1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<BasicBlock>; 34 35 //===----------------------------------------------------------------------===// 36 // Argument Implementation 37 //===----------------------------------------------------------------------===// 38 39 void Argument::anchor() { } 40 41 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 42 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 43 setName(Name); 44 } 45 46 void Argument::setParent(Function *parent) { 47 Parent = parent; 48 } 49 50 bool Argument::hasNonNullAttr() const { 51 if (!getType()->isPointerTy()) return false; 52 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 53 return true; 54 else if (getDereferenceableBytes() > 0 && 55 getType()->getPointerAddressSpace() == 0) 56 return true; 57 return false; 58 } 59 60 bool Argument::hasByValAttr() const { 61 if (!getType()->isPointerTy()) return false; 62 return hasAttribute(Attribute::ByVal); 63 } 64 65 bool Argument::hasSwiftSelfAttr() const { 66 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 67 } 68 69 bool Argument::hasSwiftErrorAttr() const { 70 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 71 } 72 73 bool Argument::hasInAllocaAttr() const { 74 if (!getType()->isPointerTy()) return false; 75 return hasAttribute(Attribute::InAlloca); 76 } 77 78 bool Argument::hasByValOrInAllocaAttr() const { 79 if (!getType()->isPointerTy()) return false; 80 AttributeList Attrs = getParent()->getAttributes(); 81 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 82 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 83 } 84 85 unsigned Argument::getParamAlignment() const { 86 assert(getType()->isPointerTy() && "Only pointers have alignments"); 87 return getParent()->getParamAlignment(getArgNo()+1); 88 89 } 90 91 uint64_t Argument::getDereferenceableBytes() const { 92 assert(getType()->isPointerTy() && 93 "Only pointers have dereferenceable bytes"); 94 return getParent()->getDereferenceableBytes(getArgNo()+1); 95 } 96 97 uint64_t Argument::getDereferenceableOrNullBytes() const { 98 assert(getType()->isPointerTy() && 99 "Only pointers have dereferenceable bytes"); 100 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 101 } 102 103 bool Argument::hasNestAttr() const { 104 if (!getType()->isPointerTy()) return false; 105 return hasAttribute(Attribute::Nest); 106 } 107 108 bool Argument::hasNoAliasAttr() const { 109 if (!getType()->isPointerTy()) return false; 110 return hasAttribute(Attribute::NoAlias); 111 } 112 113 bool Argument::hasNoCaptureAttr() const { 114 if (!getType()->isPointerTy()) return false; 115 return hasAttribute(Attribute::NoCapture); 116 } 117 118 bool Argument::hasStructRetAttr() const { 119 if (!getType()->isPointerTy()) return false; 120 return hasAttribute(Attribute::StructRet); 121 } 122 123 bool Argument::hasReturnedAttr() const { 124 return hasAttribute(Attribute::Returned); 125 } 126 127 bool Argument::hasZExtAttr() const { 128 return hasAttribute(Attribute::ZExt); 129 } 130 131 bool Argument::hasSExtAttr() const { 132 return hasAttribute(Attribute::SExt); 133 } 134 135 bool Argument::onlyReadsMemory() const { 136 AttributeList Attrs = getParent()->getAttributes(); 137 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 138 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 139 } 140 141 void Argument::addAttrs(AttrBuilder &B) { 142 AttributeList AL = getParent()->getAttributes(); 143 AL = AL.addAttributes(Parent->getContext(), getArgNo() + 1, B); 144 getParent()->setAttributes(AL); 145 } 146 147 void Argument::addAttr(Attribute::AttrKind Kind) { 148 getParent()->addAttribute(getArgNo() + 1, Kind); 149 } 150 151 void Argument::addAttr(Attribute Attr) { 152 getParent()->addAttribute(getArgNo() + 1, Attr); 153 } 154 155 void Argument::removeAttr(Attribute::AttrKind Kind) { 156 getParent()->removeAttribute(getArgNo() + 1, Kind); 157 } 158 159 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 160 return getParent()->hasParamAttribute(getArgNo(), Kind); 161 } 162 163 //===----------------------------------------------------------------------===// 164 // Helper Methods in Function 165 //===----------------------------------------------------------------------===// 166 167 LLVMContext &Function::getContext() const { 168 return getType()->getContext(); 169 } 170 171 void Function::removeFromParent() { 172 getParent()->getFunctionList().remove(getIterator()); 173 } 174 175 void Function::eraseFromParent() { 176 getParent()->getFunctionList().erase(getIterator()); 177 } 178 179 //===----------------------------------------------------------------------===// 180 // Function Implementation 181 //===----------------------------------------------------------------------===// 182 183 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 184 Module *ParentModule) 185 : GlobalObject(Ty, Value::FunctionVal, 186 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 187 Arguments(nullptr), NumArgs(Ty->getNumParams()) { 188 assert(FunctionType::isValidReturnType(getReturnType()) && 189 "invalid return type"); 190 setGlobalObjectSubClassData(0); 191 192 // We only need a symbol table for a function if the context keeps value names 193 if (!getContext().shouldDiscardValueNames()) 194 SymTab = make_unique<ValueSymbolTable>(); 195 196 // If the function has arguments, mark them as lazily built. 