xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 6e07f16fae605c42014aa4f1f2babf3e7767c95c)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
54 
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
57 
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
61 
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
65 
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68   setName(Name);
69 }
70 
71 void Argument::setParent(Function *parent) {
72   Parent = parent;
73 }
74 
75 bool Argument::hasNonNullAttr() const {
76   if (!getType()->isPointerTy()) return false;
77   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78     return true;
79   else if (getDereferenceableBytes() > 0 &&
80            !NullPointerIsDefined(getParent(),
81                                  getType()->getPointerAddressSpace()))
82     return true;
83   return false;
84 }
85 
86 bool Argument::hasByValAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   return hasAttribute(Attribute::ByVal);
89 }
90 
91 bool Argument::hasSwiftSelfAttr() const {
92   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97 }
98 
99 bool Argument::hasInAllocaAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::InAlloca);
102 }
103 
104 bool Argument::hasByValOrInAllocaAttr() const {
105   if (!getType()->isPointerTy()) return false;
106   AttributeList Attrs = getParent()->getAttributes();
107   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109 }
110 
111 unsigned Argument::getParamAlignment() const {
112   assert(getType()->isPointerTy() && "Only pointers have alignments");
113   return getParent()->getParamAlignment(getArgNo());
114 }
115 
116 Type *Argument::getParamByValType() const {
117   assert(getType()->isPointerTy() && "Only pointers have byval types");
118   return getParent()->getParamByValType(getArgNo());
119 }
120 
121 uint64_t Argument::getDereferenceableBytes() const {
122   assert(getType()->isPointerTy() &&
123          "Only pointers have dereferenceable bytes");
124   return getParent()->getParamDereferenceableBytes(getArgNo());
125 }
126 
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128   assert(getType()->isPointerTy() &&
129          "Only pointers have dereferenceable bytes");
130   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
131 }
132 
133 bool Argument::hasNestAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::Nest);
136 }
137 
138 bool Argument::hasNoAliasAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::NoAlias);
141 }
142 
143 bool Argument::hasNoCaptureAttr() const {
144   if (!getType()->isPointerTy()) return false;
145   return hasAttribute(Attribute::NoCapture);
146 }
147 
148 bool Argument::hasStructRetAttr() const {
149   if (!getType()->isPointerTy()) return false;
150   return hasAttribute(Attribute::StructRet);
151 }
152 
153 bool Argument::hasInRegAttr() const {
154   return hasAttribute(Attribute::InReg);
155 }
156 
157 bool Argument::hasReturnedAttr() const {
158   return hasAttribute(Attribute::Returned);
159 }
160 
161 bool Argument::hasZExtAttr() const {
162   return hasAttribute(Attribute::ZExt);
163 }
164 
165 bool Argument::hasSExtAttr() const {
166   return hasAttribute(Attribute::SExt);
167 }
168 
169 bool Argument::onlyReadsMemory() const {
170   AttributeList Attrs = getParent()->getAttributes();
171   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
173 }
174 
175 void Argument::addAttrs(AttrBuilder &B) {
176   AttributeList AL = getParent()->getAttributes();
177   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178   getParent()->setAttributes(AL);
179 }
180 
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182   getParent()->addParamAttr(getArgNo(), Kind);
183 }
184 
185 void Argument::addAttr(Attribute Attr) {
186   getParent()->addParamAttr(getArgNo(), Attr);
187 }
188 
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190   getParent()->removeParamAttr(getArgNo(), Kind);
191 }
192 
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194   return getParent()->hasParamAttribute(getArgNo(), Kind);
195 }
196 
197 //===----------------------------------------------------------------------===//
198 // Helper Methods in Function
199 //===----------------------------------------------------------------------===//
200 
201 LLVMContext &Function::getContext() const {
202   return getType()->getContext();
203 }
204 
205 unsigned Function::getInstructionCount() const {
206   unsigned NumInstrs = 0;
207   for (const BasicBlock &BB : BasicBlocks)
208     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
209                                BB.instructionsWithoutDebug().end());
210   return NumInstrs;
211 }
212 
213 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
214                            const Twine &N, Module &M) {
215   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
216 }
217 
218 void Function::removeFromParent() {
219   getParent()->getFunctionList().remove(getIterator());
220 }
221 
222 void Function::eraseFromParent() {
223   getParent()->getFunctionList().erase(getIterator());
224 }
225 
226 //===----------------------------------------------------------------------===//
227 // Function Implementation
228 //===----------------------------------------------------------------------===//
229 
230 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
231   // If AS == -1 and we are passed a valid module pointer we place the function
232   // in the program address space. Otherwise we default to AS0.
233   if (AddrSpace == static_cast<unsigned>(-1))
234     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
235   return AddrSpace;
236 }
237 
238 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
239                    const Twine &name, Module *ParentModule)
240     : GlobalObject(Ty, Value::FunctionVal,
241                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
242                    computeAddrSpace(AddrSpace, ParentModule)),
243       NumArgs(Ty->getNumParams()) {
244   assert(FunctionType::isValidReturnType(getReturnType()) &&
245          "invalid return type");
246   setGlobalObjectSubClassData(0);
247 
248   // We only need a symbol table for a function if the context keeps value names
249   if (!getContext().shouldDiscardValueNames())
250     SymTab = make_unique<ValueSymbolTable>();
251 
252   // If the function has arguments, mark them as lazily built.
