 } 697 return Result; 698 } 699 700 StringRef Intrinsic::getName(ID id) { 701 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 702 assert(!Intrinsic::isOverloaded(id) && 703 "This version of getName does not support overloading"); 704 return IntrinsicNameTable[id]; 705 } 706 707 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 708 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 709 std::string Result(IntrinsicNameTable[id]); 710 for (Type *Ty : Tys) { 711 Result += "." + getMangledTypeStr(Ty); 712 } 713 return Result; 714 } 715 716 /// IIT_Info - These are enumerators that describe the entries returned by the 717 /// getIntrinsicInfoTableEntries function. 718 /// 719 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 720 enum IIT_Info { 721 // Common values should be encoded with 0-15. 722 IIT_Done = 0, 723 IIT_I1 = 1, 724 IIT_I8 = 2, 725 IIT_I16 = 3, 726 IIT_I32 = 4, 727 IIT_I64 = 5, 728 IIT_F16 = 6, 729 IIT_F32 = 7, 730 IIT_F64 = 8, 731 IIT_V2 = 9, 732 IIT_V4 = 10, 733 IIT_V8 = 11, 734 IIT_V16 = 12, 735 IIT_V32 = 13, 736 IIT_PTR = 14, 737 IIT_ARG = 15, 738 739 // Values from 16+ are only encodable with the inefficient encoding. 740 IIT_V64 = 16, 741 IIT_MMX = 17, 742 IIT_TOKEN = 18, 743 IIT_METADATA = 19, 744 IIT_EMPTYSTRUCT = 20, 745 IIT_STRUCT2 = 21, 746 IIT_STRUCT3 = 22, 747 IIT_STRUCT4 = 23, 748 IIT_STRUCT5 = 24, 749 IIT_EXTEND_ARG = 25, 750 IIT_TRUNC_ARG = 26, 751 IIT_ANYPTR = 27, 752 IIT_V1 = 28, 753 IIT_VARARG = 29, 754 IIT_HALF_VEC_ARG = 30, 755 IIT_SAME_VEC_WIDTH_ARG = 31, 756 IIT_PTR_TO_ARG = 32, 757 IIT_PTR_TO_ELT = 33, 758 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 759 IIT_I128 = 35, 760 IIT_V512 = 36, 761 IIT_V1024 = 37, 762 IIT_STRUCT6 = 38, 763 IIT_STRUCT7 = 39, 764 IIT_STRUCT8 = 40, 765 IIT_F128 = 41, 766 IIT_VEC_ELEMENT = 42, 767 IIT_SCALABLE_VEC = 43, 768 IIT_SUBDIVIDE2_ARG = 44, 769 IIT_SUBDIVIDE4_ARG = 45, 770 IIT_VEC_OF_BITCASTS_TO_INT = 46, 771 IIT_V128 = 47, 772 IIT_BF16 = 48 773 }; 774 775 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 776 IIT_Info LastInfo, 777 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 778 using namespace Intrinsic; 779 780 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 781 782 IIT_Info Info = IIT_Info(Infos[NextElt++]); 783 unsigned StructElts = 2; 784 785 switch (Info) { 786 case IIT_Done: 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 788 return; 789 case IIT_VARARG: 790 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 791 return; 792 case IIT_MMX: 793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 794 return; 795 case IIT_TOKEN: 796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 797 return; 798 case IIT_METADATA: 799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 800 return; 801 case IIT_F16: 802 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 803 return; 804 case IIT_BF16: 805 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 806 return; 807 case IIT_F32: 808 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 809 return; 810 case IIT_F64: 811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 812 return; 813 case IIT_F128: 814 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 815 return; 816 case IIT_I1: 817 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 818 return; 819 case IIT_I8: 820 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 821 return; 822 case IIT_I16: 823 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 824 return; 825 case IIT_I32: 826 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 827 return; 828 case IIT_I64: 829 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 830 return; 831 case IIT_I128: 832 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 833 return; 834 case IIT_V1: 835 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 836 DecodeIITType(NextElt, Infos, Info, OutputTable); 837 return; 838 case IIT_V2: 839 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 840 DecodeIITType(NextElt, Infos, Info, OutputTable); 841 return; 842 case IIT_V4: 843 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 844 DecodeIITType(NextElt, Infos, Info, OutputTable); 845 return; 846 case IIT_V8: 847 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 