197 if (Ty->getNumParams()) 198 setValueSubclassData(1); // Set the "has lazy arguments" bit. 199 200 if (ParentModule) 201 ParentModule->getFunctionList().push_back(this); 202 203 HasLLVMReservedName = getName().startswith("llvm."); 204 // Ensure intrinsics have the right parameter attributes. 205 // Note, the IntID field will have been set in Value::setName if this function 206 // name is a valid intrinsic ID. 207 if (IntID) 208 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 209 } 210 211 Function::~Function() { 212 dropAllReferences(); // After this it is safe to delete instructions. 213 214 // Delete all of the method arguments and unlink from symbol table... 215 if (Arguments) 216 clearArguments(); 217 218 // Remove the function from the on-the-side GC table. 219 clearGC(); 220 } 221 222 void Function::BuildLazyArguments() const { 223 // Create the arguments vector, all arguments start out unnamed. 224 auto *FT = getFunctionType(); 225 if (NumArgs > 0) { 226 Arguments = std::allocator<Argument>().allocate(NumArgs); 227 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 228 Type *ArgTy = FT->getParamType(i); 229 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 230 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 231 } 232 } 233 234 // Clear the lazy arguments bit. 235 unsigned SDC = getSubclassDataFromValue(); 236 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 237 assert(!hasLazyArguments()); 238 } 239 240 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 241 return MutableArrayRef<Argument>(Args, Count); 242 } 243 244 void Function::clearArguments() { 245 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 246 A.setName(""); 247 A.~Argument(); 248 } 249 std::allocator<Argument>().deallocate(Arguments, NumArgs); 250 Arguments = nullptr; 251 } 252 253 void Function::stealArgumentListFrom(Function &Src) { 254 assert(isDeclaration() && "Expected no references to current arguments"); 255 256 // Drop the current arguments, if any, and set the lazy argument bit. 257 if (!hasLazyArguments()) { 258 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 259 [](const Argument &A) { return A.use_empty(); }) && 260 "Expected arguments to be unused in declaration"); 261 clearArguments(); 262 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 263 } 264 265 // Nothing to steal if Src has lazy arguments. 266 if (Src.hasLazyArguments()) 267 return; 268 269 // Steal arguments from Src, and fix the lazy argument bits. 270 assert(arg_size() == Src.arg_size()); 271 Arguments = Src.Arguments; 272 Src.Arguments = nullptr; 273 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 274 // FIXME: This does the work of transferNodesFromList inefficiently. 275 SmallString<128> Name; 276 if (A.hasName()) 277 Name = A.getName(); 278 if (!Name.empty()) 279 A.setName(""); 280 A.setParent(this); 281 if (!Name.empty()) 282 A.setName(Name); 283 } 284 285 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 286 assert(!hasLazyArguments()); 287 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 288 } 289 290 // dropAllReferences() - This function causes all the subinstructions to "let 291 // go" of all references that they are maintaining. This allows one to 292 // 'delete' a whole class at a time, even though there may be circular 293 // references... first all references are dropped, and all use counts go to 294 // zero. Then everything is deleted for real. Note that no operations are 295 // valid on an object that has "dropped all references", except operator 296 // delete. 297 // 298 void Function::dropAllReferences() { 299 setIsMaterializable(false); 300 301 for (BasicBlock &BB : *this) 302 BB.dropAllReferences(); 303 304 // Delete all basic blocks. They are now unused, except possibly by 305 // blockaddresses, but BasicBlock's destructor takes care of those. 306 while (!BasicBlocks.empty()) 307 BasicBlocks.begin()->eraseFromParent(); 308 309 // Drop uses of any optional data (real or placeholder). 310 if (getNumOperands()) { 311 User::dropAllReferences(); 312 setNumHungOffUseOperands(0); 313 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 314 } 315 316 // Metadata is stored in a side-table. 317 clearMetadata(); 318 } 319 320 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 321 AttributeList PAL = getAttributes(); 322 PAL = PAL.addAttribute(getContext(), i, Kind); 323 setAttributes(PAL); 324 } 325 326 void Function::addAttribute(unsigned i, Attribute Attr) { 327 AttributeList PAL = getAttributes(); 328 PAL = PAL.addAttribute(getContext(), i, Attr); 329 setAttributes(PAL); 330 } 331 332 void Function::addAttributes(unsigned i, AttributeList Attrs) { 333 AttributeList PAL = getAttributes(); 334 PAL = PAL.addAttributes(getContext(), i, Attrs); 335 setAttributes(PAL); 336 } 337 338 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 339 AttributeList PAL = getAttributes(); 340 PAL = PAL.removeAttribute(getContext(), i, Kind); 341 setAttributes(PAL); 342 } 343 344 void Function::removeAttribute(unsigned i, StringRef Kind) { 345 AttributeList PAL = getAttributes(); 346 PAL = PAL.removeAttribute(getContext(), i, Kind); 347 setAttributes(PAL); 348 } 349 350 void