xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 6bcf2ba2f0fff179602fd60b5e0127cd20fc907e)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <cstring>
55 #include <string>
56 
57 using namespace llvm;
58 using ProfileCount = Function::ProfileCount;
59 
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits<BasicBlock>;
63 
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
67 
68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
69     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
70   setName(Name);
71 }
72 
73 void Argument::setParent(Function *parent) {
74   Parent = parent;
75 }
76 
77 bool Argument::hasNonNullAttr() const {
78   if (!getType()->isPointerTy()) return false;
79   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            !NullPointerIsDefined(getParent(),
83                                  getType()->getPointerAddressSpace()))
84     return true;
85   return false;
86 }
87 
88 bool Argument::hasByValAttr() const {
89   if (!getType()->isPointerTy()) return false;
90   return hasAttribute(Attribute::ByVal);
91 }
92 
93 bool Argument::hasSwiftSelfAttr() const {
94   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 }
96 
97 bool Argument::hasSwiftErrorAttr() const {
98   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 }
100 
101 bool Argument::hasInAllocaAttr() const {
102   if (!getType()->isPointerTy()) return false;
103   return hasAttribute(Attribute::InAlloca);
104 }
105 
106 bool Argument::hasByValOrInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   AttributeList Attrs = getParent()->getAttributes();
109   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
110          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 }
112 
113 unsigned Argument::getParamAlignment() const {
114   assert(getType()->isPointerTy() && "Only pointers have alignments");
115   return getParent()->getParamAlignment(getArgNo());
116 }
117 
118 uint64_t Argument::getDereferenceableBytes() const {
119   assert(getType()->isPointerTy() &&
120          "Only pointers have dereferenceable bytes");
121   return getParent()->getParamDereferenceableBytes(getArgNo());
122 }
123 
124 uint64_t Argument::getDereferenceableOrNullBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
128 }
129 
130 bool Argument::hasNestAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   return hasAttribute(Attribute::Nest);
133 }
134 
135 bool Argument::hasNoAliasAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   return hasAttribute(Attribute::NoAlias);
138 }
139 
140 bool Argument::hasNoCaptureAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   return hasAttribute(Attribute::NoCapture);
143 }
144 
145 bool Argument::hasStructRetAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::StructRet);
148 }
149 
150 bool Argument::hasReturnedAttr() const {
151   return hasAttribute(Attribute::Returned);
152 }
153 
154 bool Argument::hasZExtAttr() const {
155   return hasAttribute(Attribute::ZExt);
156 }
157 
158 bool Argument::hasSExtAttr() const {
159   return hasAttribute(Attribute::SExt);
160 }
161 
162 bool Argument::onlyReadsMemory() const {
163   AttributeList Attrs = getParent()->getAttributes();
164   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
165          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
166 }
167 
168 void Argument::addAttrs(AttrBuilder &B) {
169   AttributeList AL = getParent()->getAttributes();
170   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
171   getParent()->setAttributes(AL);
172 }
173 
174 void Argument::addAttr(Attribute::AttrKind Kind) {
175   getParent()->addParamAttr(getArgNo(), Kind);
176 }
177 
178 void Argument::addAttr(Attribute Attr) {
179   getParent()->addParamAttr(getArgNo(), Attr);
180 }
181 
182 void Argument::removeAttr(Attribute::AttrKind Kind) {
183   getParent()->removeParamAttr(getArgNo(), Kind);
184 }
185 
186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
187   return getParent()->hasParamAttribute(getArgNo(), Kind);
188 }
189 
190 //===----------------------------------------------------------------------===//
191 // Helper Methods in Function
192 //===----------------------------------------------------------------------===//
193 
194 LLVMContext &Function::getContext() const {
195   return getType()->getContext();
196 }
197 
198 unsigned Function::getInstructionCount() {
199   unsigned NumInstrs = 0;
200   for (BasicBlock &BB : BasicBlocks)
201     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
202                                BB.instructionsWithoutDebug().end());
203   return NumInstrs;
204 }
205 
206 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
207                            const Twine &N, Module &M) {
208   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
209 }
210 
211 void Function::removeFromParent() {
212   getParent()->getFunctionList().remove(getIterator());
213 }
214 
215 void Function::eraseFromParent() {
216   getParent()->getFunctionList().erase(getIterator());
217 }
218 
219 //===----------------------------------------------------------------------===//
220 // Function Implementation
221 //===----------------------------------------------------------------------===//
222 
223 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
224   // If AS == -1 and we are passed a valid module pointer we place the function
225   // in the program address space. Otherwise we default to AS0.
226   if (AddrSpace == static_cast<unsigned>(-1))
227     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
228   return AddrSpace;
229 }
230 
231 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
232                    const Twine &name, Module *ParentModule)
233     : GlobalObject(Ty, Value::FunctionVal,
234                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
235                    computeAddrSpace(AddrSpace, ParentModule)),
236       NumArgs(Ty->getNumParams()) {
237   assert(FunctionType::isValidReturnType(getReturnType()) &&
238          "invalid return type");
239   setGlobalObjectSubClassData(0);
240 
241   // We only need a symbol table for a function if the context keeps value names
242   if (!getContext().shouldDiscardValueNames())
243     SymTab = make_unique<ValueSymbolTable>();
244 
245   // If the function has arguments, mark them as lazily built.
