1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLVMContextImpl.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/InstIterator.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/LLVMContext.h" 40 #include "llvm/IR/MDBuilder.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/SymbolTableListTraits.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/IR/ValueSymbolTable.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Compiler.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstdint> 56 #include <cstring> 57 #include <string> 58 59 using namespace llvm; 60 61 // Explicit instantiations of SymbolTableListTraits since some of the methods 62 // are not in the public header file... 63 template class llvm::SymbolTableListTraits<BasicBlock>; 64 65 //===----------------------------------------------------------------------===// 66 // Argument Implementation 67 //===----------------------------------------------------------------------===// 68 69 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 70 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 71 setName(Name); 72 } 73 74 void Argument::setParent(Function *parent) { 75 Parent = parent; 76 } 77 78 bool Argument::hasNonNullAttr() const { 79 if (!getType()->isPointerTy()) return false; 80 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 bool Argument::hasByValAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 return hasAttribute(Attribute::ByVal); 91 } 92 93 bool Argument::hasSwiftSelfAttr() const { 94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 95 } 96 97 bool Argument::hasSwiftErrorAttr() const { 98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 99 } 100 101 bool Argument::hasInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 return hasAttribute(Attribute::InAlloca); 104 } 105 106 bool Argument::hasByValOrInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 AttributeList Attrs = getParent()->getAttributes(); 109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 111 } 112 113 unsigned Argument::getParamAlignment() const { 114 assert(getType()->isPointerTy() && "Only pointers have alignments"); 115 return getParent()->getParamAlignment(getArgNo()); 116 } 117 118 uint64_t Argument::getDereferenceableBytes() const { 119 assert(getType()->isPointerTy() && 120 "Only pointers have dereferenceable bytes"); 121 return getParent()->getParamDereferenceableBytes(getArgNo()); 122 } 123 124 uint64_t Argument::getDereferenceableOrNullBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 128 } 129 130 bool Argument::hasNestAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return hasAttribute(Attribute::Nest); 133 } 134 135 bool Argument::hasNoAliasAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 return hasAttribute(Attribute::NoAlias); 138 } 139 140 bool Argument::hasNoCaptureAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 return hasAttribute(Attribute::NoCapture); 143 } 144 145 bool Argument::hasStructRetAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::StructRet); 148 } 149 150 bool Argument::hasReturnedAttr() const { 151 return hasAttribute(Attribute::Returned); 152 } 153 154 bool Argument::hasZExtAttr() const { 155 return hasAttribute(Attribute::ZExt); 156 } 157 158 bool Argument::hasSExtAttr() const { 159 return hasAttribute(Attribute::SExt); 160 } 161 162 bool Argument::onlyReadsMemory() const { 163 AttributeList Attrs = getParent()->getAttributes(); 164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 166 } 167 168 void Argument::addAttrs(AttrBuilder &B) { 169 AttributeList AL = getParent()->getAttributes(); 170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 171 getParent()->setAttributes(AL); 172 } 173 174 void Argument::addAttr(Attribute::AttrKind Kind) { 175 getParent()->addParamAttr(getArgNo(), Kind); 176 } 177 178 void Argument::addAttr(Attribute Attr) { 179 getParent()->addParamAttr(getArgNo(), Attr); 180 } 181 182 void Argument::removeAttr(Attribute::AttrKind Kind) { 183 getParent()->removeParamAttr(getArgNo(), Kind); 184 } 185 186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 187 return getParent()->hasParamAttribute(getArgNo(), Kind); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Helper Methods in Function 192 //===----------------------------------------------------------------------===// 193 194 LLVMContext &Function::getContext() const { 195 return getType()->getContext(); 196 } 197 198 void Function::removeFromParent() { 199 getParent()->getFunctionList().remove(getIterator()); 200 } 201 202 void Function::eraseFromParent() { 203 getParent()->getFunctionList().erase(getIterator()); 204 } 205 206 //===----------------------------------------------------------------------===// 207 // Function Implementation 208 //===----------------------------------------------------------------------===// 209 210 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 211 Module *ParentModule) 212 : GlobalObject(Ty, Value::FunctionVal, 213 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 214 NumArgs(Ty->getNumParams()) { 215 assert(FunctionType::isValidReturnType(getReturnType()) && 216 "invalid return type"); 217 setGlobalObjectSubClassData(0); 218 219 // We only need a symbol table for a function if the context keeps value names 220 if (!getContext().shouldDiscardValueNames()) 221 SymTab = make_unique<ValueSymbolTable>(); 222 223 // If the function has arguments, mark them as lazily built. 