Function::removeAttributes(unsigned i, AttributeList Attrs) { 351 AttributeList PAL = getAttributes(); 352 PAL = PAL.removeAttributes(getContext(), i, Attrs); 353 setAttributes(PAL); 354 } 355 356 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 357 AttributeList PAL = getAttributes(); 358 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 359 setAttributes(PAL); 360 } 361 362 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 363 AttributeList PAL = getAttributes(); 364 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 365 setAttributes(PAL); 366 } 367 368 const std::string &Function::getGC() const { 369 assert(hasGC() && "Function has no collector"); 370 return getContext().getGC(*this); 371 } 372 373 void Function::setGC(std::string Str) { 374 setValueSubclassDataBit(14, !Str.empty()); 375 getContext().setGC(*this, std::move(Str)); 376 } 377 378 void Function::clearGC() { 379 if (!hasGC()) 380 return; 381 getContext().deleteGC(*this); 382 setValueSubclassDataBit(14, false); 383 } 384 385 /// Copy all additional attributes (those not needed to create a Function) from 386 /// the Function Src to this one. 387 void Function::copyAttributesFrom(const GlobalValue *Src) { 388 GlobalObject::copyAttributesFrom(Src); 389 const Function *SrcF = dyn_cast<Function>(Src); 390 if (!SrcF) 391 return; 392 393 setCallingConv(SrcF->getCallingConv()); 394 setAttributes(SrcF->getAttributes()); 395 if (SrcF->hasGC()) 396 setGC(SrcF->getGC()); 397 else 398 clearGC(); 399 if (SrcF->hasPersonalityFn()) 400 setPersonalityFn(SrcF->getPersonalityFn()); 401 if (SrcF->hasPrefixData()) 402 setPrefixData(SrcF->getPrefixData()); 403 if (SrcF->hasPrologueData()) 404 setPrologueData(SrcF->getPrologueData()); 405 } 406 407 /// Table of string intrinsic names indexed by enum value. 408 static const char * const IntrinsicNameTable[] = { 409 "not_intrinsic", 410 #define GET_INTRINSIC_NAME_TABLE 411 #include "llvm/IR/Intrinsics.gen" 412 #undef GET_INTRINSIC_NAME_TABLE 413 }; 414 415 /// Table of per-target intrinsic name tables. 416 #define GET_INTRINSIC_TARGET_DATA 417 #include "llvm/IR/Intrinsics.gen" 418 #undef GET_INTRINSIC_TARGET_DATA 419 420 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 421 /// target as \c Name, or the generic table if \c Name is not target specific. 422 /// 423 /// Returns the relevant slice of \c IntrinsicNameTable 424 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 425 assert(Name.startswith("llvm.")); 426 427 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 428 // Drop "llvm." and take the first dotted component. That will be the target 429 // if this is target specific. 430 StringRef Target = Name.drop_front(5).split('.').first; 431 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 432 [](const IntrinsicTargetInfo &TI, 433 StringRef Target) { return TI.Name < Target; }); 434 // We've either found the target or just fall back to the generic set, which 435 // is always first. 436 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 437 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 438 } 439 440 /// \brief This does the actual lookup of an intrinsic ID which 441 /// matches the given function name. 442 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 443 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 444 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 445 if (Idx == -1) 446 return Intrinsic::not_intrinsic; 447 448 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 449 // an index into a sub-table. 450 int Adjust = NameTable.data() - IntrinsicNameTable; 451 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 452 453 // If the intrinsic is not overloaded, require an exact match. If it is 454 // overloaded, require a prefix match. 455 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 456 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 457 } 458 459 void Function::recalculateIntrinsicID() { 460 StringRef Name = getName(); 461 if (!Name.startswith("llvm.")) { 462 HasLLVMReservedName = false; 463 IntID = Intrinsic::not_intrinsic; 464 return; 465 } 466 HasLLVMReservedName = true; 467 IntID = lookupIntrinsicID(Name); 468 } 469 470 /// Returns a stable mangling for the type specified for use in the name 471 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 472 /// of named types is simply their name. Manglings for unnamed types consist 473 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 474 /// combined with the mangling of their component types. A vararg function 475 /// type will have a suffix of 'vararg'. Since function types can contain 476 /// other function types, we close a function type mangling with suffix 'f' 477 /// which can't be confused with it's prefix. This ensures we don't have 478 /// collisions between two unrelated function types. Otherwise, you might 479 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 480 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 481 /// cases) fall back to the MVT codepath, where they could be mangled to 482 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 483 /// everything. 