1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/CallSite.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/GlobalValue.h" 32 #include "llvm/IR/InstIterator.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Metadata.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/SymbolTableListTraits.h" 42 #include "llvm/IR/Type.h" 43 #include "llvm/IR/Use.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/IR/ValueSymbolTable.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstdint> 54 #include <cstring> 55 #include <string> 56 57 using namespace llvm; 58 using ProfileCount = Function::ProfileCount; 59 60 // Explicit instantiations of SymbolTableListTraits since some of the methods 61 // are not in the public header file... 62 template class llvm::SymbolTableListTraits<BasicBlock>; 63 64 //===----------------------------------------------------------------------===// 65 // Argument Implementation 66 //===----------------------------------------------------------------------===// 67 68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 69 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 70 setName(Name); 71 } 72 73 void Argument::setParent(Function *parent) { 74 Parent = parent; 75 } 76 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 !NullPointerIsDefined(getParent(), 83 getType()->getPointerAddressSpace())) 84 return true; 85 return false; 86 } 87 88 bool Argument::hasByValAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 return hasAttribute(Attribute::ByVal); 91 } 92 93 bool Argument::hasSwiftSelfAttr() const { 94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 95 } 96 97 bool Argument::hasSwiftErrorAttr() const { 98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 99 } 100 101 bool Argument::hasInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 return hasAttribute(Attribute::InAlloca); 104 } 105 106 bool Argument::hasByValOrInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 AttributeList Attrs = getParent()->getAttributes(); 109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 111 } 112 113 unsigned Argument::getParamAlignment() const { 114 assert(getType()->isPointerTy() && "Only pointers have alignments"); 115 return getParent()->getParamAlignment(getArgNo()); 116 } 117 118 uint64_t Argument::getDereferenceableBytes() const { 119 assert(getType()->isPointerTy() && 120 "Only pointers have dereferenceable bytes"); 121 return getParent()->getParamDereferenceableBytes(getArgNo()); 122 } 123 124 uint64_t Argument::getDereferenceableOrNullBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 128 } 129 130 bool Argument::hasNestAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return hasAttribute(Attribute::Nest); 133 } 134 135 bool Argument::hasNoAliasAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 return hasAttribute(Attribute::NoAlias); 138 } 139 140 bool Argument::hasNoCaptureAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 return hasAttribute(Attribute::NoCapture); 143 } 144 145 bool Argument::hasStructRetAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::StructRet); 148 } 149 150 bool Argument::hasReturnedAttr() const { 151 return hasAttribute(Attribute::Returned); 152 } 153 154 bool Argument::hasZExtAttr() const { 155 return hasAttribute(Attribute::ZExt); 156 } 157 158 bool Argument::hasSExtAttr() const { 159 return hasAttribute(Attribute::SExt); 160 } 161 162 bool Argument::onlyReadsMemory() const { 163 AttributeList Attrs = getParent()->getAttributes(); 164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 166 } 167 168 void Argument::addAttrs(AttrBuilder &B) { 169 AttributeList AL = getParent()->getAttributes(); 170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 171 getParent()->setAttributes(AL); 172 } 173 174 void Argument::addAttr(Attribute::AttrKind Kind) { 175 getParent()->addParamAttr(getArgNo(), Kind); 176 } 177 178 void Argument::addAttr(Attribute Attr) { 179 getParent()->addParamAttr(getArgNo(), Attr); 180 } 181 182 void Argument::removeAttr(Attribute::AttrKind Kind) { 183 getParent()->removeParamAttr(getArgNo(), Kind); 184 } 185 186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 187 return getParent()->hasParamAttribute(getArgNo(), Kind); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Helper Methods in Function 192 //===----------------------------------------------------------------------===// 193 194 LLVMContext &Function::getContext() const { 195 return getType()->getContext(); 196 } 197 198 unsigned Function::getInstructionCount() { 199 unsigned NumInstrs = 0; 200 for (BasicBlock &BB : BasicBlocks) 201 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 202 BB.instructionsWithoutDebug().end()); 203 return NumInstrs; 204 } 205 206 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 207 const Twine &N, Module &M) { 208 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 209 } 210 211 void Function::removeFromParent() { 212 getParent()->getFunctionList().remove(getIterator()); 213 } 214 215 void Function::eraseFromParent() { 216 getParent()->getFunctionList().erase(getIterator()); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // Function Implementation 221 //===----------------------------------------------------------------------===// 222 223 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 224 // If AS == -1 and we are passed a valid module pointer we place the function 225 // in the program address space. Otherwise we default to AS0. 226 if (AddrSpace == static_cast<unsigned>(-1)) 227 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 228 return AddrSpace; 229 } 230 231 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 232 const Twine &name, Module *ParentModule) 233 : GlobalObject(Ty, Value::FunctionVal, 234 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 235 computeAddrSpace(AddrSpace, ParentModule)), 236 NumArgs(Ty->getNumParams()) { 237 assert(FunctionType::isValidReturnType(getReturnType()) && 238 "invalid return type"); 239 setGlobalObjectSubClassData(0); 240 241 // We only need a symbol table for a function if the context keeps value names 242 if (!getContext().shouldDiscardValueNames()) 243 SymTab = make_unique<ValueSymbolTable>(); 244 245 // If the function has arguments, mark them as lazily built. 