xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 6b3bd61283afdfb7ce6d645ef4ed233bc60322a1)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/RWMutex.h"
31 #include "llvm/Support/StringPool.h"
32 #include "llvm/Support/Threading.h"
33 using namespace llvm;
34 
35 // Explicit instantiations of SymbolTableListTraits since some of the methods
36 // are not in the public header file...
37 template class llvm::SymbolTableListTraits<Argument>;
38 template class llvm::SymbolTableListTraits<BasicBlock>;
39 
40 //===----------------------------------------------------------------------===//
41 // Argument Implementation
42 //===----------------------------------------------------------------------===//
43 
44 void Argument::anchor() { }
45 
46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
47   : Value(Ty, Value::ArgumentVal) {
48   Parent = nullptr;
49 
50   if (Par)
51     Par->getArgumentList().push_back(this);
52   setName(Name);
53 }
54 
55 void Argument::setParent(Function *parent) {
56   Parent = parent;
57 }
58 
59 /// getArgNo - Return the index of this formal argument in its containing
60 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
61 unsigned Argument::getArgNo() const {
62   const Function *F = getParent();
63   assert(F && "Argument is not in a function");
64 
65   Function::const_arg_iterator AI = F->arg_begin();
66   unsigned ArgIdx = 0;
67   for (; &*AI != this; ++AI)
68     ++ArgIdx;
69 
70   return ArgIdx;
71 }
72 
73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
74 /// it in its containing function. Also returns true if at least one byte is
75 /// known to be dereferenceable and the pointer is in addrspace(0).
76 bool Argument::hasNonNullAttr() const {
77   if (!getType()->isPointerTy()) return false;
78   if (getParent()->getAttributes().
79         hasAttribute(getArgNo()+1, Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 /// hasByValAttr - Return true if this argument has the byval attribute on it
88 /// in its containing function.
89 bool Argument::hasByValAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   return hasAttribute(Attribute::ByVal);
92 }
93 
94 bool Argument::hasSwiftSelfAttr() const {
95   return getParent()->getAttributes().
96     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
97 }
98 
99 bool Argument::hasSwiftErrorAttr() const {
100   return getParent()->getAttributes().
101     hasAttribute(getArgNo()+1, Attribute::SwiftError);
102 }
103 
104 /// \brief Return true if this argument has the inalloca attribute on it in
105 /// its containing function.
106 bool Argument::hasInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   return hasAttribute(Attribute::InAlloca);
109 }
110 
111 bool Argument::hasByValOrInAllocaAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   AttributeSet Attrs = getParent()->getAttributes();
114   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
115          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
116 }
117 
118 unsigned Argument::getParamAlignment() const {
119   assert(getType()->isPointerTy() && "Only pointers have alignments");
120   return getParent()->getParamAlignment(getArgNo()+1);
121 
122 }
123 
124 uint64_t Argument::getDereferenceableBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getDereferenceableBytes(getArgNo()+1);
128 }
129 
130 uint64_t Argument::getDereferenceableOrNullBytes() const {
131   assert(getType()->isPointerTy() &&
132          "Only pointers have dereferenceable bytes");
133   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
134 }
135 
136 /// hasNestAttr - Return true if this argument has the nest attribute on
137 /// it in its containing function.
138 bool Argument::hasNestAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::Nest);
141 }
142 
143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
144 /// it in its containing function.
145 bool Argument::hasNoAliasAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::NoAlias);
148 }
149 
150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
151 /// on it in its containing function.
152 bool Argument::hasNoCaptureAttr() const {
153   if (!getType()->isPointerTy()) return false;
154   return hasAttribute(Attribute::NoCapture);
155 }
156 
157 /// hasSRetAttr - Return true if this argument has the sret attribute on
158 /// it in its containing function.
159 bool Argument::hasStructRetAttr() const {
160   if (!getType()->isPointerTy()) return false;
161   return hasAttribute(Attribute::StructRet);
162 }
163 
164 /// hasReturnedAttr - Return true if this argument has the returned attribute on
165 /// it in its containing function.
166 bool Argument::hasReturnedAttr() const {
167   return hasAttribute(Attribute::Returned);
168 }
169 
170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
171 /// its containing function.
172 bool Argument::hasZExtAttr() const {
173   return hasAttribute(Attribute::ZExt);
174 }
175 
176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
177 /// containing function.
178 bool Argument::hasSExtAttr() const {
179   return hasAttribute(Attribute::SExt);
180 }
181 
182 /// Return true if this argument has the readonly or readnone attribute on it
183 /// in its containing function.
184 bool Argument::onlyReadsMemory() const {
185   return getParent()->getAttributes().
186       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
187       getParent()->getAttributes().
188       hasAttribute(getArgNo()+1, Attribute::ReadNone);
189 }
190 
191 /// addAttr - Add attributes to an argument.