253   if (Ty->getNumParams())
254     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
255 
256   if (ParentModule)
257     ParentModule->getFunctionList().push_back(this);
258 
259   HasLLVMReservedName = getName().startswith("llvm.");
260   // Ensure intrinsics have the right parameter attributes.
261   // Note, the IntID field will have been set in Value::setName if this function
262   // name is a valid intrinsic ID.
263   if (IntID)
264     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
265 }
266 
267 Function::~Function() {
268   dropAllReferences();    // After this it is safe to delete instructions.
269 
270   // Delete all of the method arguments and unlink from symbol table...
271   if (Arguments)
272     clearArguments();
273 
274   // Remove the function from the on-the-side GC table.
275   clearGC();
276 }
277 
278 void Function::BuildLazyArguments() const {
279   // Create the arguments vector, all arguments start out unnamed.
280   auto *FT = getFunctionType();
281   if (NumArgs > 0) {
282     Arguments = std::allocator<Argument>().allocate(NumArgs);
283     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
284       Type *ArgTy = FT->getParamType(i);
285       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
286       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
287     }
288   }
289 
290   // Clear the lazy arguments bit.
291   unsigned SDC = getSubclassDataFromValue();
292   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
293   assert(!hasLazyArguments());
294 }
295 
296 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
297   return MutableArrayRef<Argument>(Args, Count);
298 }
299 
300 void Function::clearArguments() {
301   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
302     A.setName("");
303     A.~Argument();
304   }
305   std::allocator<Argument>().deallocate(Arguments, NumArgs);
306   Arguments = nullptr;
307 }
308 
309 void Function::stealArgumentListFrom(Function &Src) {
310   assert(isDeclaration() && "Expected no references to current arguments");
311 
312   // Drop the current arguments, if any, and set the lazy argument bit.
313   if (!hasLazyArguments()) {
314     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
315                         [](const Argument &A) { return A.use_empty(); }) &&
316            "Expected arguments to be unused in declaration");
317     clearArguments();
318     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
319   }
320 
321   // Nothing to steal if Src has lazy arguments.
322   if (Src.hasLazyArguments())
323     return;
324 
325   // Steal arguments from Src, and fix the lazy argument bits.
326   assert(arg_size() == Src.arg_size());
327   Arguments = Src.Arguments;
328   Src.Arguments = nullptr;
329   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
330     // FIXME: This does the work of transferNodesFromList inefficiently.
331     SmallString<128> Name;
332     if (A.hasName())
333       Name = A.getName();
334     if (!Name.empty())
335       A.setName("");
336     A.setParent(this);
337     if (!Name.empty())
338       A.setName(Name);
339   }
340 
341   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
342   assert(!hasLazyArguments());
343   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
344 }
345 
346 // dropAllReferences() - This function causes all the subinstructions to "let
347 // go" of all references that they are maintaining.  This allows one to
348 // 'delete' a whole class at a time, even though there may be circular
349 // references... first all references are dropped, and all use counts go to
350 // zero.  Then everything is deleted for real.  Note that no operations are
351 // valid on an object that has "dropped all references", except operator
352 // delete.
353 //
354 void Function::dropAllReferences() {
355   setIsMaterializable(false);
356 
357   for (BasicBlock &BB : *this)
358     BB.dropAllReferences();
359 
360   // Delete all basic blocks. They are now unused, except possibly by
361   // blockaddresses, but BasicBlock's destructor takes care of those.
362   while (!BasicBlocks.empty())
363     BasicBlocks.begin()->eraseFromParent();
364 
365   // Drop uses of any optional data (real or placeholder).
366   if (getNumOperands()) {
367     User::dropAllReferences();
368     setNumHungOffUseOperands(0);
369     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
370   }
371 
372   // Metadata is stored in a side-table.
373   clearMetadata();
374 }
375 
376 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
377   AttributeList PAL = getAttributes();
378   PAL = PAL.addAttribute(getContext(), i, Kind);
379   setAttributes(PAL);
380 }
381 
382 void Function::addAttribute(unsigned i, Attribute Attr) {
383   AttributeList PAL = getAttributes();
384   PAL = PAL.addAttribute(getContext(), i, Attr);
385   setAttributes(PAL);
386 }
387 
388 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
389   AttributeList PAL = getAttributes();
390   PAL = PAL.addAttributes(getContext(), i, Attrs);
391   setAttributes(PAL);
392 }
393 
394 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
395   AttributeList PAL = getAttributes();
396   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
397   setAttributes(PAL);
398 }
399 
400 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
401   AttributeList PAL = getAttributes();
402   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
403   setAttributes(PAL);
404 }
405 
406 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
407   AttributeList PAL = getAttributes();
408   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
409   setAttributes(PAL);
410 }
411 
412 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
413   AttributeList PAL = getAttributes();
414   PAL = PAL.removeAttribute(getContext(), i, Kind);
415   setAttributes(PAL);
416 }
417 
418 void Function::removeAttribute(unsigned i, StringRef Kind) {
419   AttributeList PAL = getAttributes();
420   PAL = PAL.removeAttribute(getContext(), i, Kind);
421   setAttributes(PAL);
422 }
423 
424 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
425   AttributeList PAL = getAttributes();
426   PAL = PAL.removeAttributes(getContext(), i, Attrs);
427   setAttributes(PAL);
428 }
429 
430 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
431   AttributeList PAL = getAttributes();
432   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
433   setAttributes(PAL);
434 }
435 
436 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
437   AttributeList PAL = getAttributes();
438   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
439   setAttributes(PAL);
440 }
441 
442 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
443   AttributeList PAL = getAttributes();
444   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
445   setAttributes(PAL);
446 }
447 
448 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
449   AttributeList PAL = getAttributes();
450   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
451   setAttributes(PAL);
452 }
453 
454 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
455   AttributeList PAL = getAttributes();
456   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
457   setAttributes(PAL);
458 }
459 
460 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
461   AttributeList PAL = getAttributes();
462   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
463   setAttributes(PAL);
464 }
465 
466 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
467                                                  uint64_t Bytes) {
468   AttributeList PAL = getAttributes();
469   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
470   setAttributes(PAL);
471 }
472 
473 const std::string &Function::getGC() const {
474   assert(hasGC() && "Function has no collector");
475   return getContext().getGC(*this);
476 }
477 
478 void Function::setGC(std::string Str) {
479   setValueSubclassDataBit(14, !Str.empty());
480   getContext().setGC(*this, std::move(Str));
481 }
482 
483 void Function::clearGC() {
484   if (!hasGC())
485     return;
486   getContext().deleteGC(*this);
487   setValueSubclassDataBit(14, false);
488 }
489 
490 /// Copy all additional attributes (those not needed to create a Function) from
491 /// the Function Src to this one.