246 if (Ty->getNumParams()) 247 setValueSubclassData(1); // Set the "has lazy arguments" bit. 248 249 if (ParentModule) 250 ParentModule->getFunctionList().push_back(this); 251 252 HasLLVMReservedName = getName().startswith("llvm."); 253 // Ensure intrinsics have the right parameter attributes. 254 // Note, the IntID field will have been set in Value::setName if this function 255 // name is a valid intrinsic ID. 256 if (IntID) 257 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 258 } 259 260 Function::~Function() { 261 dropAllReferences(); // After this it is safe to delete instructions. 262 263 // Delete all of the method arguments and unlink from symbol table... 264 if (Arguments) 265 clearArguments(); 266 267 // Remove the function from the on-the-side GC table. 268 clearGC(); 269 } 270 271 void Function::BuildLazyArguments() const { 272 // Create the arguments vector, all arguments start out unnamed. 273 auto *FT = getFunctionType(); 274 if (NumArgs > 0) { 275 Arguments = std::allocator<Argument>().allocate(NumArgs); 276 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 277 Type *ArgTy = FT->getParamType(i); 278 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 279 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 280 } 281 } 282 283 // Clear the lazy arguments bit. 284 unsigned SDC = getSubclassDataFromValue(); 285 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 286 assert(!hasLazyArguments()); 287 } 288 289 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 290 return MutableArrayRef<Argument>(Args, Count); 291 } 292 293 void Function::clearArguments() { 294 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 295 A.setName(""); 296 A.~Argument(); 297 } 298 std::allocator<Argument>().deallocate(Arguments, NumArgs); 299 Arguments = nullptr; 300 } 301 302 void Function::stealArgumentListFrom(Function &Src) { 303 assert(isDeclaration() && "Expected no references to current arguments"); 304 305 // Drop the current arguments, if any, and set the lazy argument bit. 306 if (!hasLazyArguments()) { 307 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 308 [](const Argument &A) { return A.use_empty(); }) && 309 "Expected arguments to be unused in declaration"); 310 clearArguments(); 311 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 312 } 313 314 // Nothing to steal if Src has lazy arguments. 315 if (Src.hasLazyArguments()) 316 return; 317 318 // Steal arguments from Src, and fix the lazy argument bits. 319 assert(arg_size() == Src.arg_size()); 320 Arguments = Src.Arguments; 321 Src.Arguments = nullptr; 322 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 323 // FIXME: This does the work of transferNodesFromList inefficiently. 324 SmallString<128> Name; 325 if (A.hasName()) 326 Name = A.getName(); 327 if (!Name.empty()) 328 A.setName(""); 329 A.setParent(this); 330 if (!Name.empty()) 331 A.setName(Name); 332 } 333 334 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 335 assert(!hasLazyArguments()); 336 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 337 } 338 339 // dropAllReferences() - This function causes all the subinstructions to "let 340 // go" of all references that they are maintaining. This allows one to 341 // 'delete' a whole class at a time, even though there may be circular 342 // references... first all references are dropped, and all use counts go to 343 // zero. Then everything is deleted for real. Note that no operations are 344 // valid on an object that has "dropped all references", except operator 345 // delete. 346 // 347 void Function::dropAllReferences() { 348 setIsMaterializable(false); 349 350 for (BasicBlock &BB : *this) 351 BB.dropAllReferences(); 352 353 // Delete all basic blocks. They are now unused, except possibly by 354 // blockaddresses, but BasicBlock's destructor takes care of those. 355 while (!BasicBlocks.empty()) 356 BasicBlocks.begin()->eraseFromParent(); 357 358 // Drop uses of any optional data (real or placeholder). 359 if (getNumOperands()) { 360 User::dropAllReferences(); 361 setNumHungOffUseOperands(0); 362 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 363 } 364 365 // Metadata is stored in a side-table. 366 clearMetadata(); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 370 AttributeList PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Kind); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttribute(unsigned i, Attribute Attr) { 376 AttributeList PAL = getAttributes(); 377 PAL = PAL.addAttribute(getContext(), i, Attr); 378 setAttributes(PAL); 379 } 380 381 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 382 AttributeList PAL = getAttributes(); 383 PAL = PAL.addAttributes(getContext(), i, Attrs); 384 setAttributes(PAL); 385 } 386 387 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 388 AttributeList PAL = getAttributes(); 389 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 394 AttributeList PAL = getAttributes(); 395 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 396 setAttributes(PAL); 397 } 398 399 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 400 AttributeList PAL = getAttributes(); 401 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 402 setAttributes(PAL); 403 } 404 405 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 406 AttributeList PAL = getAttributes(); 407 PAL = PAL.removeAttribute(getContext(), i, Kind); 408 setAttributes(PAL); 409 } 410 411 void Function::removeAttribute(unsigned i, StringRef Kind) { 412 AttributeList PAL = getAttributes(); 413 PAL = PAL.removeAttribute(getContext(), i, Kind); 