1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/RWMutex.h" 31 #include "llvm/Support/StringPool.h" 32 #include "llvm/Support/Threading.h" 33 using namespace llvm; 34 35 // Explicit instantiations of SymbolTableListTraits since some of the methods 36 // are not in the public header file... 37 template class llvm::SymbolTableListTraits<Argument>; 38 template class llvm::SymbolTableListTraits<BasicBlock>; 39 40 //===----------------------------------------------------------------------===// 41 // Argument Implementation 42 //===----------------------------------------------------------------------===// 43 44 void Argument::anchor() { } 45 46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 47 : Value(Ty, Value::ArgumentVal) { 48 Parent = nullptr; 49 50 if (Par) 51 Par->getArgumentList().push_back(this); 52 setName(Name); 53 } 54 55 void Argument::setParent(Function *parent) { 56 Parent = parent; 57 } 58 59 /// getArgNo - Return the index of this formal argument in its containing 60 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 61 unsigned Argument::getArgNo() const { 62 const Function *F = getParent(); 63 assert(F && "Argument is not in a function"); 64 65 Function::const_arg_iterator AI = F->arg_begin(); 66 unsigned ArgIdx = 0; 67 for (; &*AI != this; ++AI) 68 ++ArgIdx; 69 70 return ArgIdx; 71 } 72 73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 74 /// it in its containing function. Also returns true if at least one byte is 75 /// known to be dereferenceable and the pointer is in addrspace(0). 76 bool Argument::hasNonNullAttr() const { 77 if (!getType()->isPointerTy()) return false; 78 if (getParent()->getAttributes(). 79 hasAttribute(getArgNo()+1, Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 getType()->getPointerAddressSpace() == 0) 83 return true; 84 return false; 85 } 86 87 /// hasByValAttr - Return true if this argument has the byval attribute on it 88 /// in its containing function. 89 bool Argument::hasByValAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 return hasAttribute(Attribute::ByVal); 92 } 93 94 bool Argument::hasSwiftSelfAttr() const { 95 return getParent()->getAttributes(). 96 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::SwiftError); 102 } 103 104 /// \brief Return true if this argument has the inalloca attribute on it in 105 /// its containing function. 106 bool Argument::hasInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 return hasAttribute(Attribute::InAlloca); 109 } 110 111 bool Argument::hasByValOrInAllocaAttr() const { 112 if (!getType()->isPointerTy()) return false; 113 AttributeSet Attrs = getParent()->getAttributes(); 114 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 115 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 116 } 117 118 unsigned Argument::getParamAlignment() const { 119 assert(getType()->isPointerTy() && "Only pointers have alignments"); 120 return getParent()->getParamAlignment(getArgNo()+1); 121 122 } 123 124 uint64_t Argument::getDereferenceableBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getDereferenceableBytes(getArgNo()+1); 128 } 129 130 uint64_t Argument::getDereferenceableOrNullBytes() const { 131 assert(getType()->isPointerTy() && 132 "Only pointers have dereferenceable bytes"); 133 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 134 } 135 136 /// hasNestAttr - Return true if this argument has the nest attribute on 137 /// it in its containing function. 138 bool Argument::hasNestAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::Nest); 141 } 142 143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 144 /// it in its containing function. 145 bool Argument::hasNoAliasAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::NoAlias); 148 } 149 150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 151 /// on it in its containing function. 152 bool Argument::hasNoCaptureAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::NoCapture); 155 } 156 157 /// hasSRetAttr - Return true if this argument has the sret attribute on 158 /// it in its containing function. 159 bool Argument::hasStructRetAttr() const { 160 if (!getType()->isPointerTy()) return false; 161 return hasAttribute(Attribute::StructRet); 162 } 163 164 /// hasReturnedAttr - Return true if this argument has the returned attribute on 165 /// it in its containing function. 166 bool Argument::hasReturnedAttr() const { 167 return hasAttribute(Attribute::Returned); 168 } 169 170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 171 /// its containing function. 172 bool Argument::hasZExtAttr() const { 173 return hasAttribute(Attribute::ZExt); 174 } 175 176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 177 /// containing function. 178 bool Argument::hasSExtAttr() const { 179 return hasAttribute(Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 /// hasAttribute - Checks if an argument has a given attribute. 