492 void Function::copyAttributesFrom(const Function *Src) {
493   GlobalObject::copyAttributesFrom(Src);
494   setCallingConv(Src->getCallingConv());
495   setAttributes(Src->getAttributes());
496   if (Src->hasGC())
497     setGC(Src->getGC());
498   else
499     clearGC();
500   if (Src->hasPersonalityFn())
501     setPersonalityFn(Src->getPersonalityFn());
502   if (Src->hasPrefixData())
503     setPrefixData(Src->getPrefixData());
504   if (Src->hasPrologueData())
505     setPrologueData(Src->getPrologueData());
506 }
507 
508 /// Table of string intrinsic names indexed by enum value.
509 static const char * const IntrinsicNameTable[] = {
510   "not_intrinsic",
511 #define GET_INTRINSIC_NAME_TABLE
512 #include "llvm/IR/IntrinsicImpl.inc"
513 #undef GET_INTRINSIC_NAME_TABLE
514 };
515 
516 /// Table of per-target intrinsic name tables.
517 #define GET_INTRINSIC_TARGET_DATA
518 #include "llvm/IR/IntrinsicImpl.inc"
519 #undef GET_INTRINSIC_TARGET_DATA
520 
521 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
522 /// target as \c Name, or the generic table if \c Name is not target specific.
523 ///
524 /// Returns the relevant slice of \c IntrinsicNameTable
525 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
526   assert(Name.startswith("llvm."));
527 
528   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
529   // Drop "llvm." and take the first dotted component. That will be the target
530   // if this is target specific.
531   StringRef Target = Name.drop_front(5).split('.').first;
532   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
533                              [](const IntrinsicTargetInfo &TI,
534                                 StringRef Target) { return TI.Name < Target; });
535   // We've either found the target or just fall back to the generic set, which
536   // is always first.
537   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
538   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
539 }
540 
541 /// This does the actual lookup of an intrinsic ID which
542 /// matches the given function name.
543 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
544   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
545   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
546   if (Idx == -1)
547     return Intrinsic::not_intrinsic;
548 
549   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
550   // an index into a sub-table.
551   int Adjust = NameTable.data() - IntrinsicNameTable;
552   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
553 
554   // If the intrinsic is not overloaded, require an exact match. If it is
555   // overloaded, require either exact or prefix match.
556   const auto MatchSize = strlen(NameTable[Idx]);
557   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
558   bool IsExactMatch = Name.size() == MatchSize;
559   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
560 }
561 
562 void Function::recalculateIntrinsicID() {
563   StringRef Name = getName();
564   if (!Name.startswith("llvm.")) {
565     HasLLVMReservedName = false;
566     IntID = Intrinsic::not_intrinsic;
567     return;
568   }
569   HasLLVMReservedName = true;
570   IntID = lookupIntrinsicID(Name);
571 }
572 
573 /// Returns a stable mangling for the type specified for use in the name
574 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
575 /// of named types is simply their name.  Manglings for unnamed types consist
576 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
577 /// combined with the mangling of their component types.  A vararg function
578 /// type will have a suffix of 'vararg'.  Since function types can contain
579 /// other function types, we close a function type mangling with suffix 'f'
580 /// which can't be confused with it's prefix.  This ensures we don't have
581 /// collisions between two unrelated function types. Otherwise, you might
582 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
583 ///
584 static std::string getMangledTypeStr(Type* Ty) {
585   std::string Result;
586   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
587     Result += "p" + utostr(PTyp->getAddressSpace()) +
588       getMangledTypeStr(PTyp->getElementType());
589   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
590     Result += "a" + utostr(ATyp->getNumElements()) +
591       getMangledTypeStr(ATyp->getElementType());
592   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
593     if (!STyp->isLiteral()) {
594       Result += "s_";
595       Result += STyp->getName();
596     } else {
597       Result += "sl_";
598       for (auto Elem : STyp->elements())
599         Result += getMangledTypeStr(Elem);
600     }
601     // Ensure nested structs are distinguishable.
602     Result += "s";
603   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
604     Result += "f_" + getMangledTypeStr(FT->getReturnType());
605     for (size_t i = 0; i < FT->getNumParams(); i++)
606       Result += getMangledTypeStr(FT->getParamType(i));
607     if (FT->isVarArg())
608       Result += "vararg";
609     // Ensure nested function types are distinguishable.