414 setAttributes(PAL); 415 } 416 417 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 418 AttributeList PAL = getAttributes(); 419 PAL = PAL.removeAttributes(getContext(), i, Attrs); 420 setAttributes(PAL); 421 } 422 423 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 424 AttributeList PAL = getAttributes(); 425 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 426 setAttributes(PAL); 427 } 428 429 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 430 AttributeList PAL = getAttributes(); 431 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 432 setAttributes(PAL); 433 } 434 435 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 436 AttributeList PAL = getAttributes(); 437 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 438 setAttributes(PAL); 439 } 440 441 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 442 AttributeList PAL = getAttributes(); 443 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 444 setAttributes(PAL); 445 } 446 447 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 448 AttributeList PAL = getAttributes(); 449 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 450 setAttributes(PAL); 451 } 452 453 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 454 AttributeList PAL = getAttributes(); 455 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 456 setAttributes(PAL); 457 } 458 459 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 460 uint64_t Bytes) { 461 AttributeList PAL = getAttributes(); 462 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 463 setAttributes(PAL); 464 } 465 466 const std::string &Function::getGC() const { 467 assert(hasGC() && "Function has no collector"); 468 return getContext().getGC(*this); 469 } 470 471 void Function::setGC(std::string Str) { 472 setValueSubclassDataBit(14, !Str.empty()); 473 getContext().setGC(*this, std::move(Str)); 474 } 475 476 void Function::clearGC() { 477 if (!hasGC()) 478 return; 479 getContext().deleteGC(*this); 480 setValueSubclassDataBit(14, false); 481 } 482 483 /// Copy all additional attributes (those not needed to create a Function) from 484 /// the Function Src to this one. 485 void Function::copyAttributesFrom(const Function *Src) { 486 GlobalObject::copyAttributesFrom(Src); 487 setCallingConv(Src->getCallingConv()); 488 setAttributes(Src->getAttributes()); 489 if (Src->hasGC()) 490 setGC(Src->getGC()); 491 else 492 clearGC(); 493 if (Src->hasPersonalityFn()) 494 setPersonalityFn(Src->getPersonalityFn()); 495 if (Src->hasPrefixData()) 496 setPrefixData(Src->getPrefixData()); 497 if (Src->hasPrologueData()) 498 setPrologueData(Src->getPrologueData()); 499 } 500 501 /// Table of string intrinsic names indexed by enum value. 502 static const char * const IntrinsicNameTable[] = { 503 "not_intrinsic", 504 #define GET_INTRINSIC_NAME_TABLE 505 #include "llvm/IR/IntrinsicImpl.inc" 506 #undef GET_INTRINSIC_NAME_TABLE 507 }; 508 509 /// Table of per-target intrinsic name tables. 510 #define GET_INTRINSIC_TARGET_DATA 511 #include "llvm/IR/IntrinsicImpl.inc" 512 #undef GET_INTRINSIC_TARGET_DATA 513 514 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 515 /// target as \c Name, or the generic table if \c Name is not target specific. 516 /// 517 /// Returns the relevant slice of \c IntrinsicNameTable 518 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 519 assert(Name.startswith("llvm.")); 520 521 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 522 // Drop "llvm." and take the first dotted component. That will be the target 523 // if this is target specific. 524 StringRef Target = Name.drop_front(5).split('.').first; 525 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 526 [](const IntrinsicTargetInfo &TI, 527 StringRef Target) { return TI.Name < Target; }); 528 // We've either found the target or just fall back to the generic set, which 529 // is always first. 530 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 531 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 532 } 533 534 /// This does the actual lookup of an intrinsic ID which 535 /// matches the given function name. 536 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 537 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 538 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 539 if (Idx == -1) 540 return Intrinsic::not_intrinsic; 541 542 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 543 // an index into a sub-table. 544 int Adjust = NameTable.data() - IntrinsicNameTable; 545 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 546 547 // If the intrinsic is not overloaded, require an exact match. If it is 548 // overloaded, require either exact or prefix match. 549 const auto MatchSize = strlen(NameTable[Idx]); 550 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 551 bool IsExactMatch = Name.size() == MatchSize; 552 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 553 } 554 555 void Function::recalculateIntrinsicID() { 556 StringRef Name = getName(); 557 if (!Name.startswith("llvm.")) { 558 HasLLVMReservedName = false; 559 IntID = Intrinsic::not_intrinsic; 560 return; 561 } 562 HasLLVMReservedName = true; 563 IntID = lookupIntrinsicID(Name); 564 } 565 566 /// Returns a stable mangling for the type specified for use in the name 567 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 568 /// of named types is simply their name. Manglings for unnamed types consist 569 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 570 /// combined with the mangling of their component types. A vararg function 571 /// type will have a suffix of 'vararg'. Since function types can contain 572 /// other function types, we close a function type mangling with suffix 'f' 573 /// which can't be confused with it's prefix. This ensures we don't have 574 /// collisions between two unrelated function types. Otherwise, you might 575 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 576 /// 577 static std::string getMangledTypeStr(Type* Ty) { 578 std::string Result; 579 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 580 Result += "p" + utostr(PTyp->getAddressSpace()) + 581 getMangledTypeStr(PTyp->getElementType()); 582 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 583 Result += "a" + utostr(ATyp->getNumElements()) + 584 getMangledTypeStr(ATyp->getElementType()); 585 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 586 if (!STyp->isLiteral()) { 587 Result += "s_"; 588 Result += STyp->getName(); 589 } else { 590 Result += "sl_"; 591 for (auto Elem : STyp->elements()) 592 Result += getMangledTypeStr(Elem); 593 } 594 // Ensure nested structs are distinguishable. 