212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 213 return getParent()->hasAttribute(getArgNo() + 1, Kind); 214 } 215 216 //===----------------------------------------------------------------------===// 217 // Helper Methods in Function 218 //===----------------------------------------------------------------------===// 219 220 bool Function::isMaterializable() const { 221 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 222 } 223 224 void Function::setIsMaterializable(bool V) { 225 unsigned Mask = 1 << IsMaterializableBit; 226 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 227 (V ? Mask : 0u)); 228 } 229 230 LLVMContext &Function::getContext() const { 231 return getType()->getContext(); 232 } 233 234 FunctionType *Function::getFunctionType() const { 235 return cast<FunctionType>(getValueType()); 236 } 237 238 bool Function::isVarArg() const { 239 return getFunctionType()->isVarArg(); 240 } 241 242 Type *Function::getReturnType() const { 243 return getFunctionType()->getReturnType(); 244 } 245 246 void Function::removeFromParent() { 247 getParent()->getFunctionList().remove(getIterator()); 248 } 249 250 void Function::eraseFromParent() { 251 getParent()->getFunctionList().erase(getIterator()); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Function Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 259 Module *ParentModule) 260 : GlobalObject(Ty, Value::FunctionVal, 261 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 262 assert(FunctionType::isValidReturnType(getReturnType()) && 263 "invalid return type"); 264 setGlobalObjectSubClassData(0); 265 SymTab = new ValueSymbolTable(); 266 267 // If the function has arguments, mark them as lazily built. 268 if (Ty->getNumParams()) 269 setValueSubclassData(1); // Set the "has lazy arguments" bit. 270 271 if (ParentModule) 272 ParentModule->getFunctionList().push_back(this); 273 274 // Ensure intrinsics have the right parameter attributes. 275 // Note, the IntID field will have been set in Value::setName if this function 276 // name is a valid intrinsic ID. 277 if (IntID) 278 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 279 } 280 281 Function::~Function() { 282 dropAllReferences(); // After this it is safe to delete instructions. 283 284 // Delete all of the method arguments and unlink from symbol table... 285 ArgumentList.clear(); 286 delete SymTab; 287 288 // Remove the function from the on-the-side GC table. 289 clearGC(); 290 } 291 292 void Function::BuildLazyArguments() const { 293 // Create the arguments vector, all arguments start out unnamed. 294 FunctionType *FT = getFunctionType(); 295 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 296 assert(!FT->getParamType(i)->isVoidTy() && 297 "Cannot have void typed arguments!"); 298 ArgumentList.push_back(new Argument(FT->getParamType(i))); 299 } 300 301 // Clear the lazy arguments bit. 302 unsigned SDC = getSubclassDataFromValue(); 303 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 304 } 305 306 void Function::stealArgumentListFrom(Function &Src) { 307 assert(isDeclaration() && "Expected no references to current arguments"); 308 309 // Drop the current arguments, if any, and set the lazy argument bit. 310 if (!hasLazyArguments()) { 311 assert(llvm::all_of(ArgumentList, 312 [](const Argument &A) { return A.use_empty(); }) && 313 "Expected arguments to be unused in declaration"); 314 ArgumentList.clear(); 315 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 316 } 317 318 // Nothing to steal if Src has lazy arguments. 319 if (Src.hasLazyArguments()) 320 return; 321 322 // Steal arguments from Src, and fix the lazy argument bits. 323 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 324 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 325 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 326 } 327 328 size_t Function::arg_size() const { 329 return getFunctionType()->getNumParams(); 330 } 331 bool Function::arg_empty() const { 332 return getFunctionType()->getNumParams() == 0; 333 } 334 335 void Function::setParent(Module *parent) { 336 Parent = parent; 337 } 338 339 // dropAllReferences() - This function causes all the subinstructions to "let 340 // go" of all references that they are maintaining. This allows one to 341 // 'delete' a whole class at a time, even though there may be circular 342 // references... first all references are dropped, and all use counts go to 343 // zero. Then everything is deleted for real. Note that no operations are 344 // valid on an object that has "dropped all references", except operator 345 // delete. 346 // 347 void Function::dropAllReferences() { 348 setIsMaterializable(false); 349 350 for (BasicBlock &BB : *this) 351 BB.dropAllReferences(); 352 353 // Delete all basic blocks. They are now unused, except possibly by 354 // blockaddresses, but BasicBlock's destructor takes care of those. 355 while (!BasicBlocks.empty()) 356 BasicBlocks.begin()->eraseFromParent(); 357 358 // Drop uses of any optional data (real or placeholder). 