246   if (Ty->getNumParams())
247     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
248 
249   if (ParentModule)
250     ParentModule->getFunctionList().push_back(this);
251 
252   HasLLVMReservedName = getName().startswith("llvm.");
253   // Ensure intrinsics have the right parameter attributes.
254   // Note, the IntID field will have been set in Value::setName if this function
255   // name is a valid intrinsic ID.
256   if (IntID)
257     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
258 }
259 
260 Function::~Function() {
261   dropAllReferences();    // After this it is safe to delete instructions.
262 
263   // Delete all of the method arguments and unlink from symbol table...
264   if (Arguments)
265     clearArguments();
266 
267   // Remove the function from the on-the-side GC table.
268   clearGC();
269 }
270 
271 void Function::BuildLazyArguments() const {
272   // Create the arguments vector, all arguments start out unnamed.
273   auto *FT = getFunctionType();
274   if (NumArgs > 0) {
275     Arguments = std::allocator<Argument>().allocate(NumArgs);
276     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
277       Type *ArgTy = FT->getParamType(i);
278       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
279       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
280     }
281   }
282 
283   // Clear the lazy arguments bit.
284   unsigned SDC = getSubclassDataFromValue();
285   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
286   assert(!hasLazyArguments());
287 }
288 
289 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
290   return MutableArrayRef<Argument>(Args, Count);
291 }
292 
293 void Function::clearArguments() {
294   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
295     A.setName("");
296     A.~Argument();
297   }
298   std::allocator<Argument>().deallocate(Arguments, NumArgs);
299   Arguments = nullptr;
300 }
301 
302 void Function::stealArgumentListFrom(Function &Src) {
303   assert(isDeclaration() && "Expected no references to current arguments");
304 
305   // Drop the current arguments, if any, and set the lazy argument bit.
306   if (!hasLazyArguments()) {
307     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
308                         [](const Argument &A) { return A.use_empty(); }) &&
309            "Expected arguments to be unused in declaration");
310     clearArguments();
311     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
312   }
313 
314   // Nothing to steal if Src has lazy arguments.
315   if (Src.hasLazyArguments())
316     return;
317 
318   // Steal arguments from Src, and fix the lazy argument bits.
319   assert(arg_size() == Src.arg_size());
320   Arguments = Src.Arguments;
321   Src.Arguments = nullptr;
322   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
323     // FIXME: This does the work of transferNodesFromList inefficiently.
324     SmallString<128> Name;
325     if (A.hasName())
326       Name = A.getName();
327     if (!Name.empty())
328       A.setName("");
329     A.setParent(this);
330     if (!Name.empty())
331       A.setName(Name);
332   }
333 
334   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
335   assert(!hasLazyArguments());
336   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
337 }
338 
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining.  This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero.  Then everything is deleted for real.  Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
347 void Function::dropAllReferences() {
348   setIsMaterializable(false);
349 
350   for (BasicBlock &BB : *this)
351     BB.dropAllReferences();
352 
353   // Delete all basic blocks. They are now unused, except possibly by
354   // blockaddresses, but BasicBlock's destructor takes care of those.
355   while (!BasicBlocks.empty())
356     BasicBlocks.begin()->eraseFromParent();
357 
358   // Drop uses of any optional data (real or placeholder).
359   if (getNumOperands()) {
360     User::dropAllReferences();
361     setNumHungOffUseOperands(0);
362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363   }
364 
365   // Metadata is stored in a side-table.
366   clearMetadata();
367 }
368 
369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370   AttributeList PAL = getAttributes();
371   PAL = PAL.addAttribute(getContext(), i, Kind);
372   setAttributes(PAL);
373 }
374 
375 void Function::addAttribute(unsigned i, Attribute Attr) {
376   AttributeList PAL = getAttributes();
377   PAL = PAL.addAttribute(getContext(), i, Attr);
378   setAttributes(PAL);
379 }
380 
381 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
382   AttributeList PAL = getAttributes();
383   PAL = PAL.addAttributes(getContext(), i, Attrs);
384   setAttributes(PAL);
385 }
386 
387 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
388   AttributeList PAL = getAttributes();
389   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
390   setAttributes(PAL);
391 }
392 
393 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
394   AttributeList PAL = getAttributes();
395   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
396   setAttributes(PAL);
397 }
398 
399 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
400   AttributeList PAL = getAttributes();
401   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
402   setAttributes(PAL);
403 }
404 
405 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
406   AttributeList PAL = getAttributes();
407   PAL = PAL.removeAttribute(getContext(), i, Kind);
408   setAttributes(PAL);
409 }
410 
411 void Function::removeAttribute(unsigned i, StringRef Kind) {
412   AttributeList PAL = getAttributes();
413   PAL = PAL.removeAttribute(getContext(), i, Kind);
414   setAttributes(PAL);
415 }
416 
417 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
418   AttributeList PAL = getAttributes();
419   PAL = PAL.removeAttributes(getContext(), i, Attrs);
420   setAttributes(PAL);
421 }
422 
423 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
424   AttributeList PAL = getAttributes();
425   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
426   setAttributes(PAL);
427 }
428 
429 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
430   AttributeList PAL = getAttributes();
431   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
432   setAttributes(PAL);
433 }
434 
435 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
436   AttributeList PAL = getAttributes();
437   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
438   setAttributes(PAL);
439 }
440 
441 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
442   AttributeList PAL = getAttributes();
443   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
444   setAttributes(PAL);
445 }
446 
447 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
448   AttributeList PAL = getAttributes();
449   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
450   setAttributes(PAL);
451 }
452 
453 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
454   AttributeList PAL = getAttributes();
455   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
456   setAttributes(PAL);
457 }
458 
459 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
460                                                  uint64_t Bytes) {
461   AttributeList PAL = getAttributes();
462   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
463   setAttributes(PAL);
464 }
465 
466 const std::string &Function::getGC() const {
467   assert(hasGC() && "Function has no collector");
468   return getContext().getGC(*this);
469 }
470 
471 void Function::setGC(std::string Str) {
472   setValueSubclassDataBit(14, !Str.empty());
473   getContext().setGC(*this, std::move(Str));
474 }
475 
476 void Function::clearGC() {
477   if (!hasGC())
478     return;
479   getContext().deleteGC(*this);
480   setValueSubclassDataBit(14, false);
481 }
482 
483 /// Copy all additional attributes (those not needed to create a Function) from
484 /// the Function Src to this one.