848 DecodeIITType(NextElt, Infos, Info, OutputTable); 849 return; 850 case IIT_V16: 851 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 852 DecodeIITType(NextElt, Infos, Info, OutputTable); 853 return; 854 case IIT_V32: 855 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 856 DecodeIITType(NextElt, Infos, Info, OutputTable); 857 return; 858 case IIT_V64: 859 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 860 DecodeIITType(NextElt, Infos, Info, OutputTable); 861 return; 862 case IIT_V128: 863 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 864 DecodeIITType(NextElt, Infos, Info, OutputTable); 865 return; 866 case IIT_V512: 867 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 868 DecodeIITType(NextElt, Infos, Info, OutputTable); 869 return; 870 case IIT_V1024: 871 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 872 DecodeIITType(NextElt, Infos, Info, OutputTable); 873 return; 874 case IIT_PTR: 875 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 876 DecodeIITType(NextElt, Infos, Info, OutputTable); 877 return; 878 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 879 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 880 Infos[NextElt++])); 881 DecodeIITType(NextElt, Infos, Info, OutputTable); 882 return; 883 } 884 case IIT_ARG: { 885 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 886 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 887 return; 888 } 889 case IIT_EXTEND_ARG: { 890 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 891 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 892 ArgInfo)); 893 return; 894 } 895 case IIT_TRUNC_ARG: { 896 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 897 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 898 ArgInfo)); 899 return; 900 } 901 case IIT_HALF_VEC_ARG: { 902 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 903 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 904 ArgInfo)); 905 return; 906 } 907 case IIT_SAME_VEC_WIDTH_ARG: { 908 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 909 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 910 ArgInfo)); 911 return; 912 } 913 case IIT_PTR_TO_ARG: { 914 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 915 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 916 ArgInfo)); 917 return; 918 } 919 case IIT_PTR_TO_ELT: { 920 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 921 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 922 return; 923 } 924 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 925 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 926 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 927 OutputTable.push_back( 928 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 929 return; 930 } 931 case IIT_EMPTYSTRUCT: 932 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 933 return; 934 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 935 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 936 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 937 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 938 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 939 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 940 case IIT_STRUCT2: { 941 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 942 943 for (unsigned i = 0; i != StructElts; ++i) 944 DecodeIITType(NextElt, Infos, Info, OutputTable); 945 return; 946 } 947 case IIT_SUBDIVIDE2_ARG: { 948 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 949 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 950 ArgInfo)); 951 return; 952 } 953 case IIT_SUBDIVIDE4_ARG: { 954 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 955 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 956 ArgInfo)); 957 return; 958 } 959 case IIT_VEC_ELEMENT: { 960 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 961 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 962 ArgInfo)); 963 return; 964 } 965 case IIT_SCALABLE_VEC: { 966 DecodeIITType(NextElt, Infos, Info, OutputTable); 967 return; 968 } 969 case IIT_VEC_OF_BITCASTS_TO_INT: { 970 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 971 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 972 ArgInfo)); 973 return; 974 } 975 } 976 llvm_unreachable("unhandled"); 977 } 978 979 #define GET_INTRINSIC_GENERATOR_GLOBAL 980 #include "llvm/IR/IntrinsicImpl.inc" 981 #undef GET_INTRINSIC_GENERATOR_GLOBAL 982 983 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 984 SmallVectorImpl<IITDescriptor> &T){ 985 // Check to see if the intrinsic's type was expressible by the table. 