359 if (getNumOperands()) { 360 User::dropAllReferences(); 361 setNumHungOffUseOperands(0); 362 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 363 } 364 365 // Metadata is stored in a side-table. 366 clearMetadata(); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Kind); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttribute(unsigned i, Attribute Attr) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttribute(getContext(), i, Attr); 378 setAttributes(PAL); 379 } 380 381 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.addAttributes(getContext(), i, Attrs); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttribute(unsigned i, StringRef Kind) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttribute(getContext(), i, Kind); 396 setAttributes(PAL); 397 } 398 399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.removeAttributes(getContext(), i, Attrs); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 412 AttributeSet PAL = getAttributes(); 413 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 414 setAttributes(PAL); 415 } 416 417 const std::string &Function::getGC() const { 418 assert(hasGC() && "Function has no collector"); 419 return getContext().getGC(*this); 420 } 421 422 void Function::setGC(std::string Str) { 423 setValueSubclassDataBit(14, !Str.empty()); 424 getContext().setGC(*this, std::move(Str)); 425 } 426 427 void Function::clearGC() { 428 if (!hasGC()) 429 return; 430 getContext().deleteGC(*this); 431 setValueSubclassDataBit(14, false); 432 } 433 434 /// Copy all additional attributes (those not needed to create a Function) from 435 /// the Function Src to this one. 436 void Function::copyAttributesFrom(const GlobalValue *Src) { 437 GlobalObject::copyAttributesFrom(Src); 438 const Function *SrcF = dyn_cast<Function>(Src); 439 if (!SrcF) 440 return; 441 442 setCallingConv(SrcF->getCallingConv()); 443 setAttributes(SrcF->getAttributes()); 444 if (SrcF->hasGC()) 445 setGC(SrcF->getGC()); 446 else 447 clearGC(); 448 if (SrcF->hasPersonalityFn()) 449 setPersonalityFn(SrcF->getPersonalityFn()); 450 if (SrcF->hasPrefixData()) 451 setPrefixData(SrcF->getPrefixData()); 452 if (SrcF->hasPrologueData()) 453 setPrologueData(SrcF->getPrologueData()); 454 } 455 456 /// Table of string intrinsic names indexed by enum value. 457 static const char * const IntrinsicNameTable[] = { 458 "not_intrinsic", 459 #define GET_INTRINSIC_NAME_TABLE 460 #include "llvm/IR/Intrinsics.gen" 461 #undef GET_INTRINSIC_NAME_TABLE 462 }; 463 464 /// Table of per-target intrinsic name tables. 465 #define GET_INTRINSIC_TARGET_DATA 466 #include "llvm/IR/Intrinsics.gen" 467 #undef GET_INTRINSIC_TARGET_DATA 468 469 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 470 /// target as \c Name, or the generic table if \c Name is not target specific. 471 /// 472 /// Returns the relevant slice of \c IntrinsicNameTable 473 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 474 assert(Name.startswith("llvm.")); 475 476 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 477 // Drop "llvm." and take the first dotted component. That will be the target 478 // if this is target specific. 479 StringRef Target = Name.drop_front(5).split('.').first; 480 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 481 [](const IntrinsicTargetInfo &TI, 482 StringRef Target) { return TI.Name < Target; }); 483 // We've either found the target or just fall back to the generic set, which 484 // is always first. 485 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 486 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 487 } 488 489 /// \brief This does the actual lookup of an intrinsic ID which 490 /// matches the given function name. 491 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 492 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 493 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 494 if (Idx == -1) 495 return Intrinsic::not_intrinsic; 496 497 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 498 // an index into a sub-table. 499 int Adjust = NameTable.data() - IntrinsicNameTable; 500 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 501 502 // If the intrinsic is not overloaded, require an exact match. If it is 503 // overloaded, require a prefix match. 504 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 505 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 506 } 507 508 void Function::recalculateIntrinsicID() { 509 const ValueName *ValName = this->getValueName(); 510 if (!ValName || !isIntrinsic()) { 511 IntID = Intrinsic::not_intrinsic; 512 return; 513 } 514 IntID = lookupIntrinsicID(ValName->getKey()); 515 } 516 517 /// Returns a stable mangling for the type specified for use in the name 518 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 519 /// of named types is simply their name. Manglings for unnamed types consist 520 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 521 /// combined with the mangling of their component types. A vararg function 522 /// type will have a suffix of 'vararg'. Since function types can contain 523 /// other function types, we close a function type mangling with suffix 'f' 524 /// which can't be confused with it's prefix. This ensures we don't have 525 /// collisions between two unrelated function types. Otherwise, you might 526 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 527 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 528 /// cases) fall back to the MVT codepath, where they could be mangled to 529 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 530 /// everything. 