485 void Function::copyAttributesFrom(const Function *Src) {
486   GlobalObject::copyAttributesFrom(Src);
487   setCallingConv(Src->getCallingConv());
488   setAttributes(Src->getAttributes());
489   if (Src->hasGC())
490     setGC(Src->getGC());
491   else
492     clearGC();
493   if (Src->hasPersonalityFn())
494     setPersonalityFn(Src->getPersonalityFn());
495   if (Src->hasPrefixData())
496     setPrefixData(Src->getPrefixData());
497   if (Src->hasPrologueData())
498     setPrologueData(Src->getPrologueData());
499 }
500 
501 /// Table of string intrinsic names indexed by enum value.
502 static const char * const IntrinsicNameTable[] = {
503   "not_intrinsic",
504 #define GET_INTRINSIC_NAME_TABLE
505 #include "llvm/IR/IntrinsicImpl.inc"
506 #undef GET_INTRINSIC_NAME_TABLE
507 };
508 
509 /// Table of per-target intrinsic name tables.
510 #define GET_INTRINSIC_TARGET_DATA
511 #include "llvm/IR/IntrinsicImpl.inc"
512 #undef GET_INTRINSIC_TARGET_DATA
513 
514 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
515 /// target as \c Name, or the generic table if \c Name is not target specific.
516 ///
517 /// Returns the relevant slice of \c IntrinsicNameTable
518 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
519   assert(Name.startswith("llvm."));
520 
521   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
522   // Drop "llvm." and take the first dotted component. That will be the target
523   // if this is target specific.
524   StringRef Target = Name.drop_front(5).split('.').first;
525   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
526                              [](const IntrinsicTargetInfo &TI,
527                                 StringRef Target) { return TI.Name < Target; });
528   // We've either found the target or just fall back to the generic set, which
529   // is always first.
530   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
531   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
532 }
533 
534 /// This does the actual lookup of an intrinsic ID which
535 /// matches the given function name.
536 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
537   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
538   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
539   if (Idx == -1)
540     return Intrinsic::not_intrinsic;
541 
542   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
543   // an index into a sub-table.
544   int Adjust = NameTable.data() - IntrinsicNameTable;
545   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
546 
547   // If the intrinsic is not overloaded, require an exact match. If it is
548   // overloaded, require either exact or prefix match.
549   const auto MatchSize = strlen(NameTable[Idx]);
550   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
551   bool IsExactMatch = Name.size() == MatchSize;
552   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
553 }
554 
555 void Function::recalculateIntrinsicID() {
556   StringRef Name = getName();
557   if (!Name.startswith("llvm.")) {
558     HasLLVMReservedName = false;
559     IntID = Intrinsic::not_intrinsic;
560     return;
561   }
562   HasLLVMReservedName = true;
563   IntID = lookupIntrinsicID(Name);
564 }
565 
566 /// Returns a stable mangling for the type specified for use in the name
567 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
568 /// of named types is simply their name.  Manglings for unnamed types consist
569 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
570 /// combined with the mangling of their component types.  A vararg function
571 /// type will have a suffix of 'vararg'.  Since function types can contain
572 /// other function types, we close a function type mangling with suffix 'f'
573 /// which can't be confused with it's prefix.  This ensures we don't have
574 /// collisions between two unrelated function types. Otherwise, you might
575 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
576 ///
577 static std::string getMangledTypeStr(Type* Ty) {
578   std::string Result;
579   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
580     Result += "p" + utostr(PTyp->getAddressSpace()) +
581       getMangledTypeStr(PTyp->getElementType());
582   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
583     Result += "a" + utostr(ATyp->getNumElements()) +
584       getMangledTypeStr(ATyp->getElementType());
585   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
586     if (!STyp->isLiteral()) {
587       Result += "s_";
588       Result += STyp->getName();
589     } else {
590       Result += "sl_";
591       for (auto Elem : STyp->elements())
592         Result += getMangledTypeStr(Elem);
593     }
594     // Ensure nested structs are distinguishable.
595     Result += "s";
596   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
597     Result += "f_" + getMangledTypeStr(FT->getReturnType());
598     for (size_t i = 0; i < FT->getNumParams(); i++)
599       Result += getMangledTypeStr(FT->getParamType(i));
600     if (FT->isVarArg())
601       Result += "vararg";
602     // Ensure nested function types are distinguishable.