192 void Argument::addAttr(AttributeSet AS) {
193   assert(AS.getNumSlots() <= 1 &&
194          "Trying to add more than one attribute set to an argument!");
195   AttrBuilder B(AS, AS.getSlotIndex(0));
196   getParent()->addAttributes(getArgNo() + 1,
197                              AttributeSet::get(Parent->getContext(),
198                                                getArgNo() + 1, B));
199 }
200 
201 /// removeAttr - Remove attributes from an argument.
202 void Argument::removeAttr(AttributeSet AS) {
203   assert(AS.getNumSlots() <= 1 &&
204          "Trying to remove more than one attribute set from an argument!");
205   AttrBuilder B(AS, AS.getSlotIndex(0));
206   getParent()->removeAttributes(getArgNo() + 1,
207                                 AttributeSet::get(Parent->getContext(),
208                                                   getArgNo() + 1, B));
209 }
210 
211 /// hasAttribute - Checks if an argument has a given attribute.
212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
213   return getParent()->hasAttribute(getArgNo() + 1, Kind);
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // Helper Methods in Function
218 //===----------------------------------------------------------------------===//
219 
220 bool Function::isMaterializable() const {
221   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
222 }
223 
224 void Function::setIsMaterializable(bool V) {
225   unsigned Mask = 1 << IsMaterializableBit;
226   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
227                               (V ? Mask : 0u));
228 }
229 
230 LLVMContext &Function::getContext() const {
231   return getType()->getContext();
232 }
233 
234 FunctionType *Function::getFunctionType() const {
235   return cast<FunctionType>(getValueType());
236 }
237 
238 bool Function::isVarArg() const {
239   return getFunctionType()->isVarArg();
240 }
241 
242 Type *Function::getReturnType() const {
243   return getFunctionType()->getReturnType();
244 }
245 
246 void Function::removeFromParent() {
247   getParent()->getFunctionList().remove(getIterator());
248 }
249 
250 void Function::eraseFromParent() {
251   getParent()->getFunctionList().erase(getIterator());
252 }
253 
254 //===----------------------------------------------------------------------===//
255 // Function Implementation
256 //===----------------------------------------------------------------------===//
257 
258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
259                    Module *ParentModule)
260     : GlobalObject(Ty, Value::FunctionVal,
261                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
262   assert(FunctionType::isValidReturnType(getReturnType()) &&
263          "invalid return type");
264   setGlobalObjectSubClassData(0);
265   SymTab = new ValueSymbolTable();
266 
267   // If the function has arguments, mark them as lazily built.
268   if (Ty->getNumParams())
269     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
270 
271   if (ParentModule)
272     ParentModule->getFunctionList().push_back(this);
273 
274   // Ensure intrinsics have the right parameter attributes.
275   // Note, the IntID field will have been set in Value::setName if this function
276   // name is a valid intrinsic ID.
277   if (IntID)
278     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
279 }
280 
281 Function::~Function() {
282   dropAllReferences();    // After this it is safe to delete instructions.
283 
284   // Delete all of the method arguments and unlink from symbol table...
285   ArgumentList.clear();
286   delete SymTab;
287 
288   // Remove the function from the on-the-side GC table.
289   clearGC();
290 }
291 
292 void Function::BuildLazyArguments() const {
293   // Create the arguments vector, all arguments start out unnamed.
294   FunctionType *FT = getFunctionType();
295   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
296     assert(!FT->getParamType(i)->isVoidTy() &&
297            "Cannot have void typed arguments!");
298     ArgumentList.push_back(new Argument(FT->getParamType(i)));
299   }
300 
301   // Clear the lazy arguments bit.
302   unsigned SDC = getSubclassDataFromValue();
303   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
304 }
305 
306 void Function::stealArgumentListFrom(Function &Src) {
307   assert(isDeclaration() && "Expected no references to current arguments");
308 
309   // Drop the current arguments, if any, and set the lazy argument bit.
310   if (!hasLazyArguments()) {
311     assert(llvm::all_of(ArgumentList,
312                         [](const Argument &A) { return A.use_empty(); }) &&
313            "Expected arguments to be unused in declaration");
314     ArgumentList.clear();
315     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
316   }
317 
318   // Nothing to steal if Src has lazy arguments.
319   if (Src.hasLazyArguments())
320     return;
321 
322   // Steal arguments from Src, and fix the lazy argument bits.
323   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
324   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
325   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
326 }
327 
328 size_t Function::arg_size() const {
329   return getFunctionType()->getNumParams();
330 }
331 bool Function::arg_empty() const {
332   return getFunctionType()->getNumParams() == 0;
333 }
334 
335 void Function::setParent(Module *parent) {
336   Parent = parent;
337 }
338 
339 // dropAllReferences() - This function causes all the subinstructions to "let
340 // go" of all references that they are maintaining.  This allows one to
341 // 'delete' a whole class at a time, even though there may be circular
342 // references... first all references are dropped, and all use counts go to
343 // zero.  Then everything is deleted for real.  Note that no operations are
344 // valid on an object that has "dropped all references", except operator
345 // delete.