595 Result += "s"; 596 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 597 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 598 for (size_t i = 0; i < FT->getNumParams(); i++) 599 Result += getMangledTypeStr(FT->getParamType(i)); 600 if (FT->isVarArg()) 601 Result += "vararg"; 602 // Ensure nested function types are distinguishable. 603 Result += "f"; 604 } else if (isa<VectorType>(Ty)) { 605 Result += "v" + utostr(Ty->getVectorNumElements()) + 606 getMangledTypeStr(Ty->getVectorElementType()); 607 } else if (Ty) { 608 switch (Ty->getTypeID()) { 609 default: llvm_unreachable("Unhandled type"); 610 case Type::VoidTyID: Result += "isVoid"; break; 611 case Type::MetadataTyID: Result += "Metadata"; break; 612 case Type::HalfTyID: Result += "f16"; break; 613 case Type::FloatTyID: Result += "f32"; break; 614 case Type::DoubleTyID: Result += "f64"; break; 615 case Type::X86_FP80TyID: Result += "f80"; break; 616 case Type::FP128TyID: Result += "f128"; break; 617 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 618 case Type::X86_MMXTyID: Result += "x86mmx"; break; 619 case Type::IntegerTyID: 620 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 621 break; 622 } 623 } 624 return Result; 625 } 626 627 StringRef Intrinsic::getName(ID id) { 628 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 629 assert(!isOverloaded(id) && 630 "This version of getName does not support overloading"); 631 return IntrinsicNameTable[id]; 632 } 633 634 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 635 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 636 std::string Result(IntrinsicNameTable[id]); 637 for (Type *Ty : Tys) { 638 Result += "." + getMangledTypeStr(Ty); 639 } 640 return Result; 641 } 642 643 /// IIT_Info - These are enumerators that describe the entries returned by the 644 /// getIntrinsicInfoTableEntries function. 645 /// 646 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 647 enum IIT_Info { 648 // Common values should be encoded with 0-15. 649 IIT_Done = 0, 650 IIT_I1 = 1, 651 IIT_I8 = 2, 652 IIT_I16 = 3, 653 IIT_I32 = 4, 654 IIT_I64 = 5, 655 IIT_F16 = 6, 656 IIT_F32 = 7, 657 IIT_F64 = 8, 658 IIT_V2 = 9, 659 IIT_V4 = 10, 660 IIT_V8 = 11, 661 IIT_V16 = 12, 662 IIT_V32 = 13, 663 IIT_PTR = 14, 664 IIT_ARG = 15, 665 666 // Values from 16+ are only encodable with the inefficient encoding. 667 IIT_V64 = 16, 668 IIT_MMX = 17, 669 IIT_TOKEN = 18, 670 IIT_METADATA = 19, 671 IIT_EMPTYSTRUCT = 20, 672 IIT_STRUCT2 = 21, 673 IIT_STRUCT3 = 22, 674 IIT_STRUCT4 = 23, 675 IIT_STRUCT5 = 24, 676 IIT_EXTEND_ARG = 25, 677 IIT_TRUNC_ARG = 26, 678 IIT_ANYPTR = 27, 679 IIT_V1 = 28, 680 IIT_VARARG = 29, 681 IIT_HALF_VEC_ARG = 30, 682 IIT_SAME_VEC_WIDTH_ARG = 31, 683 IIT_PTR_TO_ARG = 32, 684 IIT_PTR_TO_ELT = 33, 685 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 686 IIT_I128 = 35, 687 IIT_V512 = 36, 688 IIT_V1024 = 37, 689 IIT_STRUCT6 = 38, 690 IIT_STRUCT7 = 39, 691 IIT_STRUCT8 = 40, 692 IIT_F128 = 41 693 }; 694 695 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 696 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 697 using namespace Intrinsic; 698 699 IIT_Info Info = IIT_Info(Infos[NextElt++]); 700 unsigned StructElts = 2; 701 702 switch (Info) { 703 case IIT_Done: 704 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 705 return; 706 case IIT_VARARG: 707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 708 return; 709 case IIT_MMX: 710 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 711 return; 712 case IIT_TOKEN: 713 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 714 return; 715 case IIT_METADATA: 716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 717 return; 718 case IIT_F16: 719 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 720 return; 721 case IIT_F32: 722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 723 return; 724 case IIT_F64: 725 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 726 return; 727 case IIT_F128: 728 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 729 return; 730 case IIT_I1: 731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 732 return; 733 case IIT_I8: 734 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 735 return; 736 case IIT_I16: 737 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 738 return; 739 case IIT_I32: 740 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 741 return; 742 case IIT_I64: 743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 744 return; 745 case IIT_I128: 746 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 747 return; 748 case IIT_V1: 749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 750 DecodeIITType(NextElt, Infos, OutputTable); 751 return; 752 case IIT_V2: 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 754 DecodeIITType(NextElt, Infos, OutputTable); 755 return; 756 case IIT_V4: 757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 758 DecodeIITType(NextElt, Infos, OutputTable); 759 return; 760 case IIT_V8: 761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 762 DecodeIITType(NextElt, Infos, OutputTable); 763 return; 764 case IIT_V16: 765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 766 DecodeIITType(NextElt, Infos, OutputTable); 