224 if (Ty->getNumParams()) 225 setValueSubclassData(1); // Set the "has lazy arguments" bit. 226 227 if (ParentModule) 228 ParentModule->getFunctionList().push_back(this); 229 230 HasLLVMReservedName = getName().startswith("llvm."); 231 // Ensure intrinsics have the right parameter attributes. 232 // Note, the IntID field will have been set in Value::setName if this function 233 // name is a valid intrinsic ID. 234 if (IntID) 235 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 236 } 237 238 Function::~Function() { 239 dropAllReferences(); // After this it is safe to delete instructions. 240 241 // Delete all of the method arguments and unlink from symbol table... 242 if (Arguments) 243 clearArguments(); 244 245 // Remove the function from the on-the-side GC table. 246 clearGC(); 247 } 248 249 void Function::BuildLazyArguments() const { 250 // Create the arguments vector, all arguments start out unnamed. 251 auto *FT = getFunctionType(); 252 if (NumArgs > 0) { 253 Arguments = std::allocator<Argument>().allocate(NumArgs); 254 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 255 Type *ArgTy = FT->getParamType(i); 256 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 257 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 258 } 259 } 260 261 // Clear the lazy arguments bit. 262 unsigned SDC = getSubclassDataFromValue(); 263 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 264 assert(!hasLazyArguments()); 265 } 266 267 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 268 return MutableArrayRef<Argument>(Args, Count); 269 } 270 271 void Function::clearArguments() { 272 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 273 A.setName(""); 274 A.~Argument(); 275 } 276 std::allocator<Argument>().deallocate(Arguments, NumArgs); 277 Arguments = nullptr; 278 } 279 280 void Function::stealArgumentListFrom(Function &Src) { 281 assert(isDeclaration() && "Expected no references to current arguments"); 282 283 // Drop the current arguments, if any, and set the lazy argument bit. 284 if (!hasLazyArguments()) { 285 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 286 [](const Argument &A) { return A.use_empty(); }) && 287 "Expected arguments to be unused in declaration"); 288 clearArguments(); 289 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 290 } 291 292 // Nothing to steal if Src has lazy arguments. 293 if (Src.hasLazyArguments()) 294 return; 295 296 // Steal arguments from Src, and fix the lazy argument bits. 297 assert(arg_size() == Src.arg_size()); 298 Arguments = Src.Arguments; 299 Src.Arguments = nullptr; 300 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 301 // FIXME: This does the work of transferNodesFromList inefficiently. 302 SmallString<128> Name; 303 if (A.hasName()) 304 Name = A.getName(); 305 if (!Name.empty()) 306 A.setName(""); 307 A.setParent(this); 308 if (!Name.empty()) 309 A.setName(Name); 310 } 311 312 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 313 assert(!hasLazyArguments()); 314 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 315 } 316 317 // dropAllReferences() - This function causes all the subinstructions to "let 318 // go" of all references that they are maintaining. This allows one to 319 // 'delete' a whole class at a time, even though there may be circular 320 // references... first all references are dropped, and all use counts go to 321 // zero. Then everything is deleted for real. Note that no operations are 322 // valid on an object that has "dropped all references", except operator 323 // delete. 324 // 325 void Function::dropAllReferences() { 326 setIsMaterializable(false); 327 328 for (BasicBlock &BB : *this) 329 BB.dropAllReferences(); 330 331 // Delete all basic blocks. They are now unused, except possibly by 332 // blockaddresses, but BasicBlock's destructor takes care of those. 333 while (!BasicBlocks.empty()) 334 BasicBlocks.begin()->eraseFromParent(); 335 336 // Drop uses of any optional data (real or placeholder). 337 if (getNumOperands()) { 338 User::dropAllReferences(); 339 setNumHungOffUseOperands(0); 340 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 341 } 342 343 // Metadata is stored in a side-table. 344 clearMetadata(); 345 } 346 347 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 348 AttributeList PAL = getAttributes(); 349 PAL = PAL.addAttribute(getContext(), i, Kind); 350 setAttributes(PAL); 351 } 352 353 void Function::addAttribute(unsigned i, Attribute Attr) { 354 AttributeList PAL = getAttributes(); 355 PAL = PAL.addAttribute(getContext(), i, Attr); 356 setAttributes(PAL); 357 } 358 359 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 360 AttributeList PAL = getAttributes(); 361 PAL = PAL.addAttributes(getContext(), i, Attrs); 362 setAttributes(PAL); 363 } 364 365 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 366 AttributeList PAL = getAttributes(); 367 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 368 setAttributes(PAL); 369 } 370 371 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 372 AttributeList PAL = getAttributes(); 373 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 374 setAttributes(PAL); 375 } 376 377 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 378 AttributeList PAL = getAttributes(); 379 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 380 setAttributes(PAL); 381 } 382 383 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 384 AttributeList PAL = getAttributes(); 385 PAL = PAL.removeAttribute(getContext(), i, Kind); 386 setAttributes(PAL); 387 } 388 389 void Function::removeAttribute(unsigned i, StringRef Kind) { 390 AttributeList PAL = getAttributes(); 391 PAL = PAL.removeAttribute(getContext(), i, Kind); 