986 unsigned TableVal = IIT_Table[id-1]; 987 988 // Decode the TableVal into an array of IITValues. 989 SmallVector<unsigned char, 8> IITValues; 990 ArrayRef<unsigned char> IITEntries; 991 unsigned NextElt = 0; 992 if ((TableVal >> 31) != 0) { 993 // This is an offset into the IIT_LongEncodingTable. 994 IITEntries = IIT_LongEncodingTable; 995 996 // Strip sentinel bit. 997 NextElt = (TableVal << 1) >> 1; 998 } else { 999 // Decode the TableVal into an array of IITValues. If the entry was encoded 1000 // into a single word in the table itself, decode it now. 1001 do { 1002 IITValues.push_back(TableVal & 0xF); 1003 TableVal >>= 4; 1004 } while (TableVal); 1005 1006 IITEntries = IITValues; 1007 NextElt = 0; 1008 } 1009 1010 // Okay, decode the table into the output vector of IITDescriptors. 1011 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1012 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1013 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1014 } 1015 1016 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1017 ArrayRef<Type*> Tys, LLVMContext &Context) { 1018 using namespace Intrinsic; 1019 1020 IITDescriptor D = Infos.front(); 1021 Infos = Infos.slice(1); 1022 1023 switch (D.Kind) { 1024 case IITDescriptor::Void: return Type::getVoidTy(Context); 1025 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1026 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1027 case IITDescriptor::Token: return Type::getTokenTy(Context); 1028 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1029 case IITDescriptor::Half: return Type::getHalfTy(Context); 1030 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1031 case IITDescriptor::Float: return Type::getFloatTy(Context); 1032 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1033 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1034 1035 case IITDescriptor::Integer: 1036 return IntegerType::get(Context, D.Integer_Width); 1037 case IITDescriptor::Vector: 1038 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1039 D.Vector_Width); 1040 case IITDescriptor::Pointer: 1041 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1042 D.Pointer_AddressSpace); 1043 case IITDescriptor::Struct: { 1044 SmallVector<Type *, 8> Elts; 1045 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1046 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1047 return StructType::get(Context, Elts); 1048 } 1049 case IITDescriptor::Argument: 1050 return Tys[D.getArgumentNumber()]; 1051 case IITDescriptor::ExtendArgument: { 1052 Type *Ty = Tys[D.getArgumentNumber()]; 1053 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1054 return VectorType::getExtendedElementVectorType(VTy); 1055 1056 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1057 } 1058 case IITDescriptor::TruncArgument: { 1059 Type *Ty = Tys[D.getArgumentNumber()]; 1060 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1061 return VectorType::getTruncatedElementVectorType(VTy); 1062 1063 IntegerType *ITy = cast<IntegerType>(Ty); 1064 assert(ITy->getBitWidth() % 2 == 0); 1065 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1066 } 1067 case IITDescriptor::Subdivide2Argument: 1068 case IITDescriptor::Subdivide4Argument: { 1069 Type *Ty = Tys[D.getArgumentNumber()]; 1070 VectorType *VTy = dyn_cast<VectorType>(Ty); 1071 assert(VTy && "Expected an argument of Vector Type"); 1072 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1073 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1074 } 1075 case IITDescriptor::HalfVecArgument: 1076 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1077 Tys[D.getArgumentNumber()])); 1078 case IITDescriptor::SameVecWidthArgument: { 1079 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1080 Type *Ty = Tys[D.getArgumentNumber()]; 1081 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1082 return