484 static std::string getMangledTypeStr(Type* Ty) { 485 std::string Result; 486 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 487 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 488 getMangledTypeStr(PTyp->getElementType()); 489 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 490 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 491 getMangledTypeStr(ATyp->getElementType()); 492 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 493 if (!STyp->isLiteral()) { 494 Result += "s_"; 495 Result += STyp->getName(); 496 } else { 497 Result += "sl_"; 498 for (auto Elem : STyp->elements()) 499 Result += getMangledTypeStr(Elem); 500 } 501 // Ensure nested structs are distinguishable. 502 Result += "s"; 503 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 504 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 505 for (size_t i = 0; i < FT->getNumParams(); i++) 506 Result += getMangledTypeStr(FT->getParamType(i)); 507 if (FT->isVarArg()) 508 Result += "vararg"; 509 // Ensure nested function types are distinguishable. 510 Result += "f"; 511 } else if (isa<VectorType>(Ty)) 512 Result += "v" + utostr(Ty->getVectorNumElements()) + 513 getMangledTypeStr(Ty->getVectorElementType()); 514 else if (Ty) 515 Result += EVT::getEVT(Ty).getEVTString(); 516 return Result; 517 } 518 519 StringRef Intrinsic::getName(ID id) { 520 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 521 assert(!isOverloaded(id) && 522 "This version of getName does not support overloading"); 523 return IntrinsicNameTable[id]; 524 } 525 526 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 527 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 528 std::string Result(IntrinsicNameTable[id]); 529 for (Type *Ty : Tys) { 530 Result += "." + getMangledTypeStr(Ty); 531 } 532 return Result; 533 } 534 535 536 /// IIT_Info - These are enumerators that describe the entries returned by the 537 /// getIntrinsicInfoTableEntries function. 538 /// 539 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 540 enum IIT_Info { 541 // Common values should be encoded with 0-15. 542 IIT_Done = 0, 543 IIT_I1 = 1, 544 IIT_I8 = 2, 545 IIT_I16 = 3, 546 IIT_I32 = 4, 547 IIT_I64 = 5, 548 IIT_F16 = 6, 549 IIT_F32 = 7, 550 IIT_F64 = 8, 551 IIT_V2 = 9, 552 IIT_V4 = 10, 553 IIT_V8 = 11, 554 IIT_V16 = 12, 555 IIT_V32 = 13, 556 IIT_PTR = 14, 557 IIT_ARG = 15, 558 559 // Values from 16+ are only encodable with the inefficient encoding. 560 IIT_V64 = 16, 561 IIT_MMX = 17, 562 IIT_TOKEN = 18, 563 IIT_METADATA = 19, 564 IIT_EMPTYSTRUCT = 20, 565 IIT_STRUCT2 = 21, 566 IIT_STRUCT3 = 22, 567 IIT_STRUCT4 = 23, 568 IIT_STRUCT5 = 24, 569 IIT_EXTEND_ARG = 25, 570 IIT_TRUNC_ARG = 26, 571 IIT_ANYPTR = 27, 572 IIT_V1 = 28, 573 IIT_VARARG = 29, 574 IIT_HALF_VEC_ARG = 30, 575 IIT_SAME_VEC_WIDTH_ARG = 31, 576 IIT_PTR_TO_ARG = 32, 577 IIT_PTR_TO_ELT = 33, 578 IIT_VEC_OF_PTRS_TO_ELT = 34, 579 IIT_I128 = 35, 580 IIT_V512 = 36, 581 IIT_V1024 = 37 582 }; 583 584 585 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 586 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 587 IIT_Info Info = IIT_Info(Infos[NextElt++]); 588 unsigned StructElts = 2; 589 using namespace Intrinsic; 590 591 switch (Info) { 592 case IIT_Done: 593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 594 return; 595 case IIT_VARARG: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 597 return; 598 case IIT_MMX: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 600 return; 601 case IIT_TOKEN: 602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 603 return; 604 case IIT_METADATA: 605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 606 return; 607 case IIT_F16: 608 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 609 return; 610 case IIT_F32: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 612 return; 613 case IIT_F64: 614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 615 return; 616 case IIT_I1: 617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 618 return; 619 case IIT_I8: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 621 return; 622 case IIT_I16: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 624 return; 625 case IIT_I32: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 627 return; 628 case IIT_I64: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 630 return; 631 case IIT_I128: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 633 return; 634 case IIT_V1: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 case IIT_V2: 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 640 DecodeIITType(NextElt, Infos, OutputTable); 641 return; 642 case IIT_V4: 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 644 DecodeIITType(NextElt, Infos, OutputTable); 645 return; 646 case IIT_V8: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 648 DecodeIITType(NextElt, Infos, OutputTable); 649 return; 650 case IIT_V16: 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 652 DecodeIITType(NextElt, Infos, OutputTable); 653 return; 654 case IIT_V32: 655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 656 DecodeIITType(NextElt, Infos, OutputTable); 657 return; 658 case IIT_V64: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 660 DecodeIITType(NextElt, Infos, OutputTable); 661 return; 662 case IIT_V512: 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 664 DecodeIITType(NextElt, Infos, OutputTable); 665 return; 666 case IIT_V1024: 667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 