346 //
347 void Function::dropAllReferences() {
348   setIsMaterializable(false);
349 
350   for (BasicBlock &BB : *this)
351     BB.dropAllReferences();
352 
353   // Delete all basic blocks. They are now unused, except possibly by
354   // blockaddresses, but BasicBlock's destructor takes care of those.
355   while (!BasicBlocks.empty())
356     BasicBlocks.begin()->eraseFromParent();
357 
358   // Drop uses of any optional data (real or placeholder).
359   if (getNumOperands()) {
360     User::dropAllReferences();
361     setNumHungOffUseOperands(0);
362     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
363   }
364 
365   // Metadata is stored in a side-table.
366   clearMetadata();
367 }
368 
369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
370   AttributeSet PAL = getAttributes();
371   PAL = PAL.addAttribute(getContext(), i, Kind);
372   setAttributes(PAL);
373 }
374 
375 void Function::addAttribute(unsigned i, Attribute Attr) {
376   AttributeSet PAL = getAttributes();
377   PAL = PAL.addAttribute(getContext(), i, Attr);
378   setAttributes(PAL);
379 }
380 
381 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
382   AttributeSet PAL = getAttributes();
383   PAL = PAL.addAttributes(getContext(), i, Attrs);
384   setAttributes(PAL);
385 }
386 
387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
388   AttributeSet PAL = getAttributes();
389   PAL = PAL.removeAttribute(getContext(), i, Kind);
390   setAttributes(PAL);
391 }
392 
393 void Function::removeAttribute(unsigned i, StringRef Kind) {
394   AttributeSet PAL = getAttributes();
395   PAL = PAL.removeAttribute(getContext(), i, Kind);
396   setAttributes(PAL);
397 }
398 
399 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
400   AttributeSet PAL = getAttributes();
401   PAL = PAL.removeAttributes(getContext(), i, Attrs);
402   setAttributes(PAL);
403 }
404 
405 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
406   AttributeSet PAL = getAttributes();
407   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
408   setAttributes(PAL);
409 }
410 
411 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
412   AttributeSet PAL = getAttributes();
413   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
414   setAttributes(PAL);
415 }
416 
417 const std::string &Function::getGC() const {
418   assert(hasGC() && "Function has no collector");
419   return getContext().getGC(*this);
420 }
421 
422 void Function::setGC(std::string Str) {
423   setValueSubclassDataBit(14, !Str.empty());
424   getContext().setGC(*this, std::move(Str));
425 }
426 
427 void Function::clearGC() {
428   if (!hasGC())
429     return;
430   getContext().deleteGC(*this);
431   setValueSubclassDataBit(14, false);
432 }
433 
434 /// Copy all additional attributes (those not needed to create a Function) from
435 /// the Function Src to this one.
436 void Function::copyAttributesFrom(const GlobalValue *Src) {
437   GlobalObject::copyAttributesFrom(Src);
438   const Function *SrcF = dyn_cast<Function>(Src);
439   if (!SrcF)
440     return;
441 
442   setCallingConv(SrcF->getCallingConv());
443   setAttributes(SrcF->getAttributes());
444   if (SrcF->hasGC())
445     setGC(SrcF->getGC());
446   else
447     clearGC();
448   if (SrcF->hasPersonalityFn())
449     setPersonalityFn(SrcF->getPersonalityFn());
450   if (SrcF->hasPrefixData())
451     setPrefixData(SrcF->getPrefixData());
452   if (SrcF->hasPrologueData())
453     setPrologueData(SrcF->getPrologueData());
454 }
455 
456 /// Table of string intrinsic names indexed by enum value.
457 static const char * const IntrinsicNameTable[] = {
458   "not_intrinsic",
459 #define GET_INTRINSIC_NAME_TABLE
460 #include "llvm/IR/Intrinsics.gen"
461 #undef GET_INTRINSIC_NAME_TABLE
462 };
463 
464 /// Table of per-target intrinsic name tables.
465 #define GET_INTRINSIC_TARGET_DATA
466 #include "llvm/IR/Intrinsics.gen"
467 #undef GET_INTRINSIC_TARGET_DATA
468 
469 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
470 /// target as \c Name, or the generic table if \c Name is not target specific.
471 ///
472 /// Returns the relevant slice of \c IntrinsicNameTable
473 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
474   assert(Name.startswith("llvm."));
475 
476   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
477   // Drop "llvm." and take the first dotted component. That will be the target
478   // if this is target specific.
479   StringRef Target = Name.drop_front(5).split('.').first;
480   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
481                              [](const IntrinsicTargetInfo &TI,
482                                 StringRef Target) { return TI.Name < Target; });
483   // We've either found the target or just fall back to the generic set, which
484   // is always first.
485   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
486   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
487 }
488 
489 /// \brief This does the actual lookup of an intrinsic ID which
490 /// matches the given function name.