531 static std::string getMangledTypeStr(Type* Ty) { 532 std::string Result; 533 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 534 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 535 getMangledTypeStr(PTyp->getElementType()); 536 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 537 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 538 getMangledTypeStr(ATyp->getElementType()); 539 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 540 assert(!STyp->isLiteral() && "TODO: implement literal types"); 541 Result += STyp->getName(); 542 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 543 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 544 for (size_t i = 0; i < FT->getNumParams(); i++) 545 Result += getMangledTypeStr(FT->getParamType(i)); 546 if (FT->isVarArg()) 547 Result += "vararg"; 548 // Ensure nested function types are distinguishable. 549 Result += "f"; 550 } else if (isa<VectorType>(Ty)) 551 Result += "v" + utostr(Ty->getVectorNumElements()) + 552 getMangledTypeStr(Ty->getVectorElementType()); 553 else if (Ty) 554 Result += EVT::getEVT(Ty).getEVTString(); 555 return Result; 556 } 557 558 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 559 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 560 std::string Result(IntrinsicNameTable[id]); 561 for (Type *Ty : Tys) { 562 Result += "." + getMangledTypeStr(Ty); 563 } 564 return Result; 565 } 566 567 568 /// IIT_Info - These are enumerators that describe the entries returned by the 569 /// getIntrinsicInfoTableEntries function. 570 /// 571 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 572 enum IIT_Info { 573 // Common values should be encoded with 0-15. 574 IIT_Done = 0, 575 IIT_I1 = 1, 576 IIT_I8 = 2, 577 IIT_I16 = 3, 578 IIT_I32 = 4, 579 IIT_I64 = 5, 580 IIT_F16 = 6, 581 IIT_F32 = 7, 582 IIT_F64 = 8, 583 IIT_V2 = 9, 584 IIT_V4 = 10, 585 IIT_V8 = 11, 586 IIT_V16 = 12, 587 IIT_V32 = 13, 588 IIT_PTR = 14, 589 IIT_ARG = 15, 590 591 // Values from 16+ are only encodable with the inefficient encoding. 592 IIT_V64 = 16, 593 IIT_MMX = 17, 594 IIT_TOKEN = 18, 595 IIT_METADATA = 19, 596 IIT_EMPTYSTRUCT = 20, 597 IIT_STRUCT2 = 21, 598 IIT_STRUCT3 = 22, 599 IIT_STRUCT4 = 23, 600 IIT_STRUCT5 = 24, 601 IIT_EXTEND_ARG = 25, 602 IIT_TRUNC_ARG = 26, 603 IIT_ANYPTR = 27, 604 IIT_V1 = 28, 605 IIT_VARARG = 29, 606 IIT_HALF_VEC_ARG = 30, 607 IIT_SAME_VEC_WIDTH_ARG = 31, 608 IIT_PTR_TO_ARG = 32, 609 IIT_VEC_OF_PTRS_TO_ELT = 33, 610 IIT_I128 = 34, 611 IIT_V512 = 35, 612 IIT_V1024 = 36 613 }; 614 615 616 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 617 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 618 IIT_Info Info = IIT_Info(Infos[NextElt++]); 619 unsigned StructElts = 2; 620 using namespace Intrinsic; 621 622 switch (Info) { 623 case IIT_Done: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 625 return; 626 case IIT_VARARG: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 628 return; 629 case IIT_MMX: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 631 return; 632 case IIT_TOKEN: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 634 return; 635 case IIT_METADATA: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 637 return; 638 case IIT_F16: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 640 return; 641 case IIT_F32: 642 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 643 return; 644 case IIT_F64: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 646 return; 647 case IIT_I1: 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 649 return; 650 case IIT_I8: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 652 return; 653 case IIT_I16: 654 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 655 return; 656 case IIT_I32: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 658 return; 659 case IIT_I64: 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 661 return; 662 case IIT_I128: 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 664 return; 665 case IIT_V1: 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 667 DecodeIITType(NextElt, Infos, OutputTable); 668 return; 669 case IIT_V2: 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 671 DecodeIITType(NextElt, Infos, OutputTable); 672 return; 673 case IIT_V4: 674 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 675 DecodeIITType(NextElt, Infos, OutputTable); 676 return; 677 case