668 DecodeIITType(NextElt, Infos, OutputTable); 669 return; 670 case IIT_PTR: 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 672 DecodeIITType(NextElt, Infos, OutputTable); 673 return; 674 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 676 Infos[NextElt++])); 677 DecodeIITType(NextElt, Infos, OutputTable); 678 return; 679 } 680 case IIT_ARG: { 681 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 683 return; 684 } 685 case IIT_EXTEND_ARG: { 686 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 688 ArgInfo)); 689 return; 690 } 691 case IIT_TRUNC_ARG: { 692 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 694 ArgInfo)); 695 return; 696 } 697 case IIT_HALF_VEC_ARG: { 698 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 700 ArgInfo)); 701 return; 702 } 703 case IIT_SAME_VEC_WIDTH_ARG: { 704 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 706 ArgInfo)); 707 return; 708 } 709 case IIT_PTR_TO_ARG: { 710 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 712 ArgInfo)); 713 return; 714 } 715 case IIT_PTR_TO_ELT: { 716 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 717 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 718 return; 719 } 720 case IIT_VEC_OF_PTRS_TO_ELT: { 721 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 723 ArgInfo)); 724 return; 725 } 726 case IIT_EMPTYSTRUCT: 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 728 return; 729 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 730 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 731 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 732 case IIT_STRUCT2: { 733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 734 735 for (unsigned i = 0; i != StructElts; ++i) 736 DecodeIITType(NextElt, Infos, OutputTable); 737 return; 738 } 739 } 740 llvm_unreachable("unhandled"); 741 } 742 743 744 #define GET_INTRINSIC_GENERATOR_GLOBAL 745 #include "llvm/IR/Intrinsics.gen" 746 #undef GET_INTRINSIC_GENERATOR_GLOBAL 747 748 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 749 SmallVectorImpl<IITDescriptor> &T){ 750 // Check to see if the intrinsic's type was expressible by the table. 751 unsigned TableVal = IIT_Table[id-1]; 752 753 // Decode the TableVal into an array of IITValues. 754 SmallVector<unsigned char, 8> IITValues; 755 ArrayRef<unsigned char> IITEntries; 756 unsigned NextElt = 0; 757 if ((TableVal >> 31) != 0) { 758 // This is an offset into the IIT_LongEncodingTable. 759 IITEntries = IIT_LongEncodingTable; 760 761 // Strip sentinel bit. 762 NextElt = (TableVal << 1) >> 1; 763 } else { 764 // Decode the TableVal into an array of IITValues. If the entry was encoded 765 // into a single word in the table itself, decode it now. 766 do { 767 IITValues.push_back(TableVal & 0xF); 768 TableVal >>= 4; 769 } while (TableVal); 770 771 IITEntries = IITValues; 772 NextElt = 0; 773 } 774 775 // Okay, decode the table into the output vector of IITDescriptors. 776 DecodeIITType(NextElt, IITEntries, T); 777 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 778 DecodeIITType(NextElt, IITEntries, T); 779 } 780 781 782 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 783 ArrayRef<Type*> Tys, LLVMContext &Context) { 784 using namespace Intrinsic; 785 IITDescriptor D = Infos.front(); 786 Infos = Infos.slice(1); 787 788 switch (D.Kind) { 789 case IITDescriptor::Void: return Type::getVoidTy(Context); 790 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 791 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 792 case IITDescriptor::Token: return Type::getTokenTy(Context); 793 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 794 case IITDescriptor::Half: return Type::getHalfTy(Context); 795 case IITDescriptor::Float: return Type::getFloatTy(Context); 796 case IITDescriptor::Double: return Type::getDoubleTy(Context); 797 798 case IITDescriptor::Integer: 799 return IntegerType::get(Context, D.Integer_Width); 800 case IITDescriptor::Vector: 801 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 802 case IITDescriptor::Pointer: 803 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 804 D.Pointer_AddressSpace); 805 case IITDescriptor::Struct: { 806 Type *Elts[5]; 807 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 808 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 809 Elts[i] = DecodeFixedType(Infos, Tys, Context); 810 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 811 } 812 813 case IITDescriptor::Argument: 814 return Tys[D.getArgumentNumber()]; 815 case IITDescriptor::ExtendArgument: { 816 Type *Ty = Tys[D.getArgumentNumber()]; 817 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 818 return VectorType::getExtendedElementVectorType(VTy); 819 820 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 821 } 822 case IITDescriptor::TruncArgument: { 823 Type *Ty = Tys[D.getArgumentNumber()]; 824 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 825 return VectorType::getTruncatedElementVectorType(VTy); 826 827 IntegerType *ITy = cast<IntegerType>(Ty); 828 assert(ITy->getBitWidth() % 2 == 0); 829 return IntegerType::get(Context, ITy->getBitWidth() / 2); 830 } 831 case IITDescriptor::HalfVecArgument: 832 return VectorType::getHalfElementsVectorType(cast<VectorType>( 833 Tys[D.getArgumentNumber()])); 834 case