610     Result += "f";
611   } else if (isa<VectorType>(Ty)) {
612     Result += "v" + utostr(Ty->getVectorNumElements()) +
613       getMangledTypeStr(Ty->getVectorElementType());
614   } else if (Ty) {
615     switch (Ty->getTypeID()) {
616     default: llvm_unreachable("Unhandled type");
617     case Type::VoidTyID:      Result += "isVoid";   break;
618     case Type::MetadataTyID:  Result += "Metadata"; break;
619     case Type::HalfTyID:      Result += "f16";      break;
620     case Type::FloatTyID:     Result += "f32";      break;
621     case Type::DoubleTyID:    Result += "f64";      break;
622     case Type::X86_FP80TyID:  Result += "f80";      break;
623     case Type::FP128TyID:     Result += "f128";     break;
624     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
625     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
626     case Type::IntegerTyID:
627       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
628       break;
629     }
630   }
631   return Result;
632 }
633 
634 StringRef Intrinsic::getName(ID id) {
635   assert(id < num_intrinsics && "Invalid intrinsic ID!");
636   assert(!isOverloaded(id) &&
637          "This version of getName does not support overloading");
638   return IntrinsicNameTable[id];
639 }
640 
641 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
642   assert(id < num_intrinsics && "Invalid intrinsic ID!");
643   std::string Result(IntrinsicNameTable[id]);
644   for (Type *Ty : Tys) {
645     Result += "." + getMangledTypeStr(Ty);
646   }
647   return Result;
648 }
649 
650 /// IIT_Info - These are enumerators that describe the entries returned by the
651 /// getIntrinsicInfoTableEntries function.
652 ///
653 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
654 enum IIT_Info {
655   // Common values should be encoded with 0-15.
656   IIT_Done = 0,
657   IIT_I1   = 1,
658   IIT_I8   = 2,
659   IIT_I16  = 3,
660   IIT_I32  = 4,
661   IIT_I64  = 5,
662   IIT_F16  = 6,
663   IIT_F32  = 7,
664   IIT_F64  = 8,
665   IIT_V2   = 9,
666   IIT_V4   = 10,
667   IIT_V8   = 11,
668   IIT_V16  = 12,
669   IIT_V32  = 13,
670   IIT_PTR  = 14,
671   IIT_ARG  = 15,
672 
673   // Values from 16+ are only encodable with the inefficient encoding.
674   IIT_V64  = 16,
675   IIT_MMX  = 17,
676   IIT_TOKEN = 18,
677   IIT_METADATA = 19,
678   IIT_EMPTYSTRUCT = 20,
679   IIT_STRUCT2 = 21,
680   IIT_STRUCT3 = 22,
681   IIT_STRUCT4 = 23,
682   IIT_STRUCT5 = 24,
683   IIT_EXTEND_ARG = 25,
684   IIT_TRUNC_ARG = 26,
685   IIT_ANYPTR = 27,
686   IIT_V1   = 28,
687   IIT_VARARG = 29,
688   IIT_HALF_VEC_ARG = 30,
689   IIT_SAME_VEC_WIDTH_ARG = 31,
690   IIT_PTR_TO_ARG = 32,
691   IIT_PTR_TO_ELT = 33,
692   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
693   IIT_I128 = 35,
694   IIT_V512 = 36,
695   IIT_V1024 = 37,
696   IIT_STRUCT6 = 38,
697   IIT_STRUCT7 = 39,
698   IIT_STRUCT8 = 40,
699   IIT_F128 = 41
700 };
701 
702 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
703                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
704   using namespace Intrinsic;
705 
706   IIT_Info Info = IIT_Info(Infos[NextElt++]);
707   unsigned StructElts = 2;
708 
709   switch (Info) {
710   case IIT_Done:
711     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
712     return;
713   case IIT_VARARG:
714     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
715     return;
716   case IIT_MMX:
717     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
718     return;
719   case IIT_TOKEN:
720     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
721     return;
722   case IIT_METADATA:
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
724     return;
725   case IIT_F16:
726     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
727     return;
728   case IIT_F32:
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
730     return;
731   case IIT_F64:
732     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
733     return;
734   case IIT_F128:
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
736     return;
737   case IIT_I1:
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
739     return;
740   case IIT_I8:
741     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
742     return;
743   case IIT_I16:
744     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
745     return;
746   case IIT_I32:
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
748     return;
749   case IIT_I64:
750     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
751     return;
752   case IIT_I128:
753     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
754     return;
755   case IIT_V1:
756     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
757     DecodeIITType(NextElt, Infos, OutputTable);
758     return;
759   case IIT_V2:
760     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
761     DecodeIITType(NextElt, Infos, OutputTable);
762     return;
763   case IIT_V4:
764     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
765     DecodeIITType(NextElt, Infos, OutputTable);
766     return;
767   case IIT_V8:
768     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
769     DecodeIITType(NextElt, Infos, OutputTable);
770     return;
771   case IIT_V16:
772     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
773     DecodeIITType(NextElt, Infos, OutputTable);
774     return;
775   case IIT_V32:
776     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
777     DecodeIITType(NextElt, Infos, OutputTable);
778     return;
779   case IIT_V64:
780     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
781     DecodeIITType(NextElt, Infos, OutputTable);
782     return;
783   case IIT_V512:
784     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
785     DecodeIITType(NextElt, Infos, OutputTable);
786     return;
787   case IIT_V1024:
788     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
789     DecodeIITType(NextElt, Infos, OutputTable);
790     return;
791   case IIT_PTR:
792     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
793     DecodeIITType(NextElt, Infos, OutputTable);
794     return;
795   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
796     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
797                                              Infos[NextElt++]));
798     DecodeIITType(NextElt, Infos, OutputTable);