IIT_V8: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 679 DecodeIITType(NextElt, Infos, OutputTable); 680 return; 681 case IIT_V16: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 683 DecodeIITType(NextElt, Infos, OutputTable); 684 return; 685 case IIT_V32: 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 687 DecodeIITType(NextElt, Infos, OutputTable); 688 return; 689 case IIT_V64: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 691 DecodeIITType(NextElt, Infos, OutputTable); 692 return; 693 case IIT_V512: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 695 DecodeIITType(NextElt, Infos, OutputTable); 696 return; 697 case IIT_V1024: 698 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 699 DecodeIITType(NextElt, Infos, OutputTable); 700 return; 701 case IIT_PTR: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 703 DecodeIITType(NextElt, Infos, OutputTable); 704 return; 705 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 707 Infos[NextElt++])); 708 DecodeIITType(NextElt, Infos, OutputTable); 709 return; 710 } 711 case IIT_ARG: { 712 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 713 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 714 return; 715 } 716 case IIT_EXTEND_ARG: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 719 ArgInfo)); 720 return; 721 } 722 case IIT_TRUNC_ARG: { 723 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 725 ArgInfo)); 726 return; 727 } 728 case IIT_HALF_VEC_ARG: { 729 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 731 ArgInfo)); 732 return; 733 } 734 case IIT_SAME_VEC_WIDTH_ARG: { 735 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 737 ArgInfo)); 738 return; 739 } 740 case IIT_PTR_TO_ARG: { 741 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 743 ArgInfo)); 744 return; 745 } 746 case IIT_VEC_OF_PTRS_TO_ELT: { 747 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 749 ArgInfo)); 750 return; 751 } 752 case IIT_EMPTYSTRUCT: 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 754 return; 755 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 756 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 757 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 758 case IIT_STRUCT2: { 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 760 761 for (unsigned i = 0; i != StructElts; ++i) 762 DecodeIITType(NextElt, Infos, OutputTable); 763 return; 764 } 765 } 766 llvm_unreachable("unhandled"); 767 } 768 769 770 #define GET_INTRINSIC_GENERATOR_GLOBAL 771 #include "llvm/IR/Intrinsics.gen" 772 #undef GET_INTRINSIC_GENERATOR_GLOBAL 773 774 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 775 SmallVectorImpl<IITDescriptor> &T){ 776 // Check to see if the intrinsic's type was expressible by the table. 777 unsigned TableVal = IIT_Table[id-1]; 778 779 // Decode the TableVal into an array of IITValues. 780 SmallVector<unsigned char, 8> IITValues; 781 ArrayRef<unsigned char> IITEntries; 782 unsigned NextElt = 0; 783 if ((TableVal >> 31) != 0) { 784 // This is an offset into the IIT_LongEncodingTable. 785 IITEntries = IIT_LongEncodingTable; 786 787 // Strip sentinel bit. 788 NextElt = (TableVal << 1) >> 1; 789 } else { 790 // Decode the TableVal into an array of IITValues. If the entry was encoded 791 // into a single word in the table itself, decode it now. 792 do { 793 IITValues.push_back(TableVal & 0xF); 794 TableVal >>= 4; 795 } while (TableVal); 796 797 IITEntries = IITValues; 798 NextElt = 0; 799 } 800 801 // Okay, decode the table into the output vector of IITDescriptors. 802 DecodeIITType(NextElt, IITEntries, T); 803 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 804 DecodeIITType(NextElt, IITEntries, T); 805 } 806 807 808 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 809 ArrayRef<Type*> Tys, LLVMContext &Context) { 810 using namespace Intrinsic; 811 IITDescriptor D = Infos.front(); 812 Infos = Infos.slice(1); 813 814 switch (D.Kind) { 815 case IITDescriptor::Void: return Type::getVoidTy(Context); 816 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 817 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 818 case IITDescriptor::Token: return Type::getTokenTy(Context); 819 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 820 case IITDescriptor::Half: return Type::getHalfTy(Context); 821 case IITDescriptor::Float: return Type::getFloatTy(Context); 822 case IITDescriptor::Double: return Type::getDoubleTy(Context); 823 824 case IITDescriptor::Integer: 825 return IntegerType::get(Context, D.Integer_Width); 826 case IITDescriptor::Vector: 827 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 828 case IITDescriptor::Pointer: 829 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 830 D.Pointer_AddressSpace); 831 case IITDescriptor::Struct: { 832 Type *Elts[5]; 833 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 834 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 835 Elts[i] = DecodeFixedType(Infos, Tys, Context); 836 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 