392 setAttributes(PAL); 393 } 394 395 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 396 AttributeList PAL = getAttributes(); 397 PAL = PAL.removeAttributes(getContext(), i, Attrs); 398 setAttributes(PAL); 399 } 400 401 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 402 AttributeList PAL = getAttributes(); 403 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 404 setAttributes(PAL); 405 } 406 407 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 408 AttributeList PAL = getAttributes(); 409 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 410 setAttributes(PAL); 411 } 412 413 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 414 AttributeList PAL = getAttributes(); 415 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 416 setAttributes(PAL); 417 } 418 419 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 420 AttributeList PAL = getAttributes(); 421 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 422 setAttributes(PAL); 423 } 424 425 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 426 AttributeList PAL = getAttributes(); 427 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 428 setAttributes(PAL); 429 } 430 431 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 432 AttributeList PAL = getAttributes(); 433 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 434 setAttributes(PAL); 435 } 436 437 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 438 uint64_t Bytes) { 439 AttributeList PAL = getAttributes(); 440 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 441 setAttributes(PAL); 442 } 443 444 const std::string &Function::getGC() const { 445 assert(hasGC() && "Function has no collector"); 446 return getContext().getGC(*this); 447 } 448 449 void Function::setGC(std::string Str) { 450 setValueSubclassDataBit(14, !Str.empty()); 451 getContext().setGC(*this, std::move(Str)); 452 } 453 454 void Function::clearGC() { 455 if (!hasGC()) 456 return; 457 getContext().deleteGC(*this); 458 setValueSubclassDataBit(14, false); 459 } 460 461 /// Copy all additional attributes (those not needed to create a Function) from 462 /// the Function Src to this one. 463 void Function::copyAttributesFrom(const Function *Src) { 464 GlobalObject::copyAttributesFrom(Src); 465 setCallingConv(Src->getCallingConv()); 466 setAttributes(Src->getAttributes()); 467 if (Src->hasGC()) 468 setGC(Src->getGC()); 469 else 470 clearGC(); 471 if (Src->hasPersonalityFn()) 472 setPersonalityFn(Src->getPersonalityFn()); 473 if (Src->hasPrefixData()) 474 setPrefixData(Src->getPrefixData()); 475 if (Src->hasPrologueData()) 476 setPrologueData(Src->getPrologueData()); 477 } 478 479 /// Table of string intrinsic names indexed by enum value. 480 static const char * const IntrinsicNameTable[] = { 481 "not_intrinsic", 482 #define GET_INTRINSIC_NAME_TABLE 483 #include "llvm/IR/Intrinsics.gen" 484 #undef GET_INTRINSIC_NAME_TABLE 485 }; 486 487 /// Table of per-target intrinsic name tables. 488 #define GET_INTRINSIC_TARGET_DATA 489 #include "llvm/IR/Intrinsics.gen" 490 #undef GET_INTRINSIC_TARGET_DATA 491 492 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 493 /// target as \c Name, or the generic table if \c Name is not target specific. 494 /// 495 /// Returns the relevant slice of \c IntrinsicNameTable 496 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 497 assert(Name.startswith("llvm.")); 498 499 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 500 // Drop "llvm." and take the first dotted component. That will be the target 501 // if this is target specific. 502 StringRef Target = Name.drop_front(5).split('.').first; 503 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 504 [](const IntrinsicTargetInfo &TI, 505 StringRef Target) { return TI.Name < Target; }); 506 // We've either found the target or just fall back to the generic set, which 507 // is always first. 508 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 509 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 510 } 511 512 /// \brief This does the actual lookup of an intrinsic ID which 513 /// matches the given function name. 514 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 515 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 516 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 517 if (Idx == -1) 518 return Intrinsic::not_intrinsic; 519 520 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 521 // an index into a sub-table. 522 int Adjust = NameTable.data() - IntrinsicNameTable; 523 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 524 525 // If the intrinsic is not overloaded, require an exact match. If it is 526 // overloaded, require a prefix match. 527 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 528 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 529 } 530 531 void Function::recalculateIntrinsicID() { 532 StringRef Name = getName(); 533 if (!Name.startswith("llvm.")) { 534 HasLLVMReservedName = false; 535 IntID = Intrinsic::not_intrinsic; 536 return; 537 } 538 HasLLVMReservedName = true; 539 IntID = lookupIntrinsicID(Name); 540 } 541 542 /// Returns a stable mangling for the type specified for use in the name 543 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 544 /// of named types is simply their name. Manglings for unnamed types consist 545 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 546 /// combined with the mangling of their component types. A vararg function 547 /// type will have a suffix of 'vararg'. Since function types can contain 548 /// other function types, we close a function type mangling with suffix 'f' 549 /// which can't be confused with it's prefix. This ensures we don't have 550 /// collisions between two unrelated function types. Otherwise, you might 551 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 552 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 553 /// cases) fall back to the MVT codepath, where they could be mangled to 554 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 555 /// everything. 