603     Result += "f";
604   } else if (isa<VectorType>(Ty)) {
605     Result += "v" + utostr(Ty->getVectorNumElements()) +
606       getMangledTypeStr(Ty->getVectorElementType());
607   } else if (Ty) {
608     switch (Ty->getTypeID()) {
609     default: llvm_unreachable("Unhandled type");
610     case Type::VoidTyID:      Result += "isVoid";   break;
611     case Type::MetadataTyID:  Result += "Metadata"; break;
612     case Type::HalfTyID:      Result += "f16";      break;
613     case Type::FloatTyID:     Result += "f32";      break;
614     case Type::DoubleTyID:    Result += "f64";      break;
615     case Type::X86_FP80TyID:  Result += "f80";      break;
616     case Type::FP128TyID:     Result += "f128";     break;
617     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
618     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
619     case Type::IntegerTyID:
620       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
621       break;
622     }
623   }
624   return Result;
625 }
626 
627 StringRef Intrinsic::getName(ID id) {
628   assert(id < num_intrinsics && "Invalid intrinsic ID!");
629   assert(!isOverloaded(id) &&
630          "This version of getName does not support overloading");
631   return IntrinsicNameTable[id];
632 }
633 
634 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
635   assert(id < num_intrinsics && "Invalid intrinsic ID!");
636   std::string Result(IntrinsicNameTable[id]);
637   for (Type *Ty : Tys) {
638     Result += "." + getMangledTypeStr(Ty);
639   }
640   return Result;
641 }
642 
643 /// IIT_Info - These are enumerators that describe the entries returned by the
644 /// getIntrinsicInfoTableEntries function.
645 ///
646 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
647 enum IIT_Info {
648   // Common values should be encoded with 0-15.
649   IIT_Done = 0,
650   IIT_I1   = 1,
651   IIT_I8   = 2,
652   IIT_I16  = 3,
653   IIT_I32  = 4,
654   IIT_I64  = 5,
655   IIT_F16  = 6,
656   IIT_F32  = 7,
657   IIT_F64  = 8,
658   IIT_V2   = 9,
659   IIT_V4   = 10,
660   IIT_V8   = 11,
661   IIT_V16  = 12,
662   IIT_V32  = 13,
663   IIT_PTR  = 14,
664   IIT_ARG  = 15,
665 
666   // Values from 16+ are only encodable with the inefficient encoding.
667   IIT_V64  = 16,
668   IIT_MMX  = 17,
669   IIT_TOKEN = 18,
670   IIT_METADATA = 19,
671   IIT_EMPTYSTRUCT = 20,
672   IIT_STRUCT2 = 21,
673   IIT_STRUCT3 = 22,
674   IIT_STRUCT4 = 23,
675   IIT_STRUCT5 = 24,
676   IIT_EXTEND_ARG = 25,
677   IIT_TRUNC_ARG = 26,
678   IIT_ANYPTR = 27,
679   IIT_V1   = 28,
680   IIT_VARARG = 29,
681   IIT_HALF_VEC_ARG = 30,
682   IIT_SAME_VEC_WIDTH_ARG = 31,
683   IIT_PTR_TO_ARG = 32,
684   IIT_PTR_TO_ELT = 33,
685   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
686   IIT_I128 = 35,
687   IIT_V512 = 36,
688   IIT_V1024 = 37,
689   IIT_STRUCT6 = 38,
690   IIT_STRUCT7 = 39,
691   IIT_STRUCT8 = 40,
692   IIT_F128 = 41
693 };
694 
695 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
696                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
697   using namespace Intrinsic;
698 
699   IIT_Info Info = IIT_Info(Infos[NextElt++]);
700   unsigned StructElts = 2;
701 
702   switch (Info) {
703   case IIT_Done:
704     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
705     return;
706   case IIT_VARARG:
707     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
708     return;
709   case IIT_MMX:
710     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
711     return;
712   case IIT_TOKEN:
713     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
714     return;
715   case IIT_METADATA:
716     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
717     return;
718   case IIT_F16:
719     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
720     return;
721   case IIT_F32:
722     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
723     return;
724   case IIT_F64:
725     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
726     return;
727   case IIT_F128:
728     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
729     return;
730   case IIT_I1:
731     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
732     return;
733   case IIT_I8:
734     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
735     return;
736   case IIT_I16:
737     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
738     return;
739   case IIT_I32:
740     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
741     return;
742   case IIT_I64:
743     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
744     return;
745   case IIT_I128:
746     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
747     return;
748   case IIT_V1:
749     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
750     DecodeIITType(NextElt, Infos, OutputTable);
751     return;
752   case IIT_V2:
753     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
754     DecodeIITType(NextElt, Infos, OutputTable);
755     return;
756   case IIT_V4:
757     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
758     DecodeIITType(NextElt, Infos, OutputTable);
759     return;
760   case IIT_V8:
761     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
762     DecodeIITType(NextElt, Infos, OutputTable);
763     return;
764   case IIT_V16:
765     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
766     DecodeIITType(NextElt, Infos, OutputTable);
767     return;
768   case IIT_V32:
769     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
770     DecodeIITType(NextElt, Infos, OutputTable);
771     return;
772   case IIT_V64:
773     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
774     DecodeIITType(NextElt, Infos, OutputTable);
775     return;
776   case IIT_V512:
777     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
778     DecodeIITType(NextElt, Infos, OutputTable);
779     return;
780   case IIT_V1024:
781     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
782     DecodeIITType(NextElt, Infos, OutputTable);
783     return;
784   case IIT_PTR:
785     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
786     DecodeIITType(NextElt, Infos, OutputTable);
787     return;
788   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
789     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
790                                              Infos[NextElt++]));