491 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
492   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
493   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
494   if (Idx == -1)
495     return Intrinsic::not_intrinsic;
496 
497   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
498   // an index into a sub-table.
499   int Adjust = NameTable.data() - IntrinsicNameTable;
500   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
501 
502   // If the intrinsic is not overloaded, require an exact match. If it is
503   // overloaded, require a prefix match.
504   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
505   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
506 }
507 
508 void Function::recalculateIntrinsicID() {
509   const ValueName *ValName = this->getValueName();
510   if (!ValName || !isIntrinsic()) {
511     IntID = Intrinsic::not_intrinsic;
512     return;
513   }
514   IntID = lookupIntrinsicID(ValName->getKey());
515 }
516 
517 /// Returns a stable mangling for the type specified for use in the name
518 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
519 /// of named types is simply their name.  Manglings for unnamed types consist
520 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
521 /// combined with the mangling of their component types.  A vararg function
522 /// type will have a suffix of 'vararg'.  Since function types can contain
523 /// other function types, we close a function type mangling with suffix 'f'
524 /// which can't be confused with it's prefix.  This ensures we don't have
525 /// collisions between two unrelated function types. Otherwise, you might
526 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
527 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
528 /// cases) fall back to the MVT codepath, where they could be mangled to
529 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
530 /// everything.
531 static std::string getMangledTypeStr(Type* Ty) {
532   std::string Result;
533   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
534     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
535       getMangledTypeStr(PTyp->getElementType());
536   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
537     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
538       getMangledTypeStr(ATyp->getElementType());
539   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
540     assert(!STyp->isLiteral() && "TODO: implement literal types");
541     Result += STyp->getName();
542   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
543     Result += "f_" + getMangledTypeStr(FT->getReturnType());
544     for (size_t i = 0; i < FT->getNumParams(); i++)
545       Result += getMangledTypeStr(FT->getParamType(i));
546     if (FT->isVarArg())
547       Result += "vararg";
548     // Ensure nested function types are distinguishable.
549     Result += "f";
550   } else if (isa<VectorType>(Ty))
551     Result += "v" + utostr(Ty->getVectorNumElements()) +
552       getMangledTypeStr(Ty->getVectorElementType());
553   else if (Ty)
554     Result += EVT::getEVT(Ty).getEVTString();
555   return Result;
556 }
557 
558 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
559   assert(id < num_intrinsics && "Invalid intrinsic ID!");
560   std::string Result(IntrinsicNameTable[id]);
561   for (Type *Ty : Tys) {
562     Result += "." + getMangledTypeStr(Ty);
563   }
564   return Result;
565 }
566 
567 
568 /// IIT_Info - These are enumerators that describe the entries returned by the
569 /// getIntrinsicInfoTableEntries function.
570 ///
571 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
572 enum IIT_Info {
573   // Common values should be encoded with 0-15.
574   IIT_Done = 0,
575   IIT_I1   = 1,
576   IIT_I8   = 2,
577   IIT_I16  = 3,
578   IIT_I32  = 4,
579   IIT_I64  = 5,
580   IIT_F16  = 6,
581   IIT_F32  = 7,
582   IIT_F64  = 8,
583   IIT_V2   = 9,
584   IIT_V4   = 10,
585   IIT_V8   = 11,
586   IIT_V16  = 12,
587   IIT_V32  = 13,
588   IIT_PTR  = 14,
589   IIT_ARG  = 15,
590 
591   // Values from 16+ are only encodable with the inefficient encoding.