837 } 838 839 case IITDescriptor::Argument: 840 return Tys[D.getArgumentNumber()]; 841 case IITDescriptor::ExtendArgument: { 842 Type *Ty = Tys[D.getArgumentNumber()]; 843 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 844 return VectorType::getExtendedElementVectorType(VTy); 845 846 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 847 } 848 case IITDescriptor::TruncArgument: { 849 Type *Ty = Tys[D.getArgumentNumber()]; 850 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 851 return VectorType::getTruncatedElementVectorType(VTy); 852 853 IntegerType *ITy = cast<IntegerType>(Ty); 854 assert(ITy->getBitWidth() % 2 == 0); 855 return IntegerType::get(Context, ITy->getBitWidth() / 2); 856 } 857 case IITDescriptor::HalfVecArgument: 858 return VectorType::getHalfElementsVectorType(cast<VectorType>( 859 Tys[D.getArgumentNumber()])); 860 case IITDescriptor::SameVecWidthArgument: { 861 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 862 Type *Ty = Tys[D.getArgumentNumber()]; 863 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 864 return VectorType::get(EltTy, VTy->getNumElements()); 865 } 866 llvm_unreachable("unhandled"); 867 } 868 case IITDescriptor::PtrToArgument: { 869 Type *Ty = Tys[D.getArgumentNumber()]; 870 return PointerType::getUnqual(Ty); 871 } 872 case IITDescriptor::VecOfPtrsToElt: { 873 Type *Ty = Tys[D.getArgumentNumber()]; 874 VectorType *VTy = dyn_cast<VectorType>(Ty); 875 if (!VTy) 876 llvm_unreachable("Expected an argument of Vector Type"); 877 Type *EltTy = VTy->getVectorElementType(); 878 return VectorType::get(PointerType::getUnqual(EltTy), 879 VTy->getNumElements()); 880 } 881 } 882 llvm_unreachable("unhandled"); 883 } 884 885 886 887 FunctionType *Intrinsic::getType(LLVMContext &Context, 888 ID id, ArrayRef<Type*> Tys) { 889 SmallVector<IITDescriptor, 8> Table; 890 getIntrinsicInfoTableEntries(id, Table); 891 892 ArrayRef<IITDescriptor> TableRef = Table; 893 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 894 895 SmallVector<Type*, 8> ArgTys; 896 while (!TableRef.empty()) 897 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 898 899 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 900 // If we see void type as the type of the last argument, it is vararg intrinsic 901 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 902 ArgTys.pop_back(); 903 return FunctionType::get(ResultTy, ArgTys, true); 904 } 905 return FunctionType::get(ResultTy, ArgTys, false); 906 } 907 908 bool Intrinsic::isOverloaded(ID id) { 909 #define GET_INTRINSIC_OVERLOAD_TABLE 910 #include "llvm/IR/Intrinsics.gen" 911 #undef GET_INTRINSIC_OVERLOAD_TABLE 912 } 913 914 bool Intrinsic::isLeaf(ID id) { 915 switch (id) { 916 default: 917 return true; 918 919 case Intrinsic::experimental_gc_statepoint: 920 case Intrinsic::experimental_patchpoint_void: 921 case Intrinsic::experimental_patchpoint_i64: 922 return false; 923 } 924 } 925 926 /// This defines the "Intrinsic::getAttributes(ID id)" method. 927 #define GET_INTRINSIC_ATTRIBUTES 928 #include "llvm/IR/Intrinsics.gen" 929 #undef GET_INTRINSIC_ATTRIBUTES 930 931 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 932 // There can never be multiple globals with the same name of different types, 933 // because intrinsics must be a specific type. 934 return 935 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 936 getType(M->getContext(), id, Tys))); 937 } 938 939 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 940 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 941 #include "llvm/IR/Intrinsics.gen" 942 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 943 944 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 945 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 946 #include "llvm/IR/Intrinsics.gen" 947 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 948 949 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 950 SmallVectorImpl<Type*> &ArgTys) { 951 using namespace Intrinsic; 952 953 // If we ran out of descriptors, there are too many arguments. 954 if (Infos.empty()) return true; 955 IITDescriptor D = Infos.front(); 956 Infos = Infos.slice(1); 957 958 switch (D.Kind) { 959 case IITDescriptor::Void: return !Ty->isVoidTy(); 960 case IITDescriptor::VarArg: return true; 961 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 962 case IITDescriptor::Token: return !Ty->isTokenTy(); 963 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 964 case IITDescriptor::Half: return !Ty->isHalfTy(); 965 case IITDescriptor::Float: return !Ty->isFloatTy(); 966 case IITDescriptor::Double: return !Ty->isDoubleTy(); 967 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 968 case IITDescriptor::Vector: { 969 VectorType *VT = dyn_cast<VectorType>(Ty); 970 return !VT || VT->getNumElements() != D.Vector_Width || 971 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 972 } 973 case IITDescriptor::Pointer: { 974 PointerType *PT = dyn_cast<PointerType>(Ty); 975 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 976 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 977 } 978 979 case IITDescriptor::Struct: { 980 StructType *ST = dyn_cast<StructType>(Ty); 981 if (!ST || ST->getNumElements() != D.Struct_NumElements) 982 return true; 983 984 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 985 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 986 return true; 987 return false; 988 } 989 990 case IITDescriptor::Argument: 991 // Two cases here - If this is the second occurrence of an argument, verify 992 // that the later instance matches the previous instance. 