VectorType::get(EltTy, VTy->getElementCount()); 1083 return EltTy; 1084 } 1085 case IITDescriptor::PtrToArgument: { 1086 Type *Ty = Tys[D.getArgumentNumber()]; 1087 return PointerType::getUnqual(Ty); 1088 } 1089 case IITDescriptor::PtrToElt: { 1090 Type *Ty = Tys[D.getArgumentNumber()]; 1091 VectorType *VTy = dyn_cast<VectorType>(Ty); 1092 if (!VTy) 1093 llvm_unreachable("Expected an argument of Vector Type"); 1094 Type *EltTy = VTy->getElementType(); 1095 return PointerType::getUnqual(EltTy); 1096 } 1097 case IITDescriptor::VecElementArgument: { 1098 Type *Ty = Tys[D.getArgumentNumber()]; 1099 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1100 return VTy->getElementType(); 1101 llvm_unreachable("Expected an argument of Vector Type"); 1102 } 1103 case IITDescriptor::VecOfBitcastsToInt: { 1104 Type *Ty = Tys[D.getArgumentNumber()]; 1105 VectorType *VTy = dyn_cast<VectorType>(Ty); 1106 assert(VTy && "Expected an argument of Vector Type"); 1107 return VectorType::getInteger(VTy); 1108 } 1109 case IITDescriptor::VecOfAnyPtrsToElt: 1110 // Return the overloaded type (which determines the pointers address space) 1111 return Tys[D.getOverloadArgNumber()]; 1112 } 1113 llvm_unreachable("unhandled"); 1114 } 1115 1116 FunctionType *Intrinsic::getType(LLVMContext &Context, 1117 ID id, ArrayRef<Type*> Tys) { 1118 SmallVector<IITDescriptor, 8> Table; 1119 getIntrinsicInfoTableEntries(id, Table); 1120 1121 ArrayRef<IITDescriptor> TableRef = Table; 1122 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1123 1124 SmallVector<Type*, 8> ArgTys; 1125 while (!TableRef.empty()) 1126 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1127 1128 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1129 // If we see void type as the type of the last argument, it is vararg intrinsic 1130 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1131 ArgTys.pop_back(); 1132 return FunctionType::get(ResultTy, ArgTys, true); 1133 } 1134 return FunctionType::get(ResultTy, ArgTys, false); 1135 } 1136 1137 bool Intrinsic::isOverloaded(ID id) { 1138 #define GET_INTRINSIC_OVERLOAD_TABLE 1139 #include "llvm/IR/IntrinsicImpl.inc" 1140 #undef GET_INTRINSIC_OVERLOAD_TABLE 1141 } 1142 1143 bool Intrinsic::isLeaf(ID id) { 1144 switch (id) { 1145 default: 1146 return true; 1147 1148 case Intrinsic::experimental_gc_statepoint: 1149 case Intrinsic::experimental_patchpoint_void: 1150 case Intrinsic::experimental_patchpoint_i64: 1151 return false; 1152 } 1153 } 1154 1155 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1156 #define GET_INTRINSIC_ATTRIBUTES 1157 #include "llvm/IR/IntrinsicImpl.inc" 1158 #undef GET_INTRINSIC_ATTRIBUTES 1159 1160 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1161 // There can never be multiple globals with the same name of different types, 1162 // because intrinsics must be a specific type. 1163 return cast<Function>( 1164 M->getOrInsertFunction(getName(id, Tys), 1165 getType(M->getContext(), id, Tys)) 1166 .getCallee()); 1167 } 1168 1169 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1170 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1171 #include "llvm/IR/IntrinsicImpl.inc" 1172 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1173 1174 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1175 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1176 #include "llvm/IR/IntrinsicImpl.inc" 1177 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1178 1179 using DeferredIntrinsicMatchPair = 1180 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1181 1182 static bool matchIntrinsicType( 1183 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1184 SmallVectorImpl<Type *> &ArgTys, 1185 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1186 bool IsDeferredCheck) { 1187 using namespace Intrinsic; 1188 1189 // If we ran out of descriptors, there are too many arguments. 