592   IIT_V64  = 16,
593   IIT_MMX  = 17,
594   IIT_TOKEN = 18,
595   IIT_METADATA = 19,
596   IIT_EMPTYSTRUCT = 20,
597   IIT_STRUCT2 = 21,
598   IIT_STRUCT3 = 22,
599   IIT_STRUCT4 = 23,
600   IIT_STRUCT5 = 24,
601   IIT_EXTEND_ARG = 25,
602   IIT_TRUNC_ARG = 26,
603   IIT_ANYPTR = 27,
604   IIT_V1   = 28,
605   IIT_VARARG = 29,
606   IIT_HALF_VEC_ARG = 30,
607   IIT_SAME_VEC_WIDTH_ARG = 31,
608   IIT_PTR_TO_ARG = 32,
609   IIT_VEC_OF_PTRS_TO_ELT = 33,
610   IIT_I128 = 34,
611   IIT_V512 = 35,
612   IIT_V1024 = 36
613 };
614 
615 
616 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
617                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
618   IIT_Info Info = IIT_Info(Infos[NextElt++]);
619   unsigned StructElts = 2;
620   using namespace Intrinsic;
621 
622   switch (Info) {
623   case IIT_Done:
624     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
625     return;
626   case IIT_VARARG:
627     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
628     return;
629   case IIT_MMX:
630     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
631     return;
632   case IIT_TOKEN:
633     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
634     return;
635   case IIT_METADATA:
636     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
637     return;
638   case IIT_F16:
639     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
640     return;
641   case IIT_F32:
642     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
643     return;
644   case IIT_F64:
645     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
646     return;
647   case IIT_I1:
648     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
649     return;
650   case IIT_I8:
651     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
652     return;
653   case IIT_I16:
654     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
655     return;
656   case IIT_I32:
657     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
658     return;
659   case IIT_I64:
660     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
661     return;
662   case IIT_I128:
663     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
664     return;
665   case IIT_V1:
666     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
667     DecodeIITType(NextElt, Infos, OutputTable);
668     return;
669   case IIT_V2:
670     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
671     DecodeIITType(NextElt, Infos, OutputTable);
672     return;
673   case IIT_V4:
674     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
675     DecodeIITType(NextElt, Infos, OutputTable);
676     return;
677   case IIT_V8:
678     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
679     DecodeIITType(NextElt, Infos, OutputTable);
680     return;
681   case IIT_V16:
682     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
683     DecodeIITType(NextElt, Infos, OutputTable);
684     return;
685   case IIT_V32:
686     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
687     DecodeIITType(NextElt, Infos, OutputTable);
688     return;
689   case IIT_V64:
690     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
691     DecodeIITType(NextElt, Infos, OutputTable);
692     return;
693   case IIT_V512:
694     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
695     DecodeIITType(NextElt, Infos, OutputTable);
696     return;
697   case IIT_V1024:
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
699     DecodeIITType(NextElt, Infos, OutputTable);
700     return;
701   case IIT_PTR:
702     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
703     DecodeIITType(NextElt, Infos, OutputTable);
704     return;
705   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
706     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
707                                              Infos[NextElt++]));
708     DecodeIITType(NextElt, Infos, OutputTable);
709     return;
710   }
711   case IIT_ARG: {
712     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
713     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
714     return;
715   }
716   case IIT_EXTEND_ARG: {
717     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
718     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
719                                              ArgInfo));
720     return;
721   }
722   case IIT_TRUNC_ARG: {
723     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
724     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
725                                              ArgInfo));
726     return;
727   }
728   case IIT_HALF_VEC_ARG: {
729     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
730     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
731                                              ArgInfo));
732     return;
733   }
734   case IIT_SAME_VEC_WIDTH_ARG: {
735     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
736     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
737                                              ArgInfo));
738     return;
739   }
740   case IIT_PTR_TO_ARG: {
741     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
743                                              ArgInfo));
744     return;
745   }
746   case IIT_VEC_OF_PTRS_TO_ELT: {
747     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
748     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
749                                              ArgInfo));
750     return;
751   }
752   case IIT_EMPTYSTRUCT:
753     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
754     return;
755   case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
756   case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
757   case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
758   case IIT_STRUCT2: {
759     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
760 
761     for (unsigned i = 0; i != StructElts; ++i)
762       DecodeIITType(NextElt, Infos, OutputTable);
763     return;
764   }
765   }
766   llvm_unreachable("unhandled");
767 }
768 
769 
770 #define GET_INTRINSIC_GENERATOR_GLOBAL
771 #include "llvm/IR/Intrinsics.gen"
772 #undef GET_INTRINSIC_GENERATOR_GLOBAL
773 
774 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
775                                              SmallVectorImpl<IITDescriptor> &T){
776   // Check to see if the intrinsic's type was expressible by the table.
777   unsigned TableVal = IIT_Table[id-1];
778 
779   // Decode the TableVal into an array of IITValues.
780   SmallVector<unsigned char, 8> IITValues;
781   ArrayRef<unsigned char> IITEntries;
782   unsigned NextElt = 0;
783   if ((TableVal >> 31) != 0) {
784     // This is an offset into the IIT_LongEncodingTable.
785     IITEntries = IIT_LongEncodingTable;
786 
787     // Strip sentinel bit.
788     NextElt = (TableVal << 1) >> 1;
789   } else {
790     // Decode the TableVal into an array of IITValues.  If the entry was encoded
791     // into a single word in the table itself, decode it now.
792     do {
793       IITValues.push_back(TableVal & 0xF);
794       TableVal >>= 4;
795     } while (TableVal);
796 
797     IITEntries = IITValues;
798     NextElt = 0;
799   }
800 
801   // Okay, decode the table into the output vector of IITDescriptors.