556 static std::string getMangledTypeStr(Type* Ty) { 557 std::string Result; 558 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 559 Result += "p" + utostr(PTyp->getAddressSpace()) + 560 getMangledTypeStr(PTyp->getElementType()); 561 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 562 Result += "a" + utostr(ATyp->getNumElements()) + 563 getMangledTypeStr(ATyp->getElementType()); 564 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 565 if (!STyp->isLiteral()) { 566 Result += "s_"; 567 Result += STyp->getName(); 568 } else { 569 Result += "sl_"; 570 for (auto Elem : STyp->elements()) 571 Result += getMangledTypeStr(Elem); 572 } 573 // Ensure nested structs are distinguishable. 574 Result += "s"; 575 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 576 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 577 for (size_t i = 0; i < FT->getNumParams(); i++) 578 Result += getMangledTypeStr(FT->getParamType(i)); 579 if (FT->isVarArg()) 580 Result += "vararg"; 581 // Ensure nested function types are distinguishable. 582 Result += "f"; 583 } else if (isa<VectorType>(Ty)) 584 Result += "v" + utostr(Ty->getVectorNumElements()) + 585 getMangledTypeStr(Ty->getVectorElementType()); 586 else if (Ty) 587 Result += EVT::getEVT(Ty).getEVTString(); 588 return Result; 589 } 590 591 StringRef Intrinsic::getName(ID id) { 592 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 593 assert(!isOverloaded(id) && 594 "This version of getName does not support overloading"); 595 return IntrinsicNameTable[id]; 596 } 597 598 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 599 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 600 std::string Result(IntrinsicNameTable[id]); 601 for (Type *Ty : Tys) { 602 Result += "." + getMangledTypeStr(Ty); 603 } 604 return Result; 605 } 606 607 /// IIT_Info - These are enumerators that describe the entries returned by the 608 /// getIntrinsicInfoTableEntries function. 609 /// 610 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 611 enum IIT_Info { 612 // Common values should be encoded with 0-15. 613 IIT_Done = 0, 614 IIT_I1 = 1, 615 IIT_I8 = 2, 616 IIT_I16 = 3, 617 IIT_I32 = 4, 618 IIT_I64 = 5, 619 IIT_F16 = 6, 620 IIT_F32 = 7, 621 IIT_F64 = 8, 622 IIT_V2 = 9, 623 IIT_V4 = 10, 624 IIT_V8 = 11, 625 IIT_V16 = 12, 626 IIT_V32 = 13, 627 IIT_PTR = 14, 628 IIT_ARG = 15, 629 630 // Values from 16+ are only encodable with the inefficient encoding. 631 IIT_V64 = 16, 632 IIT_MMX = 17, 633 IIT_TOKEN = 18, 634 IIT_METADATA = 19, 635 IIT_EMPTYSTRUCT = 20, 636 IIT_STRUCT2 = 21, 637 IIT_STRUCT3 = 22, 638 IIT_STRUCT4 = 23, 639 IIT_STRUCT5 = 24, 640 IIT_EXTEND_ARG = 25, 641 IIT_TRUNC_ARG = 26, 642 IIT_ANYPTR = 27, 643 IIT_V1 = 28, 644 IIT_VARARG = 29, 645 IIT_HALF_VEC_ARG = 30, 646 IIT_SAME_VEC_WIDTH_ARG = 31, 647 IIT_PTR_TO_ARG = 32, 648 IIT_PTR_TO_ELT = 33, 649 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 650 IIT_I128 = 35, 651 IIT_V512 = 36, 652 IIT_V1024 = 37 653 }; 654 655 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 656 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 657 using namespace Intrinsic; 658 659 IIT_Info Info = IIT_Info(Infos[NextElt++]); 660 unsigned StructElts = 2; 661 662 switch (Info) { 663 case IIT_Done: 664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 665 return; 666 case IIT_VARARG: 667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 668 return; 669 case IIT_MMX: 670 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 671 return; 672 case IIT_TOKEN: 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 674 return; 675 case IIT_METADATA: 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 677 return; 678 case IIT_F16: 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 680 return; 681 case IIT_F32: 682 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 683 return; 684 case IIT_F64: 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 686 return; 687 case IIT_I1: 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 689 return; 690 case IIT_I8: 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 692 return; 693 case IIT_I16: 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 695 return; 696 case IIT_I32: 697 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 698 return; 699 case IIT_I64: 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 701 return; 702 case IIT_I128: 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 704 return; 705 case IIT_V1: 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 707 DecodeIITType(NextElt, Infos, OutputTable); 708 return; 709 case IIT_V2: 710 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 711 DecodeIITType(NextElt, Infos, OutputTable); 712 return; 713 case IIT_V4: 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 715 DecodeIITType(NextElt, Infos, OutputTable); 716 return; 717 case IIT_V8: 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 719 DecodeIITType(NextElt, Infos, OutputTable); 720 return; 721 case IIT_V16: 722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 723 DecodeIITType(NextElt, Infos, OutputTable); 724 return; 