IITDescriptor::SameVecWidthArgument: { 835 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 836 Type *Ty = Tys[D.getArgumentNumber()]; 837 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 838 return VectorType::get(EltTy, VTy->getNumElements()); 839 } 840 llvm_unreachable("unhandled"); 841 } 842 case IITDescriptor::PtrToArgument: { 843 Type *Ty = Tys[D.getArgumentNumber()]; 844 return PointerType::getUnqual(Ty); 845 } 846 case IITDescriptor::PtrToElt: { 847 Type *Ty = Tys[D.getArgumentNumber()]; 848 VectorType *VTy = dyn_cast<VectorType>(Ty); 849 if (!VTy) 850 llvm_unreachable("Expected an argument of Vector Type"); 851 Type *EltTy = VTy->getVectorElementType(); 852 return PointerType::getUnqual(EltTy); 853 } 854 case IITDescriptor::VecOfPtrsToElt: { 855 Type *Ty = Tys[D.getArgumentNumber()]; 856 VectorType *VTy = dyn_cast<VectorType>(Ty); 857 if (!VTy) 858 llvm_unreachable("Expected an argument of Vector Type"); 859 Type *EltTy = VTy->getVectorElementType(); 860 return VectorType::get(PointerType::getUnqual(EltTy), 861 VTy->getNumElements()); 862 } 863 } 864 llvm_unreachable("unhandled"); 865 } 866 867 868 869 FunctionType *Intrinsic::getType(LLVMContext &Context, 870 ID id, ArrayRef<Type*> Tys) { 871 SmallVector<IITDescriptor, 8> Table; 872 getIntrinsicInfoTableEntries(id, Table); 873 874 ArrayRef<IITDescriptor> TableRef = Table; 875 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 876 877 SmallVector<Type*, 8> ArgTys; 878 while (!TableRef.empty()) 879 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 880 881 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 882 // If we see void type as the type of the last argument, it is vararg intrinsic 883 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 884 ArgTys.pop_back(); 885 return FunctionType::get(ResultTy, ArgTys, true); 886 } 887 return FunctionType::get(ResultTy, ArgTys, false); 888 } 889 890 bool Intrinsic::isOverloaded(ID id) { 891 #define GET_INTRINSIC_OVERLOAD_TABLE 892 #include "llvm/IR/Intrinsics.gen" 893 #undef GET_INTRINSIC_OVERLOAD_TABLE 894 } 895 896 bool Intrinsic::isLeaf(ID id) { 897 switch (id) { 898 default: 899 return true; 900 901 case Intrinsic::experimental_gc_statepoint: 902 case Intrinsic::experimental_patchpoint_void: 903 case Intrinsic::experimental_patchpoint_i64: 904 return false; 905 } 906 } 907 908 /// This defines the "Intrinsic::getAttributes(ID id)" method. 909 #define GET_INTRINSIC_ATTRIBUTES 910 #include "llvm/IR/Intrinsics.gen" 911 #undef GET_INTRINSIC_ATTRIBUTES 912 913 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 914 // There can never be multiple globals with the same name of different types, 915 // because intrinsics must be a specific type. 916 return 917 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 918 getType(M->getContext(), id, Tys))); 919 } 920 921 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 922 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 923 #include "llvm/IR/Intrinsics.gen" 924 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 925 926 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 927 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 928 #include "llvm/IR/Intrinsics.gen" 929 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 930 931 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 932 SmallVectorImpl<Type*> &ArgTys) { 933 using namespace Intrinsic; 934 935 // If we ran out of descriptors, there are too many arguments. 936 if (Infos.empty()) return true; 937 IITDescriptor D = Infos.front(); 938 Infos = Infos.slice(1); 939 940 switch (D.Kind) { 941 case IITDescriptor::Void: return !Ty->isVoidTy(); 942 case IITDescriptor::VarArg: return true; 943 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 944 case IITDescriptor::Token: return !Ty->isTokenTy(); 945 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 946 case IITDescriptor::Half: return !Ty->isHalfTy(); 947 case IITDescriptor::Float: return !Ty->isFloatTy(); 948 case IITDescriptor::Double: return !Ty->isDoubleTy(); 949 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 950 case IITDescriptor::Vector: { 951 VectorType *VT = dyn_cast<VectorType>(Ty); 952 return !VT || VT->getNumElements() != D.Vector_Width || 953 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 954 } 955 case IITDescriptor::Pointer: { 956 PointerType *PT = dyn_cast<PointerType>(Ty); 957 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 958 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 959 } 960 961 case IITDescriptor::Struct: { 962 StructType *ST = dyn_cast<StructType>(Ty); 963 if (!ST || ST->getNumElements() != D.Struct_NumElements) 964 return true; 965 966 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 967 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 968 return true; 969 return false; 970 } 971 972 case IITDescriptor::Argument: 973 // Two cases here - If this is the second occurrence of an argument, verify 974 // that the later instance matches the previous instance. 