767 return; 768 case IIT_V32: 769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 770 DecodeIITType(NextElt, Infos, OutputTable); 771 return; 772 case IIT_V64: 773 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 774 DecodeIITType(NextElt, Infos, OutputTable); 775 return; 776 case IIT_V512: 777 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 778 DecodeIITType(NextElt, Infos, OutputTable); 779 return; 780 case IIT_V1024: 781 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 782 DecodeIITType(NextElt, Infos, OutputTable); 783 return; 784 case IIT_PTR: 785 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 786 DecodeIITType(NextElt, Infos, OutputTable); 787 return; 788 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 789 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 790 Infos[NextElt++])); 791 DecodeIITType(NextElt, Infos, OutputTable); 792 return; 793 } 794 case IIT_ARG: { 795 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 797 return; 798 } 799 case IIT_EXTEND_ARG: { 800 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 801 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 802 ArgInfo)); 803 return; 804 } 805 case IIT_TRUNC_ARG: { 806 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 808 ArgInfo)); 809 return; 810 } 811 case IIT_HALF_VEC_ARG: { 812 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 813 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 814 ArgInfo)); 815 return; 816 } 817 case IIT_SAME_VEC_WIDTH_ARG: { 818 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 820 ArgInfo)); 821 return; 822 } 823 case IIT_PTR_TO_ARG: { 824 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 825 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 826 ArgInfo)); 827 return; 828 } 829 case IIT_PTR_TO_ELT: { 830 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 832 return; 833 } 834 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 835 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 836 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 837 OutputTable.push_back( 838 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 839 return; 840 } 841 case IIT_EMPTYSTRUCT: 842 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 843 return; 844 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 845 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 846 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 847 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 848 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 849 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 850 case IIT_STRUCT2: { 851 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 852 853 for (unsigned i = 0; i != StructElts; ++i) 854 DecodeIITType(NextElt, Infos, OutputTable); 855 return; 856 } 857 } 858 llvm_unreachable("unhandled"); 859 } 860 861 #define GET_INTRINSIC_GENERATOR_GLOBAL 862 #include "llvm/IR/IntrinsicImpl.inc" 863 #undef GET_INTRINSIC_GENERATOR_GLOBAL 864 865 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 866 SmallVectorImpl<IITDescriptor> &T){ 867 // Check to see if the intrinsic's type was expressible by the table. 868 unsigned TableVal = IIT_Table[id-1]; 869 870 // Decode the TableVal into an array of IITValues. 871 SmallVector<unsigned char, 8> IITValues; 872 ArrayRef<unsigned char> IITEntries; 873 unsigned NextElt = 0; 874 if ((TableVal >> 31) != 0) { 875 // This is an offset into the IIT_LongEncodingTable. 876 IITEntries = IIT_LongEncodingTable; 877 878 // Strip sentinel bit. 879 NextElt = (TableVal << 1) >> 1; 880 } else { 881 // Decode the TableVal into an array of IITValues. If the entry was encoded 882 // into a single word in the table itself, decode it now. 883 do { 884 IITValues.push_back(TableVal & 0xF); 885 TableVal >>= 4; 886 } while (TableVal); 887 888 IITEntries = IITValues; 889 NextElt = 0; 890 } 891 892 // Okay, decode the table into the output vector of IITDescriptors. 893 DecodeIITType(NextElt, IITEntries, T); 894 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 895 DecodeIITType(NextElt, IITEntries, T); 896 } 897 898 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 899 ArrayRef<Type*> Tys, LLVMContext &Context) { 900 using namespace Intrinsic; 901 902 IITDescriptor D = Infos.front(); 903 Infos = Infos.slice(1); 904 905 switch (D.Kind) { 906 case IITDescriptor::Void: return Type::getVoidTy(Context); 907 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 908 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 909 case IITDescriptor::Token: return Type::getTokenTy(Context); 910 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 911 case IITDescriptor::Half: return Type::getHalfTy(Context); 912 case IITDescriptor::Float: return Type::getFloatTy(Context); 913 case IITDescriptor::Double: return Type::getDoubleTy(Context); 914 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 915 916 case IITDescriptor::Integer: 917 return IntegerType::get(Context, D.Integer_Width); 918 case IITDescriptor::Vector: 919 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 920 case IITDescriptor::Pointer: 921 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 922 D.Pointer_AddressSpace); 923 case IITDescriptor::Struct: { 924 SmallVector<Type *, 8> Elts; 925 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 926 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 927 return StructType::get(Context, Elts); 928 } 929 case IITDescriptor::Argument: 930 return Tys[D.getArgumentNumber()]; 931 case IITDescriptor::ExtendArgument: { 932 Type *Ty = Tys[D.getArgumentNumber()]; 933 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 934 return VectorType::getExtendedElementVectorType(VTy); 935 936 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 937 } 938 case IITDescriptor::TruncArgument: { 939 Type *Ty = Tys[D.getArgumentNumber()]; 940 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 941 