791     DecodeIITType(NextElt, Infos, OutputTable);
792     return;
793   }
794   case IIT_ARG: {
795     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
796     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
797     return;
798   }
799   case IIT_EXTEND_ARG: {
800     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
801     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
802                                              ArgInfo));
803     return;
804   }
805   case IIT_TRUNC_ARG: {
806     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
807     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
808                                              ArgInfo));
809     return;
810   }
811   case IIT_HALF_VEC_ARG: {
812     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
813     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
814                                              ArgInfo));
815     return;
816   }
817   case IIT_SAME_VEC_WIDTH_ARG: {
818     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
819     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
820                                              ArgInfo));
821     return;
822   }
823   case IIT_PTR_TO_ARG: {
824     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
825     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
826                                              ArgInfo));
827     return;
828   }
829   case IIT_PTR_TO_ELT: {
830     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
831     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
832     return;
833   }
834   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
835     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
837     OutputTable.push_back(
838         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
839     return;
840   }
841   case IIT_EMPTYSTRUCT:
842     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
843     return;
844   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
845   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
846   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
847   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
848   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
849   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
850   case IIT_STRUCT2: {
851     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
852 
853     for (unsigned i = 0; i != StructElts; ++i)
854       DecodeIITType(NextElt, Infos, OutputTable);
855     return;
856   }
857   }
858   llvm_unreachable("unhandled");
859 }
860 
861 #define GET_INTRINSIC_GENERATOR_GLOBAL
862 #include "llvm/IR/IntrinsicImpl.inc"
863 #undef GET_INTRINSIC_GENERATOR_GLOBAL
864 
865 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
866                                              SmallVectorImpl<IITDescriptor> &T){
867   // Check to see if the intrinsic's type was expressible by the table.
868   unsigned TableVal = IIT_Table[id-1];
869 
870   // Decode the TableVal into an array of IITValues.
871   SmallVector<unsigned char, 8> IITValues;
872   ArrayRef<unsigned char> IITEntries;
873   unsigned NextElt = 0;
874   if ((TableVal >> 31) != 0) {
875     // This is an offset into the IIT_LongEncodingTable.
876     IITEntries = IIT_LongEncodingTable;
877 
878     // Strip sentinel bit.
879     NextElt = (TableVal << 1) >> 1;
880   } else {
881     // Decode the TableVal into an array of IITValues.  If the entry was encoded
882     // into a single word in the table itself, decode it now.
883     do {
884       IITValues.push_back(TableVal & 0xF);
885       TableVal >>= 4;
886     } while (TableVal);
887 
888     IITEntries = IITValues;
889     NextElt = 0;
890   }
891 
892   // Okay, decode the table into the output vector of IITDescriptors.
893   DecodeIITType(NextElt, IITEntries, T);
894   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
895     DecodeIITType(NextElt, IITEntries, T);
896 }
897 
898 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
899                              ArrayRef<Type*> Tys, LLVMContext &Context) {
900   using namespace Intrinsic;
901 
902   IITDescriptor D = Infos.front();
903   Infos = Infos.slice(1);
904 
905   switch (D.Kind) {
906   case IITDescriptor::Void: return Type::getVoidTy(Context);
907   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
908   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
909   case IITDescriptor::Token: return Type::getTokenTy(Context);
910   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
911   case IITDescriptor::Half: return Type::getHalfTy(Context);
912   case IITDescriptor::Float: return Type::getFloatTy(Context);
913   case IITDescriptor::Double: return Type::getDoubleTy(Context);
914   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
915 
916   case IITDescriptor::Integer:
917     return IntegerType::get(Context, D.Integer_Width);
918   case IITDescriptor::Vector:
919     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
920   case IITDescriptor::Pointer:
921     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
922                             D.Pointer_AddressSpace);
923   case IITDescriptor::Struct: {
924     SmallVector<Type *, 8> Elts;
925     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
926       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
927     return StructType::get(Context, Elts);
928   }
929   case IITDescriptor::Argument:
930     return Tys[D.getArgumentNumber()];
931   case IITDescriptor::ExtendArgument: {
932     Type *Ty = Tys[D.getArgumentNumber()];
933     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
934       return VectorType::getExtendedElementVectorType(VTy);
935 
936     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
937   }
938   case IITDescriptor::TruncArgument: {
939     Type *Ty = Tys[D.getArgumentNumber()];
940     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
941       return VectorType::getTruncatedElementVectorType(VTy);
942 
943     IntegerType *ITy = cast<IntegerType>(Ty);
944     assert(ITy->getBitWidth() % 2 == 0);
945     return IntegerType::get(Context, ITy->getBitWidth() / 2);
946   }
947   case IITDescriptor::HalfVecArgument:
948     return VectorType::getHalfElementsVectorType(cast<VectorType>(
949                                                   Tys[D.getArgumentNumber()]));