799     return;
800   }
801   case IIT_ARG: {
802     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
803     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
804     return;
805   }
806   case IIT_EXTEND_ARG: {
807     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
808     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
809                                              ArgInfo));
810     return;
811   }
812   case IIT_TRUNC_ARG: {
813     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
814     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
815                                              ArgInfo));
816     return;
817   }
818   case IIT_HALF_VEC_ARG: {
819     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
820     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
821                                              ArgInfo));
822     return;
823   }
824   case IIT_SAME_VEC_WIDTH_ARG: {
825     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
826     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
827                                              ArgInfo));
828     return;
829   }
830   case IIT_PTR_TO_ARG: {
831     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
832     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
833                                              ArgInfo));
834     return;
835   }
836   case IIT_PTR_TO_ELT: {
837     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
838     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
839     return;
840   }
841   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
842     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
843     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
844     OutputTable.push_back(
845         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
846     return;
847   }
848   case IIT_EMPTYSTRUCT:
849     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
850     return;
851   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
852   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
853   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
854   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
855   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
856   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
857   case IIT_STRUCT2: {
858     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
859 
860     for (unsigned i = 0; i != StructElts; ++i)
861       DecodeIITType(NextElt, Infos, OutputTable);
862     return;
863   }
864   }
865   llvm_unreachable("unhandled");
866 }
867 
868 #define GET_INTRINSIC_GENERATOR_GLOBAL
869 #include "llvm/IR/IntrinsicImpl.inc"
870 #undef GET_INTRINSIC_GENERATOR_GLOBAL
871 
872 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
873                                              SmallVectorImpl<IITDescriptor> &T){
874   // Check to see if the intrinsic's type was expressible by the table.
875   unsigned TableVal = IIT_Table[id-1];
876 
877   // Decode the TableVal into an array of IITValues.
878   SmallVector<unsigned char, 8> IITValues;
879   ArrayRef<unsigned char> IITEntries;
880   unsigned NextElt = 0;
881   if ((TableVal >> 31) != 0) {
882     // This is an offset into the IIT_LongEncodingTable.
883     IITEntries = IIT_LongEncodingTable;
884 
885     // Strip sentinel bit.
886     NextElt = (TableVal << 1) >> 1;
887   } else {
888     // Decode the TableVal into an array of IITValues.  If the entry was encoded
889     // into a single word in the table itself, decode it now.
890     do {
891       IITValues.push_back(TableVal & 0xF);
892       TableVal >>= 4;
893     } while (TableVal);
894 
895     IITEntries = IITValues;
896     NextElt = 0;
897   }
898 
899   // Okay, decode the table into the output vector of IITDescriptors.
900   DecodeIITType(NextElt, IITEntries, T);
901   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
902     DecodeIITType(NextElt, IITEntries, T);
903 }
904 
905 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
906                              ArrayRef<Type*> Tys, LLVMContext &Context) {
907   using namespace Intrinsic;
908 
909   IITDescriptor D = Infos.front();
910   Infos = Infos.slice(1);
911 
912   switch (D.Kind) {
913   case IITDescriptor::Void: return Type::getVoidTy(Context);
914   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
915   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
916   case IITDescriptor::Token: return Type::getTokenTy(Context);
917   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
918   case IITDescriptor::Half: return Type::getHalfTy(Context);
919   case IITDescriptor::Float: return Type::getFloatTy(Context);
920   case IITDescriptor::Double: return Type::getDoubleTy(Context);
921   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
922 
923   case IITDescriptor::Integer:
924     return IntegerType::get(Context, D.Integer_Width);
925   case IITDescriptor::Vector:
926     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
927   case IITDescriptor::Pointer:
928     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
929                             D.Pointer_AddressSpace);
930   case IITDescriptor::Struct: {
931     SmallVector<Type *, 8> Elts;
932     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
933       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
934     return StructType::get(Context, Elts);
935   }
936   case IITDescriptor::Argument:
937     return Tys[D.getArgumentNumber()];
938   case IITDescriptor::ExtendArgument: {
939     Type *Ty = Tys[D.getArgumentNumber()];
940     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
941       return VectorType::getExtendedElementVectorType(VTy);
942 
943     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
944   }
945   case IITDescriptor::TruncArgument: {
946     Type *Ty = Tys[D.getArgumentNumber()];
947     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
948       return VectorType::getTruncatedElementVectorType(VTy);
949 
950     IntegerType *ITy = cast<IntegerType>(Ty);
951     assert(ITy->getBitWidth() % 2 == 0);
952     return IntegerType::get(Context, ITy->getBitWidth() / 2);
953   }
954   case IITDescriptor::HalfVecArgument:
955     return VectorType::getHalfElementsVectorType(cast<VectorType>(
956                                                   Tys[D.getArgumentNumber()]));