1190 if (Infos.empty()) return true; 1191 1192 // Do this before slicing off the 'front' part 1193 auto InfosRef = Infos; 1194 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1195 DeferredChecks.emplace_back(T, InfosRef); 1196 return false; 1197 }; 1198 1199 IITDescriptor D = Infos.front(); 1200 Infos = Infos.slice(1); 1201 1202 switch (D.Kind) { 1203 case IITDescriptor::Void: return !Ty->isVoidTy(); 1204 case IITDescriptor::VarArg: return true; 1205 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1206 case IITDescriptor::Token: return !Ty->isTokenTy(); 1207 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1208 case IITDescriptor::Half: return !Ty->isHalfTy(); 1209 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1210 case IITDescriptor::Float: return !Ty->isFloatTy(); 1211 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1212 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1213 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1214 case IITDescriptor::Vector: { 1215 VectorType *VT = dyn_cast<VectorType>(Ty); 1216 return !VT || VT->getElementCount() != D.Vector_Width || 1217 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1218 DeferredChecks, IsDeferredCheck); 1219 } 1220 case IITDescriptor::Pointer: { 1221 PointerType *PT = dyn_cast<PointerType>(Ty); 1222 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1223 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1224 DeferredChecks, IsDeferredCheck); 1225 } 1226 1227 case IITDescriptor::Struct: { 1228 StructType *ST = dyn_cast<StructType>(Ty); 1229 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1230 return true; 1231 1232 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1233 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1234 DeferredChecks, IsDeferredCheck)) 1235 return true; 1236 return false; 1237 } 1238 1239 case IITDescriptor::Argument: 1240 // If this is the second occurrence of an argument, 1241 // verify that the later instance matches the previous instance. 1242 if (D.getArgumentNumber() < ArgTys.size()) 1243 return Ty != ArgTys[D.getArgumentNumber()]; 1244 1245 if (D.getArgumentNumber() > ArgTys.size() || 1246 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1247 return IsDeferredCheck || DeferCheck(Ty); 1248 1249 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1250 "Table consistency error"); 1251 ArgTys.push_back(Ty); 1252 1253 switch (D.getArgumentKind()) { 1254 case IITDescriptor::AK_Any: return false; // Success 1255 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1256 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1257 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1258 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1259 default: break; 1260 } 1261 llvm_unreachable("all argument kinds not covered"); 1262 1263 case IITDescriptor::ExtendArgument: { 1264 // If this is a forward reference, defer the check for later. 1265 if (D.getArgumentNumber() >= ArgTys.size()) 1266 return IsDeferredCheck || DeferCheck(Ty); 1267 1268 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1269 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1270 NewTy = VectorType::getExtendedElementVectorType(VTy); 1271 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1272 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1273 else 1274 return true; 1275 1276 return Ty != NewTy; 1277 } 1278 case IITDescriptor::TruncArgument: { 1279 // If this is a forward reference, defer the check for later. 1280 if (D.getArgumentNumber() >= ArgTys.size()) 1281 return IsDeferredCheck || DeferCheck(Ty); 1282 1283 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1284 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1285 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1286 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1287 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1288 else 1289 return true; 1290 1291 return Ty != NewTy; 1292 } 1293 case IITDescriptor::HalfVecArgument: 1294 // If this is a forward reference, defer the check for later. 1295 if (D.getArgumentNumber() >= ArgTys.size()) 1296 return IsDeferredCheck || DeferCheck(Ty); 1297 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1298 VectorType::getHalfElementsVectorType( 1299 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1300 case IITDescriptor::SameVecWidthArgument: { 1301 if (D.getArgumentNumber() >= ArgTys.size()) { 1302 // Defer check and subsequent check for the vector element type. 1303 Infos = Infos.slice(1); 1304 return IsDeferredCheck || DeferCheck(Ty); 1305 } 1306 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1307 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1308 // Both must be vectors of the same number of elements or neither. 