return VectorType::getTruncatedElementVectorType(VTy); 942 943 IntegerType *ITy = cast<IntegerType>(Ty); 944 assert(ITy->getBitWidth() % 2 == 0); 945 return IntegerType::get(Context, ITy->getBitWidth() / 2); 946 } 947 case IITDescriptor::HalfVecArgument: 948 return VectorType::getHalfElementsVectorType(cast<VectorType>( 949 Tys[D.getArgumentNumber()])); 950 case IITDescriptor::SameVecWidthArgument: { 951 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 952 Type *Ty = Tys[D.getArgumentNumber()]; 953 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 954 return VectorType::get(EltTy, VTy->getNumElements()); 955 } 956 llvm_unreachable("unhandled"); 957 } 958 case IITDescriptor::PtrToArgument: { 959 Type *Ty = Tys[D.getArgumentNumber()]; 960 return PointerType::getUnqual(Ty); 961 } 962 case IITDescriptor::PtrToElt: { 963 Type *Ty = Tys[D.getArgumentNumber()]; 964 VectorType *VTy = dyn_cast<VectorType>(Ty); 965 if (!VTy) 966 llvm_unreachable("Expected an argument of Vector Type"); 967 Type *EltTy = VTy->getVectorElementType(); 968 return PointerType::getUnqual(EltTy); 969 } 970 case IITDescriptor::VecOfAnyPtrsToElt: 971 // Return the overloaded type (which determines the pointers address space) 972 return Tys[D.getOverloadArgNumber()]; 973 } 974 llvm_unreachable("unhandled"); 975 } 976 977 FunctionType *Intrinsic::getType(LLVMContext &Context, 978 ID id, ArrayRef<Type*> Tys) { 979 SmallVector<IITDescriptor, 8> Table; 980 getIntrinsicInfoTableEntries(id, Table); 981 982 ArrayRef<IITDescriptor> TableRef = Table; 983 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 984 985 SmallVector<Type*, 8> ArgTys; 986 while (!TableRef.empty()) 987 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 988 989 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 990 // If we see void type as the type of the last argument, it is vararg intrinsic 991 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 992 ArgTys.pop_back(); 993 return FunctionType::get(ResultTy, ArgTys, true); 994 } 995 return FunctionType::get(ResultTy, ArgTys, false); 996 } 997 998 bool Intrinsic::isOverloaded(ID id) { 999 #define GET_INTRINSIC_OVERLOAD_TABLE 1000 #include "llvm/IR/IntrinsicImpl.inc" 1001 #undef GET_INTRINSIC_OVERLOAD_TABLE 1002 } 1003 1004 bool Intrinsic::isLeaf(ID id) { 1005 switch (id) { 1006 default: 1007 return true; 1008 1009 case Intrinsic::experimental_gc_statepoint: 1010 case Intrinsic::experimental_patchpoint_void: 1011 case Intrinsic::experimental_patchpoint_i64: 1012 return false; 1013 } 1014 } 1015 1016 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1017 #define GET_INTRINSIC_ATTRIBUTES 1018 #include "llvm/IR/IntrinsicImpl.inc" 1019 #undef GET_INTRINSIC_ATTRIBUTES 1020 1021 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1022 // There can never be multiple globals with the same name of different types, 1023 // because intrinsics must be a specific type. 1024 return 1025 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 1026 getType(M->getContext(), id, Tys))); 1027 } 1028 1029 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1030 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1031 #include "llvm/IR/IntrinsicImpl.inc" 1032 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1033 1034 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1035 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1036 #include "llvm/IR/IntrinsicImpl.inc" 1037 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1038 1039 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1040 SmallVectorImpl<Type*> &ArgTys) { 1041 using namespace Intrinsic; 1042 1043 // If we ran out of descriptors, there are too many arguments. 1044 if (Infos.empty()) return true; 1045 IITDescriptor D = Infos.front(); 1046 Infos = Infos.slice(1); 1047 1048 switch (D.Kind) { 1049 case IITDescriptor::Void: return !Ty->isVoidTy(); 1050 case IITDescriptor::VarArg: return true; 1051 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1052 case IITDescriptor::Token: return !Ty->isTokenTy(); 1053 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1054 case IITDescriptor::Half: return !Ty->isHalfTy(); 1055 case IITDescriptor::Float: return !Ty->isFloatTy(); 1056 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1057 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1058 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1059 case IITDescriptor::Vector: { 1060 VectorType *VT = dyn_cast<VectorType>(Ty); 1061 return !VT || VT->getNumElements() != D.Vector_Width || 1062 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1063 } 1064 case IITDescriptor::Pointer: { 1065 PointerType *PT = dyn_cast<PointerType>(Ty); 1066 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1067 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1068 } 1069 1070 case IITDescriptor::Struct: { 1071 StructType *ST = dyn_cast<StructType>(Ty); 1072 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1073 return true; 1074 1075 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1076 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1077 return true; 1078 return false; 1079 } 1080 1081 case IITDescriptor::Argument: 1082 // Two cases here - If this is the second occurrence of an argument, verify 1083 // that the later instance matches the previous instance. 1084 if (D.getArgumentNumber() < ArgTys.size()) 1085 return Ty != ArgTys[D.getArgumentNumber()]; 1086 1087 // Otherwise, if this is the first instance of an argument, record it and 1088 // verify the "Any" kind. 1089 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1090 ArgTys.push_back(Ty); 1091 1092 switch (D.getArgumentKind()) { 1093 case IITDescriptor::AK_Any: return false; // Success 1094 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1095 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1096 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1097 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1098 } 1099 llvm_unreachable("all argument kinds not covered"); 1100 1101 case IITDescriptor::ExtendArgument: { 1102 // This may only be used when referring to a previous vector argument. 