957   case IITDescriptor::SameVecWidthArgument: {
958     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
959     Type *Ty = Tys[D.getArgumentNumber()];
960     if (auto *VTy = dyn_cast<VectorType>(Ty))
961       return VectorType::get(EltTy, VTy->getNumElements());
962     return EltTy;
963   }
964   case IITDescriptor::PtrToArgument: {
965     Type *Ty = Tys[D.getArgumentNumber()];
966     return PointerType::getUnqual(Ty);
967   }
968   case IITDescriptor::PtrToElt: {
969     Type *Ty = Tys[D.getArgumentNumber()];
970     VectorType *VTy = dyn_cast<VectorType>(Ty);
971     if (!VTy)
972       llvm_unreachable("Expected an argument of Vector Type");
973     Type *EltTy = VTy->getVectorElementType();
974     return PointerType::getUnqual(EltTy);
975   }
976   case IITDescriptor::VecOfAnyPtrsToElt:
977     // Return the overloaded type (which determines the pointers address space)
978     return Tys[D.getOverloadArgNumber()];
979   }
980   llvm_unreachable("unhandled");
981 }
982 
983 FunctionType *Intrinsic::getType(LLVMContext &Context,
984                                  ID id, ArrayRef<Type*> Tys) {
985   SmallVector<IITDescriptor, 8> Table;
986   getIntrinsicInfoTableEntries(id, Table);
987 
988   ArrayRef<IITDescriptor> TableRef = Table;
989   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
990 
991   SmallVector<Type*, 8> ArgTys;
992   while (!TableRef.empty())
993     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
994 
995   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
996   // If we see void type as the type of the last argument, it is vararg intrinsic
997   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
998     ArgTys.pop_back();
999     return FunctionType::get(ResultTy, ArgTys, true);
1000   }
1001   return FunctionType::get(ResultTy, ArgTys, false);
1002 }
1003 
1004 bool Intrinsic::isOverloaded(ID id) {
1005 #define GET_INTRINSIC_OVERLOAD_TABLE
1006 #include "llvm/IR/IntrinsicImpl.inc"
1007 #undef GET_INTRINSIC_OVERLOAD_TABLE
1008 }
1009 
1010 bool Intrinsic::isLeaf(ID id) {
1011   switch (id) {
1012   default:
1013     return true;
1014 
1015   case Intrinsic::experimental_gc_statepoint:
1016   case Intrinsic::experimental_patchpoint_void:
1017   case Intrinsic::experimental_patchpoint_i64:
1018     return false;
1019   }
1020 }
1021 
1022 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1023 #define GET_INTRINSIC_ATTRIBUTES
1024 #include "llvm/IR/IntrinsicImpl.inc"
1025 #undef GET_INTRINSIC_ATTRIBUTES
1026 
1027 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1028   // There can never be multiple globals with the same name of different types,
1029   // because intrinsics must be a specific type.
1030   return cast<Function>(
1031       M->getOrInsertFunction(getName(id, Tys),
1032                              getType(M->getContext(), id, Tys))
1033           .getCallee());
1034 }
1035 
1036 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1037 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1038 #include "llvm/IR/IntrinsicImpl.inc"
1039 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1040 
1041 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1042 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1043 #include "llvm/IR/IntrinsicImpl.inc"
1044 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1045 
1046 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1047                                    SmallVectorImpl<Type*> &ArgTys) {
1048   using namespace Intrinsic;
1049 
1050   // If we ran out of descriptors, there are too many arguments.
1051   if (Infos.empty()) return true;
1052   IITDescriptor D = Infos.front();
1053   Infos = Infos.slice(1);
1054 
1055   switch (D.Kind) {
1056     case IITDescriptor::Void: return !Ty->isVoidTy();
1057     case IITDescriptor::VarArg: return true;
1058     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1059     case IITDescriptor::Token: return !Ty->isTokenTy();
1060     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1061     case IITDescriptor::Half: return !Ty->isHalfTy();
1062     case IITDescriptor::Float: return !Ty->isFloatTy();
1063     case IITDescriptor::Double: return !Ty->isDoubleTy();
1064     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1065     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1066     case IITDescriptor::Vector: {
1067       VectorType *VT = dyn_cast<VectorType>(Ty);
1068       return !VT || VT->getNumElements() != D.Vector_Width ||
1069              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1070     }
1071     case IITDescriptor::Pointer: {
1072       PointerType *PT = dyn_cast<PointerType>(Ty);
1073       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1074              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1075     }
1076 
1077     case IITDescriptor::Struct: {
1078       StructType *ST = dyn_cast<StructType>(Ty);
1079       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1080         return true;
1081 
1082       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1083         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1084           return true;
1085       return false;
1086     }
1087 
1088     case IITDescriptor::Argument:
1089       // Two cases here - If this is the second occurrence of an argument, verify
1090       // that the later instance matches the previous instance.
1091       if (D.getArgumentNumber() < ArgTys.size())
1092         return Ty != ArgTys[D.getArgumentNumber()];
1093 
1094       // Otherwise, if this is the first instance of an argument, record it and
1095       // verify the "Any" kind.
1096       assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1097       ArgTys.push_back(Ty);
1098 
1099       switch (D.getArgumentKind()) {
1100         case IITDescriptor::AK_Any:        return false; // Success
1101         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1102         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1103         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1104         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1105       }
1106       llvm_unreachable("all argument kinds not covered");
1107 
1108     case IITDescriptor::ExtendArgument: {
1109       // This may only be used when referring to a previous vector argument.