975 if (D.getArgumentNumber() < ArgTys.size()) 976 return Ty != ArgTys[D.getArgumentNumber()]; 977 978 // Otherwise, if this is the first instance of an argument, record it and 979 // verify the "Any" kind. 980 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 981 ArgTys.push_back(Ty); 982 983 switch (D.getArgumentKind()) { 984 case IITDescriptor::AK_Any: return false; // Success 985 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 986 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 987 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 988 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 989 } 990 llvm_unreachable("all argument kinds not covered"); 991 992 case IITDescriptor::ExtendArgument: { 993 // This may only be used when referring to a previous vector argument. 994 if (D.getArgumentNumber() >= ArgTys.size()) 995 return true; 996 997 Type *NewTy = ArgTys[D.getArgumentNumber()]; 998 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 999 NewTy = VectorType::getExtendedElementVectorType(VTy); 1000 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1001 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1002 else 1003 return true; 1004 1005 return Ty != NewTy; 1006 } 1007 case IITDescriptor::TruncArgument: { 1008 // This may only be used when referring to a previous vector argument. 1009 if (D.getArgumentNumber() >= ArgTys.size()) 1010 return true; 1011 1012 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1013 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1014 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1015 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1016 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1017 else 1018 return true; 1019 1020 return Ty != NewTy; 1021 } 1022 case IITDescriptor::HalfVecArgument: 1023 // This may only be used when referring to a previous vector argument. 1024 return D.getArgumentNumber() >= ArgTys.size() || 1025 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1026 VectorType::getHalfElementsVectorType( 1027 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1028 case IITDescriptor::SameVecWidthArgument: { 1029 if (D.getArgumentNumber() >= ArgTys.size()) 1030 return true; 1031 VectorType * ReferenceType = 1032 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1033 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1034 if (!ThisArgType || !ReferenceType || 1035 (ReferenceType->getVectorNumElements() != 1036 ThisArgType->getVectorNumElements())) 1037 return true; 1038 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1039 Infos, ArgTys); 1040 } 1041 case IITDescriptor::PtrToArgument: { 1042 if (D.getArgumentNumber() >= ArgTys.size()) 1043 return true; 1044 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1045 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1046 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1047 } 1048 case IITDescriptor::PtrToElt: { 1049 if (D.getArgumentNumber() >= ArgTys.size()) 1050 return true; 1051 VectorType * ReferenceType = 1052 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1053 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1054 1055 return (!ThisArgType || !ReferenceType || 1056 ThisArgType->getElementType() != ReferenceType->getElementType()); 1057 } 1058 case IITDescriptor::VecOfPtrsToElt: { 1059 if (D.getArgumentNumber() >= ArgTys.size()) 1060 return true; 1061 VectorType * ReferenceType = 1062 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1063 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1064 if (!ThisArgVecTy || !ReferenceType || 1065 (ReferenceType->getVectorNumElements() != 1066 ThisArgVecTy->getVectorNumElements())) 1067 return true; 1068 PointerType *ThisArgEltTy = 1069 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1070 if (!ThisArgEltTy) 1071 return true; 1072 return ThisArgEltTy->getElementType() != 1073 ReferenceType->getVectorElementType(); 1074 } 1075 } 1076 llvm_unreachable("unhandled"); 1077 } 1078 1079 bool 1080 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1081 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1082 // If there are no descriptors left, then it can't be a vararg. 1083 if (Infos.empty()) 1084 return isVarArg; 1085 1086 // There should be only one descriptor remaining at this point. 1087 if (Infos.size() != 1) 1088 return true; 1089 1090 // Check and verify the descriptor. 1091 IITDescriptor D = Infos.front(); 1092 Infos = Infos.slice(1); 1093 if (D.Kind == IITDescriptor::VarArg) 1094 return !isVarArg; 1095 1096 return true; 1097 } 1098 1099 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1100 Intrinsic::ID ID = F->getIntrinsicID(); 1101 if (!ID) 1102 return None; 1103 1104 FunctionType *FTy = F->getFunctionType(); 1105 // Accumulate an array of overloaded types for the given intrinsic 1106 SmallVector<Type *, 4> ArgTys; 1107 { 1108 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1109 getIntrinsicInfoTableEntries(ID, Table); 1110 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1111 1112 // If we encounter any problems matching the signature with the descriptor 1113 // just give up remangling. It's up to verifier to report the discrepancy. 