950   case IITDescriptor::SameVecWidthArgument: {
951     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
952     Type *Ty = Tys[D.getArgumentNumber()];
953     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
954       return VectorType::get(EltTy, VTy->getNumElements());
955     }
956     llvm_unreachable("unhandled");
957   }
958   case IITDescriptor::PtrToArgument: {
959     Type *Ty = Tys[D.getArgumentNumber()];
960     return PointerType::getUnqual(Ty);
961   }
962   case IITDescriptor::PtrToElt: {
963     Type *Ty = Tys[D.getArgumentNumber()];
964     VectorType *VTy = dyn_cast<VectorType>(Ty);
965     if (!VTy)
966       llvm_unreachable("Expected an argument of Vector Type");
967     Type *EltTy = VTy->getVectorElementType();
968     return PointerType::getUnqual(EltTy);
969   }
970   case IITDescriptor::VecOfAnyPtrsToElt:
971     // Return the overloaded type (which determines the pointers address space)
972     return Tys[D.getOverloadArgNumber()];
973   }
974   llvm_unreachable("unhandled");
975 }
976 
977 FunctionType *Intrinsic::getType(LLVMContext &Context,
978                                  ID id, ArrayRef<Type*> Tys) {
979   SmallVector<IITDescriptor, 8> Table;
980   getIntrinsicInfoTableEntries(id, Table);
981 
982   ArrayRef<IITDescriptor> TableRef = Table;
983   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
984 
985   SmallVector<Type*, 8> ArgTys;
986   while (!TableRef.empty())
987     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
988 
989   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
990   // If we see void type as the type of the last argument, it is vararg intrinsic
991   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
992     ArgTys.pop_back();
993     return FunctionType::get(ResultTy, ArgTys, true);
994   }
995   return FunctionType::get(ResultTy, ArgTys, false);
996 }
997 
998 bool Intrinsic::isOverloaded(ID id) {
999 #define GET_INTRINSIC_OVERLOAD_TABLE
1000 #include "llvm/IR/IntrinsicImpl.inc"
1001 #undef GET_INTRINSIC_OVERLOAD_TABLE
1002 }
1003 
1004 bool Intrinsic::isLeaf(ID id) {
1005   switch (id) {
1006   default:
1007     return true;
1008 
1009   case Intrinsic::experimental_gc_statepoint:
1010   case Intrinsic::experimental_patchpoint_void:
1011   case Intrinsic::experimental_patchpoint_i64:
1012     return false;
1013   }
1014 }
1015 
1016 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1017 #define GET_INTRINSIC_ATTRIBUTES
1018 #include "llvm/IR/IntrinsicImpl.inc"
1019 #undef GET_INTRINSIC_ATTRIBUTES
1020 
1021 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1022   // There can never be multiple globals with the same name of different types,
1023   // because intrinsics must be a specific type.
1024   return
1025     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
1026                                           getType(M->getContext(), id, Tys)));
1027 }
1028 
1029 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1030 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1031 #include "llvm/IR/IntrinsicImpl.inc"
1032 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1033 
1034 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1035 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1036 #include "llvm/IR/IntrinsicImpl.inc"
1037 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1038 
1039 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1040                                    SmallVectorImpl<Type*> &ArgTys) {
1041   using namespace Intrinsic;
1042 
1043   // If we ran out of descriptors, there are too many arguments.
1044   if (Infos.empty()) return true;
1045   IITDescriptor D = Infos.front();
1046   Infos = Infos.slice(1);
1047 
1048   switch (D.Kind) {
1049     case IITDescriptor::Void: return !Ty->isVoidTy();
1050     case IITDescriptor::VarArg: return true;
1051     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1052     case IITDescriptor::Token: return !Ty->isTokenTy();
1053     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1054     case IITDescriptor::Half: return !Ty->isHalfTy();
1055     case IITDescriptor::Float: return !Ty->isFloatTy();
1056     case IITDescriptor::Double: return !Ty->isDoubleTy();
1057     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1058     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1059     case IITDescriptor::Vector: {
1060       VectorType *VT = dyn_cast<VectorType>(Ty);
1061       return !VT || VT->getNumElements() != D.Vector_Width ||
1062              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1063     }
1064     case IITDescriptor::Pointer: {
1065       PointerType *PT = dyn_cast<PointerType>(Ty);
1066       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1067              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1068     }
1069 
1070     case IITDescriptor::Struct: {
1071       StructType *ST = dyn_cast<StructType>(Ty);
1072       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1073         return true;
1074 
1075       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1076         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1077           return true;
1078       return false;
1079     }
1080 
1081     case IITDescriptor::Argument:
1082       // Two cases here - If this is the second occurrence of an argument, verify
1083       // that the later instance matches the previous instance.
1084       if (D.getArgumentNumber() < ArgTys.size())
1085         return Ty != ArgTys[D.getArgumentNumber()];
1086 
1087           // Otherwise, if this is the first instance of an argument, record it and
1088           // verify the "Any" kind.
1089           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1090           ArgTys.push_back(Ty);
1091 
1092           switch (D.getArgumentKind()) {
1093             case IITDescriptor::AK_Any:        return false; // Success
1094             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1095             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1096             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1097             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1098           }
1099           llvm_unreachable("all argument kinds not covered");
1100 
1101     case IITDescriptor::ExtendArgument: {
1102       // This may only be used when referring to a previous vector argument.