1110       if (D.getArgumentNumber() >= ArgTys.size())
1111         return true;
1112 
1113       Type *NewTy = ArgTys[D.getArgumentNumber()];
1114       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1115         NewTy = VectorType::getExtendedElementVectorType(VTy);
1116       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1117         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1118       else
1119         return true;
1120 
1121       return Ty != NewTy;
1122     }
1123     case IITDescriptor::TruncArgument: {
1124       // This may only be used when referring to a previous vector argument.
1125       if (D.getArgumentNumber() >= ArgTys.size())
1126         return true;
1127 
1128       Type *NewTy = ArgTys[D.getArgumentNumber()];
1129       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1130         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1131       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1132         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1133       else
1134         return true;
1135 
1136       return Ty != NewTy;
1137     }
1138     case IITDescriptor::HalfVecArgument:
1139       // This may only be used when referring to a previous vector argument.
1140       return D.getArgumentNumber() >= ArgTys.size() ||
1141              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1142              VectorType::getHalfElementsVectorType(
1143                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1144     case IITDescriptor::SameVecWidthArgument: {
1145       if (D.getArgumentNumber() >= ArgTys.size())
1146         return true;
1147       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1148       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1149       // Both must be vectors of the same number of elements or neither.
1150       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1151         return true;
1152       Type *EltTy = Ty;
1153       if (ThisArgType) {
1154         if (ReferenceType->getVectorNumElements() !=
1155             ThisArgType->getVectorNumElements())
1156           return true;
1157         EltTy = ThisArgType->getVectorElementType();
1158       }
1159       return matchIntrinsicType(EltTy, Infos, ArgTys);
1160     }
1161     case IITDescriptor::PtrToArgument: {
1162       if (D.getArgumentNumber() >= ArgTys.size())
1163         return true;
1164       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1165       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1166       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1167     }
1168     case IITDescriptor::PtrToElt: {
1169       if (D.getArgumentNumber() >= ArgTys.size())
1170         return true;
1171       VectorType * ReferenceType =
1172         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1173       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1174 
1175       return (!ThisArgType || !ReferenceType ||
1176               ThisArgType->getElementType() != ReferenceType->getElementType());
1177     }
1178     case IITDescriptor::VecOfAnyPtrsToElt: {
1179       unsigned RefArgNumber = D.getRefArgNumber();
1180 
1181       // This may only be used when referring to a previous argument.
1182       if (RefArgNumber >= ArgTys.size())
1183         return true;
1184 
1185       // Record the overloaded type
1186       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1187              "Table consistency error");
1188       ArgTys.push_back(Ty);
1189 
1190       // Verify the overloaded type "matches" the Ref type.
1191       // i.e. Ty is a vector with the same width as Ref.
1192       // Composed of pointers to the same element type as Ref.
1193       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1194       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1195       if (!ThisArgVecTy || !ReferenceType ||
1196           (ReferenceType->getVectorNumElements() !=
1197            ThisArgVecTy->getVectorNumElements()))
1198         return true;
1199       PointerType *ThisArgEltTy =
1200               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1201       if (!ThisArgEltTy)
1202         return true;
1203       return ThisArgEltTy->getElementType() !=
1204              ReferenceType->getVectorElementType();
1205     }
1206   }
1207   llvm_unreachable("unhandled");
1208 }
1209 
1210 bool
1211 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1212                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1213   // If there are no descriptors left, then it can't be a vararg.
1214   if (Infos.empty())
1215     return isVarArg;
1216 
1217   // There should be only one descriptor remaining at this point.
1218   if (Infos.size() != 1)
1219     return true;
1220 
1221   // Check and verify the descriptor.
1222   IITDescriptor D = Infos.front();
1223   Infos = Infos.slice(1);
1224   if (D.Kind == IITDescriptor::VarArg)
1225     return !isVarArg;
1226 
1227   return true;
1228 }
1229 
1230 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1231   Intrinsic::ID ID = F->getIntrinsicID();
1232   if (!ID)
1233     return None;
1234 
1235   FunctionType *FTy = F->getFunctionType();
1236   // Accumulate an array of overloaded types for the given intrinsic
1237   SmallVector<Type *, 4> ArgTys;
1238   {
1239     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1240     getIntrinsicInfoTableEntries(ID, Table);
1241     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1242 
1243     // If we encounter any problems matching the signature with the descriptor
1244     // just give up remangling. It's up to verifier to report the discrepancy.
1245     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1246       return None;
1247     for (auto Ty : FTy->params())
1248       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1249         return None;
1250     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1251       return None;
1252   }
1253 
1254   StringRef Name = F->getName();
1255   if (Name == Intrinsic::getName(ID, ArgTys))
1256     return None;
1257 
1258   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1259   NewDecl->setCallingConv(F->getCallingConv());
1260   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1261   return NewDecl;
1262 }
1263 
1264 /// hasAddressTaken - returns true if there are any uses of this function
1265 /// other than direct calls or invokes to it.
1266 bool Function::hasAddressTaken(const User* *PutOffender) const {
1267   for (const Use &U : uses()) {
1268     const User *FU = U.getUser();
1269     if (isa<BlockAddress>(FU))
1270       continue;
1271     const auto *Call = dyn_cast<CallBase>(FU);
1272     if (!Call) {
1273       if (PutOffender)
1274         *PutOffender = FU;
1275       return true;
1276     }
1277     if (!Call->isCallee(&U)) {
1278       if (PutOffender)
1279         *PutOffender = FU;
1280       return true;
1281     }
1282   }
1283   return false;
1284 }
1285 
1286 bool Function::isDefTriviallyDead() const {
1287   // Check the linkage
1288   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1289       !hasAvailableExternallyLinkage())
1290     return false;
1291 
1292   // Check if the function is used by anything other than a blockaddress.