993 if (D.getArgumentNumber() < ArgTys.size()) 994 return Ty != ArgTys[D.getArgumentNumber()]; 995 996 // Otherwise, if this is the first instance of an argument, record it and 997 // verify the "Any" kind. 998 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 999 ArgTys.push_back(Ty); 1000 1001 switch (D.getArgumentKind()) { 1002 case IITDescriptor::AK_Any: return false; // Success 1003 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1004 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1005 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1006 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1007 } 1008 llvm_unreachable("all argument kinds not covered"); 1009 1010 case IITDescriptor::ExtendArgument: { 1011 // This may only be used when referring to a previous vector argument. 1012 if (D.getArgumentNumber() >= ArgTys.size()) 1013 return true; 1014 1015 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1016 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1017 NewTy = VectorType::getExtendedElementVectorType(VTy); 1018 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1019 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1020 else 1021 return true; 1022 1023 return Ty != NewTy; 1024 } 1025 case IITDescriptor::TruncArgument: { 1026 // This may only be used when referring to a previous vector argument. 1027 if (D.getArgumentNumber() >= ArgTys.size()) 1028 return true; 1029 1030 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1031 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1032 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1033 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1034 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1035 else 1036 return true; 1037 1038 return Ty != NewTy; 1039 } 1040 case IITDescriptor::HalfVecArgument: 1041 // This may only be used when referring to a previous vector argument. 1042 return D.getArgumentNumber() >= ArgTys.size() || 1043 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1044 VectorType::getHalfElementsVectorType( 1045 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1046 case IITDescriptor::SameVecWidthArgument: { 1047 if (D.getArgumentNumber() >= ArgTys.size()) 1048 return true; 1049 VectorType * ReferenceType = 1050 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1051 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1052 if (!ThisArgType || !ReferenceType || 1053 (ReferenceType->getVectorNumElements() != 1054 ThisArgType->getVectorNumElements())) 1055 return true; 1056 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1057 Infos, ArgTys); 1058 } 1059 case IITDescriptor::PtrToArgument: { 1060 if (D.getArgumentNumber() >= ArgTys.size()) 1061 return true; 1062 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1063 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1064 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1065 } 1066 case IITDescriptor::VecOfPtrsToElt: { 1067 if (D.getArgumentNumber() >= ArgTys.size()) 1068 return true; 1069 VectorType * ReferenceType = 1070 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1071 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1072 if (!ThisArgVecTy || !ReferenceType || 1073 (ReferenceType->getVectorNumElements() != 1074 ThisArgVecTy->getVectorNumElements())) 1075 return true; 1076 PointerType *ThisArgEltTy = 1077 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1078 if (!ThisArgEltTy) 1079 return true; 1080 return ThisArgEltTy->getElementType() != 1081 ReferenceType->getVectorElementType(); 1082 } 1083 } 1084 llvm_unreachable("unhandled"); 1085 } 1086 1087 bool 1088 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1089 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1090 // If there are no descriptors left, then it can't be a vararg. 1091 if (Infos.empty()) 1092 return isVarArg; 1093 1094 // There should be only one descriptor remaining at this point. 1095 if (Infos.size() != 1) 1096 return true; 1097 1098 // Check and verify the descriptor. 