1309 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1310 return true; 1311 Type *EltTy = Ty; 1312 if (ThisArgType) { 1313 if (ReferenceType->getElementCount() != 1314 ThisArgType->getElementCount()) 1315 return true; 1316 EltTy = ThisArgType->getElementType(); 1317 } 1318 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1319 IsDeferredCheck); 1320 } 1321 case IITDescriptor::PtrToArgument: { 1322 if (D.getArgumentNumber() >= ArgTys.size()) 1323 return IsDeferredCheck || DeferCheck(Ty); 1324 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1325 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1326 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1327 } 1328 case IITDescriptor::PtrToElt: { 1329 if (D.getArgumentNumber() >= ArgTys.size()) 1330 return IsDeferredCheck || DeferCheck(Ty); 1331 VectorType * ReferenceType = 1332 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1333 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1334 1335 return (!ThisArgType || !ReferenceType || 1336 ThisArgType->getElementType() != ReferenceType->getElementType()); 1337 } 1338 case IITDescriptor::VecOfAnyPtrsToElt: { 1339 unsigned RefArgNumber = D.getRefArgNumber(); 1340 if (RefArgNumber >= ArgTys.size()) { 1341 if (IsDeferredCheck) 1342 return true; 1343 // If forward referencing, already add the pointer-vector type and 1344 // defer the checks for later. 1345 ArgTys.push_back(Ty); 1346 return DeferCheck(Ty); 1347 } 1348 1349 if (!IsDeferredCheck){ 1350 assert(D.getOverloadArgNumber() == ArgTys.size() && 1351 "Table consistency error"); 1352 ArgTys.push_back(Ty); 1353 } 1354 1355 // Verify the overloaded type "matches" the Ref type. 1356 // i.e. Ty is a vector with the same width as Ref. 1357 // Composed of pointers to the same element type as Ref. 1358 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1359 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1360 if (!ThisArgVecTy || !ReferenceType || 1361 (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements())) 1362 return true; 1363 PointerType *ThisArgEltTy = 1364 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1365 if (!ThisArgEltTy) 1366 return true; 1367 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1368 } 1369 case IITDescriptor::VecElementArgument: { 1370 if (D.getArgumentNumber() >= ArgTys.size()) 1371 return IsDeferredCheck ? true : DeferCheck(Ty); 1372 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1373 return !ReferenceType || Ty != ReferenceType->getElementType(); 1374 } 1375 case IITDescriptor::Subdivide2Argument: 1376 case IITDescriptor::Subdivide4Argument: { 1377 // If this is a forward reference, defer the check for later. 1378 if (D.getArgumentNumber() >= ArgTys.size()) 1379 return IsDeferredCheck || DeferCheck(Ty); 1380 1381 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1382 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1383 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1384 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1385 return Ty != NewTy; 1386 } 1387 return true; 1388 } 1389 case IITDescriptor::VecOfBitcastsToInt: { 1390 if (D.getArgumentNumber() >= ArgTys.size()) 1391 return IsDeferredCheck || DeferCheck(Ty); 1392 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1393 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1394 if (!ThisArgVecTy || !ReferenceType) 1395 return true; 1396 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1397 } 1398 } 1399 llvm_unreachable("unhandled"); 1400 } 1401 1402 Intrinsic::MatchIntrinsicTypesResult 1403 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1404 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1405 SmallVectorImpl<Type *> &ArgTys) { 1406 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1407 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1408 false)) 1409 return MatchIntrinsicTypes_NoMatchRet; 1410 1411 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1412 1413 for (auto Ty : FTy->params()) 1414 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1415 return MatchIntrinsicTypes_NoMatchArg; 1416 1417 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1418 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1419 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1420 true)) 1421 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1422 : MatchIntrinsicTypes_NoMatchArg; 1423 } 1424 1425 return MatchIntrinsicTypes_Match; 1426 } 1427 1428 bool 1429 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1430 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1431 // If there are no descriptors left, then it can't be a vararg. 