1293   for (const User *U : users())
1294     if (!isa<BlockAddress>(U))
1295       return false;
1296 
1297   return true;
1298 }
1299 
1300 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1301 /// setjmp or other function that gcc recognizes as "returning twice".
1302 bool Function::callsFunctionThatReturnsTwice() const {
1303   for (const Instruction &I : instructions(this))
1304     if (const auto *Call = dyn_cast<CallBase>(&I))
1305       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1306         return true;
1307 
1308   return false;
1309 }
1310 
1311 Constant *Function::getPersonalityFn() const {
1312   assert(hasPersonalityFn() && getNumOperands());
1313   return cast<Constant>(Op<0>());
1314 }
1315 
1316 void Function::setPersonalityFn(Constant *Fn) {
1317   setHungoffOperand<0>(Fn);
1318   setValueSubclassDataBit(3, Fn != nullptr);
1319 }
1320 
1321 Constant *Function::getPrefixData() const {
1322   assert(hasPrefixData() && getNumOperands());
1323   return cast<Constant>(Op<1>());
1324 }
1325 
1326 void Function::setPrefixData(Constant *PrefixData) {
1327   setHungoffOperand<1>(PrefixData);
1328   setValueSubclassDataBit(1, PrefixData != nullptr);
1329 }
1330 
1331 Constant *Function::getPrologueData() const {
1332   assert(hasPrologueData() && getNumOperands());
1333   return cast<Constant>(Op<2>());
1334 }
1335 
1336 void Function::setPrologueData(Constant *PrologueData) {
1337   setHungoffOperand<2>(PrologueData);
1338   setValueSubclassDataBit(2, PrologueData != nullptr);
1339 }
1340 
1341 void Function::allocHungoffUselist() {
1342   // If we've already allocated a uselist, stop here.
1343   if (getNumOperands())
1344     return;
1345 
1346   allocHungoffUses(3, /*IsPhi=*/ false);
1347   setNumHungOffUseOperands(3);
1348 
1349   // Initialize the uselist with placeholder operands to allow traversal.
1350   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1351   Op<0>().set(CPN);
1352   Op<1>().set(CPN);
1353   Op<2>().set(CPN);
1354 }
1355 
1356 template <int Idx>
1357 void Function::setHungoffOperand(Constant *C) {
1358   if (C) {
1359     allocHungoffUselist();
1360     Op<Idx>().set(C);
1361   } else if (getNumOperands()) {
1362     Op<Idx>().set(
1363         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1364   }
1365 }
1366 
1367 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1368   assert(Bit < 16 && "SubclassData contains only 16 bits");
1369   if (On)
1370     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1371   else
1372     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1373 }
1374 
1375 void Function::setEntryCount(ProfileCount Count,
1376                              const DenseSet<GlobalValue::GUID> *S) {
1377   assert(Count.hasValue());
1378 #if !defined(NDEBUG)
1379   auto PrevCount = getEntryCount();
1380   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1381 #endif
1382   MDBuilder MDB(getContext());
1383   setMetadata(
1384       LLVMContext::MD_prof,
1385       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1386 }
1387 
1388 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1389                              const DenseSet<GlobalValue::GUID> *Imports) {
1390   setEntryCount(ProfileCount(Count, Type), Imports);
1391 }
1392 
1393 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1394   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1395   if (MD && MD->getOperand(0))
1396     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1397       if (MDS->getString().equals("function_entry_count")) {
1398         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1399         uint64_t Count = CI->getValue().getZExtValue();
1400         // A value of -1 is used for SamplePGO when there were no samples.
1401         // Treat this the same as unknown.
1402         if (Count == (uint64_t)-1)
1403           return ProfileCount::getInvalid();
1404         return ProfileCount(Count, PCT_Real);
1405       } else if (AllowSynthetic &&
1406                  MDS->getString().equals("synthetic_function_entry_count")) {
1407         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1408         uint64_t Count = CI->getValue().getZExtValue();
1409         return ProfileCount(Count, PCT_Synthetic);
1410       }
1411     }
1412   return ProfileCount::getInvalid();
1413 }
1414 
1415 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1416   DenseSet<GlobalValue::GUID> R;
1417   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1418     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1419       if (MDS->getString().equals("function_entry_count"))
1420         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1421           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1422                        ->getValue()
1423                        .getZExtValue());
1424   return R;
1425 }
1426 
1427 void Function::setSectionPrefix(StringRef Prefix) {
1428   MDBuilder MDB(getContext());
1429   setMetadata(LLVMContext::MD_section_prefix,
1430               MDB.createFunctionSectionPrefix(Prefix));
1431 }
1432 
1433 Optional<StringRef> Function::getSectionPrefix() const {
1434   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1435     assert(cast<MDString>(MD->getOperand(0))
1436                ->getString()
1437                .equals("function_section_prefix") &&
1438            "Metadata not match");
1439     return cast<MDString>(MD->getOperand(1))->getString();
1440   }
1441   return None;
1442 }
1443 
1444 bool Function::nullPointerIsDefined() const {
1445   return getFnAttribute("null-pointer-is-valid")
1446           .getValueAsString()
1447           .equals("true");
1448 }
1449 
1450 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1451   if (F && F->nullPointerIsDefined())
1452     return true;
1453 
1454   if (AS != 0)
1455     return true;
1456 
1457   return false;
1458 }
1459