1103 if (D.getArgumentNumber() >= ArgTys.size()) 1104 return true; 1105 1106 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1107 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1108 NewTy = VectorType::getExtendedElementVectorType(VTy); 1109 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1110 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1111 else 1112 return true; 1113 1114 return Ty != NewTy; 1115 } 1116 case IITDescriptor::TruncArgument: { 1117 // This may only be used when referring to a previous vector argument. 1118 if (D.getArgumentNumber() >= ArgTys.size()) 1119 return true; 1120 1121 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1122 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1123 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1124 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1125 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1126 else 1127 return true; 1128 1129 return Ty != NewTy; 1130 } 1131 case IITDescriptor::HalfVecArgument: 1132 // This may only be used when referring to a previous vector argument. 1133 return D.getArgumentNumber() >= ArgTys.size() || 1134 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1135 VectorType::getHalfElementsVectorType( 1136 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1137 case IITDescriptor::SameVecWidthArgument: { 1138 if (D.getArgumentNumber() >= ArgTys.size()) 1139 return true; 1140 VectorType * ReferenceType = 1141 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1142 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1143 if (!ThisArgType || !ReferenceType || 1144 (ReferenceType->getVectorNumElements() != 1145 ThisArgType->getVectorNumElements())) 1146 return true; 1147 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1148 Infos, ArgTys); 1149 } 1150 case IITDescriptor::PtrToArgument: { 1151 if (D.getArgumentNumber() >= ArgTys.size()) 1152 return true; 1153 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1154 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1155 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1156 } 1157 case IITDescriptor::PtrToElt: { 1158 if (D.getArgumentNumber() >= ArgTys.size()) 1159 return true; 1160 VectorType * ReferenceType = 1161 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1162 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1163 1164 return (!ThisArgType || !ReferenceType || 1165 ThisArgType->getElementType() != ReferenceType->getElementType()); 1166 } 1167 case IITDescriptor::VecOfAnyPtrsToElt: { 1168 unsigned RefArgNumber = D.getRefArgNumber(); 1169 1170 // This may only be used when referring to a previous argument. 1171 if (RefArgNumber >= ArgTys.size()) 1172 return true; 1173 1174 // Record the overloaded type 1175 assert(D.getOverloadArgNumber() == ArgTys.size() && 1176 "Table consistency error"); 1177 ArgTys.push_back(Ty); 1178 1179 // Verify the overloaded type "matches" the Ref type. 1180 // i.e. Ty is a vector with the same width as Ref. 1181 // Composed of pointers to the same element type as Ref. 1182 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1183 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1184 if (!ThisArgVecTy || !ReferenceType || 1185 (ReferenceType->getVectorNumElements() != 1186 ThisArgVecTy->getVectorNumElements())) 1187 return true; 1188 PointerType *ThisArgEltTy = 1189 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1190 if (!ThisArgEltTy) 1191 return true; 1192 return ThisArgEltTy->getElementType() != 1193 ReferenceType->getVectorElementType(); 1194 } 1195 } 1196 llvm_unreachable("unhandled"); 1197 } 1198 1199 bool 1200 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1201 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1202 // If there are no descriptors left, then it can't be a vararg. 1203 if (Infos.empty()) 1204 return isVarArg; 1205 1206 // There should be only one descriptor remaining at this point. 1207 if (Infos.size() != 1) 1208 return true; 1209 1210 // Check and verify the descriptor. 1211 IITDescriptor D = Infos.front(); 1212 Infos = Infos.slice(1); 1213 if (D.Kind == IITDescriptor::VarArg) 1214 return !isVarArg; 1215 1216 return true; 1217 } 1218 1219 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1220 Intrinsic::ID ID = F->getIntrinsicID(); 1221 if (!ID) 1222 return None; 1223 1224 FunctionType *FTy = F->getFunctionType(); 1225 // Accumulate an array of overloaded types for the given intrinsic 1226 SmallVector<Type *, 4> ArgTys; 1227 { 1228 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1229 getIntrinsicInfoTableEntries(ID, Table); 1230 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1231 1232 // If we encounter any problems matching the signature with the descriptor 1233 // just give up remangling. It's up to verifier to report the discrepancy. 1234 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1235 return None; 1236 for (auto Ty : FTy->params()) 1237 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1238 return None; 1239 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1240 return None; 1241 } 1242 1243 StringRef Name = F->getName(); 1244 if (Name == Intrinsic::getName(ID, ArgTys)) 1245 return None; 1246 1247 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1248 NewDecl->setCallingConv(F->getCallingConv()); 1249 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1250 return NewDecl; 1251 } 1252 1253 /// hasAddressTaken - returns true if there are any uses of this function 1254 /// other than direct calls or invokes to it. 1255 bool Function::hasAddressTaken(const User* *PutOffender) const { 1256 for (const Use &U : uses()) { 1257 const User *FU = U.getUser(); 1258 if (isa<BlockAddress>(FU)) 1259 continue; 1260 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1261 if (PutOffender) 1262 *PutOffender = FU; 1263 return true; 1264 } 1265 ImmutableCallSite CS(cast<Instruction>(FU)); 1266 if (!CS.isCallee(&U)) { 1267 if (PutOffender) 1268 *PutOffender = FU; 1269 return true; 1270 } 1271 } 1272 return false; 1273 } 1274 1275 bool Function::isDefTriviallyDead() const { 1276 // Check the linkage 1277 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1278 !hasAvailableExternallyLinkage()) 1279 return false; 1280 1281 // Check if the function is used by anything other than a blockaddress. 