725 case IIT_V32: 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 727 DecodeIITType(NextElt, Infos, OutputTable); 728 return; 729 case IIT_V64: 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 731 DecodeIITType(NextElt, Infos, OutputTable); 732 return; 733 case IIT_V512: 734 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 735 DecodeIITType(NextElt, Infos, OutputTable); 736 return; 737 case IIT_V1024: 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 739 DecodeIITType(NextElt, Infos, OutputTable); 740 return; 741 case IIT_PTR: 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 743 DecodeIITType(NextElt, Infos, OutputTable); 744 return; 745 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 746 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 747 Infos[NextElt++])); 748 DecodeIITType(NextElt, Infos, OutputTable); 749 return; 750 } 751 case IIT_ARG: { 752 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 754 return; 755 } 756 case IIT_EXTEND_ARG: { 757 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 759 ArgInfo)); 760 return; 761 } 762 case IIT_TRUNC_ARG: { 763 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 765 ArgInfo)); 766 return; 767 } 768 case IIT_HALF_VEC_ARG: { 769 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 770 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 771 ArgInfo)); 772 return; 773 } 774 case IIT_SAME_VEC_WIDTH_ARG: { 775 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 776 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 777 ArgInfo)); 778 return; 779 } 780 case IIT_PTR_TO_ARG: { 781 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 782 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 783 ArgInfo)); 784 return; 785 } 786 case IIT_PTR_TO_ELT: { 787 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 788 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 789 return; 790 } 791 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 792 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 793 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 794 OutputTable.push_back( 795 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 796 return; 797 } 798 case IIT_EMPTYSTRUCT: 799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 800 return; 801 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 802 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 803 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 804 case IIT_STRUCT2: { 805 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 806 807 for (unsigned i = 0; i != StructElts; ++i) 808 DecodeIITType(NextElt, Infos, OutputTable); 809 return; 810 } 811 } 812 llvm_unreachable("unhandled"); 813 } 814 815 #define GET_INTRINSIC_GENERATOR_GLOBAL 816 #include "llvm/IR/Intrinsics.gen" 817 #undef GET_INTRINSIC_GENERATOR_GLOBAL 818 819 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 820 SmallVectorImpl<IITDescriptor> &T){ 821 // Check to see if the intrinsic's type was expressible by the table. 822 unsigned TableVal = IIT_Table[id-1]; 823 824 // Decode the TableVal into an array of IITValues. 825 SmallVector<unsigned char, 8> IITValues; 826 ArrayRef<unsigned char> IITEntries; 827 unsigned NextElt = 0; 828 if ((TableVal >> 31) != 0) { 829 // This is an offset into the IIT_LongEncodingTable. 830 IITEntries = IIT_LongEncodingTable; 831 832 // Strip sentinel bit. 833 NextElt = (TableVal << 1) >> 1; 834 } else { 835 // Decode the TableVal into an array of IITValues. If the entry was encoded 836 // into a single word in the table itself, decode it now. 837 do { 838 IITValues.push_back(TableVal & 0xF); 839 TableVal >>= 4; 840 } while (TableVal); 841 842 IITEntries = IITValues; 843 NextElt = 0; 844 } 845 846 // Okay, decode the table into the output vector of IITDescriptors. 847 DecodeIITType(NextElt, IITEntries, T); 848 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 849 DecodeIITType(NextElt, IITEntries, T); 850 } 851 852 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 853 ArrayRef<Type*> Tys, LLVMContext &Context) { 854 using namespace Intrinsic; 855 856 IITDescriptor D = Infos.front(); 857 Infos = Infos.slice(1); 858 859 switch (D.Kind) { 860 case IITDescriptor::Void: return Type::getVoidTy(Context); 861 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 862 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 863 case IITDescriptor::Token: return Type::getTokenTy(Context); 864 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 865 case IITDescriptor::Half: return Type::getHalfTy(Context); 866 case IITDescriptor::Float: return Type::getFloatTy(Context); 867 case IITDescriptor::Double: return Type::getDoubleTy(Context); 868 869 case IITDescriptor::Integer: 870 return IntegerType::get(Context, D.Integer_Width); 871 case IITDescriptor::Vector: 872 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 873 case IITDescriptor::Pointer: 874 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 875 D.Pointer_AddressSpace); 876 case IITDescriptor::Struct: { 877 Type *Elts[5]; 878 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 879 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 880 Elts[i] = DecodeFixedType(Infos, Tys, Context); 881 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 882 } 883 case IITDescriptor::Argument: 884 return Tys[D.getArgumentNumber()]; 885 case IITDescriptor::ExtendArgument: { 886 Type *Ty = Tys[D.getArgumentNumber()]; 887 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 888 return VectorType::getExtendedElementVectorType(VTy); 889 890 