1099 IITDescriptor D = Infos.front(); 1100 Infos = Infos.slice(1); 1101 if (D.Kind == IITDescriptor::VarArg) 1102 return !isVarArg; 1103 1104 return true; 1105 } 1106 1107 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1108 Intrinsic::ID ID = F->getIntrinsicID(); 1109 if (!ID) 1110 return None; 1111 1112 FunctionType *FTy = F->getFunctionType(); 1113 // Accumulate an array of overloaded types for the given intrinsic 1114 SmallVector<Type *, 4> ArgTys; 1115 { 1116 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1117 getIntrinsicInfoTableEntries(ID, Table); 1118 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1119 1120 // If we encounter any problems matching the signature with the descriptor 1121 // just give up remangling. It's up to verifier to report the discrepancy. 1122 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1123 return None; 1124 for (auto Ty : FTy->params()) 1125 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1126 return None; 1127 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1128 return None; 1129 } 1130 1131 StringRef Name = F->getName(); 1132 if (Name == Intrinsic::getName(ID, ArgTys)) 1133 return None; 1134 1135 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1136 NewDecl->setCallingConv(F->getCallingConv()); 1137 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1138 return NewDecl; 1139 } 1140 1141 /// hasAddressTaken - returns true if there are any uses of this function 1142 /// other than direct calls or invokes to it. 1143 bool Function::hasAddressTaken(const User* *PutOffender) const { 1144 for (const Use &U : uses()) { 1145 const User *FU = U.getUser(); 1146 if (isa<BlockAddress>(FU)) 1147 continue; 1148 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1149 if (PutOffender) 1150 *PutOffender = FU; 1151 return true; 1152 } 1153 ImmutableCallSite CS(cast<Instruction>(FU)); 1154 if (!CS.isCallee(&U)) { 1155 if (PutOffender) 1156 *PutOffender = FU; 1157 return true; 1158 } 1159 } 1160 return false; 1161 } 1162 1163 bool Function::isDefTriviallyDead() const { 1164 // Check the linkage 1165 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1166 !hasAvailableExternallyLinkage()) 1167 return false; 1168 1169 // Check if the function is used by anything other than a blockaddress. 1170 for (const User *U : users()) 1171 if (!isa<BlockAddress>(U)) 1172 return false; 1173 1174 return true; 1175 } 1176 1177 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1178 /// setjmp or other function that gcc recognizes as "returning twice". 1179 bool Function::callsFunctionThatReturnsTwice() const { 1180 for (const_inst_iterator 1181 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1182 ImmutableCallSite CS(&*I); 1183 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1184 return true; 1185 } 1186 1187 return false; 1188 } 1189 1190 Constant *Function::getPersonalityFn() const { 1191 assert(hasPersonalityFn() && getNumOperands()); 1192 return cast<Constant>(Op<0>()); 1193 } 1194 1195 void Function::setPersonalityFn(Constant *Fn) { 1196 setHungoffOperand<0>(Fn); 1197 setValueSubclassDataBit(3, Fn != nullptr); 1198 } 1199 1200 Constant *Function::getPrefixData() const { 1201 assert(hasPrefixData() && getNumOperands()); 1202 return cast<Constant>(Op<1>()); 1203 } 1204 1205 void Function::setPrefixData(Constant *PrefixData) { 1206 setHungoffOperand<1>(PrefixData); 1207 setValueSubclassDataBit(1, PrefixData != nullptr); 1208 } 1209 1210 Constant *Function::getPrologueData() const { 1211 assert(hasPrologueData() && getNumOperands()); 1212 return cast<Constant>(Op<2>()); 1213 } 1214 1215 void Function::setPrologueData(Constant *PrologueData) { 1216 setHungoffOperand<2>(PrologueData); 1217 setValueSubclassDataBit(2, PrologueData != nullptr); 1218 } 1219 1220 void Function::allocHungoffUselist() { 1221 // If we've already allocated a uselist, stop here. 1222 if (getNumOperands()) 1223 return; 1224 1225 allocHungoffUses(3, /*IsPhi=*/ false); 1226 setNumHungOffUseOperands(3); 1227 1228 // Initialize the uselist with placeholder operands to allow traversal. 1229 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1230 Op<0>().set(CPN); 1231 Op<1>().set(CPN); 1232 Op<2>().set(CPN); 1233 } 1234 1235 template <int Idx> 1236 void Function::setHungoffOperand(Constant *C) { 1237 if (C) { 1238 allocHungoffUselist(); 1239 Op<Idx>().set(C); 1240 } else if (getNumOperands()) { 1241 Op<Idx>().set( 1242 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1243 } 1244 } 1245 1246 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1247 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1248 if (On) 1249 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1250 else 1251 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1252 } 1253 1254 void Function::setEntryCount(uint64_t Count) { 1255 MDBuilder MDB(getContext()); 1256 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1257 } 1258 1259 Optional<uint64_t> Function::getEntryCount() const { 1260 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1261 if (MD && MD->getOperand(0)) 1262 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1263 if (MDS->getString().equals("function_entry_count")) { 1264 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1265 return CI->getValue().getZExtValue(); 1266 } 1267 return None; 1268 } 1269