802   DecodeIITType(NextElt, IITEntries, T);
803   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
804     DecodeIITType(NextElt, IITEntries, T);
805 }
806 
807 
808 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
809                              ArrayRef<Type*> Tys, LLVMContext &Context) {
810   using namespace Intrinsic;
811   IITDescriptor D = Infos.front();
812   Infos = Infos.slice(1);
813 
814   switch (D.Kind) {
815   case IITDescriptor::Void: return Type::getVoidTy(Context);
816   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
817   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
818   case IITDescriptor::Token: return Type::getTokenTy(Context);
819   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
820   case IITDescriptor::Half: return Type::getHalfTy(Context);
821   case IITDescriptor::Float: return Type::getFloatTy(Context);
822   case IITDescriptor::Double: return Type::getDoubleTy(Context);
823 
824   case IITDescriptor::Integer:
825     return IntegerType::get(Context, D.Integer_Width);
826   case IITDescriptor::Vector:
827     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
828   case IITDescriptor::Pointer:
829     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
830                             D.Pointer_AddressSpace);
831   case IITDescriptor::Struct: {
832     Type *Elts[5];
833     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
834     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
835       Elts[i] = DecodeFixedType(Infos, Tys, Context);
836     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
837   }
838 
839   case IITDescriptor::Argument:
840     return Tys[D.getArgumentNumber()];
841   case IITDescriptor::ExtendArgument: {
842     Type *Ty = Tys[D.getArgumentNumber()];
843     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
844       return VectorType::getExtendedElementVectorType(VTy);
845 
846     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
847   }
848   case IITDescriptor::TruncArgument: {
849     Type *Ty = Tys[D.getArgumentNumber()];
850     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
851       return VectorType::getTruncatedElementVectorType(VTy);
852 
853     IntegerType *ITy = cast<IntegerType>(Ty);
854     assert(ITy->getBitWidth() % 2 == 0);
855     return IntegerType::get(Context, ITy->getBitWidth() / 2);
856   }
857   case IITDescriptor::HalfVecArgument:
858     return VectorType::getHalfElementsVectorType(cast<VectorType>(
859                                                   Tys[D.getArgumentNumber()]));
860   case IITDescriptor::SameVecWidthArgument: {
861     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
862     Type *Ty = Tys[D.getArgumentNumber()];
863     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
864       return VectorType::get(EltTy, VTy->getNumElements());
865     }
866     llvm_unreachable("unhandled");
867   }
868   case IITDescriptor::PtrToArgument: {
869     Type *Ty = Tys[D.getArgumentNumber()];
870     return PointerType::getUnqual(Ty);
871   }
872   case IITDescriptor::VecOfPtrsToElt: {
873     Type *Ty = Tys[D.getArgumentNumber()];
874     VectorType *VTy = dyn_cast<VectorType>(Ty);
875     if (!VTy)
876       llvm_unreachable("Expected an argument of Vector Type");
877     Type *EltTy = VTy->getVectorElementType();
878     return VectorType::get(PointerType::getUnqual(EltTy),
879                            VTy->getNumElements());
880   }
881  }
882   llvm_unreachable("unhandled");
883 }
884 
885 
886 
887 FunctionType *Intrinsic::getType(LLVMContext &Context,
888                                  ID id, ArrayRef<Type*> Tys) {
889   SmallVector<IITDescriptor, 8> Table;
890   getIntrinsicInfoTableEntries(id, Table);
891 
892   ArrayRef<IITDescriptor> TableRef = Table;
893   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
894 
895   SmallVector<Type*, 8> ArgTys;
896   while (!TableRef.empty())
897     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
898 
899   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
900   // If we see void type as the type of the last argument, it is vararg intrinsic
901   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
902     ArgTys.pop_back();
903     return FunctionType::get(ResultTy, ArgTys, true);
904   }
905   return FunctionType::get(ResultTy, ArgTys, false);
906 }
907 
908 bool Intrinsic::isOverloaded(ID id) {
909 #define GET_INTRINSIC_OVERLOAD_TABLE
910 #include "llvm/IR/Intrinsics.gen"
911 #undef GET_INTRINSIC_OVERLOAD_TABLE
912 }
913 
914 bool Intrinsic::isLeaf(ID id) {
915   switch (id) {
916   default:
917     return true;
918 
919   case Intrinsic::experimental_gc_statepoint:
920   case Intrinsic::experimental_patchpoint_void:
921   case Intrinsic::experimental_patchpoint_i64:
922     return false;
923   }
924 }
925 
926 /// This defines the "Intrinsic::getAttributes(ID id)" method.
927 #define GET_INTRINSIC_ATTRIBUTES
928 #include "llvm/IR/Intrinsics.gen"
929 #undef GET_INTRINSIC_ATTRIBUTES
930 
931 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
932   // There can never be multiple globals with the same name of different types,
933   // because intrinsics must be a specific type.
934   return
935     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
936                                           getType(M->getContext(), id, Tys)));
937 }
938 
939 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
940 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
941 #include "llvm/IR/Intrinsics.gen"
942 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
943 
944 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
945 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
946 #include "llvm/IR/Intrinsics.gen"
947 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
948 
949 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
950                                    SmallVectorImpl<Type*> &ArgTys) {
951   using namespace Intrinsic;
952 
953   // If we ran out of descriptors, there are too many arguments.