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 891 } 892 case IITDescriptor::TruncArgument: { 893 Type *Ty = Tys[D.getArgumentNumber()]; 894 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 895 return VectorType::getTruncatedElementVectorType(VTy); 896 897 IntegerType *ITy = cast<IntegerType>(Ty); 898 assert(ITy->getBitWidth() % 2 == 0); 899 return IntegerType::get(Context, ITy->getBitWidth() / 2); 900 } 901 case IITDescriptor::HalfVecArgument: 902 return VectorType::getHalfElementsVectorType(cast<VectorType>( 903 Tys[D.getArgumentNumber()])); 904 case IITDescriptor::SameVecWidthArgument: { 905 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 906 Type *Ty = Tys[D.getArgumentNumber()]; 907 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 908 return VectorType::get(EltTy, VTy->getNumElements()); 909 } 910 llvm_unreachable("unhandled"); 911 } 912 case IITDescriptor::PtrToArgument: { 913 Type *Ty = Tys[D.getArgumentNumber()]; 914 return PointerType::getUnqual(Ty); 915 } 916 case IITDescriptor::PtrToElt: { 917 Type *Ty = Tys[D.getArgumentNumber()]; 918 VectorType *VTy = dyn_cast<VectorType>(Ty); 919 if (!VTy) 920 llvm_unreachable("Expected an argument of Vector Type"); 921 Type *EltTy = VTy->getVectorElementType(); 922 return PointerType::getUnqual(EltTy); 923 } 924 case IITDescriptor::VecOfAnyPtrsToElt: 925 // Return the overloaded type (which determines the pointers address space) 926 return Tys[D.getOverloadArgNumber()]; 927 } 928 llvm_unreachable("unhandled"); 929 } 930 931 FunctionType *Intrinsic::getType(LLVMContext &Context, 932 ID id, ArrayRef<Type*> Tys) { 933 SmallVector<IITDescriptor, 8> Table; 934 getIntrinsicInfoTableEntries(id, Table); 935 936 ArrayRef<IITDescriptor> TableRef = Table; 937 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 938 939 SmallVector<Type*, 8> ArgTys; 940 while (!TableRef.empty()) 941 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 942 943 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 944 // If we see void type as the type of the last argument, it is vararg intrinsic 945 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 946 ArgTys.pop_back(); 947 return FunctionType::get(ResultTy, ArgTys, true); 948 } 949 return FunctionType::get(ResultTy, ArgTys, false); 950 } 951 952 bool Intrinsic::isOverloaded(ID id) { 953 #define GET_INTRINSIC_OVERLOAD_TABLE 954 #include "llvm/IR/Intrinsics.gen" 955 #undef GET_INTRINSIC_OVERLOAD_TABLE 956 } 957 958 bool Intrinsic::isLeaf(ID id) { 959 switch (id) { 960 default: 961 return true; 962 963 case Intrinsic::experimental_gc_statepoint: 964 case Intrinsic::experimental_patchpoint_void: 965 case Intrinsic::experimental_patchpoint_i64: 966 return false; 967 } 968 } 969 970 /// This defines the "Intrinsic::getAttributes(ID id)" method. 971 #define GET_INTRINSIC_ATTRIBUTES 972 #include "llvm/IR/Intrinsics.gen" 973 #undef GET_INTRINSIC_ATTRIBUTES 974 975 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 976 // There can never be multiple globals with the same name of different types, 977 // because intrinsics must be a specific type. 978 return 979 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 980 getType(M->getContext(), id, Tys))); 981 } 982 983 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 984 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 985 #include "llvm/IR/Intrinsics.gen" 986 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 987 988 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 989 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 990 #include "llvm/IR/Intrinsics.gen" 991 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 992 993 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 994 SmallVectorImpl<Type*> &ArgTys) { 995 using namespace Intrinsic; 996 997 // If we ran out of descriptors, there are too many arguments. 998 if (Infos.empty()) return true; 999 IITDescriptor D = Infos.front(); 1000 Infos = Infos.slice(1); 1001 1002 switch (D.Kind) { 1003 case IITDescriptor::Void: return !Ty->isVoidTy(); 1004 case IITDescriptor::VarArg: return true; 1005 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1006 case IITDescriptor::Token: return !Ty->isTokenTy(); 1007 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1008 case IITDescriptor::Half: return !Ty->isHalfTy(); 1009 case IITDescriptor::Float: return !Ty->isFloatTy(); 1010 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1011 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1012 case IITDescriptor::Vector: { 1013 VectorType *VT = dyn_cast<VectorType>(Ty); 1014 return !VT || VT->getNumElements() != D.Vector_Width || 1015 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1016 } 1017 case IITDescriptor::Pointer: { 1018 PointerType *PT = dyn_cast<PointerType>(Ty); 1019 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1020 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1021 } 1022 1023 case IITDescriptor::Struct: { 1024 StructType *ST = dyn_cast<StructType>(Ty); 1025 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1026 return true; 1027 1028 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1029 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1030 return true; 1031 return false; 1032 } 1033 1034 case IITDescriptor::Argument: 1035 // Two cases here - If this is the second occurrence of an argument, verify 1036 // that the later instance matches the previous instance. 