1282 for (const User *U : users()) 1283 if (!isa<BlockAddress>(U)) 1284 return false; 1285 1286 return true; 1287 } 1288 1289 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1290 /// setjmp or other function that gcc recognizes as "returning twice". 1291 bool Function::callsFunctionThatReturnsTwice() const { 1292 for (const_inst_iterator 1293 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1294 ImmutableCallSite CS(&*I); 1295 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1296 return true; 1297 } 1298 1299 return false; 1300 } 1301 1302 Constant *Function::getPersonalityFn() const { 1303 assert(hasPersonalityFn() && getNumOperands()); 1304 return cast<Constant>(Op<0>()); 1305 } 1306 1307 void Function::setPersonalityFn(Constant *Fn) { 1308 setHungoffOperand<0>(Fn); 1309 setValueSubclassDataBit(3, Fn != nullptr); 1310 } 1311 1312 Constant *Function::getPrefixData() const { 1313 assert(hasPrefixData() && getNumOperands()); 1314 return cast<Constant>(Op<1>()); 1315 } 1316 1317 void Function::setPrefixData(Constant *PrefixData) { 1318 setHungoffOperand<1>(PrefixData); 1319 setValueSubclassDataBit(1, PrefixData != nullptr); 1320 } 1321 1322 Constant *Function::getPrologueData() const { 1323 assert(hasPrologueData() && getNumOperands()); 1324 return cast<Constant>(Op<2>()); 1325 } 1326 1327 void Function::setPrologueData(Constant *PrologueData) { 1328 setHungoffOperand<2>(PrologueData); 1329 setValueSubclassDataBit(2, PrologueData != nullptr); 1330 } 1331 1332 void Function::allocHungoffUselist() { 1333 // If we've already allocated a uselist, stop here. 1334 if (getNumOperands()) 1335 return; 1336 1337 allocHungoffUses(3, /*IsPhi=*/ false); 1338 setNumHungOffUseOperands(3); 1339 1340 // Initialize the uselist with placeholder operands to allow traversal. 1341 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1342 Op<0>().set(CPN); 1343 Op<1>().set(CPN); 1344 Op<2>().set(CPN); 1345 } 1346 1347 template <int Idx> 1348 void Function::setHungoffOperand(Constant *C) { 1349 if (C) { 1350 allocHungoffUselist(); 1351 Op<Idx>().set(C); 1352 } else if (getNumOperands()) { 1353 Op<Idx>().set( 1354 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1355 } 1356 } 1357 1358 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1359 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1360 if (On) 1361 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1362 else 1363 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1364 } 1365 1366 void Function::setEntryCount(ProfileCount Count, 1367 const DenseSet<GlobalValue::GUID> *S) { 1368 assert(Count.hasValue()); 1369 #if !defined(NDEBUG) 1370 auto PrevCount = getEntryCount(); 1371 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1372 #endif 1373 MDBuilder MDB(getContext()); 1374 setMetadata( 1375 LLVMContext::MD_prof, 1376 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1377 } 1378 1379 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1380 const DenseSet<GlobalValue::GUID> *Imports) { 1381 setEntryCount(ProfileCount(Count, Type), Imports); 1382 } 1383 1384 ProfileCount Function::getEntryCount() const { 1385 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1386 if (MD && MD->getOperand(0)) 1387 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1388 if (MDS->getString().equals("function_entry_count")) { 1389 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1390 uint64_t Count = CI->getValue().getZExtValue(); 1391 // A value of -1 is used for SamplePGO when there were no samples. 1392 // Treat this the same as unknown. 1393 if (Count == (uint64_t)-1) 1394 return ProfileCount::getInvalid(); 1395 return ProfileCount(Count, PCT_Real); 1396 } else if (MDS->getString().equals("synthetic_function_entry_count")) { 1397 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1398 uint64_t Count = CI->getValue().getZExtValue(); 1399 return ProfileCount(Count, PCT_Synthetic); 1400 } 1401 } 1402 return ProfileCount::getInvalid(); 1403 } 1404 1405 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1406 DenseSet<GlobalValue::GUID> R; 1407 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1408 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1409 if (MDS->getString().equals("function_entry_count")) 1410 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1411 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1412 ->getValue() 1413 .getZExtValue()); 1414 return R; 1415 } 1416 1417 void Function::setSectionPrefix(StringRef Prefix) { 1418 MDBuilder MDB(getContext()); 1419 setMetadata(LLVMContext::MD_section_prefix, 1420 MDB.createFunctionSectionPrefix(Prefix)); 1421 } 1422 1423 Optional<StringRef> Function::getSectionPrefix() const { 1424 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1425 assert(cast<MDString>(MD->getOperand(0)) 1426 ->getString() 1427 .equals("function_section_prefix") && 1428 "Metadata not match"); 1429 return cast<MDString>(MD->getOperand(1))->getString(); 1430 } 1431 return None; 1432 } 1433 1434 bool Function::nullPointerIsDefined() const { 1435 return getFnAttribute("null-pointer-is-valid") 1436 .getValueAsString() 1437 .equals("true"); 1438 } 1439 1440 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1441 if (F && F->nullPointerIsDefined()) 1442 return true; 1443 1444 if (AS != 0) 1445 return true; 1446 1447 return false; 1448 } 1449