1114 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1115 return None; 1116 for (auto Ty : FTy->params()) 1117 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1118 return None; 1119 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1120 return None; 1121 } 1122 1123 StringRef Name = F->getName(); 1124 if (Name == Intrinsic::getName(ID, ArgTys)) 1125 return None; 1126 1127 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1128 NewDecl->setCallingConv(F->getCallingConv()); 1129 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1130 return NewDecl; 1131 } 1132 1133 /// hasAddressTaken - returns true if there are any uses of this function 1134 /// other than direct calls or invokes to it. 1135 bool Function::hasAddressTaken(const User* *PutOffender) const { 1136 for (const Use &U : uses()) { 1137 const User *FU = U.getUser(); 1138 if (isa<BlockAddress>(FU)) 1139 continue; 1140 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1141 if (PutOffender) 1142 *PutOffender = FU; 1143 return true; 1144 } 1145 ImmutableCallSite CS(cast<Instruction>(FU)); 1146 if (!CS.isCallee(&U)) { 1147 if (PutOffender) 1148 *PutOffender = FU; 1149 return true; 1150 } 1151 } 1152 return false; 1153 } 1154 1155 bool Function::isDefTriviallyDead() const { 1156 // Check the linkage 1157 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1158 !hasAvailableExternallyLinkage()) 1159 return false; 1160 1161 // Check if the function is used by anything other than a blockaddress. 1162 for (const User *U : users()) 1163 if (!isa<BlockAddress>(U)) 1164 return false; 1165 1166 return true; 1167 } 1168 1169 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1170 /// setjmp or other function that gcc recognizes as "returning twice". 1171 bool Function::callsFunctionThatReturnsTwice() const { 1172 for (const_inst_iterator 1173 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1174 ImmutableCallSite CS(&*I); 1175 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1176 return true; 1177 } 1178 1179 return false; 1180 } 1181 1182 Constant *Function::getPersonalityFn() const { 1183 assert(hasPersonalityFn() && getNumOperands()); 1184 return cast<Constant>(Op<0>()); 1185 } 1186 1187 void Function::setPersonalityFn(Constant *Fn) { 1188 setHungoffOperand<0>(Fn); 1189 setValueSubclassDataBit(3, Fn != nullptr); 1190 } 1191 1192 Constant *Function::getPrefixData() const { 1193 assert(hasPrefixData() && getNumOperands()); 1194 return cast<Constant>(Op<1>()); 1195 } 1196 1197 void Function::setPrefixData(Constant *PrefixData) { 1198 setHungoffOperand<1>(PrefixData); 1199 setValueSubclassDataBit(1, PrefixData != nullptr); 1200 } 1201 1202 Constant *Function::getPrologueData() const { 1203 assert(hasPrologueData() && getNumOperands()); 1204 return cast<Constant>(Op<2>()); 1205 } 1206 1207 void Function::setPrologueData(Constant *PrologueData) { 1208 setHungoffOperand<2>(PrologueData); 1209 setValueSubclassDataBit(2, PrologueData != nullptr); 1210 } 1211 1212 void Function::allocHungoffUselist() { 1213 // If we've already allocated a uselist, stop here. 1214 if (getNumOperands()) 1215 return; 1216 1217 allocHungoffUses(3, /*IsPhi=*/ false); 1218 setNumHungOffUseOperands(3); 1219 1220 // Initialize the uselist with placeholder operands to allow traversal. 1221 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1222 Op<0>().set(CPN); 1223 Op<1>().set(CPN); 1224 Op<2>().set(CPN); 1225 } 1226 1227 template <int Idx> 1228 void Function::setHungoffOperand(Constant *C) { 1229 if (C) { 1230 allocHungoffUselist(); 1231 Op<Idx>().set(C); 1232 } else if (getNumOperands()) { 1233 Op<Idx>().set( 1234 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1235 } 1236 } 1237 1238 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1239 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1240 if (On) 1241 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1242 else 1243 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1244 } 1245 1246 void Function::setEntryCount(uint64_t Count, 1247 const DenseSet<GlobalValue::GUID> *S) { 1248 MDBuilder MDB(getContext()); 1249 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1250 } 1251 1252 Optional<uint64_t> Function::getEntryCount() const { 1253 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1254 if (MD && MD->getOperand(0)) 1255 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1256 if (MDS->getString().equals("function_entry_count")) { 1257 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1258 uint64_t Count = CI->getValue().getZExtValue(); 1259 if (Count == 0) 1260 return None; 1261 return Count; 1262 } 1263 return None; 1264 } 1265 1266 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1267 DenseSet<GlobalValue::GUID> R; 1268 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1269 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1270 if (MDS->getString().equals("function_entry_count")) 1271 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1272 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1273 ->getValue() 1274 .getZExtValue()); 1275 return R; 1276 } 1277 1278 void Function::setSectionPrefix(StringRef Prefix) { 1279 MDBuilder MDB(getContext()); 1280 setMetadata(LLVMContext::MD_section_prefix, 1281 MDB.createFunctionSectionPrefix(Prefix)); 1282 } 1283 1284 Optional<StringRef> Function::getSectionPrefix() const { 1285 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1286 assert(dyn_cast<MDString>(MD->getOperand(0)) 1287 ->getString() 1288 .equals("function_section_prefix") && 1289 "Metadata not match"); 1290 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1291 } 1292 return None; 1293 } 1294