1037 if (D.getArgumentNumber() < ArgTys.size()) 1038 return Ty != ArgTys[D.getArgumentNumber()]; 1039 1040 // Otherwise, if this is the first instance of an argument, record it and 1041 // verify the "Any" kind. 1042 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1043 ArgTys.push_back(Ty); 1044 1045 switch (D.getArgumentKind()) { 1046 case IITDescriptor::AK_Any: return false; // Success 1047 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1048 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1049 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1050 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1051 } 1052 llvm_unreachable("all argument kinds not covered"); 1053 1054 case IITDescriptor::ExtendArgument: { 1055 // This may only be used when referring to a previous vector argument. 1056 if (D.getArgumentNumber() >= ArgTys.size()) 1057 return true; 1058 1059 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1060 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1061 NewTy = VectorType::getExtendedElementVectorType(VTy); 1062 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1063 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1064 else 1065 return true; 1066 1067 return Ty != NewTy; 1068 } 1069 case IITDescriptor::TruncArgument: { 1070 // This may only be used when referring to a previous vector argument. 1071 if (D.getArgumentNumber() >= ArgTys.size()) 1072 return true; 1073 1074 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1075 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1076 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1077 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1078 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1079 else 1080 return true; 1081 1082 return Ty != NewTy; 1083 } 1084 case IITDescriptor::HalfVecArgument: 1085 // This may only be used when referring to a previous vector argument. 1086 return D.getArgumentNumber() >= ArgTys.size() || 1087 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1088 VectorType::getHalfElementsVectorType( 1089 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1090 case IITDescriptor::SameVecWidthArgument: { 1091 if (D.getArgumentNumber() >= ArgTys.size()) 1092 return true; 1093 VectorType * ReferenceType = 1094 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1095 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1096 if (!ThisArgType || !ReferenceType || 1097 (ReferenceType->getVectorNumElements() != 1098 ThisArgType->getVectorNumElements())) 1099 return true; 1100 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1101 Infos, ArgTys); 1102 } 1103 case IITDescriptor::PtrToArgument: { 1104 if (D.getArgumentNumber() >= ArgTys.size()) 1105 return true; 1106 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1107 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1108 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1109 } 1110 case IITDescriptor::PtrToElt: { 1111 if (D.getArgumentNumber() >= ArgTys.size()) 1112 return true; 1113 VectorType * ReferenceType = 1114 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1115 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1116 1117 return (!ThisArgType || !ReferenceType || 1118 ThisArgType->getElementType() != ReferenceType->getElementType()); 1119 } 1120 case IITDescriptor::VecOfAnyPtrsToElt: { 1121 unsigned RefArgNumber = D.getRefArgNumber(); 1122 1123 // This may only be used when referring to a previous argument. 1124 if (RefArgNumber >= ArgTys.size()) 1125 return true; 1126 1127 // Record the overloaded type 1128 assert(D.getOverloadArgNumber() == ArgTys.size() && 1129 "Table consistency error"); 1130 ArgTys.push_back(Ty); 1131 1132 // Verify the overloaded type "matches" the Ref type. 1133 // i.e. Ty is a vector with the same width as Ref. 1134 // Composed of pointers to the same element type as Ref. 1135 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1136 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1137 if (!ThisArgVecTy || !ReferenceType || 1138 (ReferenceType->getVectorNumElements() != 1139 ThisArgVecTy->getVectorNumElements())) 1140 return true; 1141 PointerType *ThisArgEltTy = 1142 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1143 if (!ThisArgEltTy) 1144 return true; 1145 return ThisArgEltTy->getElementType() != 1146 ReferenceType->getVectorElementType(); 1147 } 1148 } 1149 llvm_unreachable("unhandled"); 1150 } 1151 1152 bool 1153 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1154 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1155 // If there are no descriptors left, then it can't be a vararg. 1156 if (Infos.empty()) 1157 return isVarArg; 1158 1159 // There should be only one descriptor remaining at this point. 1160 if (Infos.size() != 1) 1161 return true; 1162 1163 // Check and verify the descriptor. 1164 IITDescriptor D = Infos.front(); 1165 Infos = Infos.slice(1); 1166 if (D.Kind == IITDescriptor::VarArg) 1167 return !isVarArg; 1168 1169 return true; 1170 } 1171 1172 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1173 Intrinsic::ID ID = F->getIntrinsicID(); 1174 if (!ID) 1175 return None; 1176 1177 FunctionType *FTy = F->getFunctionType(); 1178 // Accumulate an array of overloaded types for the given intrinsic 1179 SmallVector<Type *, 4> ArgTys; 1180 { 1181 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1182 getIntrinsicInfoTableEntries(ID, Table); 1183 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1184 1185 // If we encounter any problems matching the signature with the descriptor 1186 // just give up remangling. It's up to verifier to report the discrepancy. 