1432 if (Infos.empty()) 1433 return isVarArg; 1434 1435 // There should be only one descriptor remaining at this point. 1436 if (Infos.size() != 1) 1437 return true; 1438 1439 // Check and verify the descriptor. 1440 IITDescriptor D = Infos.front(); 1441 Infos = Infos.slice(1); 1442 if (D.Kind == IITDescriptor::VarArg) 1443 return !isVarArg; 1444 1445 return true; 1446 } 1447 1448 bool Intrinsic::getIntrinsicSignature(Function *F, 1449 SmallVectorImpl<Type *> &ArgTys) { 1450 Intrinsic::ID ID = F->getIntrinsicID(); 1451 if (!ID) 1452 return false; 1453 1454 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1455 getIntrinsicInfoTableEntries(ID, Table); 1456 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1457 1458 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1459 ArgTys) != 1460 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1461 return false; 1462 } 1463 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1464 TableRef)) 1465 return false; 1466 return true; 1467 } 1468 1469 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1470 SmallVector<Type *, 4> ArgTys; 1471 if (!getIntrinsicSignature(F, ArgTys)) 1472 return None; 1473 1474 Intrinsic::ID ID = F->getIntrinsicID(); 1475 StringRef Name = F->getName(); 1476 if (Name == Intrinsic::getName(ID, ArgTys)) 1477 return None; 1478 1479 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1480 NewDecl->setCallingConv(F->getCallingConv()); 1481 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1482 "Shouldn't change the signature"); 1483 return NewDecl; 1484 } 1485 1486 /// hasAddressTaken - returns true if there are any uses of this function 1487 /// other than direct calls or invokes to it. 1488 bool Function::hasAddressTaken(const User* *PutOffender) const { 1489 for (const Use &U : uses()) { 1490 const User *FU = U.getUser(); 1491 if (isa<BlockAddress>(FU)) 1492 continue; 1493 const auto *Call = dyn_cast<CallBase>(FU); 1494 if (!Call) { 1495 if (PutOffender) 1496 *PutOffender = FU; 1497 return true; 1498 } 1499 if (!Call->isCallee(&U)) { 1500 if (PutOffender) 1501 *PutOffender = FU; 1502 return true; 1503 } 1504 } 1505 return false; 1506 } 1507 1508 bool Function::isDefTriviallyDead() const { 1509 // Check the linkage 1510 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1511 !hasAvailableExternallyLinkage()) 1512 return false; 1513 1514 // Check if the function is used by anything other than a blockaddress. 1515 for (const User *U : users()) 1516 if (!isa<BlockAddress>(U)) 1517 return false; 1518 1519 return true; 1520 } 1521 1522 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1523 /// setjmp or other function that gcc recognizes as "returning twice". 1524 bool Function::callsFunctionThatReturnsTwice() const { 1525 for (const Instruction &I : instructions(this)) 1526 if (const auto *Call = dyn_cast<CallBase>(&I)) 1527 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1528 return true; 1529 1530 return false; 1531 } 1532 1533 Constant *Function::getPersonalityFn() const { 1534 assert(hasPersonalityFn() && getNumOperands()); 1535 return cast<Constant>(Op<0>()); 1536 } 1537 1538 void Function::setPersonalityFn(Constant *Fn) { 1539 setHungoffOperand<0>(Fn); 1540 setValueSubclassDataBit(3, Fn != nullptr); 1541 } 1542 1543 Constant *Function::getPrefixData() const { 1544 assert(hasPrefixData() && getNumOperands()); 1545 return cast<Constant>(Op<1>()); 1546 } 1547 1548 void Function::setPrefixData(Constant *PrefixData) { 1549 setHungoffOperand<1>(PrefixData); 1550 setValueSubclassDataBit(1, PrefixData != nullptr); 1551 } 1552 1553 Constant *Function::getPrologueData() const { 1554 assert(hasPrologueData() && getNumOperands()); 1555 return cast<Constant>(Op<2>()); 1556 } 1557 1558 void Function::setPrologueData(Constant *PrologueData) { 1559 setHungoffOperand<2>(PrologueData); 1560 setValueSubclassDataBit(2, PrologueData != nullptr); 1561 } 1562 1563 void Function::allocHungoffUselist() { 1564 // If we've already allocated a uselist, stop here. 1565 if (getNumOperands()) 1566 return; 1567 1568 allocHungoffUses(3, /*IsPhi=*/ false); 1569 setNumHungOffUseOperands(3); 1570 1571 // Initialize the uselist with placeholder operands to allow traversal. 