954   if (Infos.empty()) return true;
955   IITDescriptor D = Infos.front();
956   Infos = Infos.slice(1);
957 
958   switch (D.Kind) {
959     case IITDescriptor::Void: return !Ty->isVoidTy();
960     case IITDescriptor::VarArg: return true;
961     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
962     case IITDescriptor::Token: return !Ty->isTokenTy();
963     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
964     case IITDescriptor::Half: return !Ty->isHalfTy();
965     case IITDescriptor::Float: return !Ty->isFloatTy();
966     case IITDescriptor::Double: return !Ty->isDoubleTy();
967     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
968     case IITDescriptor::Vector: {
969       VectorType *VT = dyn_cast<VectorType>(Ty);
970       return !VT || VT->getNumElements() != D.Vector_Width ||
971              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
972     }
973     case IITDescriptor::Pointer: {
974       PointerType *PT = dyn_cast<PointerType>(Ty);
975       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
976              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
977     }
978 
979     case IITDescriptor::Struct: {
980       StructType *ST = dyn_cast<StructType>(Ty);
981       if (!ST || ST->getNumElements() != D.Struct_NumElements)
982         return true;
983 
984       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
985         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
986           return true;
987       return false;
988     }
989 
990     case IITDescriptor::Argument:
991       // Two cases here - If this is the second occurrence of an argument, verify
992       // that the later instance matches the previous instance.
993       if (D.getArgumentNumber() < ArgTys.size())
994         return Ty != ArgTys[D.getArgumentNumber()];
995 
996           // Otherwise, if this is the first instance of an argument, record it and
997           // verify the "Any" kind.
998           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
999           ArgTys.push_back(Ty);
1000 
1001           switch (D.getArgumentKind()) {
1002             case IITDescriptor::AK_Any:        return false; // Success
1003             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1004             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1005             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1006             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1007           }
1008           llvm_unreachable("all argument kinds not covered");
1009 
1010     case IITDescriptor::ExtendArgument: {
1011       // This may only be used when referring to a previous vector argument.
1012       if (D.getArgumentNumber() >= ArgTys.size())
1013         return true;
1014 
1015       Type *NewTy = ArgTys[D.getArgumentNumber()];
1016       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1017         NewTy = VectorType::getExtendedElementVectorType(VTy);
1018       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1019         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1020       else
1021         return true;
1022 
1023       return Ty != NewTy;
1024     }
1025     case IITDescriptor::TruncArgument: {
1026       // This may only be used when referring to a previous vector argument.
1027       if (D.getArgumentNumber() >= ArgTys.size())
1028         return true;
1029 
1030       Type *NewTy = ArgTys[D.getArgumentNumber()];
1031       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1032         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1033       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1034         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1035       else
1036         return true;
1037 
1038       return Ty != NewTy;
1039     }
1040     case IITDescriptor::HalfVecArgument:
1041       // This may only be used when referring to a previous vector argument.
1042       return D.getArgumentNumber() >= ArgTys.size() ||
1043              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1044              VectorType::getHalfElementsVectorType(
1045                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1046     case IITDescriptor::SameVecWidthArgument: {
1047       if (D.getArgumentNumber() >= ArgTys.size())
1048         return true;
1049       VectorType * ReferenceType =
1050               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1051       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1052       if (!ThisArgType || !ReferenceType ||
1053           (ReferenceType->getVectorNumElements() !=
1054            ThisArgType->getVectorNumElements()))
1055         return true;
1056       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1057                                 Infos, ArgTys);
1058     }
1059     case IITDescriptor::PtrToArgument: {
1060       if (D.getArgumentNumber() >= ArgTys.size())
1061         return true;
1062       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1063       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1064       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1065     }
1066     case IITDescriptor::VecOfPtrsToElt: {
1067       if (D.getArgumentNumber() >= ArgTys.size())
1068         return true;
1069       VectorType * ReferenceType =
1070               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1071       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1072       if (!ThisArgVecTy || !ReferenceType ||
1073           (ReferenceType->getVectorNumElements() !=
1074            ThisArgVecTy->getVectorNumElements()))
1075         return true;
1076       PointerType *ThisArgEltTy =
1077               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1078       if (!ThisArgEltTy)
1079         return true;
1080       return ThisArgEltTy->getElementType() !=
1081              ReferenceType->getVectorElementType();
1082     }
1083   }
1084   llvm_unreachable("unhandled");
1085 }
1086 
1087 bool
1088 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1089                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1090   // If there are no descriptors left, then it can't be a vararg.
1091   if (Infos.empty())
1092     return isVarArg;
1093 
1094   // There should be only one descriptor remaining at this point.
1095   if (Infos.size() != 1)
1096     return true;
1097 
1098   // Check and verify the descriptor.