1103       if (D.getArgumentNumber() >= ArgTys.size())
1104         return true;
1105 
1106       Type *NewTy = ArgTys[D.getArgumentNumber()];
1107       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1108         NewTy = VectorType::getExtendedElementVectorType(VTy);
1109       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1110         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1111       else
1112         return true;
1113 
1114       return Ty != NewTy;
1115     }
1116     case IITDescriptor::TruncArgument: {
1117       // This may only be used when referring to a previous vector argument.
1118       if (D.getArgumentNumber() >= ArgTys.size())
1119         return true;
1120 
1121       Type *NewTy = ArgTys[D.getArgumentNumber()];
1122       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1123         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1124       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1125         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1126       else
1127         return true;
1128 
1129       return Ty != NewTy;
1130     }
1131     case IITDescriptor::HalfVecArgument:
1132       // This may only be used when referring to a previous vector argument.
1133       return D.getArgumentNumber() >= ArgTys.size() ||
1134              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1135              VectorType::getHalfElementsVectorType(
1136                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1137     case IITDescriptor::SameVecWidthArgument: {
1138       if (D.getArgumentNumber() >= ArgTys.size())
1139         return true;
1140       VectorType * ReferenceType =
1141         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1142       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1143       if (!ThisArgType || !ReferenceType ||
1144           (ReferenceType->getVectorNumElements() !=
1145            ThisArgType->getVectorNumElements()))
1146         return true;
1147       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1148                                 Infos, ArgTys);
1149     }
1150     case IITDescriptor::PtrToArgument: {
1151       if (D.getArgumentNumber() >= ArgTys.size())
1152         return true;
1153       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1154       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1155       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1156     }
1157     case IITDescriptor::PtrToElt: {
1158       if (D.getArgumentNumber() >= ArgTys.size())
1159         return true;
1160       VectorType * ReferenceType =
1161         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1162       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1163 
1164       return (!ThisArgType || !ReferenceType ||
1165               ThisArgType->getElementType() != ReferenceType->getElementType());
1166     }
1167     case IITDescriptor::VecOfAnyPtrsToElt: {
1168       unsigned RefArgNumber = D.getRefArgNumber();
1169 
1170       // This may only be used when referring to a previous argument.
1171       if (RefArgNumber >= ArgTys.size())
1172         return true;
1173 
1174       // Record the overloaded type
1175       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1176              "Table consistency error");
1177       ArgTys.push_back(Ty);
1178 
1179       // Verify the overloaded type "matches" the Ref type.
1180       // i.e. Ty is a vector with the same width as Ref.
1181       // Composed of pointers to the same element type as Ref.
1182       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1183       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1184       if (!ThisArgVecTy || !ReferenceType ||
1185           (ReferenceType->getVectorNumElements() !=
1186            ThisArgVecTy->getVectorNumElements()))
1187         return true;
1188       PointerType *ThisArgEltTy =
1189               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1190       if (!ThisArgEltTy)
1191         return true;
1192       return ThisArgEltTy->getElementType() !=
1193              ReferenceType->getVectorElementType();
1194     }
1195   }
1196   llvm_unreachable("unhandled");
1197 }
1198 
1199 bool
1200 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1201                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1202   // If there are no descriptors left, then it can't be a vararg.
1203   if (Infos.empty())
1204     return isVarArg;
1205 
1206   // There should be only one descriptor remaining at this point.
1207   if (Infos.size() != 1)
1208     return true;
1209 
1210   // Check and verify the descriptor.
1211   IITDescriptor D = Infos.front();
1212   Infos = Infos.slice(1);
1213   if (D.Kind == IITDescriptor::VarArg)
1214     return !isVarArg;
1215 
1216   return true;
1217 }
1218 
1219 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1220   Intrinsic::ID ID = F->getIntrinsicID();
1221   if (!ID)
1222     return None;
1223 
1224   FunctionType *FTy = F->getFunctionType();
1225   // Accumulate an array of overloaded types for the given intrinsic
1226   SmallVector<Type *, 4> ArgTys;
1227   {
1228     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1229     getIntrinsicInfoTableEntries(ID, Table);
1230     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1231 
1232     // If we encounter any problems matching the signature with the descriptor
1233     // just give up remangling. It's up to verifier to report the discrepancy.
1234     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1235       return None;
1236     for (auto Ty : FTy->params())
1237       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1238         return None;
1239     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1240       return None;
1241   }
1242 
1243   StringRef Name = F->getName();
1244   if (Name == Intrinsic::getName(ID, ArgTys))
1245     return None;
1246 
1247   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1248   NewDecl->setCallingConv(F->getCallingConv());
1249   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1250   return NewDecl;
1251 }
1252 
1253 /// hasAddressTaken - returns true if there are any uses of this function
1254 /// other than direct calls or invokes to it.
1255 bool Function::hasAddressTaken(const User* *PutOffender) const {
1256   for (const Use &U : uses()) {
1257     const User *FU = U.getUser();
1258     if (isa<BlockAddress>(FU))
1259       continue;
1260     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1261       if (PutOffender)
1262         *PutOffender = FU;
1263       return true;
1264     }
1265     ImmutableCallSite CS(cast<Instruction>(FU));
1266     if (!CS.isCallee(&U)) {
1267       if (PutOffender)
1268         *PutOffender = FU;
1269       return true;
1270     }
1271   }
1272   return false;
1273 }
1274 
1275 bool Function::isDefTriviallyDead() const {
1276   // Check the linkage
1277   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1278       !hasAvailableExternallyLinkage())
1279     return false;
1280 
1281   // Check if the function is used by anything other than a blockaddress.