1572 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1573 Op<0>().set(CPN); 1574 Op<1>().set(CPN); 1575 Op<2>().set(CPN); 1576 } 1577 1578 template <int Idx> 1579 void Function::setHungoffOperand(Constant *C) { 1580 if (C) { 1581 allocHungoffUselist(); 1582 Op<Idx>().set(C); 1583 } else if (getNumOperands()) { 1584 Op<Idx>().set( 1585 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1586 } 1587 } 1588 1589 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1590 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1591 if (On) 1592 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1593 else 1594 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1595 } 1596 1597 void Function::setEntryCount(ProfileCount Count, 1598 const DenseSet<GlobalValue::GUID> *S) { 1599 assert(Count.hasValue()); 1600 #if !defined(NDEBUG) 1601 auto PrevCount = getEntryCount(); 1602 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1603 #endif 1604 1605 auto ImportGUIDs = getImportGUIDs(); 1606 if (S == nullptr && ImportGUIDs.size()) 1607 S = &ImportGUIDs; 1608 1609 MDBuilder MDB(getContext()); 1610 setMetadata( 1611 LLVMContext::MD_prof, 1612 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1613 } 1614 1615 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1616 const DenseSet<GlobalValue::GUID> *Imports) { 1617 setEntryCount(ProfileCount(Count, Type), Imports); 1618 } 1619 1620 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1621 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1622 if (MD && MD->getOperand(0)) 1623 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1624 if (MDS->getString().equals("function_entry_count")) { 1625 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1626 uint64_t Count = CI->getValue().getZExtValue(); 1627 // A value of -1 is used for SamplePGO when there were no samples. 1628 // Treat this the same as unknown. 1629 if (Count == (uint64_t)-1) 1630 return ProfileCount::getInvalid(); 1631 return ProfileCount(Count, PCT_Real); 1632 } else if (AllowSynthetic && 1633 MDS->getString().equals("synthetic_function_entry_count")) { 1634 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1635 uint64_t Count = CI->getValue().getZExtValue(); 1636 return ProfileCount(Count, PCT_Synthetic); 1637 } 1638 } 1639 return ProfileCount::getInvalid(); 1640 } 1641 1642 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1643 DenseSet<GlobalValue::GUID> R; 1644 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1645 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1646 if (MDS->getString().equals("function_entry_count")) 1647 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1648 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1649 ->getValue() 1650 .getZExtValue()); 1651 return R; 1652 } 1653 1654 void Function::setSectionPrefix(StringRef Prefix) { 1655 MDBuilder MDB(getContext()); 1656 setMetadata(LLVMContext::MD_section_prefix, 1657 MDB.createFunctionSectionPrefix(Prefix)); 1658 } 1659 1660 Optional<StringRef> Function::getSectionPrefix() const { 1661 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1662 assert(cast<MDString>(MD->getOperand(0)) 1663 ->getString() 1664 .equals("function_section_prefix") && 1665 "Metadata not match"); 1666 return cast<MDString>(MD->getOperand(1))->getString(); 1667 } 1668 return None; 1669 } 1670 1671 bool Function::nullPointerIsDefined() const { 1672 return hasFnAttribute(Attribute::NullPointerIsValid); 1673 } 1674 1675 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1676 if (F && F->nullPointerIsDefined()) 1677 return true; 1678 1679 if (AS != 0) 1680 return true; 1681 1682 return false; 1683 } 1684