1187 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1188 return None; 1189 for (auto Ty : FTy->params()) 1190 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1191 return None; 1192 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1193 return None; 1194 } 1195 1196 StringRef Name = F->getName(); 1197 if (Name == Intrinsic::getName(ID, ArgTys)) 1198 return None; 1199 1200 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1201 NewDecl->setCallingConv(F->getCallingConv()); 1202 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1203 return NewDecl; 1204 } 1205 1206 /// hasAddressTaken - returns true if there are any uses of this function 1207 /// other than direct calls or invokes to it. 1208 bool Function::hasAddressTaken(const User* *PutOffender) const { 1209 for (const Use &U : uses()) { 1210 const User *FU = U.getUser(); 1211 if (isa<BlockAddress>(FU)) 1212 continue; 1213 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1214 if (PutOffender) 1215 *PutOffender = FU; 1216 return true; 1217 } 1218 ImmutableCallSite CS(cast<Instruction>(FU)); 1219 if (!CS.isCallee(&U)) { 1220 if (PutOffender) 1221 *PutOffender = FU; 1222 return true; 1223 } 1224 } 1225 return false; 1226 } 1227 1228 bool Function::isDefTriviallyDead() const { 1229 // Check the linkage 1230 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1231 !hasAvailableExternallyLinkage()) 1232 return false; 1233 1234 // Check if the function is used by anything other than a blockaddress. 1235 for (const User *U : users()) 1236 if (!isa<BlockAddress>(U)) 1237 return false; 1238 1239 return true; 1240 } 1241 1242 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1243 /// setjmp or other function that gcc recognizes as "returning twice". 1244 bool Function::callsFunctionThatReturnsTwice() const { 1245 for (const_inst_iterator 1246 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1247 ImmutableCallSite CS(&*I); 1248 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1249 return true; 1250 } 1251 1252 return false; 1253 } 1254 1255 Constant *Function::getPersonalityFn() const { 1256 assert(hasPersonalityFn() && getNumOperands()); 1257 return cast<Constant>(Op<0>()); 1258 } 1259 1260 void Function::setPersonalityFn(Constant *Fn) { 1261 setHungoffOperand<0>(Fn); 1262 setValueSubclassDataBit(3, Fn != nullptr); 1263 } 1264 1265 Constant *Function::getPrefixData() const { 1266 assert(hasPrefixData() && getNumOperands()); 1267 return cast<Constant>(Op<1>()); 1268 } 1269 1270 void Function::setPrefixData(Constant *PrefixData) { 1271 setHungoffOperand<1>(PrefixData); 1272 setValueSubclassDataBit(1, PrefixData != nullptr); 1273 } 1274 1275 Constant *Function::getPrologueData() const { 1276 assert(hasPrologueData() && getNumOperands()); 1277 return cast<Constant>(Op<2>()); 1278 } 1279 1280 void Function::setPrologueData(Constant *PrologueData) { 1281 setHungoffOperand<2>(PrologueData); 1282 setValueSubclassDataBit(2, PrologueData != nullptr); 1283 } 1284 1285 void Function::allocHungoffUselist() { 1286 // If we've already allocated a uselist, stop here. 1287 if (getNumOperands()) 1288 return; 1289 1290 allocHungoffUses(3, /*IsPhi=*/ false); 1291 setNumHungOffUseOperands(3); 1292 1293 // Initialize the uselist with placeholder operands to allow traversal. 1294 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1295 Op<0>().set(CPN); 1296 Op<1>().set(CPN); 1297 Op<2>().set(CPN); 1298 } 1299 1300 template <int Idx> 1301 void Function::setHungoffOperand(Constant *C) { 1302 if (C) { 1303 allocHungoffUselist(); 1304 Op<Idx>().set(C); 1305 } else if (getNumOperands()) { 1306 Op<Idx>().set( 1307 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1308 } 1309 } 1310 1311 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1312 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1313 if (On) 1314 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1315 else 1316 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1317 } 1318 1319 void Function::setEntryCount(uint64_t Count, 1320 const DenseSet<GlobalValue::GUID> *S) { 1321 MDBuilder MDB(getContext()); 1322 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S)); 1323 } 1324 1325 Optional<uint64_t> Function::getEntryCount() const { 1326 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1327 if (MD && MD->getOperand(0)) 1328 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1329 if (MDS->getString().equals("function_entry_count")) { 1330 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1331 uint64_t Count = CI->getValue().getZExtValue(); 1332 if (Count == 0) 1333 return None; 1334 return Count; 1335 } 1336 return None; 1337 } 1338 1339 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1340 DenseSet<GlobalValue::GUID> R; 1341 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1342 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1343 if (MDS->getString().equals("function_entry_count")) 1344 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1345 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1346 ->getValue() 1347 .getZExtValue()); 1348 return R; 1349 } 1350 1351 void Function::setSectionPrefix(StringRef Prefix) { 1352 MDBuilder MDB(getContext()); 1353 setMetadata(LLVMContext::MD_section_prefix, 1354 MDB.createFunctionSectionPrefix(Prefix)); 1355 } 1356 1357 Optional<StringRef> Function::getSectionPrefix() const { 1358 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1359 assert(dyn_cast<MDString>(MD->getOperand(0)) 1360 ->getString() 1361 .equals("function_section_prefix") && 1362 "Metadata not match"); 1363 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1364 } 1365 return None; 1366 } 1367