1282   for (const User *U : users())
1283     if (!isa<BlockAddress>(U))
1284       return false;
1285 
1286   return true;
1287 }
1288 
1289 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1290 /// setjmp or other function that gcc recognizes as "returning twice".
1291 bool Function::callsFunctionThatReturnsTwice() const {
1292   for (const_inst_iterator
1293          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1294     ImmutableCallSite CS(&*I);
1295     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1296       return true;
1297   }
1298 
1299   return false;
1300 }
1301 
1302 Constant *Function::getPersonalityFn() const {
1303   assert(hasPersonalityFn() && getNumOperands());
1304   return cast<Constant>(Op<0>());
1305 }
1306 
1307 void Function::setPersonalityFn(Constant *Fn) {
1308   setHungoffOperand<0>(Fn);
1309   setValueSubclassDataBit(3, Fn != nullptr);
1310 }
1311 
1312 Constant *Function::getPrefixData() const {
1313   assert(hasPrefixData() && getNumOperands());
1314   return cast<Constant>(Op<1>());
1315 }
1316 
1317 void Function::setPrefixData(Constant *PrefixData) {
1318   setHungoffOperand<1>(PrefixData);
1319   setValueSubclassDataBit(1, PrefixData != nullptr);
1320 }
1321 
1322 Constant *Function::getPrologueData() const {
1323   assert(hasPrologueData() && getNumOperands());
1324   return cast<Constant>(Op<2>());
1325 }
1326 
1327 void Function::setPrologueData(Constant *PrologueData) {
1328   setHungoffOperand<2>(PrologueData);
1329   setValueSubclassDataBit(2, PrologueData != nullptr);
1330 }
1331 
1332 void Function::allocHungoffUselist() {
1333   // If we've already allocated a uselist, stop here.
1334   if (getNumOperands())
1335     return;
1336 
1337   allocHungoffUses(3, /*IsPhi=*/ false);
1338   setNumHungOffUseOperands(3);
1339 
1340   // Initialize the uselist with placeholder operands to allow traversal.
1341   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1342   Op<0>().set(CPN);
1343   Op<1>().set(CPN);
1344   Op<2>().set(CPN);
1345 }
1346 
1347 template <int Idx>
1348 void Function::setHungoffOperand(Constant *C) {
1349   if (C) {
1350     allocHungoffUselist();
1351     Op<Idx>().set(C);
1352   } else if (getNumOperands()) {
1353     Op<Idx>().set(
1354         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1355   }
1356 }
1357 
1358 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1359   assert(Bit < 16 && "SubclassData contains only 16 bits");
1360   if (On)
1361     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1362   else
1363     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1364 }
1365 
1366 void Function::setEntryCount(ProfileCount Count,
1367                              const DenseSet<GlobalValue::GUID> *S) {
1368   assert(Count.hasValue());
1369 #if !defined(NDEBUG)
1370   auto PrevCount = getEntryCount();
1371   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1372 #endif
1373   MDBuilder MDB(getContext());
1374   setMetadata(
1375       LLVMContext::MD_prof,
1376       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1377 }
1378 
1379 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1380                              const DenseSet<GlobalValue::GUID> *Imports) {
1381   setEntryCount(ProfileCount(Count, Type), Imports);
1382 }
1383 
1384 ProfileCount Function::getEntryCount() const {
1385   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1386   if (MD && MD->getOperand(0))
1387     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1388       if (MDS->getString().equals("function_entry_count")) {
1389         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1390         uint64_t Count = CI->getValue().getZExtValue();
1391         // A value of -1 is used for SamplePGO when there were no samples.
1392         // Treat this the same as unknown.
1393         if (Count == (uint64_t)-1)
1394           return ProfileCount::getInvalid();
1395         return ProfileCount(Count, PCT_Real);
1396       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1397         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1398         uint64_t Count = CI->getValue().getZExtValue();
1399         return ProfileCount(Count, PCT_Synthetic);
1400       }
1401     }
1402   return ProfileCount::getInvalid();
1403 }
1404 
1405 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1406   DenseSet<GlobalValue::GUID> R;
1407   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1408     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1409       if (MDS->getString().equals("function_entry_count"))
1410         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1411           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1412                        ->getValue()
1413                        .getZExtValue());
1414   return R;
1415 }
1416 
1417 void Function::setSectionPrefix(StringRef Prefix) {
1418   MDBuilder MDB(getContext());
1419   setMetadata(LLVMContext::MD_section_prefix,
1420               MDB.createFunctionSectionPrefix(Prefix));
1421 }
1422 
1423 Optional<StringRef> Function::getSectionPrefix() const {
1424   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1425     assert(cast<MDString>(MD->getOperand(0))
1426                ->getString()
1427                .equals("function_section_prefix") &&
1428            "Metadata not match");
1429     return cast<MDString>(MD->getOperand(1))->getString();
1430   }
1431   return None;
1432 }
1433 
1434 bool Function::nullPointerIsDefined() const {
1435   return getFnAttribute("null-pointer-is-valid")
1436           .getValueAsString()
1437           .equals("true");
1438 }
1439 
1440 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1441   if (F && F->nullPointerIsDefined())
1442     return true;
1443 
1444   if (AS != 0)
1445     return true;
1446 
1447   return false;
1448 }
1449