1099   IITDescriptor D = Infos.front();
1100   Infos = Infos.slice(1);
1101   if (D.Kind == IITDescriptor::VarArg)
1102     return !isVarArg;
1103 
1104   return true;
1105 }
1106 
1107 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1108   Intrinsic::ID ID = F->getIntrinsicID();
1109   if (!ID)
1110     return None;
1111 
1112   FunctionType *FTy = F->getFunctionType();
1113   // Accumulate an array of overloaded types for the given intrinsic
1114   SmallVector<Type *, 4> ArgTys;
1115   {
1116     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1117     getIntrinsicInfoTableEntries(ID, Table);
1118     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1119 
1120     // If we encounter any problems matching the signature with the descriptor
1121     // just give up remangling. It's up to verifier to report the discrepancy.
1122     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1123       return None;
1124     for (auto Ty : FTy->params())
1125       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1126         return None;
1127     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1128       return None;
1129   }
1130 
1131   StringRef Name = F->getName();
1132   if (Name == Intrinsic::getName(ID, ArgTys))
1133     return None;
1134 
1135   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1136   NewDecl->setCallingConv(F->getCallingConv());
1137   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1138   return NewDecl;
1139 }
1140 
1141 /// hasAddressTaken - returns true if there are any uses of this function
1142 /// other than direct calls or invokes to it.
1143 bool Function::hasAddressTaken(const User* *PutOffender) const {
1144   for (const Use &U : uses()) {
1145     const User *FU = U.getUser();
1146     if (isa<BlockAddress>(FU))
1147       continue;
1148     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1149       if (PutOffender)
1150         *PutOffender = FU;
1151       return true;
1152     }
1153     ImmutableCallSite CS(cast<Instruction>(FU));
1154     if (!CS.isCallee(&U)) {
1155       if (PutOffender)
1156         *PutOffender = FU;
1157       return true;
1158     }
1159   }
1160   return false;
1161 }
1162 
1163 bool Function::isDefTriviallyDead() const {
1164   // Check the linkage
1165   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1166       !hasAvailableExternallyLinkage())
1167     return false;
1168 
1169   // Check if the function is used by anything other than a blockaddress.
1170   for (const User *U : users())
1171     if (!isa<BlockAddress>(U))
1172       return false;
1173 
1174   return true;
1175 }
1176 
1177 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1178 /// setjmp or other function that gcc recognizes as "returning twice".
1179 bool Function::callsFunctionThatReturnsTwice() const {
1180   for (const_inst_iterator
1181          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1182     ImmutableCallSite CS(&*I);
1183     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1184       return true;
1185   }
1186 
1187   return false;
1188 }
1189 
1190 Constant *Function::getPersonalityFn() const {
1191   assert(hasPersonalityFn() && getNumOperands());
1192   return cast<Constant>(Op<0>());
1193 }
1194 
1195 void Function::setPersonalityFn(Constant *Fn) {
1196   setHungoffOperand<0>(Fn);
1197   setValueSubclassDataBit(3, Fn != nullptr);
1198 }
1199 
1200 Constant *Function::getPrefixData() const {
1201   assert(hasPrefixData() && getNumOperands());
1202   return cast<Constant>(Op<1>());
1203 }
1204 
1205 void Function::setPrefixData(Constant *PrefixData) {
1206   setHungoffOperand<1>(PrefixData);
1207   setValueSubclassDataBit(1, PrefixData != nullptr);
1208 }
1209 
1210 Constant *Function::getPrologueData() const {
1211   assert(hasPrologueData() && getNumOperands());
1212   return cast<Constant>(Op<2>());
1213 }
1214 
1215 void Function::setPrologueData(Constant *PrologueData) {
1216   setHungoffOperand<2>(PrologueData);
1217   setValueSubclassDataBit(2, PrologueData != nullptr);
1218 }
1219 
1220 void Function::allocHungoffUselist() {
1221   // If we've already allocated a uselist, stop here.
1222   if (getNumOperands())
1223     return;
1224 
1225   allocHungoffUses(3, /*IsPhi=*/ false);
1226   setNumHungOffUseOperands(3);
1227 
1228   // Initialize the uselist with placeholder operands to allow traversal.
1229   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1230   Op<0>().set(CPN);
1231   Op<1>().set(CPN);
1232   Op<2>().set(CPN);
1233 }
1234 
1235 template <int Idx>
1236 void Function::setHungoffOperand(Constant *C) {
1237   if (C) {
1238     allocHungoffUselist();
1239     Op<Idx>().set(C);
1240   } else if (getNumOperands()) {
1241     Op<Idx>().set(
1242         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1243   }
1244 }
1245 
1246 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1247   assert(Bit < 16 && "SubclassData contains only 16 bits");
1248   if (On)
1249     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1250   else
1251     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1252 }
1253 
1254 void Function::setEntryCount(uint64_t Count) {
1255   MDBuilder MDB(getContext());
1256   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1257 }
1258 
1259 Optional<uint64_t> Function::getEntryCount() const {
1260   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1261   if (MD && MD->getOperand(0))
1262     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1263       if (MDS->getString().equals("function_entry_count")) {
1264         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1265         return CI->getValue().getZExtValue();
1266       }
1267   return None;
1268 }
1269